
Buffering and Read-Ahead Strategies for External
Mergesort

Weiye Zhang Per-Ake Larson
University of Waterloo Microsoft Research
weiyez@microsoft.com palarson@microsoft .com

Abstract

The elapsed time for external mergesort is nor-
mally dominated by I/O time. This paper
is focused on reducing I/O time during the
merge phase. Three new buffering and read-
ahead strategies are proposed, called equal
buffering, extended forecasting and clustering.
They exploit the fact that virtually all mod-
ern disks perform caching and sequential read-
ahead. The latter two also collect information
during run formation (the last key of each run
block) which is then used to preplan read-
ing. For random input data, extended fore-
casting and clustering were found to reduce
merge time by 30% compared with traditional
double buffering. Clustering exploits any tem-
poral skew in input runs to further reduce the
number of seeks.

Authors’ current address: Microsoft, One Microsoft
Way, Redmond, WA 98052-6399, U.S.A.

1 Introduction

Sorting is a frequent operation in database systems. It
is used not only to produce sorted output, but also in
many sort-based algorithms, such as grouping with ag-
gregation, duplicate removal, sort-merge join, as well
as set operations including union, intersect, and except
[Gra93] [IBM95].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

External mergesort is the most commonly used al-
gorithm for large-scale sorting. It has a run formation
phase, which produces sorted runs, and a merge phase,
which merges the runs into sorted output. This paper
focuses on how to improve I/O performance during
the merge phase because this phase is typically I/O
bound. We assume that the merge pattern (what runs
to merge when) and the amount of memory available
for merging have already been decided. Our goal here
is is to develop buffering and read-ahead strategies
that reduce the I/O time for individual merge steps.
Other issues related to sorting, such as, selecting merge
width, merge pattern, and balancing memory among
competing sorts, are discussed in more detail elsewhere
[Zha97], [ZL97].

Double buffering and forecasting (see [Knu73]) are
the standard buffering and read-ahead strategies used
for merging. Suppose we are merging n runs. Double
buffering divides the available memory into 2n buffers
of equal size and assigns two buffers to each run. A run
uses one buffer for read-ahead and one for merging.
Forecasting divides the available memory into n + 1
buffers, assigns one buffer to each run, and uses one as
an unassigned read-ahead buffer. Whenever a buffer
becomes empty, a read is immediately issued to fill
it. The read is always from the run that will be the
first one to run out of data in memory. This can be
determined by comparing the keys of the last record
from each full buffer.

The standard approach to improving I/O perfor-
mance is simply to increase buffer size, as advocated,
for example, in [Sa189]. In this paper we propose
and analyze three alternative buffering and read-ahead
strategies that all perform better than double buffer-
ing and forecasting. Experimental results show a 30%
reduction in merge time compared with double buffer-
ing.

The three new strategies are called equal buffer-
ing, extended forecasting, and block clustering. Equal
buffering is an enhanced version of double buffering.

523

Extended forecasting is based on standard forecast-
ing. Both exploit the fact that virtually all modern
disk drives perform caching and sequential prefetch.
Extended forecasting also avoids disk wait times by
using two read-ahead buffers.

During merging, run blocks are consumed in a par-
ticular sequence and are usually read in that order.
Extra buffer space makes it possible to read data
blocks in an order that is different from the order in
which they are consumed during merging. We can
then try to read them in an order that minimizes
total I/O time. This idea was proposed by Zheng
and Larson [Zhe92] [ZL96], including a heuristic for
computing read sequences. Estivill-Castro and Wood
[ECW94] continued this research and proposed an al-
gorithm that groups adjacent run blocks together to
reduce the number of disk seeks, assuming that run
blocks of the same run are stored adjacent on disk. In
this paper we propose and analyze a new algorithm,
called block clustering, for computing read sequences.
The new algorithm does not require knowledge about
physical disk layout and is designed to work better
when there are multiple jobs competing for the run
disk(s).

The rest of this paper is organized as follows. Sec-
tion 2 provides some background on techniques used
in modern disk controllers and on disk reading. Sec-
tion 3 describes the new read-ahead strategies. Section
4 and 5 analyze the performance of these strategies
for random input and for skewed input, respectively.
Formulas are derived for estimating merge time and
experimental results are provided.

2 Preliminaries

Disks are getting smarter

Modern disks are no longer simple, dumb devices. Disk
controllers have become quite sophisticated with a con-
siderably amount of memory and processing power.
This section outlines four, widely used, techniques that
affect the performance characteristics of disks: multi-
ple zone recording, command reordering, and caching
with sequential prefetch and write reordering. Refer-
ence [Cor97] provides a good introduction to current
disk technology.

Traditionally, all tracks on a disk had the same
number of sectors. This is no longer true: virtually all
modern disks use multiple zone recording. The disk is
divided into zones and all tracks within a zone have
the same number of sectors but zones closer to the
center of the disk (shorter tracks) have fewer sectors
than zones closer to the edge (longer tracks). The out-
ermost tracks may have up to twice as many sectors
as the innermost tracks. This means that the data
transfer rate is no longer independent of the position

on disk, i.e. how fast data can be read depends on its
location on the disk.

More advanced disk controllers have a queue for in-
coming commands. If the queue contains multiple read
or write commands, the controller does not necessarily
serve them in the order of arrival. It may reorder them
to reduce seek time and/or rotational latency. This is
in addition to any reordering that might be done by
the operating system’s I/O scheduler.

The current generation of disk controllers typically
have 0.5MB - 2MB of cache memory. The cache is used
for two main purposes, namely, sequential prefetch and
write reordering. When a disk has completed a read
request, it may continue reading forward on the same
or even subsequent tracks. If the application is read-
ing a file sequentially, part or all of the data requested
by its next read is already in the disk cache and can
be returned almost instantly. There are many varia-
tions in how this is implemented, for example, exactly
what triggers sequential prefetch and how far ahead
prefetching is allowed to proceed.

One important characteristic is the number of se-
quential streams the controller can keep track of con-
currently and how the cache space is divided among
streams. In the simplest case, the controller keeps
track of only one stream at a time and all of the cache
space is dedicated to that stream. A more sophisti-
cated controller might be designed to keep track of
a fixed number of streams, say the last four active
streams, and have the cache space statically divided
among the the streams. Some controllers go even
further by dynamically deciding how many streams
to keep track of and how to divide the cache space
among the streams. From a practical point of view this
means that reading concurrently from multiple sequen-
tial streams does not necessarily disable prefetching.
For example, assume that we are reading sequentially
from two files but interleave reads from the two files.
Depending on its design, the disk controller may recog-
nize the two sequential streams and start prefetching,
say, one track at a time. This reduces the number of
disk seeks by, in essence, consolidating small reads into
fewer and larger, track-at-a-time, reads.

Write reordering, also known as write caching,
means that write requests are acknowledged as soon
as the data has been copied into the cache but the ac-
tual writing to the disk occurs sometime later. A disk
controller that implements write reordering may then
perform pending writes in an order that minimizes disk
overhead. Note that, typically, there is no guarantee
that the cached data will be written to disk in case
of power failure - a serious problem in a transactional
environment.

These enhancements make it difficult to model the
behavior of modern disks. However, it is still the case

524

that (a) disk seeks and rotational latency heavily affect
the total disk access time for random access; and (b)
sequential access is much faster than random access.

Reading clusters sequentially

The reading done during merging consists of multi-
ple interleaved, sequential streams, i.e. we read some
number of adjacent blocks from one run, seek to an-
other run, read a group of adjacent blocks there, seek
to a third run, and so on. The clusters of adjacent
blocks read may be of fixed or variable size depending
on the buffering and read-ahead strategy.

Assume for the moment that we read clusters of
fixed size, say 512KB, and that each cluster is read into
a contiguous area in memory. The actual reading can
then be done as a single physical read of size 512KB
or as a sequence of smaller reads, say 16 reads of size
32KB. What are the effects of increasing the number
of physical reads? It will increase CPU time slightly
because each read request requires some processing but
not the transfer time or the number of seeks because of
disk caching and prefetching. However, issuing smaller
reads makes data available sooner which may allow the
merge to resume sooner. In our example, merging can
resume as soon as the first 32KB have arrived instead
of waiting for the complete 512KB.

If using smaller reads, it is important to issue them
together as a batch. This reduces the chance of inter-
ference from other concurrent jobs and improves the
chance of benefiting from disk caching and sequential
prefetch.

Most operating systems, in fact, break large appli-
cation read requests into a number of smaller reads.
Sometimes this is necessary because the requested data
is not adjacent on disk. In other cases, it is because of
the space allocation mechanism used for I/O buffers
or the file cache. For example, Windows NT breaks
large reads into a sequence of 64KB reads.

In a typical database environment, the memory
available for input buffers is not contiguous but con-
sists of smaller extents scattered in memory. If the op-
erating system supports scatter-read and gather-write,
we can still decide on the size and number of physical
reads independently of the extent size ‘. This is the
scenario modelled in our sort, testbed which was used
for the experiments reported later in the paper. In the
rest of this paper, memory available for input buffers is
assumed to consists of fixed size extents, called buffer
pages. Each buffer page occupies a contiguous area in
memory but that is not necessarily true for the com-
plete set of buffer pages. In our testbed, buffer pages
had a minimum size of 32KB.

1 On Unix systems scatter-read and gather-write capability is
provided through the readv() and vritev() system calls.

3 Buffering Strategies

3.1 Fixed buffering

Fixed buffering assigns all buffer pages to runs before
a merge step starts and each buffer page remains ded-
icated to the same run throughout the merge step.
Buffer pages can be assigned to runs in many ways but
each run must have at least one page. Equal buffer-
ing is a policy that assigns the same number of buffer
pages to each run.

In addition to buffer space assignment, we must
also decide when to trigger reads. Consider a situ-
ation when a run has been assigned m buffer pages
and assume that they are initially full. As merging
proceeds, buffer pages will slowly be emptied, one by
one. We must decide at what point to initiate reading,
which may range from issuing a read as soon as there
is one empty buffer page to waiting until m - 1 pages
have been emptied. The longer we wait, the larger the
clusters read, which reduces the number of disk seeks.
However, we still want to achieve full overlap of CPU
and I/O operations. This implies that there needs to
remain enough data in memory when issuing a cluster
read for the merge process to continue without inter-
ruption until additional data arrives, i.e. until the first
read request completes.

The traditional double buffering algorithm follows
the simple rule of initiating reading when half of the
buffer space allocated to a run is empty. We propose
a version of equal buffering that one might call equal
buffering with lazy triggering of batched reads. That
is, reads are triggered when there is only one full buffer
page left. When a read is triggered, we issue a batch
of m - 1 smaller read requests. Why wait instead of
issuing a read as soon as a buffer page becomes empty?
If we issue reads immediately, there will be more seeks
because requests for different runs will be randomly
mixed. By waiting we create batches of m - 1 sequen-
tial reads, thereby reducing the number of seeks by a
factor of (almost) m - 1. As mentioned earlier, issuing
a batch of small reads instead of a single large read
does not increase the read time (because of prefetch-
ing) and it makes data available to the merge process
sooner.

Fixed buffering does not fully utilize the available
buffer space. When m - 1 buffer pages become empty,
the sort cannot issue read requests to fill them unless
they belong to the same run. To use buffer space more
efficiently, buffer pages should not be dedicated to a
specific run, but serve any run on demand.

3.2 Extended forecasting

Traditional forecasting uses one merge buffer per run
plus one extra buffer for read ahead [Knu73]. When a

525

block from each run resides in memory, we can deter-
mine which buffer will be emptied first by comparing
the last keys in the buffers. Whenever a buffer be-
comes empty, the next block from that run is read,
normally using a single large request. We propose two
improvements to forecasting: using more than one ex-
tra buffer and issuing a batch of small reads instead
of a single large read. We call the resulting scheme
extended forecasting.

Traditional forecasting cannot achieve completely
full overlap of reading and merging because the next
read cannot start until the current one has completed.
The disk always experiences a short wait between read
requests. To maintain full utilization of the disk, we
need to keep at least one read request in the I/O queue
at all times. This requires more than one extra buffer.
Furthermore, we must decide from which run to read
next before the current read has finished.

Data from each run is read in blocks equal to the
buffer size. The order in which run data blocks are con-
sumed by merging is called the consumption sequence.
The standard merge algorithm requires the next block
of a run whenever the merge buffer of that run be-
comes empty. So the next block required depends on
when the previous block of the run is finished.

Figure 1 shows an example with three runs, each
containing three blocks. The block numbers reflect
the order in which the blocks were written to disk.

block # 123456789

last key

runs gi

Consumption sequence: block # 1, 4, 7, 2, 5, 8, 6, 3, 9

Figure 1: An example of the consumption sequence

The first block of each run is required to start the
merge process. Block 1 will finish first because it has
the smallest last key. The next block of run 1 (block 2)
must then be brought into memory. Block 4 is the next
one to finish. The next block to be read is the second
block of run 2 (block 5), and so on. The resulting
consumption sequence is shown in the diagram.

The consumption sequence is completely deter-
mined by the last key of each run block. It can be com-
puted by extracting the last key of each block during
run formation and simply sorting the set of extracted
keys. Once the consumption sequence has been com-
puted, extended forecasting reads the run blocks in
that order.

Our second modification is to perform the actual
reading by a batch of small read requests. Suppose
each buffer consists of m buffer pages. Instead of wait-
ing until a complete buffer (m pages) from some run

has been emptied, we issue a batch of read requests
as soon as there are m free pages in total, regardless
of which runs the pages belonged to. This way read-
ing starts sooner. We still issue the read requests as a
batch to exploit disk prefetching and reduce the chance
of interference from other jobs accessing the same disk.

To get merging started as quickly as possible, we
initially read just one page-full from each run (instead
of a full buffer of m pages).

3.3 Clustering

Although a merge process consumes run blocks in a
particular order, the run blocks can be read in a dif-
ferent order if extra buffer pages are available. The
extra buffer pages can be used for storing data that
is not required immediately but which can be read
with less I/O cost (i.e., disk seek time). The sequence
in which blocks are read from disk is called the read
sequence. Let C = {Cl,C2,CT} be a consump-
tion sequence, where each Ci is a run block. A read
sequence R = {RI, R2, RT} is a permutation of
{Cl, C2,CT}. Throughout this paper, for any two
sequences X and Y, we define X C Y to mean that
the set of elements in X is a subset of those in Y.

Not all read sequences are useful for merging. Some
may result in deadlock between merging and reading.
For example, given 10 runs, each with 100 data blocks,
and a total of 50 buffer pages, if the last 5 blocks of
each run are read at the beginning in the read se-
quence, no free buffer pages are left to read the first
block of each run. The merge process cannot proceed
without overwriting some of the full buffer pages and
rereading the same data later. A read sequence is fea-
sible if it guarantees that the merge process terminates
with each data block having been read exactly once.

It is obvious that the consumption sequence is a
feasible read sequence, provided that there are at least
as many buffer pages as there are runs. In fact, the
consumption sequence is the read sequence used by
traditional forecasting and by extended forecasting.

Although there is a finite number of feasible read
sequences, it is not known if there is an efficient algo-
rithm for computing the optimum sequence with min-
imum disk seek time. Finding the optimum sequence
by trying all the read sequences is prohibitively expen-
sive. Research has been focusing on using heuristics.

In this paper, we introduce a heuristic algorithm
called (block) clustering which attempts to group to-
gether as many blocks from the same run as possible
while preserving feasibility. Each group, called a clus-
ter, is a sequence of adjacent blocks from the same
run. Since the blocks in a cluster are adjacent, they
can be read sequentially. The target buffer pages are
normally not adjacent in memory so the actual reading

526

of a cluster is done by multiple physical reads. How-
ever, the cluster is read sequentially so only the first
read of the cluster requires a seek.

The read requests for a cluster are issued as a batch
so they will not be intermixed with write requests from
the same merge, that is, the sort does not interfere
with itself. However, other jobs in the system may
access the same disk and may interrupt the smooth
sequential processing of read batches 2.

To overlap processing and read time, there must
be enough full buffer pages for the merge process to
proceed and enough free buffer pages for I/O to read
an additional cluster. Theorem 1 defines a condition
for testing the feasibility of a read sequence.

Theorem 1 Let B represent the number of buffers, n
the number of runs, Qi a cluster (a set of adjacent run
blocks from the same run), and Li the number of run
blocks in cluster Qi. When clusters are read as sequen-
tial batches, a read sequence of N clusters (01, QN}
is feasible for consumption sequence {Cl,CT}. if
for all k such that B 5 k 5 T, {Cl, C~-B+~} c
&I U...UQj-1 for the largest j such that cf=, Li 5 k.

Proof: We assume that a merge process is able to
proceed only if the first unfinished block of each run
resides in memory.

When k = B, {Ci, Cn} c Qi U . . . U &j-i and
cf=l Li 5 B, h’ h w ic means the first block of each run
belongs to the first j - 1 clusters, and there are enough
buffer pages to read the first j clusters. When cluster
Qj is being read, Qi to &j-i have already been read
into memory. Thus Ci, Cz, . . . , C, reside in memory.
The merge process can start.

Q @v ,, Qi-I , , Qi .a! , , QN '+I
'.'....._ ..,.._.-. ,.__.....'

1

I
P

R RT .k
,,.._.... . .._

i B-n exm buffers for read ahead

(one block for each MI)

Figure 2: Feasibility of read sequence

At any stage when B < k 5 T (as shown in Fig-
ure 2), among {Cl, C~-B+~}, n blocks are needed
for merging. So k - B blocks must have been con-
sumed by the merge process. Since {Cl, C~-B+~}

21n our sort testbed, all sorts in the system send their I/O
requests to an I/O request queue which is served by I/O agents
(two per disk)in FIFO order. To make sure that a read batch is
not intermixed with reads or writes from other concurrent sorts,
the queue is first locked, the batch of read requests added to the
queue, and the queue unlocked.

c Q1 u . . . U &j-r, the number of blocks unfinished
within {Qr, Q,} is Ci=, Li - (k - B). Because
cf=, Li 5 k, we have xi=, Li - (k - B) 5 B, which
means there are enough buffers to store the unfinished
blocks in {Qi, Qj}. So after cluster &j-i has been
read into memory, the n blocks needed for merging
already reside in memory. The merge process can pro-
ceed, while there are enough buffers to read cluster
Qi.

The merge process is able to proceed until k = T
when all blocks have been read into memory. There-
fore, the merge process will terminate. So the condi-
tion in the theorem guarantees the feasibility of the
read sequence. 0

The following algorithm computes a feasible read
sequence. The consumption sequence is taken as the
initial read sequence, with each block forming a cluster
of size one. A block is then combined with the previous
cluster for the same run as long as the feasibility of the
read sequence is preserved. The algorithm returns a
sequence of clusters (each cluster with a run number
and an address of the first block in the cluster), and
returns a cluster size array at the same time.

Algorithm block clustering
Input: consumption sequence C = {Cr..c~},

number of buffers B, number of runs n
Output: read sequence Q = {Qr, Q2, QN},

cluster size L = {Ll, La, LN}
// Ci and Ri have the same structure:
// run number field and block address field,
// Li is an integer recording the size of cluster Qi
begin

// Initialize Q to be the consumption sequence
Q := C;
for i := 1 to T

L[i] := 1; // Set initial cluster size to 1
endfor;
// lastC1: index of the last cluster before Q[i]
lastC1 := n;
for i := n + 1 to T

// Search each previous cluster to find
// the one with the same run as Q[i]
for j := lastC1 downto 1

if Q[j].runNumber = Q[i].runNumber
then k := j; exit loop; endif;

endfor;
if Q[i] can be combined with Q[k] preserving

feasibility
then // combine Q[i] with cluster Q[k]

L[k] ++;
else //Q[i] becomes the new last cluster

lastC1 ++;
Q[lastCl] := Q[i];

endif;

527

endfor;
N := la&Cl;

end

To check feasibility efficiently, our implementa-
tion makes use of a free buffer count array F =
(6, F2, .-., FT}. Fi records the number of free buffer
pages left after cluster Qi is read. It is set to B - n
initially. When Qi is combined with cluster Qj, the
values for Fj to Flastcl are reduced by one. To guar-
antee that there are enough buffer pages to read a clus-
ter while the merge process can proceed, it is required
that Fi 2 Li+i for all i. For each Qi, the algorithm
needs only check cluster Qlastcl down to cluster Qj
that Fj = Lj+l or Fj-1 = Lj. This technique is more
efficient than applying Theorem 1 directly.

4 Performance for Random Input

In this section we derive formulas for estimating the
performance of the different read strategies. It is as-
sumed that input data is randomly distributed and
all runs have the same length. The number of clus-
ter reads initiated is used as an approximate measure
of the number of disk seeks (regardless of how many
physical reads are issued). Here is the notation used
in the rest of this paper.

D : input size,
n : number of runs,
b : number of buffer pages available,
p : buffer page size,
A4 : total memory space used for buffers, A4 = bp,
N : number of cluster reads,
R : average size of a cluster read (D = NR),

Subscripts D, E, F, and C represent double buffering,
equal buffering, extended forecasting, and clustering
respectively.

4.1 Estimating number of cluster reads

Double buffering

Double buffering divides the available buffer space
equally among the n runs so, on average, a run gets
pb/n bytes. Provided every run has at least two buffer
pages, that is, b > 2n, cluster reads will have an aver-
age size of pb/2n. Otherwise, a cluster read will cover
exactly one buffer page. This gives us the following
formula for the total number of cluster reads:

No = D/(pb/2n) if b > 2n
DIP ifn<b<2n. (1)

Equal buffering

The average number of buffer pages per run is b/n.
(More precisely, some runs are assigned [b/nJ buffer

pages and some [b/n] buffer pages but the average is
b/n.) If a run has t buffer pages, t > 2, its cluster
reads will be for t - 1 pages. Otherwise, its reads will
always be for one page. If all runs have more than two
buffer pages each, that is, if b 2 2n, the average cluster
read will therefore of size b/n - 1 pages and otherwise
one page. This gives us the following formula for the
total number of cluster reads:

NE =
D/(p(b/n - 1)) if b 2 2n

D/P ifn<b<2n. (2)

Extended forecasting

Extended forecasting uses two read-ahead buffers and
divides the available buffer space equally among the
n runs and the two read-ahead buffers. So the space
assigned to each run is pb/(n + 2), which is also the av-
erage size of read clusters. This gives us the following
simple formula for the total number of cluster reads:

NF = D/(pb/(n + 2)) = (n + 2)D/(pb) . (3)

Clustering

When input data is randomly distributed and all runs
are of the same length, data from all runs will be con-
sumed at the same rate during merging. In such a situ-
ation, the consumption sequence can be approximated
by an ideal consumption sequence shown in Figure 3.
n is the number of runs and within each sequence of n
blocks, there is one block from each run.

c,
c)

C C n: 2n : CJq c,

ml town fun1 torunn run I torunn .

Figure 3: Ideal consumption sequence.

During clustering, a block is combined with the
previous block of the same run as long as feasibility
is preserved. Therefore, blocks C,+i , Cn+2, 6’2,
are combined with blocks Ci, C2, C,, respectively
and form n clusters. Each cluster contains two blocks.
Then blocks C2n+i, C&+2, Csn are combined with
these clusters. The cluster size grows until feasibil-
ity can no longer be preserved. The remaining blocks
will be combined to form a second set of clusters, and
so on. The resulting clusters are all of the same size.
This yields the ideal read sequence shown in Figure 4,
where Qi represent a cluster, i.e., a sequence of adja-
cent blocks from the same run. Within each sequence
of n clusters, there is one cluster from each run.

For our clustering algorithm, the sort sends the read
requests of a cluster as a batch. The average cluster
size is the average read size Rc. Thus n * Rc buffer

528

B buffers required B buffers required

I

R 6, Q2 Q, a,; h,
‘..

. ;

run I Ill” 2 . runn run1 run2..

Figure 4: Ideal read sequence.

space is required to keep the first n clusters so that
the merge process can start, while Rc buffer space is
required for Qn+r to overlap the merge processing and
read time (as shown in Figure 4). We assume that
all the runs are consumed at the same rate. When
there are enough free buffer pages for the next cluster,
another batch of reads is issued. By the time the first
n clusters are finished, there are enough buffer pages
to keep Qn+i to Qsn+i. So the merge process is able
to continue with the run blocks in Qn+i to Qsn, while
there are enough buffer pages to read cluster Qsn+i
at the same time. Thus the merge process is able to
terminate with (n + 1) * RC buffer space. Then we
have pb = Rc * (n + l), that is, Rc = pb/(n + 1). This
results in the following formula for estimating the total
number of cluster reads:

NC = D/Rc = (n + l)D/(pb) . (4)

Numerical results

Figure 5 show theoretical and experimental results for
the four read-ahead strategies. The case shown in the
graph is for an input size of 50MB, divided into 15 runs
of the same size. Records were 64 bytes long with a
randomly generated key of 10 bytes. Each point plot-
ted in the diagram represents the average computed
from five experiments, using different input sets.

50M data set
1600

::
2

1400

z 1200

g 1000
5
B 800

’ 600
2
1 400

200
500 1000 1500 2000 2500 3000 3500 4000

Merging memory (K)

Figure 5: Theoretical and observed number of cluster
reads.

It is difficult to distinguish the different line types in
the figure but the experimental results match the the-
oretical results very closely, even for clustering. Clus-
tering has the fewest cluster reads for all memory sizes.
Its cluster reads (seeks) are slightly fewer than for ex-

tended forecasting but the difference is minimal. Not
surprisingly, double buffering results in the most seeks,
about twice as many as clustering and extended fore-
casting. Equal buffering performs quite well when the
amount of buffer memory is reasonably large.

4.2 Estimating merge time

Merging is normally I/O bound so the elapsed time
of a merge step is determined by the I/O time. The
traditional disk model estimates I/O time by adding
transfer time and (average) seek time. The traditional
formula is

T=tD+sN, (5)

where T is total elapsed time (set), D is data size
(MB), t is the transfer time for 1M data (set/MB),
N is the number of disk seeks, and s is the average
disk seek time (including rotational latency). Given
the additional complexity of modern disks, this simple
model may no longer be an acceptable approximation.

As mentioned previously, we approximate the num-
ber of seeks with the number of cluster reads, i.e. we
assume that adjacent clusters are from different runs.
Our sort testbed uses a 500MB raw partition on one
disk, a Seagate ST-15150W. Experimentally, we found
that t M 0.3 set/Mbytes and s x 0.007 sec.

We ran experiments on many randomly generated
data sets to collect timing data. For each data set,
each read-ahead strategy was tested, and the experi-
ment was repeated using different memory sizes. Each
point plotted in the diagrams represents the average
computed from five experiments. The five experiments
used different data sets of the same size that were pro-
duced using different random seeds. Except for stan-
dard double buffering and standard forecasting, the
memory available for input buffers was divided into
buffer pages of size 32KB. When a cluster was read us-
ing a batch of read requests, each request read 32KB.
For standard double buffering and standard forecast-
ing, memory was contiguous. ,Each buffer was assigned
a contiguous area and each read request was of the
same size as the buffer.

Numerical results

Figures 6 to 9 show estimated and observed results
for input of size 50MB. The estimates were computed
using formula 5, where N is replaced by the number
of cluster reads given by formulas 2, 3, and 4, re-
spectively. Experiments using other data sizes (5M to
100M) produced similar results.

Figures 6 and 8 each plot results from two series of
experiments. The difference is in the size of physical
reads: the two series labelled D-expl and F-expl used
contiguous buffer space and a single physical read (the

529

50M data set
32 \ , I I 1 I I

30 -

28 -

26 -

24 -

22 -

20 -

18 -

16 I I t I I ? I

500 1000 1500 2000 2500 3000 3500 4000

Merging memoty (K)

Figure 6: Merge time for double buffering.

50M data set
32 , I I , I

8 30

E 28
k= k% 26

% 24
E
3 22
E
al ’ 20

18

16
500 1000 1500 2000 2500 3000 3500 4000

Merging memory(K)

Figure 7: Merge time for equal buffering.

traditional implementation), while the two series la-
belled D-exp2 and F-exp2 used batches of 32KB reads.
Using batches of small reads instead of a single large
read improved performance but only for batches of
three reads or more. Using two reads was actually
slightly slower than a single read. We have no good
explanation for this effect.

The agreement between predicted and observed
merge time is excellent for all schemes when the
amount of buffer memory is sufficiently large to al-
low read batches of size three or more. (This happens
at different memory sizes for different schemes.) For
single reads or batches of size two, the model underes-
timates the I/O time. The most logical explanation is
that the disk controller starts prefetching after it has
seen two sequential reads.

The estimated results of the four strategies were
combined in one diagram (Figure 10) to facilitate
comparison. The results confirm the observations in
the previous section. Double buffering is the slowest.
Clustering is the fastest, followed closely by extended
forecasting. Equal buffering is in between. Equal
buffering converges to clustering quickly as the avail-
able memory increases, but double buffering does not.
The observed performance improvement of clustering

50M data set
32 , I I I 1 I 1 1
30 - F-est - -

$0
F-expl 0

28 F-exp2 + -

0 0 0 Q

.-500 1000 1500 2000 2500 3000 3500 4000

Merging memory (K)

Figure 8: Merge time for extended forecasting.

50M data set
32 , I I I I I I I

z 30

E 28
‘9 k3 26

ti 24
E
5 22

s
2 2o

18

16
-500 1000 1500 2000 2500 3000 3500 4000

Merging memory (K)

Figure 9: Merge time for clustering.

over double buffering with large reads is substantial,
around 30 % for all memory sizes.

5 Performance for Skewed Input

The analysis and experiments in the previous section
assumed completely random input. In this section,
we study the performance of the read-ahead strategies
when runs exhibit temporal skew.

Records within a run are sorted so the ordering of
the input for a run does not affect merge performance.
However, merge performance will be affected if sort
keys are distributed in such a way that the merge pro-
cess concentrates on a subset of the runs for some time
period and then shifts to another subset of runs for an-
other time period. The number of active runs actually
involved in merging is smaller than the total number
of runs. Active here means contributing records to the
output. In the extreme case, there might be only one
active run at any given time. We call this phenomenon
temporal skew.

Zheng and Larson [ZL96] introduced a simple model
for runs with temporal skew. The keys in a run i are
uniformly distributed in a range Lmi to Highi. Each
run has a key range of the same length but the key
ranges of run i and run i + 1 are set to overlap. A

530

50M data set
32 5 ,

: I I 1 I
D-est ---- _
E-est -----
F-est - -

500 1000 1500 2000 2500 3000 3500 4000

Merging memory (K)

Figure 10: Comparing estimated merge times.

parameter cr controls the overlap of the key ranges for
run i and i+l so that Lo2ui+i = (l-c~)Highi+alowi.
Setting cy = 1 produces completely random data. De-
creasing cy increases the temporal skew. Setting cy = 0
is equivalent to the input data being sorted.

The key difference between random input and
skewed input is in the number of active runs, i.e. the
runs involved in merging. Let n, denote the number
of active runs. For the simple model of temporally
skewed data described above (as shown in Figure ll),
the number of active runs can be computed as follows:

l if l/(1 - o) 2 n, then n, = n;

l if l/(1 - o) < n and cy _> 0.5, n, = l/(1 - cr);

l if (Y < 0.5, n, = 2, while for each run, a fraction
of size (1 - 2a) of the run is not overlapped with
any other runs.

1 runs,
90% overlap

(a)

80%

(b)

40%

20%

Cc)

6 runs.
40% overlap

Figure 11: Example of temporal skew and active runs

Equal buffering

For equal buffering the cluster read size equals RE =
p(b/n - 1) when b 2 2n, and RE = p when n < b < 2n.

The number of clusters read is DIRE. However, if (Y <
0.5, a fraction (1 - 2~) of each run is not overlapped
with any other runs. The data in this portion will
be read sequentially so it is best treated as a single
cluster (one seek only). The remaining 2cu fraction of
the data is read at the read size RE. We approximate
the number of reads for the (1 - 2~) portion by (1 -
2a)n. When cy = 0.5, no extra reads are added, while
when (7~ = 0, n reads are required, one for each run.
Putting it all together we get the following estimate
for the number of clusters read:

N; =
1

DIRE if cy 2 0.5
2ctD/& + (1 - 2a)n if 0 5 (Y < 0.5

(6)
where RE = p(b/n - 1) when b 2 2n, and RE = p
when n < b < 2n.

Double buffering

Double buffering can be viewed as a special case of
equal buffering. It divides the available buffer space
equally among the runs and each read fills half of the
buffer space assigned to a run. Provided every run
has at least two buffer pages, that is, b 2 2n, cluster
reads will have an average size of pb/2n. Otherwise,
a cluster read will cover exactly one buffer page. The
cluster read size equals RD = pb/2n when b 2 2n, and
RD = 1 when n < b < 2n. Therefore,

N; =
i

DIRD if (Y >_ 0.5
2ctDfR~ + (1 - 2a)n if 0 5 cy < 0.5

(7)
where RD = pb/2n when b 2 2n, and RD = p when
n < b < 2n. (In our experiments, RD was rounded
down to a multiple of the page size.)

Extended forecasting

For extended forecasting, the cluster read size is RF =
pb/(n + 2). The rest of the argument is exactly the
same as for double buffering. We get the following
formula:

N; =
{

(n + W/W if 13 2 0.5
2cx(n + 2)D/(pb) + (1 - 2a)n if 0 < cy < 0.5

(8)

Clustering

For clustering, we estimate the cluster size by the for-
mula derived for random input but replacing the num-
ber of runs n by the number of active runs na, that
is, Rc = pb/(n, + 1). The function for n, splits into
three ranges:

531

0 If l/(1 - CX) > n, n, = n; precisely, number of cluster reads). The agreement

l If l/(1 - cr) < n and (Y 2 0.5, n, = l/(1 - o);
is very close. Double buffering, equal buffering and
extended forecasting do not exploit temporal skew un-

l If (Y < 0.5, n, = 2 for a fraction of size 2a and less the skew is so severe that there is only one active

n, = 1 for the rest (the non-overlapping part). run some of the time. Clustering, on the other hand,
adapts quickly to temporal skew and reduces the num-

Combining this with formula 4, we get the following ber of seeks.
estimate for the number of clusters:

50M data set, 2M memory

24 -
(n + lPl(Pb) if l/(1 - (.y) 2 72

E-est -----

Nk = (l/(1 - CY) + l)D/(pb) if l/(1 - o) < n & a 2 0.5
- [GaD/(pb)+(l -2a)n if Q < 0.5

(9)

50M data set, 2M memory
I

80 0 - Deest .:
Edest

no

s I 600

lJJ
B

500

& 400

2 300

z’ 200

100
06 I_ -’ ” ’

I I I

,,,’
;.. .:.. . ..~

o 0 *

0 20 40 60

Overlap in runs (%)

80 100

Figure 12: Estimated and observed number of seeks for
skewed input when using 2MB of memory for buffers.

600 I
50M data set, 3M memory

1
Dmest I.. I

500 - E-est -..-.
F-est - -.-

.,,’ o 0
.’ 0

4oo _ Lest - ,“’
D-exp Q ,“”
E-exp + ,I” ’

300 - F-exp q :“”
.ei-.-m-.-.et-.-~.---‘I

200 -
C-exp x,” O,,4

,,.4---- <

,.,’
,,,’ o,,.” I

100 -
...I , 4i

% ” . . .,;i ” ,, :: x
n I. I I I

“0 20 40 60

Overlap in runs (%)

80 100

Figure 13: Estimated and observed number of seeks for
skewed input when using 3MB of memory for buffers.

Numerical results

Our sort testbed is able to generate temporally skewed
input based on the above model. We ran a series of
experiments for each read strategy on 50MB input,
varying the overlap of key ranges, i.e., the (Y value,
from 0 to 1 (100%). 4MB of memory space was used
for run formation, resulting in 15 runs. Buffer pages
and physical reads were of size 32KB.

Figures 12 and 13 show the theoretically estimated
and experimentally observed number of seeks (more

Y
g$;xxxxx

I I I I i
0 20 40 60 80 100

Overlap in runs (%)

Figure 14: Estimated and observed merge time for skewed
input when using 2MB of memory for buffers.

SOM data set. 3M memorv

Y
f

26 I I I I
D-est ..-...

24 - E-est --...
F-est -.-

22 - C-est - A> 0
D-exp o -0. .._ .__

20 - E-exp +
__.... . ..? ..Q.

.. 0
F-exp q

18 - C-exp 5.. .~.I
....i.‘.

__.. 0 ____._._ -
,6 -__ /~j’::.ea---~----i3 6 b

._._... ~ ._.__ - .___ o_.-.-
FE

x

I 8 I I
20 40 60 80 100

Overlap in runs (%)

Figure 15: Estimated and observed merge time for skewed
input when using 3MB of memory for buffers.

Figures 14 and 15 show estimated and observed
merge times. Considering the difficulty of modeling
modern disks, the agreement is reasonable: the gen-
eral shape is the same but the observed merge times
are lower than estimated. Part, but not all, of the dis-
crepancy is explained by reduced seek time. When the
number of active runs decreases, they cover a smaller
part of the disk so seeks are shorter and faster. How-
ever, these results confirm the conclusion that cluster-
ing is able to exploit temporal skew in the input to
reduce merge time. The other strategies benefit only
from severe temporal skew.

6 Conclusion

This paper introduced three buffering and read-ahead
strategies aimed at reducing disk seeks during the
merge phase of external mergesort. They achieve bet-

532

ter performance than traditional double buffering or
forecasting by exploiting the fact that modern disks
do caching and sequential prefetch and by preplan-
ning reads. Preplanning is based on retaining the last
key of each (say 32KB) run block during run forma-
tion, from which the block consumption sequence can
be computed.

Equal buffering is based on double buffering and
does not do any preplanning. It requires about
50% fewer disk seeks then double buffering when the
amount of buffer memory is large.

Extended forecasting achieves better overlap of I/O
and merge processing than traditional forecasting. It
uses two read-ahead buffers and requires access to the
consumption sequence. Clustering reduces seeks by
preplanning the read order (using a heuristic algo-
rithm) based on the consumption sequence.

Based on theoretical modelling and experiment re-
sults, we found that

clustering has the best performance; it reduced
merge time by about 30% compared with stan-
dard double buffering;

extended forecasting performs almost as well as
clustering on random input but not on input with
temporal skew;

equal buffering does not require any preplanning
and always performs better than double buffering,
in particular when memory size increases.

One mystery remains unsolved: why changing from
single large reads to batches of smaller reads reduced
I/O time for double buffering and (extended) forecast-
ing.

Our analysis and experiments made the simplifying
assumption that runs are stored on a single disk. How-
ever, using multiple disks and striping is common in
modern systems. We have not yet investigated how the
proposed buffering and read-ahead strategies perform
in such an environment.

References

[Cor97] Quantum Corporation. Storage ba-
sics. Document at http://www.quantum.com
/src/storage_basics/, Oct. 1997.

[Gra93]

[IBM951

[Knu73]

[Sal891

[Zha97]

[Zhe92]

[ZLSG]

[ZL97]

Goetz Graefe. Query evaluation techniques
for large databases. ACM Computing Sur-
veys, 25(2):73-170, June 1993.

IBM. DATABASE 2, Administration Guide
for common servers, Version 2. IBM, June
1 1995.

Donald E. Knuth. Sorting and Searching,
volume 3 of The Art of Computer Pro-
gramming. Addison-Wesley, Reading, Mas-
sachusetts, 1973.

Betty Salzberg. Merging sorted runs us-
ing large main memory. Acta Informatica,
27:195-215, 1989.

Weiye Zhang. Improving the Performance
of Concurrent Sorts in Database Systems.
PhD thesis, University of Waterloo, 1997.

Luo Quan Zheng. Speeding up external
mergesort. Master’s thesis, University of
Waterloo, 1992.

Luo Quan Zheng and Per-Ake Larson.
Speeding up external mergesort. IEEE
Trans. on Knowledge and Data Engineering,
8(2):322-332, Apr. 1996.

Weiye Zhang and Per-Ake Larson. Dynamic
memory adjustment for external mergesort.
In Proc. of Int. Conf. on Very Large Data
Bases, pages 376-385, 1997.

[ECW94] VI d a imir Estivill-Castro and Derick Wood.
Foundations of faster external sorting. In
Proceedings of the Fourteenth Conference
on Foundations of Software Technology and
Theoretical Computer Science, pages 414-
425, 1994.

533

