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Abstract 

With today’s demands for continuous avail- 
ability of mission-critical databases, on-line 
reorganization is a necessity. In this paper 
we present a new on-Iine reorganization algo- 
rithm which defers secondary index updates 
and piggybacks them with user transactions. 
In addition to the significant reduction of the 
total I/O cost, the algorithm also assures that 
almost all the database is available all of the 
time and that the reorganization is interrupt- 
ible and restartable. We believe that the tech- 
nique presented in this paper could be used 
for improving normal database update perfor- 
mance as well. 

1 Introduction 

On-line reorganization is and will be a major problem 
for transaction systems of the 1990s and the 2000s. 
Tasks such as restoration of clustering, purging old 
data, compaction and data migration must be per- 
formed without interrupting service. Most of these 
tasks require the physical moving of data records. If 
there are any references to physical locations of records 
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in other parts of the database, for example in indexes, 
these references must be updated when the records are 
moved. This paper presents a restartable, incremen- 
tal, efficient and safe method for updating secondary 
index references to moved records during on-line reor- 
ganization in a centralized database. 

The algorithm uses a deferred and incremental ap- 
proach to make the changes in the secondary indexes. 
When a database record is moved, changes to index 
pages already in memory are made immediately and 
the pending changes are stored in some in-memory ta- 
bles. Then those tables are consulted by the buffer 
manager when a secondary index page P is brought 
into the buffer by a user request. If P is a leaf page, 
changes are made at that time. If P is higher than leaf 
level, the relevant descendant page addresses found in 
P are placed in the in-memory tables. 

The reason for its eficiency is that the changes for 
the secondary index leaf pages are piggybacked with 
user transactions, thus less I/O is caused by the re- 
organization process. Through both analytical and 
experimental study, we measure the efficiency of this 
technique. 

The reason for its safety is in the interaction with 
the concurrency and recovery modules of the database 
management system. This aspect of our algorithm is 
important and innovative. Without correct logging, 
the tables of pending changes could not be recon- 
structed after system failure and some of the references 
to moved records could be incorrect. 

Correct logging also enables our method to be 
restart&e. If there is a system failure, reorganization 
does not have to start over again. No work is lost. 

Because our method is incremental, system perfor- 
mance improves as reorganization progresses. In ad- 
dition, as records are moved, the space they formerly 
occupied can be reclaimed. It is not necessary to re- 
serve space for an additional full copy of the database 
for reorganization. 
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The rest of the paper is organized as follows: In sec- 
tion 2, we present the setting for our problem. In sec- 
tion 3, we present the algorithm without the details of 
logging and recovery. Recovery is discussed in section 
4. Section 5 discusses correct index search protocols 
for user transactions during reorganization. User op- 
erations such as table scanning (without an index) and 
the adding and dropping of an index are addressed in 
section 6. We present our analytical and experimental 
study results in section 7. Section 8 briefly discusses 
related work. A conclusion is in section 9. 

2 Setting 

The problem we solve in this paper is how to efficiently 
change the references in secondary indexes (or any ref- 
erence changing) during on-line database reorganiza- 
tion in a centralized database. We will use one re- 
organization problem as a case study throughout this 
paper. We use boldface to indicate that a technical 
term is being defined. After it is defined, italics are 
used to identify the term. 

2.1 Assumptions for the Case Study 

We assume one relation’ of RID or Record IDenti- 
fier form is to be reorganized. That is, records are ac- 
cessed using their RIDS, which usually are page num- 
ber and slot number on that page. 

We assume that originally, a “clustering” index, a 
B+-tree whose leaves contain a key value and an RID 
for each record, was used to load the relation in key 
order. (For simplicity of the paper, we assume that 
the clustering key is unique.) Over time the clustering 
properties declined because of insertions, deletions and 
updates. In order to “recluster” the data, reorganiza- 
tion of the database is necessary. The reorganization 
process uses the clustering index to place the records 
in their new location. It moves records in the order of 
their clustering key. 

We will distinguish between the “clustering” in- 
dex and the other secondary indexes which are “non- 
clustering.” We assume that the other secondary in- 
dexes are also Bf-trees. We will be referring only to 
the non-clustering secondary indexes as secondary 
indexes in this paper. 

All access to trees will follow the Bayer-Schkolnick 
safe-node tree concurrency [BS77] and in particular 
will do latch-coupling. 

A reader of an index entry will latch-couple to the 
leaf page, get an S latch on the leaf page, then ac- 
quire an S lock on the index key for that index entry 

1 We shall use the word relation and not table for the col- 
lection of records we are moving, as we use the word table to 
indicate several data structures used by the system to keep track 
of the reorganization. 

as in ARIES/KVL [MohSO]. Notice that the S lock 
is first requested conditionally. If the conditional re- 
quest is not granted, in order to avoid deadlock in- 
volving latches, the page latches must be dropped and 
the lock is requested unconditionally [MohSO]. In- 
serters/deleters also follow the ARIES/KVL protocol. 
That is, they use next-key locking to prevent phan- 
toms. 

We assume that the Write-Ahead-Logging (WAL) 
rule is used for logging. When reclustering an RID 
organization, we assume there is some space that can 
be reclaimed. 

2.2 No-split assumption 

The organization where the record resides before it is 
moved is called the source organization. After it 
is moved, it is in the target organization. In this 
paper, the Old-ID will be the identifier used in the 
source organization and the New-ID will be the iden- 
tifier used in the target organization. Since we are 
reclustering RID organizations, the Old-ID and the 
New-ID are RIDS. 

In this paper we will make the assumption that in- 
serting the New-ID in a secondary index does not cause 
a split. In [ZSSSa] [Zou96] we did not make this as- 
sumption and we worked out in detail how to treat the 
split. (If the New-ID were a different length than the 
Old-ID or if the New-ID goes in a different page from 
the Old-ID in some index, a page split is possible.) 

2.3 Buffer replacement policy 

We assume that the FIX-USE-UNFIX protocol [GR93] 
is used by the system. We assume that for each index, 
at least the root of the index tree is in the database 
buffer. We further assume that when the buffer man- 
ager chooses a page to swap out, it won’t swap out 
a parent index page as long as there is at least one 
child of that parent page is still in the buffer. This im- 
plies that all ancestors of any index page in the buffer 
are also in the buffer. (This assumption can be easily 
implemented by changing the buflerfia: [GR93] routine. 
We can add one extra parameter to indicate the parent 
page of the requested page, so that the buffer manager 
can chain those pages properly.) Latch coupling will 
assure that no child page is brought in if its parent is 
not already in the buffer. 

We also assume that when a requester asks for pages 
from the buffer manager, it can specify that it only 
wants pages already in the buffer. That is, if the page 
requested is not in the buffer, the buffer manager won’t 
do an I/O to get the page, instead, the buffer manager 
will return page not found. 
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3 Towards Efficient On-line Reorgani- 
zation 

In this section we present the algorithm without the 
details of logging and recovery. First, we describe some 
data structures. 

3.1 Data Structures 

The following data structures are used in our algo- 
rithm. 

l Forward Address Table T 
Table T is an address table which records the old 
and new location of the record. An entry of T 
has the format (Old-ID, New-ID, Count), where 
Count is the number of secondary references that 
still need to be changed. 

l Pending Changes Table &is 
Tables Qi, i = l,... ,s, where s is the num- 
ber of secondary indexes, are used to keep infor- 
mation about the changes that should be made 
to secondary indexes. An entry in Qj has the 
format (Index-value, Page-number, Old-ID, Flag). 
The Old-ID field refers to the old address of the 
record that has been moved. The Index-value 
field is the index value of the record for that sec- 
ondary index. The Page-number field is the 
page number of the secondary index page which 
either stores the Indezvalue (leaf page) or has a 
descendant which stores the Indeutalue (upper 
level index page, i.e., the lowest ancestor page ad- 
dress known when the entry is made.) The Flag 
indicates whether the pending change involves the 
Old-ID (deletion of the Old-ID from the original 
index page), the New-ID (insertion of the New- 
ID into a different index page), or both (change 
of the Old-ID to the New-ID on the same index 
page). 

l Boundary Value (BV) 
The BV is a system variable that is stored in 
the system log. It is used to record the largest 
(unique) clustering index key of a record that we 
have moved so far. A semaphore on BV is used 
by index-creators and table-scanners to prevent a 
new reorganization unit from starting. 

l Checkpoint Semaphore (CK) 
The CK semaphore is used to do checkpointing 
during reorganization. It assures that no changes 
are made to tables when they are to be copied to 
the checkpoint. 

l Reorganization Table 
The Reorganiration Table is a very small in- 

memory table which is constructed and used only 
during recovery. 

The table T and tables Qi are in-memory system 
tables. The table T is a small hash table indexed 
by Old-ID. The &is are small hash tables indexed by 
Page-number. The records for a Qi that are hashed 
into the same bucket are sorted by their Page-number. 
We call the T table and the Qi tables look-up tables. 
Each of the tables can only use a certain amount of 
memory space. 

3.2 The Algorithm 

In this section, we describe the actions of one reor- 
ganization unit. A reorganization unit moves one 
record, updates all relevant secondary index leaf pages 
that are in the buffer, modifies the look-up tables to 
record pending changes, and changes the BV. The log 
records written and the recovery scheme are discussed 
in section 4. We assume here that the record being 
moved does not have forwarding pointers. Figure 1 
outlines the logic of the algorithm. 

3.2.1 Obtaining initial locks 

When each reorganization unit starts, it will first check 
to see if each of the look-up tables still has space for 
one entry. If there is not enough space left, the clean- 
up procedure, which will be discussed in section 3.4, 
is called to clean the space. This is a pessimistic ap- 
proach, because it assumes that all the changes of the 
secondary indexes will be put in the look-up tables. 

If there is enough space left in the look-up tables, 
the reorganizer will get the initial locks and latches 
for the record-moving as shown in steps 2,3 and 4 in 
Figure 1. First, to make user scans correct, explained 
in section 5, the B V is locked. 

The reorganizer then gets an X lock on the 
record( Old-ID) and reads the content of the record to 
find all the secondary index key values. It will require 
an X lock on the new identifier, i.e., the New-ID of the 
record. All IX locks required by hierarchical locking 
protocols [GR93] are also obtained. 

3.2.2 Secondary index key value locks 

Next, the reorganizer acquires X locks on the index 
key value for each of the secondary indexes. Deadlocks 
may occur since the user transactions can lock these 
pages in another order. In case of a deadlock, the 
reorganizer will release all the locks it possesses and 
start over again on this reorganization unit. 

3.2.3 Record moving 

The reorganizer will then get an S latch on the CK 
semaphore. This is for correct checkpointing as dis- 
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4. 

5. 

6. 

7. 

8. 

Check to see if each of the look-up tables still has 
enough space left for one entry. If not, do clean up 
for those tables. 

X latch the BV. 

IX lock the relation. IX lock the leaf page of the clus- 
tering index and the old page containing the record to 
be moved. X lock the record (Old-ID) to be moved. 

IX lock the new page and X lock the New-ID. 

Read the record to be moved, and acquire X locks on 
the index key value for each of the secondary indexes 
that need to be updated to reflect the record move. 
If there is a deadlock, drop all the locks held by the 
reorganizer and start over again. 

S latch the CK semaphore. 

Move the record and log the move. Update the clus- 
tering index and log the change. Drop the X locks on 
the Old-ID and the New-ID, drop the IX locks on the 
relation, and the old page and the new page. Drop 
the IX lock on the leaf page of the clustering index. 

For each of the secondary indexes: 

(4 

(b) 

(cl 

(4 

Search for the page(s) where the index entries 
for the moved record reside. (If there itre several 
RIDS for a given key, and they are in order of 
RID value, the New-ID may very well be placed 
on a different index leaf page from the Old-ID.) 
Starting from the root, X-latch-coupling down 
the tree until either the leaf page(s) are found 
or an I/O has to be done to bring in additional 
pages to continue the search. 

If the leaf page(s) are in the buffer, we make the 
update and log the change. 

Otherwise, for each missing index leaf page: 

i. Acquire necessary latches on corresponding 
look-up tables. 

ii. Put au entry in its corresponding look-up 
table (one of the Qis). The Page-number 
is that of the page where au I/O has to be 
done in order to continue the search. 

iii. For the first Qi updated, insert an entry in 
T, where the entry contains the old Old-ID 
and the New-ID and set the value of the 
Count field to one. For subsequent Qi up- 
dates, increase the Count by one. 

Release the X lock on the index key values, the 
X latch on the index page and the look-up table 
latches. 

9. Update BV to the clustering index key of the record 
that has just been moved. 

10. Drop the latches on the BV and the CK semaphore. 

Figure 1: The Algorithm for One Reorganization Unit 

cussed in section 4. After all the locks have been ac- 
quired, the reorganizer can move the record to the new 
organization, log the move, and change its reference in 
the clustering index. Then it releases all its locks ex- 
cept the X locks on all the secondary index key values 
and the latches on BV and CK. This is to maximize 
the concurrency in the system so that user transac- 
tions can read the record through the clustering in- 
dex, or even update the unindexed fields. Deletion of 
the record and updates of the indexed fields by user 
transactions can not be done now because the reorga- 
nization unit still possesses X locks on the secondary 
index key values. 

3.2.4 Secondary index leaf page updates 

After the record is moved, the reorganizer then pro- 
cesses each of the secondary indexes that need to be 
modified to reflect the move. It searches each sec- 
ondary index for the leaf page(s) to update the index 
entr(ies) for the record move. (In the secondary in- 
dexes, which are not assumed to be unique, many dif- 
ferent RIDS may correspond to the same index key. 
These are normally listed in KID-order so that an in- 
dividual entry, perhaps for deletion, can be located 
quickly. Thus the New-ID and Old-ID may be on dif- 
ferent index leaf pages.) 

The search will start from the root of the index 
tree, and X latch-couple down the tree until either 
the leaf page is found, or an I/O has to be done for 
an index page P in order to continue the search. No- 
tice that even though the reorganizer holds an X lock 
on the index entry while it X-latch-couples down the 
tree, no deadlock occurs, because all user transactions 
lock requests on index entries are first made condition- 
ally. If not granted, they would drop all the latches 
they hold, and request the locks unconditionally as in 
ARIES/KVL [MohSO]. This avoids deadlocks involv- 
ing latches and locks. 

If the secondary index leaf page where the change 
should be made is in the buffer, the reorganizer will 
make the change since it has an X latch on the page 
and an X lock on the index key values. It will also 
write log records about the update, which will be dis- 
cussed in section 4. After finishing the change in one 
secondary index leaf page, it will release the X latch 
on the page. 

If an I/O has to be done for an index page P in order 
to continue the search, the reorganizer will modify the 
corresponding table Qi to reflect the record move, and 
P’s page number will be in the entry of Qi. 

If this is the first pending change about the mov- 
ing record that is inserted in the Qis, an entry that 
contains the Old-ID and the New-ID is inserted in the 
table T with the Count value set to one. Otherwise, 
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there is already an entry containing the Old-ID and the 
New-ID in the table T. We just need to increase the 
Count value by one. Accessing and updating the look- 
up tables follows the standard protocol as in [GR93]. 

The modifications of T and the &is have to be done 
before the X lock on the corresponding secondary in- 
dex key value is released. If the X lock on the cor- 
responding secondary index key value is released be- 
fore the modification on T is done, and there is a user 
transaction which brings in that secondary index leaf 
page, piggybacking can not be done. This is because 
the entry in T that contains the moving information 
hasn’t been inserted yet. When both the New-ID and 
the Old-ID information have been either inserted in 
the look-up table or updated in-memory index leaf 
page(s), the X lock on the key value can be released. 

We could have chosen to put the Old-ID and the 
New-ID in each entry of the &is. Then we do not need 
the T table. The reason we want to use T is to save 
some memory space in case there are many secondary 
indexes. 

3.2.5 The ready state 

After all the changes to secondary index leaf pages 
have been processed, the reorganizer then modifies the 
value of BV to become the clustering index key of the 
record just moved. We say the reorganizer is in the 
READY state at this time. That is, the record is 
physically moved, all the changes to the secondary in- 
dex leaf pages are either already made or are inserted 
into the look-up tables, and the value of BV is mod- 
ified. All the secondary index pages that are in the 
buffer either don’t refer to the moved record, or al- 
ready have the correct address (its New-ID). The re- 
organizer releases the X latch on the BV and the S 
latch on the CK semaphore when it enters the READY 
state. The locks on secondary leaf pages have already 
been released. The moving of this record is done. The 
reorganization process can go on to process another 
record. 

3.3 Page-Oriented Piggybacking Changes of 
References 

In our algorithm, the deferred reference changes are 
piggybacked with user transactions in a page-oriented 
fashion. Whenever an index page is brought into the 
buffer, we check to see if there are some changes pend- 
ing in the corresponding look-up table Qi that can be 
applied. 

If the page is an leaf page and there are pending 
changes to be applied, we first make all changes on that 
index leaf page. Then we modify the Count fields of 
the corresponding items in table T. Finally we delete 
those items in the table Qi. In the example above, 

if P2 is brought into the buffer, we would finish the 
index update recorded in Q2, and delete that entry. 
All the piggybacked changes on the secondary index 
leaf pages should be logged as shown in section 4. 

If the page is an upper level index page, then we 
would apply all relevant changes in Qi and “propa- 
gate” them. That is, we would search the index page 
with the Index-values to find the next level of index 
pages where those Indezvalues could potentially be 
stored. Then those newly found index pages would be 
substituted for the old page. In the example above, if 
PP3 is brought into the buffer, a search with key value 
of v3 is done on PP3 to find out the next level page 
P3, and PP3 will be replaced by P3 in the look-up 
table entry in Qs. 

In this paper, inserting the New-ID is assumed to 
cause no page splits. Piggybacking the changes on leaf 
pages is straightforward. As shown in [ZSSSa] [Zou96], 
if inserting the New-ID causes a page split, the piggy- 
backing algorithm becomes more complicated. 

The Requester requests a page while 

holding a lock on the page 

The Buffer Manager fnishes the 

piggybacking before returning 

the page to the requesta 

The Buffer Manager 

issues an vo to get the 

page from the disk 

Figure 2: Interaction between the requester and the 
buffer manager 

Piggybacking the changes should be done by the 
buflerfix routine [GR93] of the database buffer man- 
ager. When a secondary index page is requested, the 
buffer manager will return the page immediately if the 
page is already in the buffer. Otherwise, a disk read 
is done to bring it into the buffer. Before the buffer 
manager returns the page to the requester, the buffer 
manager first gets a shared latch on the semaphore 
CK, does the piggybacking(if any), then releases its 
latch on CK. The latch is necessary for correct recov- 
ery as explained in section 4. 

Figure 2 shows the interactions between the re- 
quester and the buffer manager. The dotted line repre- 
sents the buffer manager’s action when the requested 
page is already in the buffer, the bold line represents 
the buffer manager’s actions when the requested page 
is not in the buffer. 
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3.4 Cleaning Up Look-Up Table Space 

Deferring reference changes will not save much I/O 
if the buffer manager must do disk accesses to find 
entries in the look-up tables. To avoid writing portions 
of the look-up tables to disk, we clean them up when 
there is no longer room in memory for at least one 
more entry for each Qi. (That is, the clean-up process 
only runs when the look-up tables are full.) In this 
case, the clean-up process brings up those secondary 
index pages that have pending reference changes, and 
finishes the changes as described in previous sections. 

When the space is full, the reorganizer has to wait 
for the cleaning process to clean up the space. No reor- 
ganization unit runs while the clean-up process runs. 
User queries can run concurrently with the clean-up 
process and have higher priority. When clean-up fin- 
ishes, a new reorganization unit starts. 

4 Recovery 

Since we want to keep the look-up tables in main mem- 
ory, it is essential to be able to reconstruct them after 
system failure. We are moving records from one phys- 
ical location to another. Correctly logging the opera- 
tion should prevent us from losing records in case of 
system failures. 

4.1 Log Records and Data Structures 

We use several kinds of log records. Any safe system 
logs updates to database and index pages. We follow 
current conventions in making one log record for each 
updated page [GR93]. 

l (MV, pageid, Old-ID, New-ID, record-content) 
An MV log record is the first log record writ- 
ten by the reorganization unit. This log record 
is written only after the reorganizer has physi- 
cally moved the record. This record is used to 
REDO the delete from the page where the record 
resides before it is moved, if necessary. The New- 
Id is needed for recovery in case this is the first 
log record of a reorganization unit. 

l (MV2, pageid, Old-ID, New-ID, record-content) 
The MV2 log record is written for the insert into 
the new page. The Old-ID is used to identify the 
reorganization unit. (Combining MV and MV2 
in one log record would mean it would be more 
difficult to integrate our algorithm into current 
systems, because most systems do logging once a 
page is modified. Combining MV and MV2 would 
also make the recovery logic a little more compli- 
cated.) 

l (CHANGE, clustering-or-secondaryindex, 
pageid, index-key, Old-ID, New-ID, leaf-page) 

The CHANGE log record is written when the re- 
organization unit (identified by the Old-ID) up- 
dates a leaf page of the clustering index or one of 
the secondary index leaf pages in the buffer. 

(CATCH-UP secondaryindex, pageid, 
index-key-l, Old-IDA, New- IDA, . . . , 
index-keys, Old-IDs, New-IDS) 
The CATCH-UP log record is written when a sec- 
ondary index leaf page is brought into the buffer 
and there are some items in the look-up tables 
that need to be piggybacked. We write this one 
log record for all the piggybacking changes done 
on the same page. This is less logging than is done 
in other safe systems, since these changes would 
be done separately and would require separate log 
records. 

During recovery, we will construct a very small rear- 
gani&ion table. At the end of the REDO pass through 
the log, the reorganization table will have information 
about the (at most one) reorganization unit which may 
have been active at the time of the system failure. The 
table has the following fields: 

l 

l 

4.2 

ReorgID The reorganization unit identifier. It 
is the Old-ID of the MV log record. 

BeginLSN The LSN (Log Sequence Number) 
of the MV log record of the reorganization unit, 
i.e., the first log record written by the reorganiza- 
tion unit. 

LastLSN The LSN of the latest log record 
written by the reorganization unit. 

Checkpointing 

The following are copied into the checkpoint log 
record: (1) the BVand (2) the look-up tables. 

In order to checkpoint the look-up tables, we need 
to use one semaphore for all these tables. Otherwise, 
there might be deadlocks between the checkpoint oper- 
ation and the reorganization process. This is the CK 
semaphore. When the system wants to do a check- 
point, it tries to get an X latch on the semaphore, thus 
preventing others from accessing those tables. The re- 
organizer and the piggybacking processing of the ta- 
bles by the I/OS of the user transactions will get an 
S latch on the CK semaphore whenever they want 
to modify those tables. The effect of this approach 
is that the checkpoint log record always contains the 
consistent tables, that is, the Count field of each T[i] 
correctly indicate the number of references there are 
in the &is. 
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4.3 Why Not Undo? 

In our recovery scheme discussed in the next subsec- 
tion, we don’t do undo for the reorganization pro- 
cess. There are two reasons that let us choose this 
scheme. First, undo tends to slow down the reorga- 
nization process while forward recovery speeds up the 
reorganization process. Second, undo sometimes does 
not make sense using our algorithm. Our concurrency 
rules were made under the assumption that we would 
be doing forward recovery. That is why it was safe 
to drop some locks before the reorganization unit fin- 
ished, and thus maximize concurrency. (Transactions 
which drop locks before commit and then must reac- 
quire them for UNDO are not two-phase locked and 
risk non-serializability.) 

As an example, suppose the reorganization process 
has just changed (~1, Rl) to (~1, Kl) on the secondary 
index leaf page P and released the X lock on index key 
values wl. Now suppose there is a user transaction 
Tl which changes the values of some columns of the 
record with New-ID K 1. One of the changes is to 
change wl to v2. Suppose Tl commits and then the 
system crashes. If we undo those reorganization units 
that were not in the READY state when the system 
crashed, then we would undo the change on page P 
from (~1, Kl) to (~1, Rl), which can not be done since 
7’1 has committed and (~1, Kl) can not be found on 
page P. 

4.4 Recovery Logic 

We assume the Write-Ahead-Logging (WAL) is used. 
We will use the ARIES [MHL+92] recovery scheme. 
That is, we first do an analysis pass, then we do redo 
all to recover the status of the system at the time of the 
crash, and then we selectively undo. We assume that 
all updates have been made to disk by the redo process. 
In particular, the changes made in the secondary leaf 
pages and the clustering index leaf page are redone if 
necessary. These can be done during the same pass 
that reconstructs the in-memory tables as described 
below. 

Since the look-up tables in the checkpoint log record 
are always consistent, we only need to process those re- 
organization log records after the checkpoint log record 
during redo. First, we copy into memory all root pages 
of secondary indexes for the relation being reorganized. 
When we have a MV log record, we put a new item 
in T and insert corresponding items into &is. We will 
also modify the BV to be the Old-ID of the MV log 
record. This is why we don’t need to log the updates 
of the B V by the reorganization process during normal 
processing. In addition, we will insert an entry in the 
reorganization table to identify the move. 

When we have an MV2 log record, we update the 

LastLSN in the reorganization table. When we have a 
CHANGE log record for the clustering index, we will 
delete the corresponding entry in the reorganization 
table. This means that the process of deleting the 
record from its Old-ID page, inserting the record to its 
new page and updating the clustering index is com- 
plete. Once this happens, only the secondary index 
updates remain. 

When we have a CHANGE log record for a sec- 
ondary index or a CATCH-UP log record, we delete 
or modify the corresponding item(s) in the Qi(s), and 
modify the Count field of T[j](s) accordingly as de- 
scribed before. 

If the reorganization table is not empty at the end of 
redo, this means that some reorganization unit had not 
finished moving the record and updating the cluster- 
ing index at the time of system failure. If the LastLSN 
is the same as the BeginLSN, it means that the reor- 
ganization process has deleted the record it is going 
to move, but hasn’t inserted the record in the new 
page. The recovery process will insert the record and 
write the MV2 log record. Then it will update the 
clustering index, write a CHANGE log record for the 
update and delete the corresponding entry in the reor- 
ganization table. If the LastLSN is different from the 
BeginLSN, it means that the record has been inserted 
in the new page but the clustering index has not been 
updated. In this case, the recovery process will only 
update the clustering index, log the update and delete 
the entry from the reorganization table. 

Before the system restarts, we have to check all the 
secondary index pages that are in the buffer to make 
sure there isn’t any secondary index page which is ref- 
erenced in any of &is. This is necessary because dur- 
ing the recovery, some secondary index pages could be 
brought in the buffer which were not in the buffer at 
the time of the system failure. 

For example, problems can arise because of redo 
of user transactions. Figure 3 shows an example of 
a possible inconsistent state. Suppose there is a sec- 
ondary index leaf page, P2, that is in the buffer and 
P2 refers to a to-be-moved record. Before the reor- 
ganization process gets the X lock on the index value 
stored in P2, P2 is updated by a user transaction Tl. 
The reorganization process gets the lock on P2 after 
Tl commits. Now the reorganization process moves 
the record, but before it changes the reference on P2, 
the system crashes. Suppose the reorganization pro- 
cess has written the MV log record and that page 
P2 hasn’t been written back to disk when the system 
crashes, then after the redo-all pass, P2 should be in 
the buffer. If the system restarts without checking the 
look-up tables to see if any pending changes need to 
be made, then it is in an inconsistent state because P2 
has an out-dated address of the moved record. 
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Figure 3: An example of the log 
If there are any pages in the buffer at the end of the 

REDO and UNDO passes referred to by a Qi entry, 
we make the pending changes in the look-up tables 
and modify the tables accordingly. At this point, the 
recovery process as usual makes all its updates durable 
and makes a checkpoint record. We also must make 
sure that ancestors of any secondary index pages in 
the buffer are also in the buffer. After some debate, we 
chose to do this by marking the secondary index pages 
without parents as empty buffer slots (swapping them 
out). This does not cause extra I/O as the alternative 
(bringing in their parents) would do. 

After the last checking, we will have a consistent 
buffer. That is, all the secondary index leaf pages in 
the buffer either do not refer to the moved records, 
or already have the correct address. (This last check- 
ing also has the effect of “forward recovery” [ZS96b], 
for it can finish any reorganization unit which had 
not finished moving the record and updating the clus- 
tering index and putting pending changes in T and 
&is at the time of the system failure.) The system 
can restart. Reorganization can start from the record 
whose RID is next to the BV. Please refer to [Zou96] 
[ZS96a] for detailed discussion about the logic of the 
recovery scheme. It also discusses the recovery of pro- 
cess failure. 

5 Correct Database Operations during 
Reorganization 

In this section, we will describe the normal user trans- 
action’s behavior during the reorganization process. 
Additional discussion on adding an index, dropping 
an index and cancellation of the reorganization can be 
found in [Zou96] [ZSSSa]. 

5.1 Search through Secondary Index 

We assume that searchers use S latch-coupling down 
the secondary index tree and that when they reach a 
leaf, they request an S-lock on the searched index key 
(the leaf page is already in the buffer, as the searcher 
has to read the page before requesting the S-lock as in 
[MohSO]). After obtaining the S-lock on the searched 
index key, they proceed to read the content of the rel- 
evant index entries. 

A reorganizing unit could already have gotten an 
X-lock on the index key value v when a searcher 
is requesting a conditional S-lock on v (and holding 

an S-latch on the leaf page where v index entry is 
stored). If this happens, the searcher will drop all 
the latches it holds, and request the S-lock uncondi- 
tionally. This will avoids possible deadlock involving 
latches when the reorganizer traverses the index tree 
requesting latches on a page while holding an index 
key value lock. 

If the reorganizer succeeds in obtaining all the index 
key value locks and finishes its processing of the up- 
dates on secondary indexes, the searcher will eventu- 
ally find the New-ID. If the reorganizing unit givesup 
its locks due to deadlock, the searcher will see the Old- 
ID and run before the reorganizing unit. In all cases 
the search is correct. The search algorithm can be 
more complicated, as shown in [ZSSSa] [Zou96], when 
the insertion of a New-ID causes a split and the pig- 
gybacking algorithm is different. 

Notice that the requirements of the buffer page re- 
placement policy are essential to the correctness of the 
searcher algorithm. Suppose that an index leaf page 
L and its parent page P are brought into the database 
buffer by a searcher, and the reorganization unit had 
acquired an X lock on v for record R’s move, and v is 
on stored only on page L. When the searcher tries to 
get a conditional S lock on v, it will be blocked. 

If page P is swapped out of the buffer before the 
reorganization unit processes that secondary index, an 
entry of (v, P, R) will be put into the look-up table. 
Then the reorganization unit will release its X lock on 
v. The searcher will get the S lock on v, and it can 
read the index entry on L, because the leaf page L 
is still in the buffer. But this will get an out-of-date 
address, as L hasn’t been updated yet. So we can not 
swap out a parent page unless all its child pages have 
been swapped out. 

In addition, the searcher has to use the crabbing 
technique [GR93] during its tree traversal. That is, 
the parent page won’t be unfixed until the child page 
is fixed. For example, the searcher could read page 
P and get the L’s address first. Suppose none of P’s 
children is in the buffer. If the searcher unfixes P 
before L is fixed (brought in the buffer), P could be 
swapped out because at this instant, it has no children 
in the buffer. Then when L is brought in, we have the 
same problem as explained in the above paragraph. So 
the searcher has to use the crabbing technique during 
its tree traversal. 

In addition, for fetchned [MohSO] we require that 
when following a leaf side pointer to the next leaf, the 
parent must be in memory. Usually, since index nodes 
have on the order of 200 entries, this is the case. Occa- 
sionally, a parent (or even a higher ancestor) may have 
to be brought in before the next leaf can be fetched. 
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5.2 Scanning 

When a large number of records are to be read, or 
when a query is made on a non-indexed attribute, 
scanning of the entire relation without using any index 
is often necessary. Scanning while the reorganization 
process is running implies that the scanner has to scan 
the part of the relation that is still using the Old-IDS 
as well as the part of the relation using New-IDS. If we 
do not choose the locking protocol used by the scan- 
ner carefully, the scanner can see the same record twice 
(before and after it is moved) or miss a record that has 
been moved. 

One solution to these problems is to let the scanners 
follow the level 3 consistency or repeatable read (keep 
all locks until end of transaction), and let the scanners 
lock with page or larger granularity. 

Another solution is to let the scanner get a read 
lock on the BV. Since every reorganization unit will 
first get an exclusive (write) lock on BV, if we let the 
scanner hold the shared lock on the BV until it fin- 
ishes its scanning, then we are safe. The advantage of 
this solution is that the scanner can hold the read lock 
on the records or pages for only manual duration, thus 
allow more concurrency for user transactions. The dis- 
advantage of this approach is that the reorganization 
is blocked by the scanner that gets the shared lock on 
BV. 

For discussion on record updates, deletes and inser- 
tions, please refer to [Zou96] [ZSSSa]. 

6 Performance Analysis 

Detailed analysis and proofs can be found in [Zou96] 
[ZSSSa]. We will summarize the results here briefly. 

6.1 Properties of the Algorithm 

Our algorithm has the following properties: 

l The number of I/OS for the reorganization process 
will increase as the interval between two record 
moves becomes smaller. When that interval be- 
comes smaller, the look-up tables will be filled 
more quickly, thus causing more clean-up pro- 
cesses to be run. This means that the number 
of I/OS (due to cleanups) will increase. 

l The number of I/OS for the reorganization pro- 
cess will decrease as the number of user transac- 
tion I/OS between two clean-up I/OS increases. 
More piggybacking of changes in the look-up ta- 
bles could be done between two clean-up I/OS. 

l The number of I/OS for the reorganization process 
will decrease as the size of the look-up tables in- 
creases. If the look-up tables’ size becomes larger, 

the look-up tables will be able to store more pend- 
ing changes. This in turn means that less clean-up 
process I/OS are are needed and more piggyback- 
ing can be done for each secondary index leaf page 
brought in the buffer. 

6.2 Performance Results 

We compared our method with a transaction-based re- 
organization method [SD92]. In the transaction-based 
reorganization method, moving one record and chang- 
ing all corresponding references are encapsulated into 
one transaction. Because the cost of moving one record 
is the same for both methods, we use the number of 
disk I/OS made to update the secondary indexes as 
the measure of efficiency. Experimental results [Zou96] 
[ZSSSa] show that our method uses much less disk I/OS 
than [SD92]. 

7 Related Work 

Recently, a number of papers on on-line database re- 
organization have appeared due to the resurgence of 
interest in this area. Algorithms for on-line construc- 
tion of secondary B+-tree indexes can be found in 
[MN921 [SC92]. Reclustering of records can be found in 
[OLS92] [OLS94]. Resequencing (compacting) of pri- 
mary B+-trees is dealt with in [ZS96b] [SmiSO]. Repar- 
titioning distributed data in Tandem’s NON-STOP 
SQL is described in [‘Do96]. Moving an RID organiza- 
tion to another site in a parallel database is discussed 
in [AON96]. Reclustering an RID organization, the 
problem treated in this paper, is discussed in [SI96]. 

In [SI96], a new utility for reclustering an RID or- 
ganization which will soon be available in IBM’s DB2 
is described. This algorithm constructs a copy of the 
relation in another area, noting the LSN of the log at 
the beginning of the copy. A new clustering index and 
several new secondary indexes are built for the new 
copy of the relation. During the copy, users read and 
write to the old organization. When the copy is fin- 
ished, the log is used to catch up on the updates. Af- 
ter catch up, the relation is frozen, and the remaining 
catch-ups to updates made during catch-up are per- 
formed. Then the database switches to the new RID 
organization. This is not restartable and does not pro- 
vide incremental improvement, as the new area cannot 
be used during the copy and catch-up processes. If a 
crash occurs, one starts over. Enough disk space for 
two full copies of the relation is needed. 

In [SD921 records are moved from one location to 
another location one at a time. All references to this 
record are changed. The record move and the reference 
changes are encapsulated in a database transaction. 
This is probably too slow for massive reorganization 
problems, because it makes changes to the secondary 
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index leaf pages immediately which would require a 
disk I/O for every secondary index leaf page that is 
not the buffer at the time of the move. This is reflected 
in our performance comparisons. 

In [OLS92] and [OLS94], records are reclustered in 
place. A number of pages are read into a buffer and 
locked. Records are moved from one page in the buffer 
to another until a page is constructed where the clus- 
tering is satisfactory. Concurrency and recovery is not 
discussed in [OLA91] [OLS92] [OLS94]. Since records 
are moved and there are references to the records, the 
database could become inconsistent if there is a system 
failure. These algorithms are not safe. 

In [OLS92] and [OLS94], a differential file 
[OLA91] is used so that references to the records can 
be changed later. The differential file is used to record 
the old and new key values of the moved records. It 
is assumed to be small enough to lie in main memory. 
When a user query is made through a secondary index, 
the differential file is searched and if there are some 
items in the differential file that match the requested 
keys of the user query, modification of the differential 
file and the secondary index leaf pages (which are in 
buffer now) are made. No changes to references are 
made immediately when a record is moved, even if the 
relevant index leaf pages are in memory. 

We also use some in-memory book-keeping data 
structures that are similar to the differential file. We 
believe our algorithm has the following advantages: 

l Our algorithm is safe and restartable with no loss 
of work. The restartability and the safeness of our 
algorithm makes it more practical than [OLA91]. 

Our algorithm is more efficient than [OLA91] in 
terms of CPU costs and the time it takes to finish 
the entire reorganization process. 

l If the differential file is too big to fit in memory, 
our algorithm is more efficient in I/O costs than 
[OLA91]. 

8 Conclusion 

In this paper we have shown how to update secondary 
indexes efficiently when moving records. We have 
framed our algorithm in terms of reclustering an RID 
organization whose performance has declined, a sce- 
nario that is likely to repeat several times over the 
lifetime of an RID organization. Our new on-line reor- 
ganization algorithm defers secondary index updates 
and piggybacks them with user transactions, signifi- 
cantly reducing the total I/O cost. In addition, we 
carefully designed the logging scheme and recovery al- 
gorithm so that in case of system failure, the look-up 
tables can be reconstructed and reorganization units 
can be completed if they had been interrupted. 

Analysis and performance study [Zou96] [ZSSSa] 
show that our method uses much less I/O over the 
method of [SD921 which uses a single-transaction-per- 
record approach. These demonstrate the superiority 
of our method which piggybacks with user transac- 
tions some of the I/O needed for updating references 
to moved records. 

Another advantage of our method over [SD921 is 
that we never UNDO any of a reorganization unit’s 
work. In addition, we release all locks on the database 
pages immediately after the record is moved (be- 
fore even the in-memory secondary index updates are 
made). We also release the lock on a secondary in- 
dex leaf page immediately after it has been processed. 
This makes our method have more concurrency than 
[SD92]. 

Even though we discuss our algorithms in the con- 
text of a particular on-line database reorganization, 
our method can be used as a general technique for de- 
ferred secondary index updates. In [ZSSSa] [Zou96], 
for example, shows how to use this method in moving 
from an RID organization to a primary Bf-tree orga- 
nization. As another example, when restricted to one 
reorganization unit at a time (moving one record), the 
algorithm could be used to move an updated record 
which would have caused a page overflow instead of in- 
stalling forwarding pointers. Since forwarding pointers 
make retrieval inefficient, this could be quite useful. 

Our method is efficient in I/OS and interruptible 
without loss of work. It provides incremental im- 
provement, guarantees consistency even if there is a 
failure and provides high availability through mini- 
mal locking. Since we have worked out in detail con- 
currency and recovery algorithms in the context of 
modern database systems now in use, we believe our 
method could be easily integrated with a commercial 
DBMS. 
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