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Abstract 

The elapsed time for external mergesort is nor- 
mally dominated by I/O time. This paper 
is focused on reducing I/O time during the 
merge phase. Three new buffering and read- 
ahead strategies are proposed, called equal 
buffering, extended forecasting and clustering. 
They exploit the fact that virtually all mod- 
ern disks perform caching and sequential read- 
ahead. The latter two also collect information 
during run formation (the last key of each run 
block) which is then used to preplan read- 
ing. For random input data, extended fore- 
casting and clustering were found to reduce 
merge time by 30% compared with traditional 
double buffering. Clustering exploits any tem- 
poral skew in input runs to further reduce the 
number of seeks. 

Authors’ current address: Microsoft, One Microsoft 
Way, Redmond, WA 98052-6399, U.S.A. 

1 Introduction 

Sorting is a frequent operation in database systems. It 
is used not only to produce sorted output, but also in 
many sort-based algorithms, such as grouping with ag- 
gregation, duplicate removal, sort-merge join, as well 
as set operations including union, intersect, and except 
[Gra93] [IBM95]. 
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External mergesort is the most commonly used al- 
gorithm for large-scale sorting. It has a run formation 
phase, which produces sorted runs, and a merge phase, 
which merges the runs into sorted output. This paper 
focuses on how to improve I/O performance during 
the merge phase because this phase is typically I/O 
bound. We assume that the merge pattern (what runs 
to merge when) and the amount of memory available 
for merging have already been decided. Our goal here 
is is to develop buffering and read-ahead strategies 
that reduce the I/O time for individual merge steps. 
Other issues related to sorting, such as, selecting merge 
width, merge pattern, and balancing memory among 
competing sorts, are discussed in more detail elsewhere 
[Zha97], [ZL97]. 

Double buffering and forecasting (see [Knu73]) are 
the standard buffering and read-ahead strategies used 
for merging. Suppose we are merging n runs. Double 
buffering divides the available memory into 2n buffers 
of equal size and assigns two buffers to each run. A run 
uses one buffer for read-ahead and one for merging. 
Forecasting divides the available memory into n + 1 
buffers, assigns one buffer to each run, and uses one as 
an unassigned read-ahead buffer. Whenever a buffer 
becomes empty, a read is immediately issued to fill 
it. The read is always from the run that will be the 
first one to run out of data in memory. This can be 
determined by comparing the keys of the last record 
from each full buffer. 

The standard approach to improving I/O perfor- 
mance is simply to increase buffer size, as advocated, 
for example, in [Sa189]. In this paper we propose 
and analyze three alternative buffering and read-ahead 
strategies that all perform better than double buffer- 
ing and forecasting. Experimental results show a 30% 
reduction in merge time compared with double buffer- 
ing. 

The three new strategies are called equal buffer- 
ing, extended forecasting, and block clustering. Equal 
buffering is an enhanced version of double buffering. 
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Extended forecasting is based on standard forecast- 
ing. Both exploit the fact that virtually all modern 
disk drives perform caching and sequential prefetch. 
Extended forecasting also avoids disk wait times by 
using two read-ahead buffers. 

During merging, run blocks are consumed in a par- 
ticular sequence and are usually read in that order. 
Extra buffer space makes it possible to read data 
blocks in an order that is different from the order in 
which they are consumed during merging. We can 
then try to read them in an order that minimizes 
total I/O time. This idea was proposed by Zheng 
and Larson [Zhe92] [ZL96], including a heuristic for 
computing read sequences. Estivill-Castro and Wood 
[ECW94] continued this research and proposed an al- 
gorithm that groups adjacent run blocks together to 
reduce the number of disk seeks, assuming that run 
blocks of the same run are stored adjacent on disk. In 
this paper we propose and analyze a new algorithm, 
called block clustering, for computing read sequences. 
The new algorithm does not require knowledge about 
physical disk layout and is designed to work better 
when there are multiple jobs competing for the run 
disk(s). 

The rest of this paper is organized as follows. Sec- 
tion 2 provides some background on techniques used 
in modern disk controllers and on disk reading. Sec- 
tion 3 describes the new read-ahead strategies. Section 
4 and 5 analyze the performance of these strategies 
for random input and for skewed input, respectively. 
Formulas are derived for estimating merge time and 
experimental results are provided. 

2 Preliminaries 

Disks are getting smarter 

Modern disks are no longer simple, dumb devices. Disk 
controllers have become quite sophisticated with a con- 
siderably amount of memory and processing power. 
This section outlines four, widely used, techniques that 
affect the performance characteristics of disks: multi- 
ple zone recording, command reordering, and caching 
with sequential prefetch and write reordering. Refer- 
ence [Cor97] provides a good introduction to current 
disk technology. 

Traditionally, all tracks on a disk had the same 
number of sectors. This is no longer true: virtually all 
modern disks use multiple zone recording. The disk is 
divided into zones and all tracks within a zone have 
the same number of sectors but zones closer to the 
center of the disk (shorter tracks) have fewer sectors 
than zones closer to the edge (longer tracks). The out- 
ermost tracks may have up to twice as many sectors 
as the innermost tracks. This means that the data 
transfer rate is no longer independent of the position 

on disk, i.e. how fast data can be read depends on its 
location on the disk. 

More advanced disk controllers have a queue for in- 
coming commands. If the queue contains multiple read 
or write commands, the controller does not necessarily 
serve them in the order of arrival. It may reorder them 
to reduce seek time and/or rotational latency. This is 
in addition to any reordering that might be done by 
the operating system’s I/O scheduler. 

The current generation of disk controllers typically 
have 0.5MB - 2MB of cache memory. The cache is used 
for two main purposes, namely, sequential prefetch and 
write reordering. When a disk has completed a read 
request, it may continue reading forward on the same 
or even subsequent tracks. If the application is read- 
ing a file sequentially, part or all of the data requested 
by its next read is already in the disk cache and can 
be returned almost instantly. There are many varia- 
tions in how this is implemented, for example, exactly 
what triggers sequential prefetch and how far ahead 
prefetching is allowed to proceed. 

One important characteristic is the number of se- 
quential streams the controller can keep track of con- 
currently and how the cache space is divided among 
streams. In the simplest case, the controller keeps 
track of only one stream at a time and all of the cache 
space is dedicated to that stream. A more sophisti- 
cated controller might be designed to keep track of 
a fixed number of streams, say the last four active 
streams, and have the cache space statically divided 
among the the streams. Some controllers go even 
further by dynamically deciding how many streams 
to keep track of and how to divide the cache space 
among the streams. From a practical point of view this 
means that reading concurrently from multiple sequen- 
tial streams does not necessarily disable prefetching. 
For example, assume that we are reading sequentially 
from two files but interleave reads from the two files. 
Depending on its design, the disk controller may recog- 
nize the two sequential streams and start prefetching, 
say, one track at a time. This reduces the number of 
disk seeks by, in essence, consolidating small reads into 
fewer and larger, track-at-a-time, reads. 

Write reordering, also known as write caching, 
means that write requests are acknowledged as soon 
as the data has been copied into the cache but the ac- 
tual writing to the disk occurs sometime later. A disk 
controller that implements write reordering may then 
perform pending writes in an order that minimizes disk 
overhead. Note that, typically, there is no guarantee 
that the cached data will be written to disk in case 
of power failure - a serious problem in a transactional 
environment. 

These enhancements make it difficult to model the 
behavior of modern disks. However, it is still the case 
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that (a) disk seeks and rotational latency heavily affect 
the total disk access time for random access; and (b) 
sequential access is much faster than random access. 

Reading clusters sequentially 

The reading done during merging consists of multi- 
ple interleaved, sequential streams, i.e. we read some 
number of adjacent blocks from one run, seek to an- 
other run, read a group of adjacent blocks there, seek 
to a third run, and so on. The clusters of adjacent 
blocks read may be of fixed or variable size depending 
on the buffering and read-ahead strategy. 

Assume for the moment that we read clusters of 
fixed size, say 512KB, and that each cluster is read into 
a contiguous area in memory. The actual reading can 
then be done as a single physical read of size 512KB 
or as a sequence of smaller reads, say 16 reads of size 
32KB. What are the effects of increasing the number 
of physical reads? It will increase CPU time slightly 
because each read request requires some processing but 
not the transfer time or the number of seeks because of 
disk caching and prefetching. However, issuing smaller 
reads makes data available sooner which may allow the 
merge to resume sooner. In our example, merging can 
resume as soon as the first 32KB have arrived instead 
of waiting for the complete 512KB. 

If using smaller reads, it is important to issue them 
together as a batch. This reduces the chance of inter- 
ference from other concurrent jobs and improves the 
chance of benefiting from disk caching and sequential 
prefetch. 

Most operating systems, in fact, break large appli- 
cation read requests into a number of smaller reads. 
Sometimes this is necessary because the requested data 
is not adjacent on disk. In other cases, it is because of 
the space allocation mechanism used for I/O buffers 
or the file cache. For example, Windows NT breaks 
large reads into a sequence of 64KB reads. 

In a typical database environment, the memory 
available for input buffers is not contiguous but con- 
sists of smaller extents scattered in memory. If the op- 
erating system supports scatter-read and gather-write, 
we can still decide on the size and number of physical 
reads independently of the extent size ‘. This is the 
scenario modelled in our sort, testbed which was used 
for the experiments reported later in the paper. In the 
rest of this paper, memory available for input buffers is 
assumed to consists of fixed size extents, called buffer 
pages. Each buffer page occupies a contiguous area in 
memory but that is not necessarily true for the com- 
plete set of buffer pages. In our testbed, buffer pages 
had a minimum size of 32KB. 

1 On Unix systems scatter-read and gather-write capability is 
provided through the readv() and vritev() system calls. 

3 Buffering Strategies 

3.1 Fixed buffering 

Fixed buffering assigns all buffer pages to runs before 
a merge step starts and each buffer page remains ded- 
icated to the same run throughout the merge step. 
Buffer pages can be assigned to runs in many ways but 
each run must have at least one page. Equal buffer- 
ing is a policy that assigns the same number of buffer 
pages to each run. 

In addition to buffer space assignment, we must 
also decide when to trigger reads. Consider a situ- 
ation when a run has been assigned m buffer pages 
and assume that they are initially full. As merging 
proceeds, buffer pages will slowly be emptied, one by 
one. We must decide at what point to initiate reading, 
which may range from issuing a read as soon as there 
is one empty buffer page to waiting until m - 1 pages 
have been emptied. The longer we wait, the larger the 
clusters read, which reduces the number of disk seeks. 
However, we still want to achieve full overlap of CPU 
and I/O operations. This implies that there needs to 
remain enough data in memory when issuing a cluster 
read for the merge process to continue without inter- 
ruption until additional data arrives, i.e. until the first 
read request completes. 

The traditional double buffering algorithm follows 
the simple rule of initiating reading when half of the 
buffer space allocated to a run is empty. We propose 
a version of equal buffering that one might call equal 
buffering with lazy triggering of batched reads. That 
is, reads are triggered when there is only one full buffer 
page left. When a read is triggered, we issue a batch 
of m - 1 smaller read requests. Why wait instead of 
issuing a read as soon as a buffer page becomes empty? 
If we issue reads immediately, there will be more seeks 
because requests for different runs will be randomly 
mixed. By waiting we create batches of m - 1 sequen- 
tial reads, thereby reducing the number of seeks by a 
factor of (almost) m - 1. As mentioned earlier, issuing 
a batch of small reads instead of a single large read 
does not increase the read time (because of prefetch- 
ing) and it makes data available to the merge process 
sooner. 

Fixed buffering does not fully utilize the available 
buffer space. When m - 1 buffer pages become empty, 
the sort cannot issue read requests to fill them unless 
they belong to the same run. To use buffer space more 
efficiently, buffer pages should not be dedicated to a 
specific run, but serve any run on demand. 

3.2 Extended forecasting 

Traditional forecasting uses one merge buffer per run 
plus one extra buffer for read ahead [Knu73]. When a 
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block from each run resides in memory, we can deter- 
mine which buffer will be emptied first by comparing 
the last keys in the buffers. Whenever a buffer be- 
comes empty, the next block from that run is read, 
normally using a single large request. We propose two 
improvements to forecasting: using more than one ex- 
tra buffer and issuing a batch of small reads instead 
of a single large read. We call the resulting scheme 
extended forecasting. 

Traditional forecasting cannot achieve completely 
full overlap of reading and merging because the next 
read cannot start until the current one has completed. 
The disk always experiences a short wait between read 
requests. To maintain full utilization of the disk, we 
need to keep at least one read request in the I/O queue 
at all times. This requires more than one extra buffer. 
Furthermore, we must decide from which run to read 
next before the current read has finished. 

Data from each run is read in blocks equal to the 
buffer size. The order in which run data blocks are con- 
sumed by merging is called the consumption sequence. 
The standard merge algorithm requires the next block 
of a run whenever the merge buffer of that run be- 
comes empty. So the next block required depends on 
when the previous block of the run is finished. 

Figure 1 shows an example with three runs, each 
containing three blocks. The block numbers reflect 
the order in which the blocks were written to disk. 

block # 123456789 

last key 

runs gi 

Consumption sequence: block # 1, 4, 7, 2, 5, 8, 6, 3, 9 

Figure 1: An example of the consumption sequence 

The first block of each run is required to start the 
merge process. Block 1 will finish first because it has 
the smallest last key. The next block of run 1 (block 2) 
must then be brought into memory. Block 4 is the next 
one to finish. The next block to be read is the second 
block of run 2 (block 5), and so on. The resulting 
consumption sequence is shown in the diagram. 

The consumption sequence is completely deter- 
mined by the last key of each run block. It can be com- 
puted by extracting the last key of each block during 
run formation and simply sorting the set of extracted 
keys. Once the consumption sequence has been com- 
puted, extended forecasting reads the run blocks in 
that order. 

Our second modification is to perform the actual 
reading by a batch of small read requests. Suppose 
each buffer consists of m buffer pages. Instead of wait- 
ing until a complete buffer (m pages) from some run 

has been emptied, we issue a batch of read requests 
as soon as there are m free pages in total, regardless 
of which runs the pages belonged to. This way read- 
ing starts sooner. We still issue the read requests as a 
batch to exploit disk prefetching and reduce the chance 
of interference from other jobs accessing the same disk. 

To get merging started as quickly as possible, we 
initially read just one page-full from each run (instead 
of a full buffer of m pages). 

3.3 Clustering 

Although a merge process consumes run blocks in a 
particular order, the run blocks can be read in a dif- 
ferent order if extra buffer pages are available. The 
extra buffer pages can be used for storing data that 
is not required immediately but which can be read 
with less I/O cost (i.e., disk seek time). The sequence 
in which blocks are read from disk is called the read 
sequence. Let C = {Cl,C2, . . ..CT} be a consump- 
tion sequence, where each Ci is a run block. A read 
sequence R = {RI, R2, . . . . RT} is a permutation of 
{Cl, C2, . . ..CT}. Throughout this paper, for any two 
sequences X and Y, we define X C Y to mean that 
the set of elements in X is a subset of those in Y. 

Not all read sequences are useful for merging. Some 
may result in deadlock between merging and reading. 
For example, given 10 runs, each with 100 data blocks, 
and a total of 50 buffer pages, if the last 5 blocks of 
each run are read at the beginning in the read se- 
quence, no free buffer pages are left to read the first 
block of each run. The merge process cannot proceed 
without overwriting some of the full buffer pages and 
rereading the same data later. A read sequence is fea- 
sible if it guarantees that the merge process terminates 
with each data block having been read exactly once. 

It is obvious that the consumption sequence is a 
feasible read sequence, provided that there are at least 
as many buffer pages as there are runs. In fact, the 
consumption sequence is the read sequence used by 
traditional forecasting and by extended forecasting. 

Although there is a finite number of feasible read 
sequences, it is not known if there is an efficient algo- 
rithm for computing the optimum sequence with min- 
imum disk seek time. Finding the optimum sequence 
by trying all the read sequences is prohibitively expen- 
sive. Research has been focusing on using heuristics. 

In this paper, we introduce a heuristic algorithm 
called (block) clustering which attempts to group to- 
gether as many blocks from the same run as possible 
while preserving feasibility. Each group, called a clus- 
ter, is a sequence of adjacent blocks from the same 
run. Since the blocks in a cluster are adjacent, they 
can be read sequentially. The target buffer pages are 
normally not adjacent in memory so the actual reading 
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of a cluster is done by multiple physical reads. How- 
ever, the cluster is read sequentially so only the first 
read of the cluster requires a seek. 

The read requests for a cluster are issued as a batch 
so they will not be intermixed with write requests from 
the same merge, that is, the sort does not interfere 
with itself. However, other jobs in the system may 
access the same disk and may interrupt the smooth 
sequential processing of read batches 2. 

To overlap processing and read time, there must 
be enough full buffer pages for the merge process to 
proceed and enough free buffer pages for I/O to read 
an additional cluster. Theorem 1 defines a condition 
for testing the feasibility of a read sequence. 

Theorem 1 Let B represent the number of buffers, n 
the number of runs, Qi a cluster (a set of adjacent run 
blocks from the same run), and Li the number of run 
blocks in cluster Qi. When clusters are read as sequen- 
tial batches, a read sequence of N clusters (01, . . . . QN} 
is feasible for consumption sequence {Cl, . . ..CT}. if 
for all k such that B 5 k 5 T, {Cl, . . . . C~-B+~} c 
&I U...UQj-1 for the largest j such that cf=, Li 5 k. 

Proof: We assume that a merge process is able to 
proceed only if the first unfinished block of each run 
resides in memory. 

When k = B, {Ci, . . . . Cn} c Qi U . . . U &j-i and 
cf=l Li 5 B, h’ h w ic means the first block of each run 
belongs to the first j - 1 clusters, and there are enough 
buffer pages to read the first j clusters. When cluster 
Qj is being read, Qi to &j-i have already been read 
into memory. Thus Ci, Cz, . . . , C, reside in memory. 
The merge process can start. 

Q @v ,, Qi-I , , Qi .a! , , QN '+I 
'.'..... . . . . . . .._ ..,.._.-. ,.__.....' 

1 

I 
P 

R RT .k 
,,.._.... . .._ 

i B-n exm buffers for read ahead 

(one block for each MI) 

Figure 2: Feasibility of read sequence 

At any stage when B < k 5 T (as shown in Fig- 
ure 2), among {Cl, . . . . C~-B+~}, n blocks are needed 
for merging. So k - B blocks must have been con- 
sumed by the merge process. Since {Cl, . . . . C~-B+~} 

21n our sort testbed, all sorts in the system send their I/O 
requests to an I/O request queue which is served by I/O agents 
(two per disk)in FIFO order. To make sure that a read batch is 
not intermixed with reads or writes from other concurrent sorts, 
the queue is first locked, the batch of read requests added to the 
queue, and the queue unlocked. 

c Q1 u . . . U &j-r, the number of blocks unfinished 
within {Qr, . . . . Q,} is Ci=, Li - (k - B). Because 
cf=, Li 5 k, we have xi=, Li - (k - B) 5 B, which 
means there are enough buffers to store the unfinished 
blocks in {Qi, . . . . Qj}. So after cluster &j-i has been 
read into memory, the n blocks needed for merging 
already reside in memory. The merge process can pro- 
ceed, while there are enough buffers to read cluster 
Qi. 

The merge process is able to proceed until k = T 
when all blocks have been read into memory. There- 
fore, the merge process will terminate. So the condi- 
tion in the theorem guarantees the feasibility of the 
read sequence. 0 

The following algorithm computes a feasible read 
sequence. The consumption sequence is taken as the 
initial read sequence, with each block forming a cluster 
of size one. A block is then combined with the previous 
cluster for the same run as long as the feasibility of the 
read sequence is preserved. The algorithm returns a 
sequence of clusters (each cluster with a run number 
and an address of the first block in the cluster), and 
returns a cluster size array at the same time. 

Algorithm block clustering 
Input: consumption sequence C = {Cr..c~}, 

number of buffers B, number of runs n 
Output: read sequence Q = {Qr, Q2, . . . . QN}, 

cluster size L = {Ll, La, . . . . LN} 
// Ci and Ri have the same structure: 
// run number field and block address field, 
// Li is an integer recording the size of cluster Qi 
begin 

// Initialize Q to be the consumption sequence 
Q := C; 
for i := 1 to T 

L[i] := 1; // Set initial cluster size to 1 
endfor; 
// lastC1: index of the last cluster before Q[i] 
lastC1 := n; 
for i := n + 1 to T 

// Search each previous cluster to find 
// the one with the same run as Q[i] 
for j := lastC1 downto 1 

if Q[j].runNumber = Q[i].runNumber 
then k := j; exit loop; endif; 

endfor; 
if Q[i] can be combined with Q[k] preserving 

feasibility 
then // combine Q[i] with cluster Q[k] 

L[k] ++; 
else //Q[i] becomes the new last cluster 

lastC1 ++; 
Q[lastCl] := Q[i]; 

endif; 
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endfor; 
N := la&Cl; 

end 

To check feasibility efficiently, our implementa- 
tion makes use of a free buffer count array F = 
(6, F2, .-., FT}. Fi records the number of free buffer 
pages left after cluster Qi is read. It is set to B - n 
initially. When Qi is combined with cluster Qj, the 
values for Fj to Flastcl are reduced by one. To guar- 
antee that there are enough buffer pages to read a clus- 
ter while the merge process can proceed, it is required 
that Fi 2 Li+i for all i. For each Qi, the algorithm 
needs only check cluster Qlastcl down to cluster Qj 
that Fj = Lj+l or Fj-1 = Lj. This technique is more 
efficient than applying Theorem 1 directly. 

4 Performance for Random Input 

In this section we derive formulas for estimating the 
performance of the different read strategies. It is as- 
sumed that input data is randomly distributed and 
all runs have the same length. The number of clus- 
ter reads initiated is used as an approximate measure 
of the number of disk seeks (regardless of how many 
physical reads are issued). Here is the notation used 
in the rest of this paper. 

D : input size, 
n : number of runs, 
b : number of buffer pages available, 
p : buffer page size, 
A4 : total memory space used for buffers, A4 = bp, 
N : number of cluster reads, 
R : average size of a cluster read (D = NR), 

Subscripts D, E, F, and C represent double buffering, 
equal buffering, extended forecasting, and clustering 
respectively. 

4.1 Estimating number of cluster reads 

Double buffering 

Double buffering divides the available buffer space 
equally among the n runs so, on average, a run gets 
pb/n bytes. Provided every run has at least two buffer 
pages, that is, b > 2n, cluster reads will have an aver- 
age size of pb/2n. Otherwise, a cluster read will cover 
exactly one buffer page. This gives us the following 
formula for the total number of cluster reads: 

No = D/(pb/2n) if b > 2n 
DIP ifn<b<2n. (1) 

Equal buffering 

The average number of buffer pages per run is b/n. 
(More precisely, some runs are assigned [b/nJ buffer 

pages and some [b/n] buffer pages but the average is 
b/n.) If a run has t buffer pages, t > 2, its cluster 
reads will be for t - 1 pages. Otherwise, its reads will 
always be for one page. If all runs have more than two 
buffer pages each, that is, if b 2 2n, the average cluster 
read will therefore of size b/n - 1 pages and otherwise 
one page. This gives us the following formula for the 
total number of cluster reads: 

NE = 
D/(p(b/n - 1)) if b 2 2n 

D/P ifn<b<2n. (2) 

Extended forecasting 

Extended forecasting uses two read-ahead buffers and 
divides the available buffer space equally among the 
n runs and the two read-ahead buffers. So the space 
assigned to each run is pb/(n + 2), which is also the av- 
erage size of read clusters. This gives us the following 
simple formula for the total number of cluster reads: 

NF = D/(pb/(n + 2)) = (n + 2)D/(pb) . (3) 

Clustering 

When input data is randomly distributed and all runs 
are of the same length, data from all runs will be con- 
sumed at the same rate during merging. In such a situ- 
ation, the consumption sequence can be approximated 
by an ideal consumption sequence shown in Figure 3. 
n is the number of runs and within each sequence of n 
blocks, there is one block from each run. 

c, 
c ) 

C C n: 2n : CJq c, 

ml town fun1 torunn run I torunn . 

Figure 3: Ideal consumption sequence. 

During clustering, a block is combined with the 
previous block of the same run as long as feasibility 
is preserved. Therefore, blocks C,+i , Cn+2, . . . . 6’2, 
are combined with blocks Ci, C2, . . . . C,, respectively 
and form n clusters. Each cluster contains two blocks. 
Then blocks C2n+i, C&+2, . . . . Csn are combined with 
these clusters. The cluster size grows until feasibil- 
ity can no longer be preserved. The remaining blocks 
will be combined to form a second set of clusters, and 
so on. The resulting clusters are all of the same size. 
This yields the ideal read sequence shown in Figure 4, 
where Qi represent a cluster, i.e., a sequence of adja- 
cent blocks from the same run. Within each sequence 
of n clusters, there is one cluster from each run. 

For our clustering algorithm, the sort sends the read 
requests of a cluster as a batch. The average cluster 
size is the average read size Rc. Thus n * Rc buffer 
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B buffers required B buffers required 

I 

R 6, Q2 Q, a,; h, 
‘.. 

. . . . . . ; 

run I Ill” 2 . runn run1 run2.. 

Figure 4: Ideal read sequence. 

space is required to keep the first n clusters so that 
the merge process can start, while Rc buffer space is 
required for Qn+r to overlap the merge processing and 
read time (as shown in Figure 4). We assume that 
all the runs are consumed at the same rate. When 
there are enough free buffer pages for the next cluster, 
another batch of reads is issued. By the time the first 
n clusters are finished, there are enough buffer pages 
to keep Qn+i to Qsn+i. So the merge process is able 
to continue with the run blocks in Qn+i to Qsn, while 
there are enough buffer pages to read cluster Qsn+i 
at the same time. Thus the merge process is able to 
terminate with (n + 1) * RC buffer space. Then we 
have pb = Rc * (n + l), that is, Rc = pb/(n + 1). This 
results in the following formula for estimating the total 
number of cluster reads: 

NC = D/Rc = (n + l)D/(pb) . (4) 

Numerical results 

Figure 5 show theoretical and experimental results for 
the four read-ahead strategies. The case shown in the 
graph is for an input size of 50MB, divided into 15 runs 
of the same size. Records were 64 bytes long with a 
randomly generated key of 10 bytes. Each point plot- 
ted in the diagram represents the average computed 
from five experiments, using different input sets. 
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Figure 5: Theoretical and observed number of cluster 
reads. 

It is difficult to distinguish the different line types in 
the figure but the experimental results match the the- 
oretical results very closely, even for clustering. Clus- 
tering has the fewest cluster reads for all memory sizes. 
Its cluster reads (seeks) are slightly fewer than for ex- 

tended forecasting but the difference is minimal. Not 
surprisingly, double buffering results in the most seeks, 
about twice as many as clustering and extended fore- 
casting. Equal buffering performs quite well when the 
amount of buffer memory is reasonably large. 

4.2 Estimating merge time 

Merging is normally I/O bound so the elapsed time 
of a merge step is determined by the I/O time. The 
traditional disk model estimates I/O time by adding 
transfer time and (average) seek time. The traditional 
formula is 

T=tD+sN, (5) 

where T is total elapsed time (set), D is data size 
(MB), t is the transfer time for 1M data (set/MB), 
N is the number of disk seeks, and s is the average 
disk seek time (including rotational latency). Given 
the additional complexity of modern disks, this simple 
model may no longer be an acceptable approximation. 

As mentioned previously, we approximate the num- 
ber of seeks with the number of cluster reads, i.e. we 
assume that adjacent clusters are from different runs. 
Our sort testbed uses a 500MB raw partition on one 
disk, a Seagate ST-15150W. Experimentally, we found 
that t M 0.3 set/Mbytes and s x 0.007 sec. 

We ran experiments on many randomly generated 
data sets to collect timing data. For each data set, 
each read-ahead strategy was tested, and the experi- 
ment was repeated using different memory sizes. Each 
point plotted in the diagrams represents the average 
computed from five experiments. The five experiments 
used different data sets of the same size that were pro- 
duced using different random seeds. Except for stan- 
dard double buffering and standard forecasting, the 
memory available for input buffers was divided into 
buffer pages of size 32KB. When a cluster was read us- 
ing a batch of read requests, each request read 32KB. 
For standard double buffering and standard forecast- 
ing, memory was contiguous. ,Each buffer was assigned 
a contiguous area and each read request was of the 
same size as the buffer. 

Numerical results 

Figures 6 to 9 show estimated and observed results 
for input of size 50MB. The estimates were computed 
using formula 5, where N is replaced by the number 
of cluster reads given by formulas 2, 3, and 4, re- 
spectively. Experiments using other data sizes (5M to 
100M) produced similar results. 

Figures 6 and 8 each plot results from two series of 
experiments. The difference is in the size of physical 
reads: the two series labelled D-expl and F-expl used 
contiguous buffer space and a single physical read (the 

529 



50M data set 
32 \ , I I 1 I I 

30 - 

28 - 

26 - 

24 - 

22 - 

20 - 

18 - 

16 I I t I I ? I 

500 1000 1500 2000 2500 3000 3500 4000 

Merging memoty (K) 

Figure 6: Merge time for double buffering. 
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Figure 7: Merge time for equal buffering. 

traditional implementation), while the two series la- 
belled D-exp2 and F-exp2 used batches of 32KB reads. 
Using batches of small reads instead of a single large 
read improved performance but only for batches of 
three reads or more. Using two reads was actually 
slightly slower than a single read. We have no good 
explanation for this effect. 

The agreement between predicted and observed 
merge time is excellent for all schemes when the 
amount of buffer memory is sufficiently large to al- 
low read batches of size three or more. (This happens 
at different memory sizes for different schemes.) For 
single reads or batches of size two, the model underes- 
timates the I/O time. The most logical explanation is 
that the disk controller starts prefetching after it has 
seen two sequential reads. 

The estimated results of the four strategies were 
combined in one diagram (Figure 10) to facilitate 
comparison. The results confirm the observations in 
the previous section. Double buffering is the slowest. 
Clustering is the fastest, followed closely by extended 
forecasting. Equal buffering is in between. Equal 
buffering converges to clustering quickly as the avail- 
able memory increases, but double buffering does not. 
The observed performance improvement of clustering 
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Figure 8: Merge time for extended forecasting. 
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Figure 9: Merge time for clustering. 

over double buffering with large reads is substantial, 
around 30 % for all memory sizes. 

5 Performance for Skewed Input 

The analysis and experiments in the previous section 
assumed completely random input. In this section, 
we study the performance of the read-ahead strategies 
when runs exhibit temporal skew. 

Records within a run are sorted so the ordering of 
the input for a run does not affect merge performance. 
However, merge performance will be affected if sort 
keys are distributed in such a way that the merge pro- 
cess concentrates on a subset of the runs for some time 
period and then shifts to another subset of runs for an- 
other time period. The number of active runs actually 
involved in merging is smaller than the total number 
of runs. Active here means contributing records to the 
output. In the extreme case, there might be only one 
active run at any given time. We call this phenomenon 
temporal skew. 

Zheng and Larson [ZL96] introduced a simple model 
for runs with temporal skew. The keys in a run i are 
uniformly distributed in a range Lmi to Highi. Each 
run has a key range of the same length but the key 
ranges of run i and run i + 1 are set to overlap. A 
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Figure 10: Comparing estimated merge times. 

parameter cr controls the overlap of the key ranges for 
run i and i+l so that Lo2ui+i = (l-c~)Highi+alowi. 
Setting cy = 1 produces completely random data. De- 
creasing cy increases the temporal skew. Setting cy = 0 
is equivalent to the input data being sorted. 

The key difference between random input and 
skewed input is in the number of active runs, i.e. the 
runs involved in merging. Let n, denote the number 
of active runs. For the simple model of temporally 
skewed data described above (as shown in Figure ll), 
the number of active runs can be computed as follows: 

l if l/(1 - o) 2 n, then n, = n; 

l if l/(1 - o) < n and cy _> 0.5, n, = l/(1 - cr); 

l if (Y < 0.5, n, = 2, while for each run, a fraction 
of size (1 - 2a) of the run is not overlapped with 
any other runs. 

1 runs, 
90% overlap 

(a) 

80% 

____ 

(b) 

40% 

20% 

Cc) 

6 runs. 
40% overlap 

Figure 11: Example of temporal skew and active runs 

Equal buffering 

For equal buffering the cluster read size equals RE = 
p(b/n - 1) when b 2 2n, and RE = p when n < b < 2n. 

The number of clusters read is DIRE. However, if (Y < 
0.5, a fraction (1 - 2~) of each run is not overlapped 
with any other runs. The data in this portion will 
be read sequentially so it is best treated as a single 
cluster (one seek only). The remaining 2cu fraction of 
the data is read at the read size RE. We approximate 
the number of reads for the (1 - 2~) portion by (1 - 
2a)n. When cy = 0.5, no extra reads are added, while 
when (7~ = 0, n reads are required, one for each run. 
Putting it all together we get the following estimate 
for the number of clusters read: 

N; = 
1 

DIRE if cy 2 0.5 
2ctD/& + (1 - 2a)n if 0 5 (Y < 0.5 

(6) 
where RE = p(b/n - 1) when b 2 2n, and RE = p 
when n < b < 2n. 

Double buffering 

Double buffering can be viewed as a special case of 
equal buffering. It divides the available buffer space 
equally among the runs and each read fills half of the 
buffer space assigned to a run. Provided every run 
has at least two buffer pages, that is, b 2 2n, cluster 
reads will have an average size of pb/2n. Otherwise, 
a cluster read will cover exactly one buffer page. The 
cluster read size equals RD = pb/2n when b 2 2n, and 
RD = 1 when n < b < 2n. Therefore, 

N; = 
i 

DIRD if (Y >_ 0.5 
2ctDfR~ + (1 - 2a)n if 0 5 cy < 0.5 

(7) 
where RD = pb/2n when b 2 2n, and RD = p when 
n < b < 2n. (In our experiments, RD was rounded 
down to a multiple of the page size.) 

Extended forecasting 

For extended forecasting, the cluster read size is RF = 
pb/(n + 2). The rest of the argument is exactly the 
same as for double buffering. We get the following 
formula: 

N; = 
{ 

(n + W/W if 13 2 0.5 
2cx(n + 2)D/(pb) + (1 - 2a)n if 0 < cy < 0.5 

(8) 

Clustering 

For clustering, we estimate the cluster size by the for- 
mula derived for random input but replacing the num- 
ber of runs n by the number of active runs na, that 
is, Rc = pb/(n, + 1). The function for n, splits into 
three ranges: 
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0 If l/(1 - CX) > n, n, = n; precisely, number of cluster reads). The agreement 

l If l/(1 - cr) < n and (Y 2 0.5, n, = l/(1 - o); 
is very close. Double buffering, equal buffering and 
extended forecasting do not exploit temporal skew un- 

l If (Y < 0.5, n, = 2 for a fraction of size 2a and less the skew is so severe that there is only one active 

n, = 1 for the rest (the non-overlapping part). run some of the time. Clustering, on the other hand, 
adapts quickly to temporal skew and reduces the num- 

Combining this with formula 4, we get the following ber of seeks. 
estimate for the number of clusters: 

50M data set, 2M memory 

24 - 
(n + lPl(Pb) if l/(1 - (.y) 2 72 

E-est ----- 

Nk = (l/(1 - CY) + l)D/(pb) if l/(1 - o) < n & a 2 0.5 
- [ GaD/(pb)+(l -2a)n if Q < 0.5 

(9) 

50M data set, 2M memory 
I 

80 0 - Deest .: . . . . 
Edest ..... 

no 

s I 600 

lJJ 
B 

500 

& 400 

2 300 

z’ 200 

100 
06 I_ -’ ” ’ 

I I I 

,,,’ 
;.. .:.. . ..~ 

o 0 * 

0 20 40 60 

Overlap in runs (%) 

80 100 

Figure 12: Estimated and observed number of seeks for 
skewed input when using 2MB of memory for buffers. 
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Figure 13: Estimated and observed number of seeks for 
skewed input when using 3MB of memory for buffers. 

Numerical results 

Our sort testbed is able to generate temporally skewed 
input based on the above model. We ran a series of 
experiments for each read strategy on 50MB input, 
varying the overlap of key ranges, i.e., the (Y value, 
from 0 to 1 (100%). 4MB of memory space was used 
for run formation, resulting in 15 runs. Buffer pages 
and physical reads were of size 32KB. 

Figures 12 and 13 show the theoretically estimated 
and experimentally observed number of seeks (more 
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Figure 14: Estimated and observed merge time for skewed 
input when using 2MB of memory for buffers. 
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Figure 15: Estimated and observed merge time for skewed 
input when using 3MB of memory for buffers. 

Figures 14 and 15 show estimated and observed 
merge times. Considering the difficulty of modeling 
modern disks, the agreement is reasonable: the gen- 
eral shape is the same but the observed merge times 
are lower than estimated. Part, but not all, of the dis- 
crepancy is explained by reduced seek time. When the 
number of active runs decreases, they cover a smaller 
part of the disk so seeks are shorter and faster. How- 
ever, these results confirm the conclusion that cluster- 
ing is able to exploit temporal skew in the input to 
reduce merge time. The other strategies benefit only 
from severe temporal skew. 

6 Conclusion 

This paper introduced three buffering and read-ahead 
strategies aimed at reducing disk seeks during the 
merge phase of external mergesort. They achieve bet- 
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ter performance than traditional double buffering or 
forecasting by exploiting the fact that modern disks 
do caching and sequential prefetch and by preplan- 
ning reads. Preplanning is based on retaining the last 
key of each (say 32KB) run block during run forma- 
tion, from which the block consumption sequence can 
be computed. 

Equal buffering is based on double buffering and 
does not do any preplanning. It requires about 
50% fewer disk seeks then double buffering when the 
amount of buffer memory is large. 

Extended forecasting achieves better overlap of I/O 
and merge processing than traditional forecasting. It 
uses two read-ahead buffers and requires access to the 
consumption sequence. Clustering reduces seeks by 
preplanning the read order (using a heuristic algo- 
rithm) based on the consumption sequence. 

Based on theoretical modelling and experiment re- 
sults, we found that 

clustering has the best performance; it reduced 
merge time by about 30% compared with stan- 
dard double buffering; 

extended forecasting performs almost as well as 
clustering on random input but not on input with 
temporal skew; 

equal buffering does not require any preplanning 
and always performs better than double buffering, 
in particular when memory size increases. 

One mystery remains unsolved: why changing from 
single large reads to batches of smaller reads reduced 
I/O time for double buffering and (extended) forecast- 
ing. 

Our analysis and experiments made the simplifying 
assumption that runs are stored on a single disk. How- 
ever, using multiple disks and striping is common in 
modern systems. We have not yet investigated how the 
proposed buffering and read-ahead strategies perform 
in such an environment. 
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