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Abstract 

We present a framework for designing, in a 
declarative and flexible way, efficient migra- 
tion programs and an undergoing implemen- 
tation of a migration tool called RelOO whose 
targets are any ODBC compliant system on 
the relational side and the 02 system on the 
object side. The framework consists of (i) 
a declarative language to specify database 
transformations from relations to objects, but 
also physical properties on the object database 
(clustering and sorting) and (ii) an algebra- 
based program rewriting technique which op- 
timizes the migration processing time while 
taking into account physical properties and 
transaction decomposition. To achieve this, 
we introduce equivalences of a new kind that 
consider side-effects on the object database. 

1 Introduction 

The efficient migration of bulk data into object 
databases is a problem frequently encountered in prac- 
tice. This occurs when applications are moved from 
relational to object systems, but more often, in ap- 
plications relying on external data that has to be re- 
freshed regularly. Indeed, one finds more and more 
object replications of data that are used by satel- 
lite Java or C++ persistent applications. For cx- 
ample, we know that the 02 database system from 
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OsTechnology [BDK92] is used in that manner on in- 
dustrial databases supporting several gigas of data. 

The migration problem turns out to be extremely 
complicated. It is not rare to find migration programs 
requiring hours and even days to be processed. Fur- 
thermore, efficiency is not the only aspect of the prob- 
lem. As we will see, flexibility in terms of database 
physical organization and decomposition of the migra- 
tion process is at least as important. In this paper, we 
propose a solution to the data migration problem pro- 
viding both flexibility and efficiency. The main orig- 
inality of this work is an optimization technique that 
covers the relational-object case but is general enough 
to support other migration problems such as object- 
object, ASCII-object or ASCII-relational. In order to 
validate our approach, we focus on the relational to 
object case. 

Relational and object database vendors currently 
provide a large set of connectivity tools and some of 
them have load facilities (e.g., ObjectStore DB Con- 
nect, Oracle, GemConnect, ROBIN [Exe97], Persis- 
tence [INC93], OpenODB [PacSl]). However, these 
tools are either not flexible, or inefficient or too low- 
level. So far, the scientific community has mainly fo- 
cused on modeling issues and has provided sound so- 
lutions to the problem of automatically generating ob- 
ject schemas from relational ones (e.g. [Leb93, FV95, 
Hai95, MGG95, JSZ96, DA97, RH97, Fon97, BGD97, 
IUT98]). Our approach is complementary and can be 
used as an efficient support for these previous propos- 
als. In a manner similar to [WN95], we focus on the 
problem of incremental loading of large amount of da- 
ta in an object database taking into account trans- 
action decomposition. Additionally, we propose opti- 
mization techniques and the means to support appro- 
priate physical organization of the object database. 

One major difficulty when designing a tool is to 
come up with the appropriate practical requirements. 
Obviously, every tool should provide efficiency and 
user-friendliness. In order to understand what more 
was required from a relational-object migration sys- 
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tern, we interviewed people from OzTechnology. This 
led us to the conclusion that flexibility was the most 
important aspect of the problem. By flexibility we 
mean that users should have the possibility to orga- 
nize the output object database according to the needs 
of applications that will be supported on it. For in- 
stance, they should be able to specify some particular 
clustering of objects on disk. Also, users should be 
able to slice the migration process into pieces that are 
run whenever and for as long as appropriate so that 
(i) relational and object systems are not blocked for 
long periods of time or at a time that is inappropriate 
(i.e., when there are other important jobs to perform) 
and (ii) a crash during the migration process entails 
minimal recovery. 

In this paper, we present (i) a framework for design- 
ing, in a declarative and flexible way, efficient migra- 
tion programs and (ii) an undergoing implementation 
of a migration tool called RelOO. The language pro- 
posed allows capturing most automatically generated 
mappings as proposed by, e.g., [Leb93, FV95, Hai95, 
MGG95, JSZ96, DA97, RH97, Fon97, BGD97, IUT98]. 
An important characteristic of the optimization tech- 
nique is that it is not restricted to the “relations to- 
wards objects” case. It can be used to support dump- 
ing and/or reloading of any database or other kinds of 
migration processes (objects to objects, ASCII to ob- 
jects, etc.). The RelOO system, we present here, is an 
implementation of this general framework with a given 
search strategy with any ODBC compliant system on 
the relational side and the O2 system on the object 
side. 

In this paper, we assume that there are no updates 
to the relational database during the migration pro- 
cess. This is a strong limitation but we believe this is 
an orthogonal issue that does not invalidate our ap- 
proach. The declarativity of the migration specifica- 
tion language we propose should allow the use of the 
systems’ log mechanism to take updates into account. 

The paper is organized as follows. Section 2 ex- 
plains the migration process. Section 3 introduces our 
language. In Section 4, we present the algebraic frame- 
work, investigate various migration parameters and 
give some examples of appropriate program rewriting. 
In Section 5, we give a short overview of the RelOO 
system optimizer and code generator. Section 6 con- 
cludes this paper. 

2 The Migration Process 

Figure 1 illustrates our view of the migration pro- 
cess. The user specifies the process by means of a 
program containing two parts that concern (1) the log- 
ical transformations from relational to object schemas 
and bases, and (2) the physical constraints that should 
be achieved. The translation specification is given to 
a first module that generates (3) the object schema 
and (4) a default algebraic representation of the mi- 

gration process. (5) Optimization based on rewriting 
follows taking into account user physical constraints. 
(6) Then, migration programs are generated that can 
be parameterized by load size or processing time. (7) 
To achieve the migration, the user (or a batch pro- 
gram) launches these programs with the appropriate 
parameters whenever the system is available (i.e., not 
busy with other important processing). 

In this paper, we describe the RelOO language to 
specify logical translations and physical constraints, 
the rewriting technique and the optimizer and code 
generator we implemented. We do not describe the 
object schema construction which is rather obvious. 

3 The Specification Language 

The RelOO language is simple and declarative. It 
is used to express logical database transformations as 
well as physical database organization. The complete 
syntax of this language is given in [AY98]. 

3.1 Logical Database Transformation 

Database schema transformations from relational to 
object systems have been largely addressed. No- 
tably, semantical relational properties such as nor- 
mal forms, keys, foreign keys, existing relationships 
and inclusion dependencies have been used to auto- 
matically generate a fait/&Z object image of the re- 
lational schema. We do not address this issue here 
but provide a simple language that can be used to 
implement these approaches and that supports effi- 
cient optimization strategies. This language is defined 
in the same spirit as existing object views languages 
(e.g. [AB91, SLT91, Ber91, Run92, DdST95]). Classes 
(generated from one or several relations), simple and 
complex attributes, class hierarchies, aggregation links 
and ODMG-like relationships [ABDf94] can be cre- 
ated from any relational database. Because we focus 
on data migration, we illustrate only some of the lan- 
guage features using a simple example. Part of this 
example will be used in the sequel to discuss the ef- 
ficiency and flexibility issues that constitute our core 
contribution: 
r-employee[emp:integer,lname:string,fname:string, 
town:string,function:string,salary:real] 

Figure 1: The Migration Process 
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r-project[name:string,topic:string,address:string, 
boss:integer] 
r-emp-prj[p-roject:string,employee:integer] 

Relations r-employee and r-project provide infor- 
mation on, respectively, employees and projects in a 
research institute. In our example, they are used to 
construct three object classes (Employee, Researcher 
and Project). The underlined attributes are the keys 
of each relation. These are required to maintain exist- 
ing links between tuples in the relational database and 
their corresponding created objects. This is needed to 
be able to maintain the consistency between relational 
and object databases (problem that we do not address 
here) but also to compute cyclic references in the ob- 
ject base. Relation r-emp-prj captures the many-many 
relationship existing between employees and projects. 

Let us now consider an example of database trans- 
formations as given in the following RelOO translation 
specification. 

create class Employee 
from relations r-employee 
with attributes name:string is Iname+fname, 

sa1ary:res.l is salary 
extent Employees 
where function # ‘Researcher’ 

and town = ‘Rocquencourt’ 
create class Project 
from relations r-project 
with attributes name:string is name, 
extent Projects 
where address = ‘Rocquencourt’ 
create class Researcher 
from relations rznployee 
inherits Employee 
extent Researchers 
where function = ‘Researcher’ 

and town = ‘Rocquencourt’ 
create link Project,Employee 
from relations r-employee, r-project 
with attributes manages:Project 

in class Employee 
where boss = emp 
create link Project,Researcher 
from relations r-emp-prj, r-employee, r-project 
with attributes stalTset(Researcher) in class Project, 

projects:set(Project) in class Researcher 
where employee = emp and project = name 

The create class statements create classes which 
attributes are derived from relational ones by applying 
simple functions (identity, string concatenation, arith- 
metic functions,...). Note that the relation r-employee 
has been partitioned (where clause) to form two class- 
es (Employee and Researcher) and that only em- 
ployees and projects located in “Rocquencourt” will 
be migrated. Class Researcher inherits from class 
Employee. This means that the former inherits the 
attribute specification of the latter (since there is no 
redefinition). However, their population are specified 
in a disjoint manner through their respective where 
clauses. Finally, note that we give a name to class ex- 
tents. This is required in order to support persistence 
by reachability. Unless specified otherwise, the extent 
of a class does not contain the objects of its subclasses. 

For instance, the name Employees will be related to 
all employees who do not live in “Rocquencourt” and 
are not researchers (function #’ Researcher’). 

The two create link statements define, respec- 
tively, a reference link manages and an ODMG rela- 
tionship (attribute and its inverse) staff/projects. 
The first one links each employee in Class Employee 
to the projects he/she manages (if he/she is a manag- 
er). Since, researchers are employees, they inherit this 
link. The second one relates projects and researchers 
and implies a filtering of the relation r-emp-prj so as to 
reject employees who are not researchers and projects 
which are not located in “Rocquencourt”. This will 
be illustrated in the sequel. A create link state- 
ment contains three clauses that specify, respectively, 
the relations involved, the object attributes that ma- 
terialize the link in each class and the join condition 
on the given relations. Note that there is no condition 
on the existence of foreign keys and inclusion depen- 
dencies. The user can construct any link he wants by 
giving an appropriate condition in the where clause. 
In the example, the aggregated attributes are of type 
set. Other collection types (e.g. list, bag) can also 
be used. 

When the translation specification is processed, a 
schema definition is generated and compiled in the tar- 
get object system. We give below the class definitions 
generated by the prototype we implemented on top of 
Oz. Relationships are materialized by two apparently 
disconnected attributes that enable the use of logical 
connections between the related objects. Creation and 
update methods guarantee the referential integrity of 
the relationship. However, relying on these methods at 
migration time is not always a good solution in terms 
of efficiency since (i) method calls are expensive and 
(ii) potentially involve random accesses to the store. 
We will see that our optimization technique proposes 
various ways to process relationships. 

class Employee type class Researcher 
tuple (name: string, inherits Employee 
salary:real, public type tuple( 
manages:Project) projects:set(Project)) 

Employees:set(Employee) ; 
Researchers: set (Researcher) ; 
Projects:set(Project); 

class Project type 
tuple(name:string, 
staff: set (Researcher) 1 

3.2 Physical Database Organization 

The object database could be organized physically af- 
ter migration time. However, this would require very 
long processing. It is thus vital to integrate physical 
requirements in the actual migration. We consider two 
physical properties: clustering and ordering. 

Clustering techniques are provided by most object 
database systems with different approaches and have 
been studied intensively (e.g., [BDK92, TN92]). The 
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goal of a cluster is to minimize page faults by plac- 
ing objects that are often accessed together as close as 
possible on disk. In RelOO, we do not assume any par- 
ticular system clustering policy. We provide a primi- 
tive to specify clusters and a rewriting mechanism that 
takes this specification into account. The main idea is 
that the object system is in a better position to effi- 
ciently create a cluster if it is given all cluster-related 
objects at the same time. This is indeed true for our 
target system 02 but also for, e.g., ObjectStore. 

The ODMG model (and most object systems) fea- 
tures list and array constructors that are used to access 
objects according to some logical order. A list (or ar- 
ray) of objects is usually represented on disk as a list of 
object identifiers. If the order of objects on disk is dif- 
ferent from the list logical order, one risks random and 
expensive access to the secondary storage. Again, we 
do not assume any particular system implementation 
but rely on the fact that it is easier to place objects 
on disk in a given order if the migration input respects 
this order. As a matter of fact, our implementation on 
top of the 02 system guarantees a correct ordering. 

Below are two RelOO statements. One specifies 
that only “Network” projects should be clustered with 
their staff attribute (not the related researcher ob- 
jects, just the staff set of object identifiers). Deeper 
clusters can be specified. It is the case for the other 
cluster statement in which projects should be ordered 
by name (the order is by default ascendant) and each 
Project object should be clustered in a file with its 
Researcher objects (via the staff attribute). 

)I 

Object sharing makes it impossible to guarantee 
that all database researchers will be clustered with 
their projects. A cluster is just an “indication” of what 
should be achieved. However, a good cluster specifica- 
tion may seriously improve the performance of object 
applications. The order in which cluster specifications 
are given is important. 

Two specifications may be contradictory. This is 
obviously the case for the two above ones. Other con- 
tradictions are less easy to detect: e.g., specifying an 
order on researchers independently from the projects 
to which they belong, may be inconsistent with the 
Project cluster on staff (Researcher) since it en- 
tails that researchers are created according to their 
membership to a project. The RelOO compiler checks 
the consistency of the given specifications using tech- 
niques similar to those found in [BDK92]. 

4 Rewriting Migration Programs 

Given a translation specification, a first module gener- 
ates an object schema and a default algebraic expres- 

sion representing the migration process. This expres- 
sion is given to the optimization module which uses 
physical properties for further processing. The opti- 
mization process relies on rewriting based on algebraic 
equivalences. The rewriting is performed according to 
a search strategy and a cost model, both of which will 
be discussed in Section 5. In the current section, we 
present the algebra and the rewriting possibilities it 
offers. 

Algebras are commonly used to optimize queries. 
However, queries do not have side-effects whereas we 
obviously are in a context with many of them (since 
the goal is the creation of an object database). Our 
choice of an algebraic tool can thus be argued. It was 
motivated by the following facts: (1) the side-effects 
operations are not arbitrary and are always applied on 
the result of queries; (2) the potential for optimization 
relies on the rewriting of these queries. Thus, we pro- 
pose a representation of the migration program mainly 
composed of standard algebraic operations. An oper- 
ator named Map is added to apply database update 
operations on each element of its input set. 

We now present the default program representation, 
explain how side-effects can be taken into account by 
the rewriting process, investigate the parameters that 
should be considered by the optimizer and illustrate 
the rewriting possibilities using some examples. 

4.1 Default Algebraic Representation 

The algebra we use is that of [CM94]. It is well adapt- 
ed to the problem at hand since it manipulates sets of 
tuples, the attributes of which can be atoms, objects 
or complex values. Thus, it captures both object and 
relational models. The algebraic operators are, for the 
most part, standard. The main difference with the 
relational algebra is that attributes may be complex, 
thus sometimes involving the use of nested algebra- 
ic expressions. Note that this algebra also fits nest- 
ed relations or complex objects. It can also be used 
on ASCII data files as long as there exists a mapping 
between this data and some database representation 
(relational or other). Thus, the framework we propose 
can indeed cover most data migration cases. 

The default representation corresponds to a 
“naive” ’ evaluation of data migration. It consists of 
a set of algebraic expressions (also called blocks) that 
correspond to the translation program statements. 
Some of the blocks create objects, others evaluate 
complex attributes and relationships. The generat- 
ed blocks can be executed in any order. As we will 
see, this is possible because of the special object cre- 
ation primitive we use that (i) keeps trace of the cre- 
ated objects and (ii) guarantees that we do not create 
two objects corresponding to the same relational key. 
However, to achieve rewriting, a default order (the one 

‘WC will see in the sequel that a naive algorithm can be 
appropriate in some cases. 
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in which the translation statements are given) is cho- 
sen. Let us consider now a subpart of the transla- 
tion program given in Section 3 that creates two class- 
es (Researcher and Project) and one relationship 
staff /projects. Figure 2 shows two blocks ~~~~ 
and Bprj that create, respectively, the Researcher 
and Project objects. 

Figure 2: Researchers and Projects 

Both blocks are similar. The upper part of ~~~~ 
features a selection operation corresponding to the 
where clause of class Researcher definition. Next, 
comes a projection on the relational attributes that are 
involved in the transformation. Then, a Map opera- 
tion creates one object for each input tuple and mem- 
orizes the newly created objects (attribute 0). This 
Map uses the obj function whose input is a relational 
key. In our example, this key is composed of a single 
attribute emp, more can be used. The obj function has 
two effects. It maintains the correspondence between 
relational and object entities in a table. There is one 
table per couple class/relation, each containing rela- 
tional keys and object identifiers. In our implementa- 
tion, these tables are indexed on relational keys. Cor- 
respondence tables can grow considerably and require 
good storage and access policies as found in [WN95]. 
We will see that we may avoid maintaining them in 
some cases by applying some rewriting techniques. It 
returns an object identifier that is either created (when 
a key value is first encountered) or retrieved from the 
correspondence table (we will see some examples of 
this later on). 

Finally, two Map operations are used to update the 
attributes name and salary of the Researcher ob- 

jects ‘. 
Let us now consider a relationship specification: e.g. 

the staff /projects relationship. For each direction 
of a relationship, a block is created (see Figure 3). 

2For an easier presentation, we simplified the way object cre- 
ation and updates are performed. For instance, object creation 
requires the pair class/relation involved (i.e, we write obj(emp) 
instead of ob&,,(emp)) 

Figure 3: The staff/projects Relationship 

Let us consider BstaE. Two join operations filter the 
r-emp-prj relation. This avoids creating relationships 
between objects that should not be in the database 
(i.e., projects or employees that are not part of the 
“Rocquencourt” site) or that should not be related 
(i.e., projects and non-researcher employees). A pro- 
jection follows to remove irrelevant attributes. Then, 
researchers are grouped according to their member- 
ship to a project. This is done using the Group opera- 
tor. This operator has three parameters: the name of 
the attribute that will denote the grouped elements 
(g), the name(s) of the grouping attribute (name) 
and the attribute(s) on which each group will be pro- 
jected (emp). Therefore, a set g of related emp val- 
ues is associated to each distinct name value. The 
last operation is a Map that assigns to the staff at- 
tribute of each Project object (obj(name) retrieves 
the appropriate object identifier from the correspon- 
dence table (Project ,r-project)) its value (a set of 
Researcher objects). This value is computed by ap- 
plying the obj(emp) operation to each element of the 
set g (embedded Map operation). 

4.2 Taking Side-Effects Into Account 

In this section, we introduce some concepts that will 
allow considering optimization of the migration be- 
yond block boundaries. So far, we have presented the 
default migration representation as a set of distinct al- 
gebraic blocks. In that context, it is difficult to detect 
optimization that would spread across two blocks, e.g., 
that would replace the two blocks BPrj and BstaR by 
a single one both creating projects and assigning their 
staff attribute. To do that, we need to provide explic- 
itly semantic connections between the various blocks. 
Obviously, the connection we are interested in is not 
the standard one through algebraic data flow i.e., the 
input of one operation is the output of the previous 
one. There are two reasons for that: (i) we may want 
to discard previous results (e.g., we do not need the 
researchers data flow in order to create the projects) 
and, more importantly, (ii) rather than proving equiv- 
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alences involving the data flow, we are interested in 
maintaining the logical database state (i.e, the object 
database resulting from a sequence of operations) 

, , ‘.F’P I1 

Figure 4: Adding the DS Parameter 

Thus, during the optimization process, an essen- 
tial parameter is the database state that links together 
both algebraic operations and blocks. We call this pa- 
rameter DS (for Database State). Now, each algebraic 
operation is considered with respect to the standard 
data flow and the DS parameter (see [AYCD97] for 
more details on the effect of each algebraic operation 
on DS). This is detailed for block ~~~~ on the left 
part of Figure 4 which shows how the DS parameter 
is altered by each operation. Note that only Map op- 
erations have side effects and thus modify DS. DS is 
represented by a table where an entry is defined for a 
pair class/source relation. An entry in the table has 
two fields: pred and atts. The former is a predicate 
representing the selected tuples in the relation that are 
used to create the objects in the class. The latter rep- 
resents the objects attributes that have been assigned 
along with their computed value. An empty DS rep- 
resented by the symbol 0 (the object database has not 
been populated yet) is assigned to block ~~~~ and is 
not modified by the three first operations. After the 
Map,:obj(em,) operation, DS has a new entry whose 
pred field indicates the objects that have been creat- 
ed (one per tuple of the r-employee relation satisfying 
the predicate). The second and third Map operations 
then update the atts field. 

The DS of a block is the DS associated with the last 
operation in the block. At the termination of a block, 

the standard algebraic data Aow is discarded while DS 
is passed to the next block that will modify it further 3. 
This is illustrated in the right part of Figure 4 which 
shows the DS obtained after each block of the default 
algebraic representation. 

DS allows us to define a whole new class of 
equivalences, called DS-equivalences (SDS), that 
rely primarily on side-effects. To illustrate 
this, consider removing the projection operation 
CT emp,l,aanae,fname,salary) from block BRes. This 
would result in a different algebraic data flow. How- 
ever, this would not modify the object database state 
and should thus be considered as a correct rewriting. 
This is what DS-equivalences are for. We will see more 
involved examples of DS-equivalences including rewrit- 
ing examples that will spread across several blocks in 
Section 4.4. For the moment, just remark that they 
are less constraining than usual algebraic ones (denot- 
ed E). Given two arbitrary algebraic expressions er 
and e2, we have er E e2 + er =DS e2 but not the 
opposite. Some examples of DS-equivalences can be 
found in [AYCD97]. 

4.3 Parameters of the Rewriting Process 

Although the ultimate goal of the rewriting phase is 
optimization, some constraints that influence the com- 
munication or processing time have to be taken into ac- 
count. These constraints are related to load balancing 
(e.g., the relational site should not be overloaded), and 
physical dat,a organization as specified by the user. We 
discuss here the parameters that will guide the rewrit- 
ing phase; i.e., the constraints and the resources we 
want to optimize. We also study the default represen- 
tation in view of these parameters. Next, we consider 
some rewriting examples offering alternative tradeoffs 
between constraints and optimization. Section 5 shows 
one possible implementation of an optimizer relying on 
these parameters. 

4.3.1 Where should we process? 

The relational/object migration process we consider, 
consists of three phases. (i) A query is evaluated by 
the relational system and its result is sent to the mi- 
gration component, (ii) eventually some non database 
processing follows there, (iii) finally transactions are 
launched on the object system to create the database. 
This is illustrated on Figure 5. Note that an alter- 
native solution would put the migration component 
at the relational site. From an optimization point of 
view, the only difference would be in communication 
costs. 

Given this architecture, we can find different ways 
to decompose a migration process. For instance, a pos- 
sible and rather natural decomposition of blocks B,t,e 

30n figures, we use a thin line to represent the standard data 
flow and a dash line for DS 
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Figure 5: The Processing Three Phases 

and Bprojects would be as follows: Map operations 
are computed by the object transactions, GTOU~ op- 
erations are performed locally (in the migration com- 
ponent) and all other operations are performed at the 
relational site. Alternatively, we could perform all op- 
erations but the Map(s) in the migration component 
or migrate all relations in the object system and per- 
form all processing there. There are of course many 
other alternatives. The choice of a solution depends 
on various factors: the availability of the two database 
systems, the cost of each operation in the different sys- 
tems, the ability of the migration component to store 
and manage large amount of data, the cost and relia- 
bility of communication. 

The decision to favour processing on one of the com- 
ponents rather than another has direct consequences 
on the rewriting process and important influences on 
the global migration cost. Indeed, if we decide to 
push as many operations as possible to the relation- 
al site, the rewriting should separate non-relational 
(e.g., grouping containing sets) and relational oper- 
ations. Alternatively, performing all processing out 
of the relational system may increase the global mi- 
gration cost since we will not be able to use relation- 
al optimization techniques, such as existing indexes. 
However, this strategy may sometimes be interesting 
since it minimizes the load of both database systems 
and shortens communications. 

4.3.2 When should we process? 

Relational and object systems may be available at 
some times and unavailable at others. Thus, it is im- 
portant to be able to slice the process into pieces that 
are run whenever and for as long as appropriate. To 
achieve that, the generated transaction programs are 
parameterized according to (i) time or (ii) size (num- 
ber of created objects). The user can then launch a 
program by giving a fixed time or size. There are main- 
ly two ways to decompose a program. Either, load all 
relations in the migration component, perform all pro- 
cessing there and then allow the user (or a program) 
to launch a sequence of object transactions. As was 
explained earlier, this strategy does not benefit from 
relational optimization technique and may imply an 
important cost overhead. Or, generate queries that 
load only the relevant part of data for a given transac- 
tion (i.e. decompose a large query into smaller ones). 
The advantage of this solution is that, as opposed to 
the previous one, it is flexible in terms of load balanc- 
ing. Processing can be performed at any site(s). Of 
course, it also has a cost that must be taken into ac- 

count by the optimization process: e.g., 72 small joins 
may be less efficient than a large one. 

4.3.3 Physical database organization. 

As was explained in Section 3, we want to be able to 
specify ordering and clustering criteria in order to store 
objects in a manner adequate to further processing. 
Let us consider the following cluster statement: 
class Project cluster on staff(Researcher) 

In order to implement this cluster, the object sys- 
tem should at least be aware of the number of re- 
searchers in a project before creating it so as to be able 
to reserve the appropriate space. Even better, having 
all information about projects and related researchers 
at the same time would allow to store objects through 
one sequential access to the corresponding database 
file. 

Now, let us consider the default representation. It 
creates researchers, then projects, before materializ- 
ing the staff /projects relationship. Obviously, the 
system is in no position to guarantee the appropri- 
ate physical property without re-organizing its stor- 
age. Thus, the expression should be rewritten so as 
to consist of a merge of blocks BPrj and Bsta~ first, 
then of block BRes, or, even better in terms of object 
secondary access, of a merge of all three blocks BR~~, 

BPrj and Bstaff into one (see Figure 6). 
As another example, the following statement speci- 

fies that projects should be split into two parts in order 
to allow different strategies for network or non-network 
related projects: 
class Project if topic=‘Network’ cluster on staff 

Finally, specifying an order as in: 
class Project order by name 

implies the addition of a Sort operation in block 

BPri. 
we will see later on how merging, splitting and or- 

dering can be achieved (Figures 6, 7 and 8). For the 
present, let us just comment on the influence of these 
operations on the global migration cost and, accord- 
ingly, on the rewriting process. Consider once again 
the possibility of merging all three blocks BRAN, BPrj 

and Bstaff and thus creating projects, researchers and 
the staff/projects relationship at the same time. 
Again, this can be done in the migration component, 
independently from the database systems, or we can 
rely on the relational system to perform a join between 
the three relations and provide all relevant information 
(i.e., all Project and Researcher attributes). Note 
that by requiring the relational system to compute this 
large join, we may reduce the processing cost (less iter- 
ations on source relations, potentially faster join pro- 
cessing). However, note also that this will probably (i) 
increase the global communication cost (the large join 
can be much bigger than the sum of two selections plus 
a small join on two key attributes), (ii) the cost of the 
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grouping operation (that will have to be performed on 
a larger set), (iii) the cost of local buffering, as well as 
(iv) the cost of a transaction decomposition. 

4.3.4 Optimization. 

So far, we have been mainly concerned by migration 
constraints and have studied their influence on the 
migration process. Let us now consider optimization 
techniques. 

The migration process involves (i) communications, 
(ii) local buffering, and (iii) relational, local and object 
processing, all of which should be optimized. 

The easiest and most efficient way to reduce com- 
munication time is to perform all selections and projec- 
tions at the relational site and only these operations 
(no joins). Then, the result is loaded in the migra- 
tion component that may perform all further algebra- 
ic processing or may rely on the object system to do 
it. In terms of rewriting, this has few implications: 
the only requirement is to keep selections and projec- 
tions in the upper part of the program trees (i.e. not 
mix these operations with the others). However, this 
may affect the processing time considerably (since we 
will not be able to rely on existing relational indexes 
to perform joins) and requires potentially large local 
buffering. The search strategy and cost model should 
take this into account. For instance, according to ap- 
plication requirements, communication costs can have 
a more or less important weight in the cost model. 

The migration component may have less disk space 
than the database systems. Thus, local buffering 
should be taken into account by the rewriting pro- 
cess, either as a weighted component of the cost model 
(as is the case for the RelOO prototype) or as part 
of the search strategy. The migration component is 
in charge of storing the object/relational correspon- 
dence tables as well as all temporary results. If we 
want to maintain the consistency between an updat- 
able relational database and its object counterpart, all 
correspondence tables must be maintained. However; 
if this is not the case, there exist ways to eliminate 
some of these tables. An example will illustrate this 
later on (see Figure 6). Another way to reduce local 
buffering is to avoid local processing altogether, or at 
least minimize it. As we will see, this is what we did 
in the RelOO prototype where the migration compo- 
nent performs only grouping operations on “reason- 
able” amount of data. 

Some operations of the migration programs are 
purely object (database update operations). Others 
can be performed by either the object system or the 
migration component (grouping involving sets). Final- 
ly, some can be performed by any of the three migra- 
tion actors (e.g., selections). We briefly explain the 
main optimization techniques applying to these four 
different kinds of operations. 

l The only way one can optimize object operations 

during the rewriting phase is by taking object in- 
put/output into account. As we will see, some 
algebraic expressions involve random accesses to 
the object store (see the default representation) 
while others allow a sequential one (see Figure 6). 
By considering this in the cost model, we will be 
able to favour one or the other. 

l Access to correspondence tables can and should 
be minimized. This can be done by merging 
blocks together as will be illustrated in the sequel. 

l If no clustering is required, grouping operations 
can be avoided altogether and replaced by itera- 
tive invocations of set insertions at the object site. 
This, of course, may be more costly in terms of 
input/output operations. But, as we will see, we 
may sometimes rely on a correct ordering of the 
objects on disk and in the correspondence tables 
to minimize this cost (see Figure 8). 

l The algebra we propose supports rewriting rules 
as found in [UllSS, CM941 to which rules relying 
on DS equivalences have been added. By using the 
first ones, we may rewrite all algebraic operations 
in the usual way and also use semantic informa- 
tion to reduce processing cost. For instance, if we 
know that all “Rocquencourt” researchers belong 
to a “Rocquencourt” project, we can remove the 
join with the r-project relation from both blocks 
B staff and Bprojects of the default representa- 
tion.If the target systems support multi-threading 
or parallelism, DS equivalences can also be used 
to highlight interesting parallelization strategies 
by organizing the algebraic blocks in an appropri- 
ate manner. 

4.3.5 To Summarize... 

Many factors must be taken into account by the rewrit- 
ing process, some of which are contradictory. A migra- 
tion process may be inefficient in terms of global cost 
(i.e., sum of all processing costs) and still be considered 
highly interesting because it minimizes communication 
cost, or relational/object processing, or local storage 
maintenance, or is easily decomposable, or favours in- 
teresting clusters, etc. 

For instance, let us consider again the default al- 
gebraic expression. Its main advantages are that it 
reduces communication cost and facilitates transac- 
tion decomposition since it cuts the process into small 
blocks. Furt,hermore, by memorizing the result of join 
operations locally (factorization), we can further re- 
duce communication as well as processing time. Never- 
theless, (i) processing time is bad because of the many 
accesses to the relational/object tables and (ii) it can- 
not support, the cluster specifications given above. 

To conclude, note that as mentioned in the begin- 
ning of this section, although the rewriting techniques 
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are presented here for relational to object migration, 
the ideas go beyond that scope. In particular, one 
would find similar parameters to guide the optimiza- 
tion when migrating ASCII files to relational or object 
systems. This would probably imply that no opera- 
tion be computed at the source site since file systems 
do not perform database operations. 

4.4 Three Rewriting Examples 

A detailed presentation of the rewriting rules that we 
use would be tedious. Instead, we illustrate them by 
three examples where we also introduce splitting, clus- 
tering and ordering related to user-defined physical 
properties. 

4.4.1 Merging All Four Blocks. 

The first rewriting (see Figure 6) merges all fours 
blocks into one and creates all objects and their rela- 
tionships. (i) The join operations have been factorized 
and transformed into outer-joins. Outer-joins guaran- 
tee that we do not lose researchers or projects that 
do not appear in the relationship but must nonethe- 
less be created. If we know that all projects and re- 
searchers are related, the outer-joins can be replaced 
by joins (semantic equivalence). (ii) We have removed 
the Group operation related to the projects attribute 
and rely on set insertion (+ = assignment) and the 
(Researcher ,r-employee) correspondence table (ac- 
cessed by obj(emp)) to update it. Researchers are cre- 
ated and updated in an embedded Map operation. (iii) 
We have grouped all Map operations into one. (iv) 
We have introduced a Sort operation on the projects 
name. 

7 
I 

, 

Figure 6: Merging All Four Blocks 

Block Ball offers five positive characteristics. (1) If 
we are not interested in maintaining correspondences 

between relational and object entities (e.g., we are 
migrating archives), we may remove the correspon- 
dence table related to Project objects. However, 
the (Researcher, r-employee) table has to be main- 
tained. Indeed, a researcher may belong to several 
projects and therefore may be accessed several times 
by obj (emp) (2) We have reduced the number of joins 
and iterations to be performed on source relations. (3) 
We make no assumption on the process localization: 
e.g., we can compute the joins at the relational site, 
locally in the migration component or in the object 
system. (4) Assuming an incremental loading inside 
the object database, we maintain the referential in- 
tegrity of the staff /projects relationship: i.e., at all 
times, a project referencing a researcher is referenced 
by the researcher. (5) The expression allows a better 
support of the following user specification: 
class Project order by name cluster on staff(Researcher) 

The negative aspects of this rewriting are: (1) The 
Group operation is performed on a very large set, im- 
plying large local storage and expensive computation. 
(2) If we perform the joins at the relational site, the 
global communication cost is much higher than that 
of the default representation. Furthermore, (3) cut- 
ting the loading from relational to object site (trans- 
action decomposition) will be difficult and potentially 
expensive. 

4.4.2 Splitting and Merging. 

The second rewriting is illustrated on Figure 7. Block 
~~~~ has been merged with the subpart of blocks 

BPrj and Bstaff related to “Network” projects. Thus, 
at the end of block Bp,RjstaE, all researchers have 

been created, as well as all “Network” projects along 
with their staff attribute. The remaining part of the 
BPrj and B,,,E blocks follow, the expression ends 
with an unmodified block Bprojects. 

The expression represents one possible way to take 
the following user cluster statement into account: 
class Project if topic=‘Network’ cluster on staff 

Note that we can rewrite the three last blocks in 
any possible way and still keep that property. On 
the plus side, block BP,Rlsta~ features a smaller 

GTOU~ operation than the previous expression (on- 
ly keys are grouped) and potentially smaller commu- 
nications. Furthermore, there is no need to main- 
tain a table of correspondence for “Network” relat- 
ed Project objects. On the negative side, it forces 
to perform a join outside of the relational system 
( 3 emp~oyee=emp). B ecause of this, it also involves 
a larger buffering at the object site. 

4.4.3 Playing With Group Operations. 

Our last example (see Figure 8) shows, among other 
interesting features, how one can push a Group op- 
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Figure 7: Splitting According to User Specifications 

eration to the relational site by adding an aggregate 
function. The expression consists of three blocks: the 
unmodified Bprj that takes care of Project ob$ects, 
B’Res that creates researchers and B staff/projects 
that materializes the relationship between researchers 
and projects. 

In block B’Res, a Sort operation is added to order 
the researchers according to their key number. This 
Sort should also simplify the Group operation that 
follows and associates to each researcher the number 
of projects it belongs to. Finally, researchers are cre- 
ated through a Map operation. Although we do not 
have all information concerning the projects to which a 
researcher belongs, we know the size of the correspond- 
ing projects attribute. Thus, assuming the following 
cluster statement, we are in a position to organize the 
object storage in an appropriate manner: 
class Researcher order by desc emp cluster on projects 

Let us now see the positive and negative aspects of 
this expression. As was stated above, the expression 
allows (i) to support a cluster statement and (ii) push 
the Group operation on the relational site (since an ag- 
gregate function count is applied). Assuming that the 
relational system is more efficient than the migration 
component or the object system, this latter character- 
istic is interesting. If we want to avoid putting extra 
load to the relational system, this is still interesting 
since the grouping can be performed more efficient- 
ly (no need to create set.s). Furthermore, using some 
rewriting, we could then buffer the result of the join 
and sort operations in the migration component and 

Figure 8: Introducing Relational Grouping 

avoid evaluating them twice. 
Unfortunately, this rewriting entails a more impor- 

tant processing at the object site and the need to sup- 
port and access many times two correspondence ta- 
bles (block B staff/projects). However, note that re- 

searchers (which should constitute the larger table) 
have been sorted on their key at creation time and 
before we materialize the relationship. Thus, we can 
rely on a sequential access to the table and to the ob- 
ject store (if it reflects the order of creation) to avoid 
unnecessary input/output operations. 

5 The RelOO Migration Tool 

The ideal migration tool should (i) work for any rela- 
tional or object system and (ii) take full advantage of 
the rewriting possibilities we introduced in the previ- 
ous section. 

The first criterion is somehow hard to reach in con- 
junction with the second one. This is mainly due to 
the relative youth of the object systems as compared 
to their relational counterparts. Whereas a protocol 
such as ODBC [Mic94] makes it possible to communi- 
cate in an efficient and homogeneous fashion with most 
relational systems, there is yet no object equivalent. 
The ODMG [CBB+97] standard OQL query language 
does not support update primitives and the various 
ODMG programming interfaces lack the declarativity 
necessary to abstract oneself from the target system. 
Although some object systems provide an ODBC in- 
terface, they cannot be viewed as a reasonable solution 
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for generating object databases. 
The second criterion requires a sophisticated archi- 

tecture with a parameterized search strategy and cost 
model. The search strategy should make use of the 
various parameters introduced in Section 4 and, for in- 
stance, discard some sequence of equivalences or favour 
some other, given the user specifications and the tar- 
get systems possibilities (e.g., what operations they 
can process). The cost model should mix communi- 
cation, relational and object processing costs with ap- 
propriate application-specific weight factors. Not sur- 
prisingly, this kind of architecture resembles that of a 
mediator (e.g., [OV91, TRV96, ACPS96]). In this pa- 
per, we present a reasonable solution relying on a fixed 
search strategy and a parameterized cost model. It ex- 
tends a previous prototype that followed user require- 
ments but had little optimization capacities [AY97]. 
We briefly present the optimizer and code generator 
of the RelOO system that is currently under develop- 
ment in the VERSO group at INRIA. RelOO targets 
are any ODBC compliant systems on the relational 
side and the 02 system on the object side. 

5.1 The RelOO Optimizer 

The RelOO optimizer is being developed in Java4. Its 
inputs are (i) the default algebraic representation giv- 
en in Section 4, (ii) the user constraints on physical 
organization and (iii) the cost model. It works in two 
phases. According to the user constraints, sorting and 
selection operations are added. For instance, the or- 
dering instruction given in Section 3 on class Project 
adds a Sort operation and the clustering instruc- 
tion related to “Network” projects adds two selections 
(~topic=‘Netumk and gtopic#’ Network’, see Figure 7). 
Then we apply some equivalences that merge blocks, 
push Map operations and combine Map and Group 
operations. This phase returns a new algebraic rep- 
resentation where all objects that should be clustered 
together are created, as much as possible, through a 
single and appropriate Map operation. Blocks and 
operations in this representation are partially ordered 
(i.e., some blocks precede others according to the order 
on clusters). The second phase applies all equivalences 
on the result of the first, respecting the partial order- 
ing and relying on the cost model to choose the best 
solution. Since blocks are never un-merged (i.e., merge 
equivalences are applied in only one direction) and the 
partial ordering is not broken, the resulting expression 
implements the user-given physical constraints (if it is 
coherent). 

The cost model we implemented relies on simple 
statistics and considers (i) the result size of the “re- 
lational” expression (for communication cost), (ii) the 

4Note that the time devoted to the optimization process is 
of little consequence since it is performed only once and can be 
seen as part of the specification process that may take a long 
time to be achieved. 

size and number of the relational attributes involved 
in sequences of join operations (to ease transaction 
decomposition), (iii) the size of the relational/object 
correspondence tables, (iv) the cost of accessing the 
object store and the correspondence tables (sequen- 
tial versus random accesses), (v) the size required by 
local buffering and the computation cost of the var- 
ious operations according to their execution context. 
For instance, by giving an infinite cost to a relation- 
al operation (i.e., Selection, Projection, Join, Sort and 
Group with aggregates on source relations) following 
a non-relational one, we guarantee that all relational 
processing is performed at the relational site. 

5.2 The RelOO Code Generator 

Once the rewriting process is over, the RelOO system 
constructs one transaction program per block, each 
program being parameterized by either time or size. 
Time-parameterized programs cut the object transac- 
tions according to a given duration. Since we want (i) 
to avoid multiple evaluations of the same query and (ii) 
to minimize local storage whenever possible (i.e., when 
no materialization is needed for factorization purpos- 
es), this kind of program requires that we construct a 
“reasonable” SQL query. By reasonable, we mean that 
it should return a number of tuples that corresponds 
to the time allocated to the object processing. 

We do not explain the translation process from al- 
gebra to relational, local or object operations. Al- 
though rather intricate, this part is done using stan- 
dard techniques. As explained above, the optimization 
generates blocks with three distinct parts. The upper 
part is relat,ional and is translated into an SQL query. 
Then comes a GTOU~ operation, if any, which is trans- 
lated into a local Java program. Finally, the lower 
part consists of Map operations that are translated 
into appropriate 02 code. The generated programs 
are then given to the RelOO migration control envi- 
ronment which controls their ordered execution and 
maintains the necessary correspondence tables. 

6 Conclusion 

We presented a framework allowing flexible and effi- 
cient migration of legacy relational data into object 
databases. The framework consists of (i) a declara- 
tive language to express database transformations and 
physical data organization and (ii) an algebra-based 
optimization technique that takes into account user- 
given constraints. 
The problem of the automatic generation of an ob- 
ject schema given a relational one has been largely 
addressed. Our work is complementary. We believe 
that the framework we provide can support, in an ef- 
ficient manner, the various solutions that #have been 
proposed. 
We have already developed a tool [AY97] that takes 
into account user-given constraints and are currently 
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implementing a complete optimization module and a 
migration control environment in Java on top of the 
02 database system. The plan is to validate the tool 
on real applications while working on parallelization of 
blocks, the support of relational updates and physical 
optimization. 
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