
Safely and Efficiently Updating References During
On-line Reorganization

Chendong Zou *
921 S.W. Washington Ave, Suite 670

Portland, OR97205
email: zouQinformix.com

Abstract

With today’s demands for continuous avail-
ability of mission-critical databases, on-line
reorganization is a necessity. In this paper
we present a new on-Iine reorganization algo-
rithm which defers secondary index updates
and piggybacks them with user transactions.
In addition to the significant reduction of the
total I/O cost, the algorithm also assures that
almost all the database is available all of the
time and that the reorganization is interrupt-
ible and restartable. We believe that the tech-
nique presented in this paper could be used
for improving normal database update perfor-
mance as well.

1 Introduction

On-line reorganization is and will be a major problem
for transaction systems of the 1990s and the 2000s.
Tasks such as restoration of clustering, purging old
data, compaction and data migration must be per-
formed without interrupting service. Most of these
tasks require the physical moving of data records. If
there are any references to physical locations of records

The work was done while the author was a graduate student
at Northeastern University.

vhis work was partially supported by NSF grant IRJ-93-
03403.

Permission to copy without fee all or part of this material is
gmnted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission jrom the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

Betty Salzberg t
College of Computer Science

Northeastern University, Boston MA02115
email: salzbergQccs.neu.edu

in other parts of the database, for example in indexes,
these references must be updated when the records are
moved. This paper presents a restartable, incremen-
tal, efficient and safe method for updating secondary
index references to moved records during on-line reor-
ganization in a centralized database.

The algorithm uses a deferred and incremental ap-
proach to make the changes in the secondary indexes.
When a database record is moved, changes to index
pages already in memory are made immediately and
the pending changes are stored in some in-memory ta-
bles. Then those tables are consulted by the buffer
manager when a secondary index page P is brought
into the buffer by a user request. If P is a leaf page,
changes are made at that time. If P is higher than leaf
level, the relevant descendant page addresses found in
P are placed in the in-memory tables.

The reason for its eficiency is that the changes for
the secondary index leaf pages are piggybacked with
user transactions, thus less I/O is caused by the re-
organization process. Through both analytical and
experimental study, we measure the efficiency of this
technique.

The reason for its safety is in the interaction with
the concurrency and recovery modules of the database
management system. This aspect of our algorithm is
important and innovative. Without correct logging,
the tables of pending changes could not be recon-
structed after system failure and some of the references
to moved records could be incorrect.

Correct logging also enables our method to be
restart&e. If there is a system failure, reorganization
does not have to start over again. No work is lost.

Because our method is incremental, system perfor-
mance improves as reorganization progresses. In ad-
dition, as records are moved, the space they formerly
occupied can be reclaimed. It is not necessary to re-
serve space for an additional full copy of the database
for reorganization.

512

The rest of the paper is organized as follows: In sec-
tion 2, we present the setting for our problem. In sec-
tion 3, we present the algorithm without the details of
logging and recovery. Recovery is discussed in section
4. Section 5 discusses correct index search protocols
for user transactions during reorganization. User op-
erations such as table scanning (without an index) and
the adding and dropping of an index are addressed in
section 6. We present our analytical and experimental
study results in section 7. Section 8 briefly discusses
related work. A conclusion is in section 9.

2 Setting

The problem we solve in this paper is how to efficiently
change the references in secondary indexes (or any ref-
erence changing) during on-line database reorganiza-
tion in a centralized database. We will use one re-
organization problem as a case study throughout this
paper. We use boldface to indicate that a technical
term is being defined. After it is defined, italics are
used to identify the term.

2.1 Assumptions for the Case Study

We assume one relation’ of RID or Record IDenti-
fier form is to be reorganized. That is, records are ac-
cessed using their RIDS, which usually are page num-
ber and slot number on that page.

We assume that originally, a “clustering” index, a
B+-tree whose leaves contain a key value and an RID
for each record, was used to load the relation in key
order. (For simplicity of the paper, we assume that
the clustering key is unique.) Over time the clustering
properties declined because of insertions, deletions and
updates. In order to “recluster” the data, reorganiza-
tion of the database is necessary. The reorganization
process uses the clustering index to place the records
in their new location. It moves records in the order of
their clustering key.

We will distinguish between the “clustering” in-
dex and the other secondary indexes which are “non-
clustering.” We assume that the other secondary in-
dexes are also Bf-trees. We will be referring only to
the non-clustering secondary indexes as secondary
indexes in this paper.

All access to trees will follow the Bayer-Schkolnick
safe-node tree concurrency [BS77] and in particular
will do latch-coupling.

A reader of an index entry will latch-couple to the
leaf page, get an S latch on the leaf page, then ac-
quire an S lock on the index key for that index entry

1 We shall use the word relation and not table for the col-
lection of records we are moving, as we use the word table to
indicate several data structures used by the system to keep track
of the reorganization.

as in ARIES/KVL [MohSO]. Notice that the S lock
is first requested conditionally. If the conditional re-
quest is not granted, in order to avoid deadlock in-
volving latches, the page latches must be dropped and
the lock is requested unconditionally [MohSO]. In-
serters/deleters also follow the ARIES/KVL protocol.
That is, they use next-key locking to prevent phan-
toms.

We assume that the Write-Ahead-Logging (WAL)
rule is used for logging. When reclustering an RID
organization, we assume there is some space that can
be reclaimed.

2.2 No-split assumption

The organization where the record resides before it is
moved is called the source organization. After it
is moved, it is in the target organization. In this
paper, the Old-ID will be the identifier used in the
source organization and the New-ID will be the iden-
tifier used in the target organization. Since we are
reclustering RID organizations, the Old-ID and the
New-ID are RIDS.

In this paper we will make the assumption that in-
serting the New-ID in a secondary index does not cause
a split. In [ZSSSa] [Zou96] we did not make this as-
sumption and we worked out in detail how to treat the
split. (If the New-ID were a different length than the
Old-ID or if the New-ID goes in a different page from
the Old-ID in some index, a page split is possible.)

2.3 Buffer replacement policy

We assume that the FIX-USE-UNFIX protocol [GR93]
is used by the system. We assume that for each index,
at least the root of the index tree is in the database
buffer. We further assume that when the buffer man-
ager chooses a page to swap out, it won’t swap out
a parent index page as long as there is at least one
child of that parent page is still in the buffer. This im-
plies that all ancestors of any index page in the buffer
are also in the buffer. (This assumption can be easily
implemented by changing the buflerfia: [GR93] routine.
We can add one extra parameter to indicate the parent
page of the requested page, so that the buffer manager
can chain those pages properly.) Latch coupling will
assure that no child page is brought in if its parent is
not already in the buffer.

We also assume that when a requester asks for pages
from the buffer manager, it can specify that it only
wants pages already in the buffer. That is, if the page
requested is not in the buffer, the buffer manager won’t
do an I/O to get the page, instead, the buffer manager
will return page not found.

513

3 Towards Efficient On-line Reorgani-
zation

In this section we present the algorithm without the
details of logging and recovery. First, we describe some
data structures.

3.1 Data Structures

The following data structures are used in our algo-
rithm.

l Forward Address Table T
Table T is an address table which records the old
and new location of the record. An entry of T
has the format (Old-ID, New-ID, Count), where
Count is the number of secondary references that
still need to be changed.

l Pending Changes Table &is
Tables Qi, i = l,... ,s, where s is the num-
ber of secondary indexes, are used to keep infor-
mation about the changes that should be made
to secondary indexes. An entry in Qj has the
format (Index-value, Page-number, Old-ID, Flag).
The Old-ID field refers to the old address of the
record that has been moved. The Index-value
field is the index value of the record for that sec-
ondary index. The Page-number field is the
page number of the secondary index page which
either stores the Indezvalue (leaf page) or has a
descendant which stores the Indeutalue (upper
level index page, i.e., the lowest ancestor page ad-
dress known when the entry is made.) The Flag
indicates whether the pending change involves the
Old-ID (deletion of the Old-ID from the original
index page), the New-ID (insertion of the New-
ID into a different index page), or both (change
of the Old-ID to the New-ID on the same index
page).

l Boundary Value (BV)
The BV is a system variable that is stored in
the system log. It is used to record the largest
(unique) clustering index key of a record that we
have moved so far. A semaphore on BV is used
by index-creators and table-scanners to prevent a
new reorganization unit from starting.

l Checkpoint Semaphore (CK)
The CK semaphore is used to do checkpointing
during reorganization. It assures that no changes
are made to tables when they are to be copied to
the checkpoint.

l Reorganization Table
The Reorganiration Table is a very small in-

memory table which is constructed and used only
during recovery.

The table T and tables Qi are in-memory system
tables. The table T is a small hash table indexed
by Old-ID. The &is are small hash tables indexed by
Page-number. The records for a Qi that are hashed
into the same bucket are sorted by their Page-number.
We call the T table and the Qi tables look-up tables.
Each of the tables can only use a certain amount of
memory space.

3.2 The Algorithm

In this section, we describe the actions of one reor-
ganization unit. A reorganization unit moves one
record, updates all relevant secondary index leaf pages
that are in the buffer, modifies the look-up tables to
record pending changes, and changes the BV. The log
records written and the recovery scheme are discussed
in section 4. We assume here that the record being
moved does not have forwarding pointers. Figure 1
outlines the logic of the algorithm.

3.2.1 Obtaining initial locks

When each reorganization unit starts, it will first check
to see if each of the look-up tables still has space for
one entry. If there is not enough space left, the clean-
up procedure, which will be discussed in section 3.4,
is called to clean the space. This is a pessimistic ap-
proach, because it assumes that all the changes of the
secondary indexes will be put in the look-up tables.

If there is enough space left in the look-up tables,
the reorganizer will get the initial locks and latches
for the record-moving as shown in steps 2,3 and 4 in
Figure 1. First, to make user scans correct, explained
in section 5, the B V is locked.

The reorganizer then gets an X lock on the
record(Old-ID) and reads the content of the record to
find all the secondary index key values. It will require
an X lock on the new identifier, i.e., the New-ID of the
record. All IX locks required by hierarchical locking
protocols [GR93] are also obtained.

3.2.2 Secondary index key value locks

Next, the reorganizer acquires X locks on the index
key value for each of the secondary indexes. Deadlocks
may occur since the user transactions can lock these
pages in another order. In case of a deadlock, the
reorganizer will release all the locks it possesses and
start over again on this reorganization unit.

3.2.3 Record moving

The reorganizer will then get an S latch on the CK
semaphore. This is for correct checkpointing as dis-

514

4.

5.

6.

7.

8.

Check to see if each of the look-up tables still has
enough space left for one entry. If not, do clean up
for those tables.

X latch the BV.

IX lock the relation. IX lock the leaf page of the clus-
tering index and the old page containing the record to
be moved. X lock the record (Old-ID) to be moved.

IX lock the new page and X lock the New-ID.

Read the record to be moved, and acquire X locks on
the index key value for each of the secondary indexes
that need to be updated to reflect the record move.
If there is a deadlock, drop all the locks held by the
reorganizer and start over again.

S latch the CK semaphore.

Move the record and log the move. Update the clus-
tering index and log the change. Drop the X locks on
the Old-ID and the New-ID, drop the IX locks on the
relation, and the old page and the new page. Drop
the IX lock on the leaf page of the clustering index.

For each of the secondary indexes:

(4

(b)

(cl

(4

Search for the page(s) where the index entries
for the moved record reside. (If there itre several
RIDS for a given key, and they are in order of
RID value, the New-ID may very well be placed
on a different index leaf page from the Old-ID.)
Starting from the root, X-latch-coupling down
the tree until either the leaf page(s) are found
or an I/O has to be done to bring in additional
pages to continue the search.

If the leaf page(s) are in the buffer, we make the
update and log the change.

Otherwise, for each missing index leaf page:

i. Acquire necessary latches on corresponding
look-up tables.

ii. Put au entry in its corresponding look-up
table (one of the Qis). The Page-number
is that of the page where au I/O has to be
done in order to continue the search.

iii. For the first Qi updated, insert an entry in
T, where the entry contains the old Old-ID
and the New-ID and set the value of the
Count field to one. For subsequent Qi up-
dates, increase the Count by one.

Release the X lock on the index key values, the
X latch on the index page and the look-up table
latches.

9. Update BV to the clustering index key of the record
that has just been moved.

10. Drop the latches on the BV and the CK semaphore.

Figure 1: The Algorithm for One Reorganization Unit

cussed in section 4. After all the locks have been ac-
quired, the reorganizer can move the record to the new
organization, log the move, and change its reference in
the clustering index. Then it releases all its locks ex-
cept the X locks on all the secondary index key values
and the latches on BV and CK. This is to maximize
the concurrency in the system so that user transac-
tions can read the record through the clustering in-
dex, or even update the unindexed fields. Deletion of
the record and updates of the indexed fields by user
transactions can not be done now because the reorga-
nization unit still possesses X locks on the secondary
index key values.

3.2.4 Secondary index leaf page updates

After the record is moved, the reorganizer then pro-
cesses each of the secondary indexes that need to be
modified to reflect the move. It searches each sec-
ondary index for the leaf page(s) to update the index
entr(ies) for the record move. (In the secondary in-
dexes, which are not assumed to be unique, many dif-
ferent RIDS may correspond to the same index key.
These are normally listed in KID-order so that an in-
dividual entry, perhaps for deletion, can be located
quickly. Thus the New-ID and Old-ID may be on dif-
ferent index leaf pages.)

The search will start from the root of the index
tree, and X latch-couple down the tree until either
the leaf page is found, or an I/O has to be done for
an index page P in order to continue the search. No-
tice that even though the reorganizer holds an X lock
on the index entry while it X-latch-couples down the
tree, no deadlock occurs, because all user transactions
lock requests on index entries are first made condition-
ally. If not granted, they would drop all the latches
they hold, and request the locks unconditionally as in
ARIES/KVL [MohSO]. This avoids deadlocks involv-
ing latches and locks.

If the secondary index leaf page where the change
should be made is in the buffer, the reorganizer will
make the change since it has an X latch on the page
and an X lock on the index key values. It will also
write log records about the update, which will be dis-
cussed in section 4. After finishing the change in one
secondary index leaf page, it will release the X latch
on the page.

If an I/O has to be done for an index page P in order
to continue the search, the reorganizer will modify the
corresponding table Qi to reflect the record move, and
P’s page number will be in the entry of Qi.

If this is the first pending change about the mov-
ing record that is inserted in the Qis, an entry that
contains the Old-ID and the New-ID is inserted in the
table T with the Count value set to one. Otherwise,

515

there is already an entry containing the Old-ID and the
New-ID in the table T. We just need to increase the
Count value by one. Accessing and updating the look-
up tables follows the standard protocol as in [GR93].

The modifications of T and the &is have to be done
before the X lock on the corresponding secondary in-
dex key value is released. If the X lock on the cor-
responding secondary index key value is released be-
fore the modification on T is done, and there is a user
transaction which brings in that secondary index leaf
page, piggybacking can not be done. This is because
the entry in T that contains the moving information
hasn’t been inserted yet. When both the New-ID and
the Old-ID information have been either inserted in
the look-up table or updated in-memory index leaf
page(s), the X lock on the key value can be released.

We could have chosen to put the Old-ID and the
New-ID in each entry of the &is. Then we do not need
the T table. The reason we want to use T is to save
some memory space in case there are many secondary
indexes.

3.2.5 The ready state

After all the changes to secondary index leaf pages
have been processed, the reorganizer then modifies the
value of BV to become the clustering index key of the
record just moved. We say the reorganizer is in the
READY state at this time. That is, the record is
physically moved, all the changes to the secondary in-
dex leaf pages are either already made or are inserted
into the look-up tables, and the value of BV is mod-
ified. All the secondary index pages that are in the
buffer either don’t refer to the moved record, or al-
ready have the correct address (its New-ID). The re-
organizer releases the X latch on the BV and the S
latch on the CK semaphore when it enters the READY
state. The locks on secondary leaf pages have already
been released. The moving of this record is done. The
reorganization process can go on to process another
record.

3.3 Page-Oriented Piggybacking Changes of
References

In our algorithm, the deferred reference changes are
piggybacked with user transactions in a page-oriented
fashion. Whenever an index page is brought into the
buffer, we check to see if there are some changes pend-
ing in the corresponding look-up table Qi that can be
applied.

If the page is an leaf page and there are pending
changes to be applied, we first make all changes on that
index leaf page. Then we modify the Count fields of
the corresponding items in table T. Finally we delete
those items in the table Qi. In the example above,

if P2 is brought into the buffer, we would finish the
index update recorded in Q2, and delete that entry.
All the piggybacked changes on the secondary index
leaf pages should be logged as shown in section 4.

If the page is an upper level index page, then we
would apply all relevant changes in Qi and “propa-
gate” them. That is, we would search the index page
with the Index-values to find the next level of index
pages where those Indezvalues could potentially be
stored. Then those newly found index pages would be
substituted for the old page. In the example above, if
PP3 is brought into the buffer, a search with key value
of v3 is done on PP3 to find out the next level page
P3, and PP3 will be replaced by P3 in the look-up
table entry in Qs.

In this paper, inserting the New-ID is assumed to
cause no page splits. Piggybacking the changes on leaf
pages is straightforward. As shown in [ZSSSa] [Zou96],
if inserting the New-ID causes a page split, the piggy-
backing algorithm becomes more complicated.

The Requester requests a page while

holding a lock on the page

The Buffer Manager fnishes the

piggybacking before returning

the page to the requesta

The Buffer Manager

issues an vo to get the

page from the disk

Figure 2: Interaction between the requester and the
buffer manager

Piggybacking the changes should be done by the
buflerfix routine [GR93] of the database buffer man-
ager. When a secondary index page is requested, the
buffer manager will return the page immediately if the
page is already in the buffer. Otherwise, a disk read
is done to bring it into the buffer. Before the buffer
manager returns the page to the requester, the buffer
manager first gets a shared latch on the semaphore
CK, does the piggybacking(if any), then releases its
latch on CK. The latch is necessary for correct recov-
ery as explained in section 4.

Figure 2 shows the interactions between the re-
quester and the buffer manager. The dotted line repre-
sents the buffer manager’s action when the requested
page is already in the buffer, the bold line represents
the buffer manager’s actions when the requested page
is not in the buffer.

516

3.4 Cleaning Up Look-Up Table Space

Deferring reference changes will not save much I/O
if the buffer manager must do disk accesses to find
entries in the look-up tables. To avoid writing portions
of the look-up tables to disk, we clean them up when
there is no longer room in memory for at least one
more entry for each Qi. (That is, the clean-up process
only runs when the look-up tables are full.) In this
case, the clean-up process brings up those secondary
index pages that have pending reference changes, and
finishes the changes as described in previous sections.

When the space is full, the reorganizer has to wait
for the cleaning process to clean up the space. No reor-
ganization unit runs while the clean-up process runs.
User queries can run concurrently with the clean-up
process and have higher priority. When clean-up fin-
ishes, a new reorganization unit starts.

4 Recovery

Since we want to keep the look-up tables in main mem-
ory, it is essential to be able to reconstruct them after
system failure. We are moving records from one phys-
ical location to another. Correctly logging the opera-
tion should prevent us from losing records in case of
system failures.

4.1 Log Records and Data Structures

We use several kinds of log records. Any safe system
logs updates to database and index pages. We follow
current conventions in making one log record for each
updated page [GR93].

l (MV, pageid, Old-ID, New-ID, record-content)
An MV log record is the first log record writ-
ten by the reorganization unit. This log record
is written only after the reorganizer has physi-
cally moved the record. This record is used to
REDO the delete from the page where the record
resides before it is moved, if necessary. The New-
Id is needed for recovery in case this is the first
log record of a reorganization unit.

l (MV2, pageid, Old-ID, New-ID, record-content)
The MV2 log record is written for the insert into
the new page. The Old-ID is used to identify the
reorganization unit. (Combining MV and MV2
in one log record would mean it would be more
difficult to integrate our algorithm into current
systems, because most systems do logging once a
page is modified. Combining MV and MV2 would
also make the recovery logic a little more compli-
cated.)

l (CHANGE, clustering-or-secondaryindex,
pageid, index-key, Old-ID, New-ID, leaf-page)

The CHANGE log record is written when the re-
organization unit (identified by the Old-ID) up-
dates a leaf page of the clustering index or one of
the secondary index leaf pages in the buffer.

(CATCH-UP secondaryindex, pageid,
index-key-l, Old-IDA, New- IDA, . . . ,
index-keys, Old-IDs, New-IDS)
The CATCH-UP log record is written when a sec-
ondary index leaf page is brought into the buffer
and there are some items in the look-up tables
that need to be piggybacked. We write this one
log record for all the piggybacking changes done
on the same page. This is less logging than is done
in other safe systems, since these changes would
be done separately and would require separate log
records.

During recovery, we will construct a very small rear-
gani&ion table. At the end of the REDO pass through
the log, the reorganization table will have information
about the (at most one) reorganization unit which may
have been active at the time of the system failure. The
table has the following fields:

l

l

4.2

ReorgID The reorganization unit identifier. It
is the Old-ID of the MV log record.

BeginLSN The LSN (Log Sequence Number)
of the MV log record of the reorganization unit,
i.e., the first log record written by the reorganiza-
tion unit.

LastLSN The LSN of the latest log record
written by the reorganization unit.

Checkpointing

The following are copied into the checkpoint log
record: (1) the BVand (2) the look-up tables.

In order to checkpoint the look-up tables, we need
to use one semaphore for all these tables. Otherwise,
there might be deadlocks between the checkpoint oper-
ation and the reorganization process. This is the CK
semaphore. When the system wants to do a check-
point, it tries to get an X latch on the semaphore, thus
preventing others from accessing those tables. The re-
organizer and the piggybacking processing of the ta-
bles by the I/OS of the user transactions will get an
S latch on the CK semaphore whenever they want
to modify those tables. The effect of this approach
is that the checkpoint log record always contains the
consistent tables, that is, the Count field of each T[i]
correctly indicate the number of references there are
in the &is.

517

4.3 Why Not Undo?

In our recovery scheme discussed in the next subsec-
tion, we don’t do undo for the reorganization pro-
cess. There are two reasons that let us choose this
scheme. First, undo tends to slow down the reorga-
nization process while forward recovery speeds up the
reorganization process. Second, undo sometimes does
not make sense using our algorithm. Our concurrency
rules were made under the assumption that we would
be doing forward recovery. That is why it was safe
to drop some locks before the reorganization unit fin-
ished, and thus maximize concurrency. (Transactions
which drop locks before commit and then must reac-
quire them for UNDO are not two-phase locked and
risk non-serializability.)

As an example, suppose the reorganization process
has just changed (~1, Rl) to (~1, Kl) on the secondary
index leaf page P and released the X lock on index key
values wl. Now suppose there is a user transaction
Tl which changes the values of some columns of the
record with New-ID K 1. One of the changes is to
change wl to v2. Suppose Tl commits and then the
system crashes. If we undo those reorganization units
that were not in the READY state when the system
crashed, then we would undo the change on page P
from (~1, Kl) to (~1, Rl), which can not be done since
7’1 has committed and (~1, Kl) can not be found on
page P.

4.4 Recovery Logic

We assume the Write-Ahead-Logging (WAL) is used.
We will use the ARIES [MHL+92] recovery scheme.
That is, we first do an analysis pass, then we do redo
all to recover the status of the system at the time of the
crash, and then we selectively undo. We assume that
all updates have been made to disk by the redo process.
In particular, the changes made in the secondary leaf
pages and the clustering index leaf page are redone if
necessary. These can be done during the same pass
that reconstructs the in-memory tables as described
below.

Since the look-up tables in the checkpoint log record
are always consistent, we only need to process those re-
organization log records after the checkpoint log record
during redo. First, we copy into memory all root pages
of secondary indexes for the relation being reorganized.
When we have a MV log record, we put a new item
in T and insert corresponding items into &is. We will
also modify the BV to be the Old-ID of the MV log
record. This is why we don’t need to log the updates
of the B V by the reorganization process during normal
processing. In addition, we will insert an entry in the
reorganization table to identify the move.

When we have an MV2 log record, we update the

LastLSN in the reorganization table. When we have a
CHANGE log record for the clustering index, we will
delete the corresponding entry in the reorganization
table. This means that the process of deleting the
record from its Old-ID page, inserting the record to its
new page and updating the clustering index is com-
plete. Once this happens, only the secondary index
updates remain.

When we have a CHANGE log record for a sec-
ondary index or a CATCH-UP log record, we delete
or modify the corresponding item(s) in the Qi(s), and
modify the Count field of T[j](s) accordingly as de-
scribed before.

If the reorganization table is not empty at the end of
redo, this means that some reorganization unit had not
finished moving the record and updating the cluster-
ing index at the time of system failure. If the LastLSN
is the same as the BeginLSN, it means that the reor-
ganization process has deleted the record it is going
to move, but hasn’t inserted the record in the new
page. The recovery process will insert the record and
write the MV2 log record. Then it will update the
clustering index, write a CHANGE log record for the
update and delete the corresponding entry in the reor-
ganization table. If the LastLSN is different from the
BeginLSN, it means that the record has been inserted
in the new page but the clustering index has not been
updated. In this case, the recovery process will only
update the clustering index, log the update and delete
the entry from the reorganization table.

Before the system restarts, we have to check all the
secondary index pages that are in the buffer to make
sure there isn’t any secondary index page which is ref-
erenced in any of &is. This is necessary because dur-
ing the recovery, some secondary index pages could be
brought in the buffer which were not in the buffer at
the time of the system failure.

For example, problems can arise because of redo
of user transactions. Figure 3 shows an example of
a possible inconsistent state. Suppose there is a sec-
ondary index leaf page, P2, that is in the buffer and
P2 refers to a to-be-moved record. Before the reor-
ganization process gets the X lock on the index value
stored in P2, P2 is updated by a user transaction Tl.
The reorganization process gets the lock on P2 after
Tl commits. Now the reorganization process moves
the record, but before it changes the reference on P2,
the system crashes. Suppose the reorganization pro-
cess has written the MV log record and that page
P2 hasn’t been written back to disk when the system
crashes, then after the redo-all pass, P2 should be in
the buffer. If the system restarts without checking the
look-up tables to see if any pending changes need to
be made, then it is in an inconsistent state because P2
has an out-dated address of the moved record.

518

----- c”“3 ------ ET ----- f-y-- -------.

f

Figure 3: An example of the log
If there are any pages in the buffer at the end of the

REDO and UNDO passes referred to by a Qi entry,
we make the pending changes in the look-up tables
and modify the tables accordingly. At this point, the
recovery process as usual makes all its updates durable
and makes a checkpoint record. We also must make
sure that ancestors of any secondary index pages in
the buffer are also in the buffer. After some debate, we
chose to do this by marking the secondary index pages
without parents as empty buffer slots (swapping them
out). This does not cause extra I/O as the alternative
(bringing in their parents) would do.

After the last checking, we will have a consistent
buffer. That is, all the secondary index leaf pages in
the buffer either do not refer to the moved records,
or already have the correct address. (This last check-
ing also has the effect of “forward recovery” [ZS96b],
for it can finish any reorganization unit which had
not finished moving the record and updating the clus-
tering index and putting pending changes in T and
&is at the time of the system failure.) The system
can restart. Reorganization can start from the record
whose RID is next to the BV. Please refer to [Zou96]
[ZS96a] for detailed discussion about the logic of the
recovery scheme. It also discusses the recovery of pro-
cess failure.

5 Correct Database Operations during
Reorganization

In this section, we will describe the normal user trans-
action’s behavior during the reorganization process.
Additional discussion on adding an index, dropping
an index and cancellation of the reorganization can be
found in [Zou96] [ZSSSa].

5.1 Search through Secondary Index

We assume that searchers use S latch-coupling down
the secondary index tree and that when they reach a
leaf, they request an S-lock on the searched index key
(the leaf page is already in the buffer, as the searcher
has to read the page before requesting the S-lock as in
[MohSO]). After obtaining the S-lock on the searched
index key, they proceed to read the content of the rel-
evant index entries.

A reorganizing unit could already have gotten an
X-lock on the index key value v when a searcher
is requesting a conditional S-lock on v (and holding

an S-latch on the leaf page where v index entry is
stored). If this happens, the searcher will drop all
the latches it holds, and request the S-lock uncondi-
tionally. This will avoids possible deadlock involving
latches when the reorganizer traverses the index tree
requesting latches on a page while holding an index
key value lock.

If the reorganizer succeeds in obtaining all the index
key value locks and finishes its processing of the up-
dates on secondary indexes, the searcher will eventu-
ally find the New-ID. If the reorganizing unit givesup
its locks due to deadlock, the searcher will see the Old-
ID and run before the reorganizing unit. In all cases
the search is correct. The search algorithm can be
more complicated, as shown in [ZSSSa] [Zou96], when
the insertion of a New-ID causes a split and the pig-
gybacking algorithm is different.

Notice that the requirements of the buffer page re-
placement policy are essential to the correctness of the
searcher algorithm. Suppose that an index leaf page
L and its parent page P are brought into the database
buffer by a searcher, and the reorganization unit had
acquired an X lock on v for record R’s move, and v is
on stored only on page L. When the searcher tries to
get a conditional S lock on v, it will be blocked.

If page P is swapped out of the buffer before the
reorganization unit processes that secondary index, an
entry of (v, P, R) will be put into the look-up table.
Then the reorganization unit will release its X lock on
v. The searcher will get the S lock on v, and it can
read the index entry on L, because the leaf page L
is still in the buffer. But this will get an out-of-date
address, as L hasn’t been updated yet. So we can not
swap out a parent page unless all its child pages have
been swapped out.

In addition, the searcher has to use the crabbing
technique [GR93] during its tree traversal. That is,
the parent page won’t be unfixed until the child page
is fixed. For example, the searcher could read page
P and get the L’s address first. Suppose none of P’s
children is in the buffer. If the searcher unfixes P
before L is fixed (brought in the buffer), P could be
swapped out because at this instant, it has no children
in the buffer. Then when L is brought in, we have the
same problem as explained in the above paragraph. So
the searcher has to use the crabbing technique during
its tree traversal.

In addition, for fetchned [MohSO] we require that
when following a leaf side pointer to the next leaf, the
parent must be in memory. Usually, since index nodes
have on the order of 200 entries, this is the case. Occa-
sionally, a parent (or even a higher ancestor) may have
to be brought in before the next leaf can be fetched.

519

5.2 Scanning

When a large number of records are to be read, or
when a query is made on a non-indexed attribute,
scanning of the entire relation without using any index
is often necessary. Scanning while the reorganization
process is running implies that the scanner has to scan
the part of the relation that is still using the Old-IDS
as well as the part of the relation using New-IDS. If we
do not choose the locking protocol used by the scan-
ner carefully, the scanner can see the same record twice
(before and after it is moved) or miss a record that has
been moved.

One solution to these problems is to let the scanners
follow the level 3 consistency or repeatable read (keep
all locks until end of transaction), and let the scanners
lock with page or larger granularity.

Another solution is to let the scanner get a read
lock on the BV. Since every reorganization unit will
first get an exclusive (write) lock on BV, if we let the
scanner hold the shared lock on the BV until it fin-
ishes its scanning, then we are safe. The advantage of
this solution is that the scanner can hold the read lock
on the records or pages for only manual duration, thus
allow more concurrency for user transactions. The dis-
advantage of this approach is that the reorganization
is blocked by the scanner that gets the shared lock on
BV.

For discussion on record updates, deletes and inser-
tions, please refer to [Zou96] [ZSSSa].

6 Performance Analysis

Detailed analysis and proofs can be found in [Zou96]
[ZSSSa]. We will summarize the results here briefly.

6.1 Properties of the Algorithm

Our algorithm has the following properties:

l The number of I/OS for the reorganization process
will increase as the interval between two record
moves becomes smaller. When that interval be-
comes smaller, the look-up tables will be filled
more quickly, thus causing more clean-up pro-
cesses to be run. This means that the number
of I/OS (due to cleanups) will increase.

l The number of I/OS for the reorganization pro-
cess will decrease as the number of user transac-
tion I/OS between two clean-up I/OS increases.
More piggybacking of changes in the look-up ta-
bles could be done between two clean-up I/OS.

l The number of I/OS for the reorganization process
will decrease as the size of the look-up tables in-
creases. If the look-up tables’ size becomes larger,

the look-up tables will be able to store more pend-
ing changes. This in turn means that less clean-up
process I/OS are are needed and more piggyback-
ing can be done for each secondary index leaf page
brought in the buffer.

6.2 Performance Results

We compared our method with a transaction-based re-
organization method [SD92]. In the transaction-based
reorganization method, moving one record and chang-
ing all corresponding references are encapsulated into
one transaction. Because the cost of moving one record
is the same for both methods, we use the number of
disk I/OS made to update the secondary indexes as
the measure of efficiency. Experimental results [Zou96]
[ZSSSa] show that our method uses much less disk I/OS
than [SD92].

7 Related Work

Recently, a number of papers on on-line database re-
organization have appeared due to the resurgence of
interest in this area. Algorithms for on-line construc-
tion of secondary B+-tree indexes can be found in
[MN921 [SC92]. Reclustering of records can be found in
[OLS92] [OLS94]. Resequencing (compacting) of pri-
mary B+-trees is dealt with in [ZS96b] [SmiSO]. Repar-
titioning distributed data in Tandem’s NON-STOP
SQL is described in [‘Do96]. Moving an RID organiza-
tion to another site in a parallel database is discussed
in [AON96]. Reclustering an RID organization, the
problem treated in this paper, is discussed in [SI96].

In [SI96], a new utility for reclustering an RID or-
ganization which will soon be available in IBM’s DB2
is described. This algorithm constructs a copy of the
relation in another area, noting the LSN of the log at
the beginning of the copy. A new clustering index and
several new secondary indexes are built for the new
copy of the relation. During the copy, users read and
write to the old organization. When the copy is fin-
ished, the log is used to catch up on the updates. Af-
ter catch up, the relation is frozen, and the remaining
catch-ups to updates made during catch-up are per-
formed. Then the database switches to the new RID
organization. This is not restartable and does not pro-
vide incremental improvement, as the new area cannot
be used during the copy and catch-up processes. If a
crash occurs, one starts over. Enough disk space for
two full copies of the relation is needed.

In [SD921 records are moved from one location to
another location one at a time. All references to this
record are changed. The record move and the reference
changes are encapsulated in a database transaction.
This is probably too slow for massive reorganization
problems, because it makes changes to the secondary

520

index leaf pages immediately which would require a
disk I/O for every secondary index leaf page that is
not the buffer at the time of the move. This is reflected
in our performance comparisons.

In [OLS92] and [OLS94], records are reclustered in
place. A number of pages are read into a buffer and
locked. Records are moved from one page in the buffer
to another until a page is constructed where the clus-
tering is satisfactory. Concurrency and recovery is not
discussed in [OLA91] [OLS92] [OLS94]. Since records
are moved and there are references to the records, the
database could become inconsistent if there is a system
failure. These algorithms are not safe.

In [OLS92] and [OLS94], a differential file
[OLA91] is used so that references to the records can
be changed later. The differential file is used to record
the old and new key values of the moved records. It
is assumed to be small enough to lie in main memory.
When a user query is made through a secondary index,
the differential file is searched and if there are some
items in the differential file that match the requested
keys of the user query, modification of the differential
file and the secondary index leaf pages (which are in
buffer now) are made. No changes to references are
made immediately when a record is moved, even if the
relevant index leaf pages are in memory.

We also use some in-memory book-keeping data
structures that are similar to the differential file. We
believe our algorithm has the following advantages:

l Our algorithm is safe and restartable with no loss
of work. The restartability and the safeness of our
algorithm makes it more practical than [OLA91].

Our algorithm is more efficient than [OLA91] in
terms of CPU costs and the time it takes to finish
the entire reorganization process.

l If the differential file is too big to fit in memory,
our algorithm is more efficient in I/O costs than
[OLA91].

8 Conclusion

In this paper we have shown how to update secondary
indexes efficiently when moving records. We have
framed our algorithm in terms of reclustering an RID
organization whose performance has declined, a sce-
nario that is likely to repeat several times over the
lifetime of an RID organization. Our new on-line reor-
ganization algorithm defers secondary index updates
and piggybacks them with user transactions, signifi-
cantly reducing the total I/O cost. In addition, we
carefully designed the logging scheme and recovery al-
gorithm so that in case of system failure, the look-up
tables can be reconstructed and reorganization units
can be completed if they had been interrupted.

Analysis and performance study [Zou96] [ZSSSa]
show that our method uses much less I/O over the
method of [SD921 which uses a single-transaction-per-
record approach. These demonstrate the superiority
of our method which piggybacks with user transac-
tions some of the I/O needed for updating references
to moved records.

Another advantage of our method over [SD921 is
that we never UNDO any of a reorganization unit’s
work. In addition, we release all locks on the database
pages immediately after the record is moved (be-
fore even the in-memory secondary index updates are
made). We also release the lock on a secondary in-
dex leaf page immediately after it has been processed.
This makes our method have more concurrency than
[SD92].

Even though we discuss our algorithms in the con-
text of a particular on-line database reorganization,
our method can be used as a general technique for de-
ferred secondary index updates. In [ZSSSa] [Zou96],
for example, shows how to use this method in moving
from an RID organization to a primary Bf-tree orga-
nization. As another example, when restricted to one
reorganization unit at a time (moving one record), the
algorithm could be used to move an updated record
which would have caused a page overflow instead of in-
stalling forwarding pointers. Since forwarding pointers
make retrieval inefficient, this could be quite useful.

Our method is efficient in I/OS and interruptible
without loss of work. It provides incremental im-
provement, guarantees consistency even if there is a
failure and provides high availability through mini-
mal locking. Since we have worked out in detail con-
currency and recovery algorithms in the context of
modern database systems now in use, we believe our
method could be easily integrated with a commercial
DBMS.

References

[AON96] Kiran J. Achyutuni, Edward Omiecinski,
and Shamkant B. Navathe. Two techniques
for on-line index modification in shared
nothing parallel databases. In Proceed-
ings of ACM/SIGMOD Annual Confer-
ence on Management of Data, pages 1255
136, Montreal, 1996.

[BS77] R. Bayer and M Schkolnick. Concurrency
of operations on B-trees. Acta Infonnatica,
9(1):1-21, 1977.

[G R93] Jim Gray and Andreas Reuter. Transac-
tion Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, Inc, 1993.

521

[MHL+92] C. Mohan, Don Haderle, Bruce Lind-
say, Hamid Pirahesh, and Peter Schwarz.
ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and
Partial Rollbacks Using Write-Ahead Log-
ging. ACM Transactions on Database Sys-
tems, 17(1):94-162, March 1992.

[MN921

[MohSO]

[OLA91]

[OLS92]

[OLS94]

[SC921

[SD921

[SI96]

[SmiSO]

C. Mohan and Inderpal Narang. Algo-
rithms for creating indexes for very large
tables without quiescing updates. In Pro-
ceedings of ACM/SIGMOD Annual. Con-
ference on Management of Data, pages
361-370, 1992.

C. Mohan. ARIES/KVL: A Key-Value
Locking Method for Concurrency Control
of Multiaction Transactions Operating on
B-Tree Indexes. In International Confer-
ence on Very Large Data Bases, pages 392-
405, Brisbane, Australia, August 1990.

Edward Omiecinski, Wei Liu, and Ian Aky-
ildiz. Analysis of a defered and incremental
update strategy for secondary indexes. In-
formation Systems, 16(3):345-356, 1991.

E. Omiecinski, L. Lee, and P. Scheuer-
mann. Concurrent file reorganization for
record clustering: A performance study.
In International Conference On Data En-
gineering, pages 265-272, 1992.

E. Omiecinski, L. Lee, and P. Scheuer-
mann. Performance Analysis of a con-
current File Reorganization Algorithm for
Record Clustering. IEEE 7kansactions on
Knowledge and Data Engineering, 1994.

V. Srinivasan and Michael J. Carey. Perfor-
mance of on-line index construction algo-
rithms. In International Conference on Ex-
tending Database Technology, pages 293-
309, 1992.

B. Salzberg and A. Dimock. Principles of
transaction-based on-line reorganization.
In International Conference on Very Large
Data Bases, pages 511-520, 1992.

Gary Sockut and Balakrishno R. Iyer. A
survey of online reorganization in IBM
products and research. In Data Engineer-
ing Bulletin, pages 4411, June 1996.

Gary Smith. Online reorganization of key-
sequenced tables and files. Tandem Sys-
tem Review, 6(2):52-59, October 1990. De-
scribe algorithm of Franc0 Putzolu.

[Tro96]

[Zou96]

[ZSSSa]

[ZS96b]

Jim Troisi. Nonstop SQL/MP availabil-
ity and database configuration operations.
In Data Engineering Bulletin, pages 12-18,
June 1996.

Chendong Zou. Dynamic Hierarchical
Data Clustering and Eficient On-line
Database Reorganization. PhD thesis, Col-
lege of Computer Science, Northeastern
University, 1996.

Chendong Zou and Betty Salzberg. Effi-
ciently Updating References During On-
Line Reorganization. Technical Report
NU-CCS-96-08, College of Computer Sci-
ence, Northeastern University, 1996.

Chendong Zou and Betty Salzberg. On-
line reorganization of sparsely-populated
b+trees. In Proceedings of ACM/SIGMOD
Annual Conference on Management of
Data, pages 116-125, Montreal, Canada,
1996.

522

