
Expiring Data in a Warehouse
Hector Garcia-Molina, Wilburt Juan Labio, Jun Yang

{hector, wilburt, junyang}@cs.stanford.edu
Computer Science Dept., Stanford, CA 94305

Abstract

Data warehouses collect data into materi-
alized views for analysis. After some time,
some of the data may no longer be needed
or may not be of interest. In this pa-
per, we handle this by expiring or remov-
ing unneeded materialized view tuples. A
framework supporting such expiration is
presented. Within it, a user or adminis-
trator can declaratively request expirations
and can specify what type of modifications
are expected from external sources. The lat-
ter can significantly increase the amount of
data that can be expired. We present effi-
cient algorithms for determining what data
can be expired (data not needed for main-
tenance of other views), taking into account
the types of updates that may occur.

1 Introduction

Materialized views are often used to store warehouse
data. The amount of data copied into these views
may be very large; for instance, [JMS95] cites a ma-
jor telecommunications company that collects 75GB
of detailed call data every day or 27TB a year. Even
with cheap disks, it will be desirable to remove some
of the data from the views, either because it is no
longer of interest or no longer relevant. Often, a
summary of the removed data will suffice. In the
telecommunication example, for instance, only de-
tailed call data for the most recent year, and sum-
mary data from previous years, may be kept.

The traditional way of removing data from mate-
rialized views is deletion. When tuples are deleted
from a view or a relation, the effect must be prop-
agated to all “higher-level” views defined on the
view/relation undergoing the deletion. However,
sometimes the desired semantics are different. In
particular, when the data is removed due to space

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice ia given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

500

constraints alone, it is desirable not to affect the
higher-level views. In this paper, we propose a
framework that gives us the option to gracefully
ezpcpire data, so that the higher-level views remain
unaffected and can be maintained consistently with
respect to future updates. The difference between
deletion and expiration is further illustrated next.

EXAMPLE 1.1 Suppose the following base rela-
tion views copy data from source relations external
to the warehouse. (These views will be used as a
running example in this paper.)

l Customer(cust Id, info) contains information
about each customer identified by the key
cust Id. For conciseness, we shall refer to
Customer as C.

l Order(ordId, custld, clerk), denoted 0, con-
tains for each order, the customer who re-
quested the order and the clerk who processed
the order.

l LineItem(partId, ordld, qty, cost), denoted L,
details the quantity of the parts and the unit
cost of each part requested in each order.

Consider a simple materialized view V storing or-
der information for expensive parts. V is defined as
a natural join of 0 and L, with the selection con-
dition L.cost > 99, followed by a projection onto
relevant attributes. The current state of 0, L, and
V is depicted in Figure 1.

In reality, tables 0 and L (often called fact tables)
can become quite large. Suppose that the warehouse
administrator decides to delete “old” L tuples with
ordId < 2. Thus, 11 and 12 are deleted, as if they
have never existed in L. As a result, ~1 is deleted
from V, which might not be desirable if users still
expect V to reflect information about old tuples (es-
pecially if the view contains summary data).

The method we propose instead is to expire L tu-
ples with ordId < 2. Tuple 11 can be safely removed
from L because ll.cost < 99. On the other hand,
12 must be retained because it might be needed to
correctly update V if another tuple with ordld = 1
is inserted into 0. Notice that V remains unaffected
by the expiration of L tuples. Furthermore, after
the expiration, there is still enough information in L
to maintain V with respect to future updates.

If we know the types of modifications that may
take place in the future, we may be able to remove
tuples like 12. For example, suppose both 0 and
L are “append-only.” That is, the source relations
(that 0 and L are based on) never delete tuples.
Moreover, an insertion to 0 always has an ordld

0 ordId m&Id clerk

1 456 Clerk1
3 789 Clerk2

L partId ordld qty cost

1: a 1 1 19.99
2: b 1 2 250.00
3: c 3 1 500.00

V pa&Id qty cost custld clerk

IQ: b 2 250.00 456 Clerk1
212: c 1 500.00 789 Clerk2

Figure 1: Current state of 0, L, and V.

greater than the current maximum ordId in 0; in-
sertions to L always refer to the most recent order,
i.e., the 0 tuple with the maximum ordId. In this
case, we can expire both 11 and 12 since they will
never be needed to maintain V. In fact, it is pos-
sible to expire the entire L and 0 views except for
the tuple recording the most recent order. In our
framework, one can define applications constraints,
such as “append-only,” using a general constraint
language, so that the system can remove as much
data as possible. 0

To recap, although expired tuples are physically
removed from the extension of a view, they still ex-
ist logically from the perspective of the higher-level
views. Our expiration scheme guarantees that expi-
ration never results in incomplete answers for view
maintenance queries, given any possible source up-
dates. Knowledge of constraints on these updates
can dramatically improve the effectiveness of expi-
ration. User queries may, however, request data that
has been expired. In such cases an incomplete an-
swer must be provided, with an appropriate descrip-
tion of the available requested data.

Unfortunately, current warehouse products pro-
vide very little support for gracefully expiring data.
Every time there is a need to expire data, it is up
to the administrator to manually examine view def-
inition queries and view maintenance queries and to
check if underlying data is needed for maintenance.
This “solution” is clearly problematic since not only
is it inefficient, but it is prone to human error which
can easily lead to the expiration of needed data. Fur-
thermore, deciding what is needed and what can
be expired is complicated by the presence of con-
straints. If a conservative approach is used (e.g.,
constraints are not taken into account), then the
storage requirement of the warehouse may become
prohibitively large.

In this paper we propose a framework wherein
expiration of data is managed, not manually, but by
the system. In particular:

l The administrator or users can declaratively re-
quest to expire part of a view, and the system
automatically expires as much unneeded data
as possible.

l The administrator can declare in a general way
constraints that apply to the application data
as well as changes to the data (e.g., table 0 is

append-only), and the system uses this knowl-
edge to increase the amount of data that may
be expired.

l The administrator or users can change frame-
work parameters (e.g., by defining additional
views or changing application constraints) dy-
namically, and the system determines the effects
of these changes on what data is deemed needed
and what data can be expired.

For this framework we develop efficient algorithms
that check what data can be expired, handle inser-
tions of new data, and manage changes to views and
constraints. We also illustrate, using the TPC-D
benchmark [Corn], the benefits of incorporating con-
straints into the management of expired data.

The rest of the paper proceeds as follows. In
Section 2, we introduce our expiration framework
and identify problems that need to be solved. The
central problem of identifying the needed tuples is
solved in Section 3, while Section 4 extends the
mechanism to take into account input constraints.
We illustrate in Section 5 that the “constraint-
aware” solution can lead to much more data being
expired. In Section 6, we develop algorithms that
handle changes to the framework parameters. We
discuss related work in Section 7.

2 Framework

In this section, we present our framework for expira-
tion. We then give an overview of the problems that
we address in the rest of the paper to implement the
framework.
Tables and Queries: We consider two types of
warehouse tables: base relations and materialized
views. Each base relation (e.g., Order) has an ex-
tension that stores persistently a bag of tuples ob-
tained from a source relation external to the ware-
house. Each (materialized) view V has an exten-
sion that stores the answer to its definition query,
Def(V), which is of the form r/~~ap(x~e~R). (We
assume that 7f, 6, and x bag operators.)

For instance, we can define a view ClerkCust to
obtain the sum of the recent, expensive purchases
made by a customer from some clerk. Furthermore,
ClerkCust only considers old customers that placed
an order recently for an expensive item. The defini-
tion query of ClerkCust is as follows.
~clerk,C.cudtld,SUM(qty+cost) as sum,COUNT(+) as cnt

g.L.cost>99 A C.custld<SOO A O.ordId>lOOO

501

T

I:

T’W’ T-+’ TW ',-=P

T- T- T-
T-

T+ T+ T+ T+

full extension before after without with
extension partition expiration expiration constraints constraints

Figure 2: Extension Partition of Figure 3: Effect of Expiration on Figure 4: Effect of Constraints on
T T-- and Tezp TF and T-

~L.ordId=O.ordId A O.custId=C.custId
(CXOXL)

In general, the project specification A of a definition
query is a set of attributes and aggregate functions
(e.g., SUM). If A contains aggregate functions, any
element in A that is not an aggregate function is
a grouping attribute (e.g., C.custId). Condition P
is a conjunction of atomic conditions, like selection
condition L.cost > 99, and join condition L.ordId =
O.ordId. Finally, R is a set of tables (i.e., no self-
joins); each table is either a base relation or a view.

A view V needs to be maintained when there are
changes to the tables that V is defined on. For in-
stance, let us assume that Def(V) is as.b=~.~(SxT).
We assume that changes to table S are stored in
delta relation tables AS and vS, where AS con-
tains the new inserted and updated tuples, and VS
contains the old deleted and updated tuples. To in-
crementally maintain V, we compute AV and VV
using the maintenance queries shown below.

~As.b=T.c(ASXT) u ~AS.b=AT.e(AsX AT) U
~s.b=AT.e(SxAT) u ~,s.b=vT.c(VsxVT)(l)

~,s.bd’.c(VSxT) u flvs.b=aT.c(VSXAT) u
~s.b=oz’.c(SxvT) u aas.b=vT.,(ASx VT) (2)

These queries use the pre-state of S and T, i.e., be-
fore the insertions, and then the deletions, are ap-
plied. Other queries may be used if updates are ap-
plied differently, but they should still have the same
form. We use Maint(V) to denote the set of main-
tenance queries for computing the insertions to and
deletions from V.
Expiration: A user may issue an expiration request
of the form gp(T) on any base relation or view T.
This requests that all the T tuples in up(T) be re-
moved from T’s extension. Once a tuple is expired,
it can no longer be accessed by any query. How-
ever, in our framework, we only expire ap(T) tu-
ples that are not “needed” (later defined formally)
by maintenance queries. Conceptually, we partition
the extension of each base relation or view T into
T+, T-, and Texp, as shown in Figure 2. The tuples
in T+ are accessible to any query and are needed
by maintenance queries. The tuples in T- are ac-
cessible to any query but are not needed by mainte-
nance queries. The tuples in Texp are expired, are
not accessible, and are not needed by maintenance
queries. The tuples in T+ and T- comprise T’s real
extension, which is the extension kept persistently.

The tuples in Tt , T- , and Texp comprise T’s full
extension. (The full extension of T is referred to
in queries simply as ‘7” .) The conceptual parti-
tions T+ and T- are realized in T’s real extension
by keeping a boolean attribute needed for each tu-
ple. The needed attribute of a tuple t is set to true if
t E T+ and false otherwise. Given an expiration re-
quest up(T), conceptually the request is satisfied by
removing ap(T-) from T- and “moving” them to
Texp, as depicted in Figure 3. We keep the most re-
cent expiration request up!(T) on T in LastReq(T).
When a new expiration request up(T) is issued, the
request is modified as ap,pl(T) and LastReq(T) is
set to ~pvp~ (T). This is done because we do not
“unexpire” any expired data in our framework.
Effect of Expiration on Queries: Although all
queries (user queries, maintenance queries and def-
inition queries) are formulated in terms of full ex-
tensions, only the tuples in the real extensions can
be used in answering the query. Conceptually, the
answer returned for & is the answer for the “query”
Access(Q), which is the same as & but with each
T referred to in & replaced by Tt U T-. Similarly,
the complete answer to Q is the answer returned
for the “query” Complete(Q), which is the same as
Q but with each T referred to in Q replaced by
Tt U T- U Terf’ (i.e., suppose that tuples in Texp
are accessible to Complete(Q)). We say the answer
to Q is complete if the answer to Access(Q) is the
same as the answer to Complete(Q). Otherwise, the
answer is incomplete. We say that a tuple t E T
(i.e., t E (Tt U T- U Te”P)) is needed in answering
Q if the answer to Complete(Q) is different depend-
ing on whether t is removed from T’s extension or
not. This definition of “needed” works for aggre-
gate views since we require the COUNT function to be
included. This is reasonable because COUNT is help-
ful in maintaining views with AVG, SUM, MAX or MIN
([QuW).

Since we guarantee that only tuples not needed
by maintenance queries can be expired, the answer
to any maintenance query Q is always complete. On
the other hand, the answer to a user or definition
query Q may be incomplete. In case of a user query,
a query Q’, where Access(Q) = Complete(Q’), is re-
turned in addition to Q’s incomplete answer. Q’
is used to help describe the incomplete answer re-
turned. In case of a definition query Q = Def(V),
if the answer to Q is incomplete, V is not initialized
and a query Q’, where Access(Q) = Complete(Q’),

502

is returned as an alternative definition query for V.
Constraints: To help decrease the number of tu-
ples that are deemed needed (see Figure 4), we may
associate with each table T a set of constraints,
Constraints(T) which describe the contents of the
delta relations AT and VT in a constraint specifi-
cation language (Section 4). The constraints of base
relations are provided by the administrator based
on his knowledge of the application (e.g., “table 0
is append-only”). The constraints of a view V are
computed from the constraints of the tables that V
is defined on. We do not assume that the input
constraints characterize the application completely.
We only assume that the administrator inputs con-
straints that he knows are implied by the appli-
cation. In the worst case, the administrator may
not know any guarantees on the delta and may set
Constraints(T) to be empty.
Framework Summary: Table 2 gives a summary
of the framework. Henceforth, we denote the set of
all tables as 7, the set of all constraints as C, and the
set of all maintenance queries as E. There are several
problems that need to be solved to implement our
framework:

1.

2.

3.

4.

5.

6.

Initial Extension Marking: Given an initial
configuration of tables ‘T where none of the ta-
bles have any expired tuples yet, we must iden-
tify and mark which tuples are needed by the
maintenance queries & by setting the needed at-
tribute of these tuples to true.
Initial Extension Marking With Con-
straints: This problem is the same as (1) but
in addition, we are also given a set of constraints
C, which can potentially decrease the number of
tuples whose needed attribute is set.
Constraints of Views: In solving the first two
problems, we must compute the constraints of
each view V E ‘T from the constraints of under-
lying tables.
Incomplete Answers: For each user query Q,
we must determine if the answer to & is com-
plete. If not, we must determine a modified
query Q’ whose complete answer is the same as
the incomplete answer returned for Q.
Changes to 7: When a new view V is being
added to the initial configuration of tables 7,
we must determine if the answer to Q = Oef (V)
is complete. Techniques for (4) apply here. If
the answer to Q is not complete, we must de-
termine a modified view definition query Q’ as
a suggested alternative definition query. Once
Def (V) has a complete answer, for each table T
that V is defined on, we must determine which
tuples are now needed because of the addition
of V, and mark these tuples appropriately.
Changes To C: If the constraints are changed
to expire more tuples, we must determine the
effects of the change on the extension marking
of each table T.

7. Insertions: If there are insertions AT to a ta-
ble T, we must determine the needed attribute
value of each tuple inserted. (There is no prob-
lem with deletions.)

Note that the first two problems need to be solved
once, when the initial configuration is given. Hence,
efficiency is not at a premium. The third, fifth and
sixth problems are also solved infrequently. On the
other hand, the fourth and seventh problems are
solved fairly frequently and require reasonably ef-
ficient solutions. In the rest of the paper, Section 3
is devoted to the first problem; Section 4 is devoted
to the second problem; and Section 6 is devoted to
the last three problems. The algorithms developed
are reasonably efficient. Due to space constraints,
we do not present our solution to the third problem.
That is, for this paper, we assume that the adminis-
trator provides not only the constraints of the base
relations but also the constraints of the views. We
also do not present our solution to the fourth prob-
lem. Our preliminary solutions to these problems
appear in [LGM97].

3 Extension Marking
In this section, we assume we are given an initial
configuration 7 (base relations and views) and none
of tables have any expired tuples yet. For each table
T E 7, we identify which T tuples are needed by
maintenance queries. We mark the needed tuples by
setting the needed attribute.

As mentioned earlier, this marking is done only
when the initial configuration is submitted and not
for each expiration request. Once the marking is
done, any subsequent expiration request ap(T) is
processed very efficiently by removing the tuples
bpAneeded=false(T) from T’s real extension.

Before we present how the needed tuples are iden-
tified, we introduce maintenance expressions, which
are subqueries of maintenance queries. For instance,
suppose we have a view V whose definition query is
of the form X~ap(XRERR), where A does not have
any aggregate functions. The maintenance queries
(e.g., Queries (1) and (2)) of V are of the form

where Ri may include delta relations. We call each
subquery rA,gp, (XRE~, R) a maintenance expres-
sion. Notice that if a tuple is needed by some
maintenance expression, it is needed by some main-
tenance query. Also, if a tuple is not needed by
any maintenance expression, it is not needed by any
maintenance query. In [GMLY98], we show that
the maintenance queries of aggregate views (such
as ClerkCust) can also be decomposed into main-
tenance expressions. Henceforth, we use E for the
maintenance expressions of 7.

We now present a lemma that defines a function
Needed(T, E) and identifies using this function, all

503

Table 1: Summary of Framework
base relation T 1. real extension (T+ UT-); 2. full extension (T+ U T- U Te’P);

3. Constraints(T); 4. LastReq(T)
view T 1. real extension (T+ U T-j; 2. full extension (T+ U T- U Terp);

3. Constraints(T); 4. De@); 5. Maint(T); 6. kastReq(T) ”
delta relation AT extension with no conceptual partitions) containing insertions to T
delta relation VT extension with no conceptual partitions) containing deletions from T
expiration request bp (T) satisfied by removil _ ng a7~tT-j from T’s real extension \ ,

query Q refers to full extensions (e.g., as “T”) only and never partitions
user query CJ

definition query Q
- 1-

mamtenance query Q
7

1. cannot refer to delta relations; 2. if answer is incomplete,
Q’ (Access(Q) =Complete(Q’)) is returned to describe incomplete answer
1. cannot refer to delta relations: 2. if answer is incomnlete.
Q’ (Access(Q) =Complete(Q’)) ’

L I

is returned as alternative definition
1. can refer to delta relations; 2. answer IS always complete
set of all warehouse tables

c UTF7 Constraints(T)
& view vF7 Maint(V)

and only the T tuples that are needed by the main-
tenance expressions in E. We refer to the following
functions in the lemma: Closure, Ignore, and Map.

Function Closure(P) returns the closure of the
input conjunctive condition ([UllSS]).

Function Ignore(P, 7) modifies the conjunctive
condition P by replacing any atomic condition
that uses an attribute of a table in 7 with true.
For instance, if P is R.a > S.b A S.b > T.c,
Ignore(P, {S}) ’ t IS rue A true or simply true. No-
tice that Ignore(Closure(P), {S}) is R.a > T.c.

Function Map(E, T) acts on a maintenance expres-
sion E and returns a query that identifies the T tu-
ples needed by E.

Definition 3.1 (Map) Let E be r~cp(x~~~R),
and 2, be the delta relations in R. Map(E,T) is {}
if T $ R. Otherwise, Map(E,T) is
~A~~=~(T)~‘I~~~~~(cI~~“~~(~),‘D~) (x RE(R-qR), where

V’ is V - {T}. 0

That is, if T is not referenced in E, Map returns {}.
This is the common case since most maintenance
expressions do not refer to a specific table T. If T
is referred to in E, Map returns a new expression
obtained by first removing the delta relations in 2)
from the cross product. Then, the closure of the
condition P is computed. Then, P is modified to
ignore any atomic condition that refers to any delta
relation. Finally, the projected attributes is changed
to Attrs(T), the attributes of the table T.

Lemma 3.1 Given a table T and a set of mainte-
nance expression &, Needed(T, E) is defined as

U WE, T).
EEE

The query %Att,,(TINeeded(T,f) returns all and
only the tuples in T that are needed by the mainte-
nance expressions in 8. cl

Note that Needed may list a needed tuple t E T
more times than t appears in T. Hence, the semi-
join ([x) operation, which is equivalent to an exists
condition (e.g., SQL EXISTS condition), is used to
obtain the T tuples needed for f. The proof of
Lemma 3.1 is in [GMLY98]. We give the intuition
behind the proof in the next example.

EXAMPLE 3.1 Suppose we are given one of the
maintenance expressions of ClerkGust as the main-
tenance expression E in question.
E = ~AO.clerk,C.custId,L.gty,L.eost

~L.cost>99hC.custld<500hA0.ordld>1000

~L.ordId=AO.ordId/rAO.cu~tId=C.custId
(CxAOxL)

Let us consider what L tuples are needed by E.
We claim that Map(E, L), shown below, identifies all
these L tuples.
~Attrs(L)~L.cost>99hC.cust~d<500AL.ordld>1000(~~~)

Notice that Map(E, L) excludes A0 from the cross
product and consequently ignores all the atomic con-
ditions in E that refer to A0 attributes. Intuitively,
this means that we cannot say that an L tuple tL is
not needed even if there does not exist a A0 tuple
that tL can join with. This is reasonable because
although tL may not join with any of the current in-
sertions to 0 (i.e., current extension of AO) , it may
join with future insertions (i.e., extension of A0 at
some later point in time). We can only set tL.needed
to false if for any AO, tL only joins with A0 tuples
that are not needed themselves. For instance, any
A0 tuple that has an ordld less than or equal to
1000 is not needed in answering E. Since there is an
atomic condition L.ordId = AO.ordId in E, any L
tuple that has an ordId less than or equal to 1000 is
also not needed in answering E. This illustrates the
need for computing the closure of the atomic con-
ditions before ignoring the atomic conditions that
use delta relation attributes. Thus, in our example,
Map(E, L) has the atomic condition L.ordId > 1000.

504

While Nap(E, L) identifies all the needed L tu-
ples, it may list an L tuple TV more times than
tL appears in L. For instance, Map(E, L) per-
forms a cross product between C and L without
applying any conditions between them. Hence,
Map(E, L) lists TV as many times as there are C tu-
ples. In report [GMLY98], we discuss how to make
Nap(E, L) more efficient by avoiding cross products.
Thus, to obtain the correct bag of tuples, the query
L D<Attrs(L) Nap(E, L) is used. 0

4 Extension Marking With Con-
straints

Given a set of tables 7, maintenance expressions
8, and now a set of constraints C, our goal is to
mark the tuples that are needed by the maintenance
expressions. The constraints may lead to a decrease
of the number of needed tuples.

Marking tuples entails solving two problems.
First, the maintenance expressions in & need to be
modified using C to produce a new set of expres-
sions EC. Second, the function Needed(T, E) needs
to be modified to Neededc(T,&c) that acts on the
new set of maintenance expressions. Needed is not
adequate because it assumes a maintenance expres-
sion of the form rAa~(x R~RR), which is devoid of
exists and not exists conditions (expressed us-
ing the D< and D< operators). Unfortunately, the
expressions in & may contain such conditions.

Before we solve these two problems, we present a
constraint language CL for specifying the constraints
in C. In Section 4.2, we give the algorithm that uses
C to produce & from E. We present in Section 4.3
the function Needek that acts on EC.

4.1 Constraint Language

A CL constraint is an equivalence conforming to one
of the two forms shown below, where each R and T
is either a base relation, a delta relation or a view.

UP LNS (~RERR)--P,,,(xRERR)D<T

UP LH.5 (xRE~R)~~P~~~(xRERR)D<T

A CL constraint c states that the query on c’s left
hand side is guaranteed to return the same bag of
tuples as the query on c’s right hand side. We de-
note the query on the right hand side and the left
hand side of a constraint c as RHS(c) and LHS(c),
respectively. In any constraint c, the conditions in
RHS(c) logically imply the conditions in LHS(c)
(i.e., pRHS * ?~jfS). Also, exists or not exists
conditions can be introduced in RHS(c). Even
though RHS(c) h as more conditions than LHS(c),
constraint c states that the two queries are equiva-
lent.

In the discussion, we often refer to a constraint c
of the form R z apRNS (R)XT (or ET) as context-
free, since R can be substituted by RHS(c) in any
query that R is in. More general constraints that

have selection or join conditions on the left hand
side are called context-sensitioe.

CL can express many constraints that occur in
warehousing applications as we illustrate next. (We
refer the reader to [GMLY98] for a discussion of CL’s
expressibility.) Furthermore, we will see that CL’s
syntax is particularly well suited for modifying main-
tenance expressions.

EXAMPLE 4.1 Figure 5 gives the CL constraints
which an administrator may input because they are
implied by the scenario in Example 1.1. Note that
most of the constraints are context-free. We now
give the intuition behind each constraint.
Append-only constraints: We alluded in Exam-
ple 1.1 that 0 is append-only. That is, no tuple is
ever deleted from 0 and every inserted 0 tuple has
an ordld value greater than the maximum ordld
value so far. The append-only behavior of 0 is cap-
tured by Constraint (3), which states that ~0 is
always empty, and by Constraint (4), which states
that the ordld values of the inserted 0 tuples are
greater than the maximum ordId value so far. L
also has an append-only behavior which is captured
in Constraints (5), (6) and (7). Intuitively, inser-
tions to L represent new line items of the most re-
cent order (0 tuple with maximum ordld) or of new
incoming orders (A0 tuples) . Constraints (6) and
(7) are used to describe the insertions to L. That
is, inserted L tuples that join with A0 have ordld
values greater than the maximum ordId. Inserted L
tuples that join with 0 have ordld values equal to
the maximum ordld.
Key constraints: The schema in Example 1.1 as-
sumes that custld is the key of C. The constraints
below are implied by this key constraint. Con-
straints (8) and (9), which use the table renaming
operator p, enforce the functional dependency im-
plied by the key constraint. Finally, Constraint (10)
enforces that none of the keys of the inserted tuples
are in C. Similar constraints are implied by the as-
sumptions that ordld is the key of 0 and both ordId
and partld make up the key of L.
Referential integrity constraints: Given the
schema introduced in Example 1.1, it is reasonable
to assume that there is a referential integrity con-
straint from O.custId to key C.custId. Constraints
(11) to (13) express this assumption. Similar con-
straints are used to express a referential integrity
constraint from attribute L.ordId to key O.ordId.
Weak minimality constraints: It is also reason-
able to assume that deletions from C are weakly min-
imal [GL95]. That is, all the deleted C tuples were
previously in C (Constraint (14)). 0

4.2 Modifying Maintenance Expressions

Given a maintenance expression E, we now mod-
ify E by applying a given set of CL constraints
to it. Intuitively, since LHS(c) and RHS(c) of a
CL constraint c are equivalent, whenever LHS(c)

505

vo - ~false(VO)
-

A0 - AO~AO.ordId<O.ordIdO

VL q ~false (VL)

crAo.ordId=aL.ordrd(AOXAL) = ~AO.ordId=AL.ordId(AOX (ALD<AL.ordIdlo.ordIdO))

(3)

(4)

(5)

(6)
~O.ordId=AL.ordId(OXA~) =

-
~O.ordId=AL.ordId(OX(~J=AL.ordId<O.ordIdO)) (7)

c f
-

Ct><(C. custId=C’.custId)h(C.injo#C’.injo) PC’(c) (8)
-

vc = VCK(c. v custId=vC’.custId)h(VC.in jo#vC’.in jo) PvC,(vc) (9)
-

AC q AC D<AC.custId=C.custId c

0 = 0 ~O.custId=C.eustId c

A0 = A0 KAO.eustId=C.custId c

vo q vo KvO.custId=C.custId c

vc = vcy c. v custId=C.partId)h(vC.in jo=C.in jo) c

Figure 5: Example CL Constraints

(10)

(11)

(12)

(13)

(14)

“matches” a subquery of E, we can substitute
RHS(c) for LHS(c in E. We say a constraint c is)
applied to E when we successfully match LHS(c) to
a subquery of E and replace the matching subquery
with RHS(c). The challenge is of course in deter-
mining whether LHS(c) matches some subquery of
E since a syntactic check does not suffice. The next
example illustrates how a constraint is applied.
EXAMPLE 4.2 Most of the constraints in Exam-
ple 4.1 are context-free and applying them is triv-
ial. For instance, applying Constraint (3) simply re-
quires finding occurrences of ~0 in a maintenance
expression E and replacing it with ar,l,,(vO). To
make the example more interesting, let us suppose
constraint c is Constraint (7), and apply it to the
following maintenance expression E of ClerkCust.
~O.clerk,C.cu3tId,AL.~t~,AL.~~~t

~ALmst>99AC.custId<5OOAO.ordId>lOOO

~O.ordId=AL.ordIdAO.custId=C.custld
(CxOxAL)

Maintenance expression E can be rewritten as
~O.clerk,C.custId,AL.~t~,AL.eost

~AL.cost>99AC.custId<500AO.ordId>1OOO

~O.custId=C.custId

(CX~O.ordId=AL.ordld(OXAL)).
Clearly LHS(c matches a subquery of E. Hence,)
we can replace the matching subquery with RHS(c),
yielding the following maintenance expression.
~O.clerk,C.custId,AL.qty,ALmst

~AL.cost>99AC.eustId<500AO.ordId>1000

~O.ordId=AL.ordIdAO.cuatId=C.eustId -
(cxox (AL ~L.ordId<O.ordId 0))

0

The previous example illustrated algorithm Apply
(Algorithm 4.1, Figure 6) for applying a constraint
c on a maintenance expression E. Apply first checks
if the tables in LHS(c) are also in E (Line 1). This
check suffices since we only handle view definitions
with no self-joins. It then checks if the conditions in
E imply the conditions in LHS(c) (Line 2). This can
be done efficiently because the conditions involved

are conjunctive [Ull89]. (It can be done in O(n3)
time, where 72 is the number of distinct attributes
in the conditions.) If both checks are passed, then
LHS(c) matches a subquery of E. For instance, -
suppose that E is rA~p(XR~RR)IXS..D<T.., and
LHS(c) is gp,,,(x~~uU). If U C R and P +
PLHS, it is guaranteed that E is equivalent to-
~TTA~P((xRE(R-u)R)x~~,,,(xu~uU))D<S..D<T...

The subquery of E that matches LHS(c) can then
be replaced by RHS(c). Redundant conditions are
eliminated in Line 3 of Apply by solving another im-
plication problem.

Although Apply always modifies E to an equiva-
lent expression, it is not complete since it may not
apply a constraint even when equivalence is pre-
served. This is because Line 2 only takes into ac-
count the selection and join conditions in P, but
not the exists and not exists conditions given
by the D< and D< operators. (Exists conditions
can be handled but it is not shown in Apply.) To
obtain a complete algorithm, the implication prob-
lem P’ j PLHS must be solved, where P’ is the
conjunction of all the selection, join, exists and
not exists conditions. Unfortunately, there are no
known complete algorithms to solve the general im-
plication problem with a mixture of existential and
universal quantifiers ([YL87]).

In Section 4.3, we develop an algorithm to com-
pute the closure of a conjunctive condition which
may include exists conditions but only atomic not
exists conditions. This algorithm can be useful in
solving a more general implication problem than the
one in Line 2. However, we do not show it here
since taking into account exists and not exists
conditions is not critical in Apply. This is because
in practice, many constraints are context-free and
can be applied easily. Context-sensitive constraints,
like the append-only and implication constraints in
Example 4.1, usually only require examining the se-
lection and join conditions of E.

506

Algorithm 4.1 Apply
Input: maintenance expression E, CL constraint c
Output: true if c is applied, false otherwise
Side effect: may modify E
Let E be of the form: ~~(~~F(xR~RR)KS..D<T)
Let c be of the form:

2. If P + PLHS
3. Remove conditions in P implied by PRHS
4. E + ~d(~7’APRHS(XRcRR))

b<S..bW..EZT

5. Return true
6. Return false 0

Algorithm 4.2 Modi.fy
Input: maint. expression E, CL constraints C
Side effect: may modify expression E
1. change c true
2. While (change = true)

3. change t false
4. For (each constraint c in C)

5. If (Apply(E,c) = true)
6. Remove c from C, change t true 0

Figure 6: Modifying a Maintenance Expression
So far, we have discussed how a single constraint

is applied to E. When there is a set of constraints to
be applied, the order of application does not matter
([GMLY98]). Algorithm 4.2 (Figure 6) shows the
algorithm Modify for applying a set of constraints C
to E. Although efficiency is not at a premium when
marking extensions, Modify has a tolerable overall
complexity of O((C12 . n3), assuming the check in
Line 1 of Apply is done in constant time. (C(is the
number of constraints and n is the number of distinct
attributes used in P of E.

4.3 Deriving Needek

Given the maintenance expressions 8, we can use
Modify to alter each expression in 8 based on C,
and produce a new set of expressions &c. In this
section, we first discuss why using Needed on & is
not satisfactory. We then develop a fairly efficient
Neede& function which handles exists and some
not exists conditions. In the latter part of the
section, we give a lemma that formally describes the
properties of Neede& .
Problem with Needed: Strictly speaking, Needed
was not defined to work with maintenance expres-
sions with exists and not exists conditions. Nev-
ertheless, function Needed(T, &) can be adapted
to apply to EC by modifying Map(E, T). That is,
for each E = TA~~(x~~~R)KS..~%J.. in EC,
Map(E, T) returns the following query.

The above query still works but may deem more
tuples as needed since Closure only takes into ac-
count the selection and join conditions but not the
exists and not exists conditions.

Later in this section, we develop a new func-
tion Closurec, which takes into account exists and
atomic not exists conditions. We then define Mapc
similar to Map but using Closurec, and Neededc
similar to Needed but using Mapc. Before we derive
Closurec, we illustrate why taking into account the
exists and not exists conditions is important.

EXAMPLE 4.3 In this example, we compare the
tuples returned by Map(&) 0) and Mapc (EC, 0))
where EC is obtained by applying constraints to
E = nO.elerk,AC.eustZd,L.qty,L.cost

~L.cost>99AAC.custId<5OOAO.ordZd>1OOO

~O.ordZd=L.ordZdhO.custld=aC.custld
(ACxOxL).

Let us suppose that only the constraints express-
ing the following information are applied to E: (1)
custId is the key of C (Constraint (10)); and (2) a
referential integrity holds from O.custId to C.custId
(Constraint (11)). The modified maintenance ex-
pression EC is as follows:
EC = ~O.clerk,AC.eustId,L.gty,L.eost

~L.cost>99AAC.custld<5OOAOmdld>1OOO

~O.ordZd=L.ordZdAO.custld=hC.eustld

((AC D<AC.eustZd=C.custZdC) X

(0 D<O.eustZd=C.custIdC)XL).

Notice that Map(EC, 0) returns
rAttm(O)

((0 KO.custZd=C.custZdC) x L),

after computing the closure of the selection and join
conditions, ignoring the conditions referring to AC,
and removing AC from the cross product,

On the other hand, let us suppose that Mapc uses
the function Closurec to “handle” exists and not
exists conditions obtaining the following expres-
sion from EC.

~O.clerk,AC.eustZd,L.gty,L.cost

~L.cost>99AAC.custId<5OOAO.ordld>1OOO

~O.ordZd=L.ordZdAO.custZd=AC.custZd

((AC D<custIdC KcustIdC) X

(0 D(O.custZd=C.custZdAO.~~~tZd#C.custldC

&ustZdC) XL)

Given the above expression, Mapc returns

rAttrs(0)

((0 IXO.custId=C.custIdAO.custZd#C.custldC

D<O.custZd=C.custIdC) XL).

This query has an empty answer because the exists
condition on 0 is contradictory! Hence, Mapc (EC, 0)

507

states that no 0 tuple is needed in answering E,
which makes sense because the new customers do not
have any orders yet according to the constraints. On
the other hand, Hap(EC, 0) returns a possibly severe
overestimate of the 0 tuples needed. 0

Alternative representation of K’s and [x’s:
For convenience, we develop Closurec to work on
maintenance expressions that represent exists and
not exists conditions differently. Instead of rep -
resenting them using the D< and D< operators, we
represent them as conditions that are combined
with the selection and join conditions. For in-
stance, the query R D<R.a=S.a S is represented
at? %,~S(R.ca=&.cz)(R), where Si is a tuple vari-
able ([Ull89]). The query R D<R,a=S.o S is repre-
sented as 0 ~3.5f”~S(R.a=S~‘~.a) (R), or alternatively

~ysa-’ ES(R.~#S;“.~) (R). We call this new represen-
tation the quantifier representation, and the previ-
ous one, the operator representation.

In the quantifier representation, we make implicit
tuple variables, like “R” in the exists condition
3Si E S(R.a = Si .a), explicit. For instance, given
the maintenance expression EC as shown Example
4.3, its quantifier representation is
~Oo.clerk,ACo.custId,lo.gty,lo.cost a?,(ACxOxL).

P’ in this case is
Lo.cost > 99 A AC,.custId < 500 A Oo.ordId > 1000 A

Oi,.ordId = Lo.ordId A Oo.custId = ACo.custId A

VC;” (A& .custId # C;S3.custId) A

3C1 (00 .custId = Cl .custId). (15)

We assign the tuple variables mechanically as fol-
lows. For a table T appearing in the cross product
(e.g., AC), we assign the tuple variable To (e.g.,
AC’s). For a table T appearing in an exists con-
dition R D< T, we assign a unique tuple variable
Ti (e.g., Cl), where i > 0. For a table T appear-
ing in a not exists condition R D< T, we assign a
unique tuple variable qf”j (e.g., C,““‘). Henceforth,
we use “Y to denote either a free variable To, or an
existentially quantified variable Ti, or a universally
quantified tuple variable TJf*‘.
Deriving Closurec, Mapc, and Neeededc: In
general, given a maintenance expression E =
rAap(x RERR) in quantifier representation, we can
always obtain the prenez normal form (PNF) of ‘P,
where all the quantifiers precede a quantifier-free
condition expression ([PMWSO]). That is P in PNF
is of the form 3Ri..3Sj..VT,““‘..VUPSi(P’), where P’
is a quantifier-free condition.

Assuming P’ is conjunctive for now, Closurec
simply derives new atomic conditions from ones
that use universally quantified tuple variables (e.g.,
Tr”j), and then uses the old Closure function to
obtain the closure. More specifically, Closure uses
standard axioms (e.g., transitivity) to derive atomic

conditions. Closurec adds the following two ax-
ioms to derive additional atomic conditions from
ones that use universally quantified variables.

1. Let 0 be =,f,<,<,>, or >. 5’:“j.a 6 T.b a
S.a ,tJ T.6.

2. Sy”’ .a = Tj .b + .!?:“‘.a = S;“j.a.

The first axiom states that if 5’f”j.a 0 T.6 holds, it
means that a attribute of all the S tuples are related
to T.b in the same way. Hence, an atomic condition
S.a 6 T.b holds regardless of whether S is existen-
tially or universally quantified. The second axiom
states that if Sy”j .a is equated to an attribute of an
existentially quantified tuple variable, it must be the
case that the a attributes of all the S tuples have the
same value. We now illustrate Closurec.

EXAMPLE 4.4 Let us suppose we are given
a maintenance expression E = rAap(XRER R),
where P is Expression (15). Since both (2’1 and
Cyi are tuple variables ranging over the domain of
table C’s tuples, and Ci”’ is a universally quanti-
fied tuple variable, any atomic condition that ap-
plies to Ci*j must also apply to Cl. That is, a
condition that applies to all tuples must apply to a
particular tuple. For instance, the atomic condition
A&.custId # C;“j .custId implies the atomic con-
dition ACo.custId # Cl.custId. Notice that when
Closure is run on (P’~(ACs.custld # Cl.custId)),
the contradictory atomic conditions 00 .custId =
Cl.custId and Oo.custId # Cl.custId are derived.
Hence, Map(0, E) is guaranteed to return an empty
answer which is consistent with Example 4.3. 0

Algorithm 4.3 Closurec
Input: conjunctive condition P possibly

with exists and (atomic) not exists
conditions in quantifier representation

Output: closure of P
1. Derive PNF of P of the form iL.ZL.V..V..(P’),

where P’ is quantifier-free
2. Derive P” from P’ based on the axioms used

by Closure plus the two additional axioms for
universally quantified tuple variables.

3. Return 3..3..V..V..(Closure(P”)) 0

Figure 7: Closurec
The example illustrated Closurec (Algorithm

4.3, Figure 7) which computes the closure of a con-
junctive condition P, possibly with exists and not
exists conditions. Closurec first converts P to its
PNF, obtaining a quantifier-free condition P’ (Line
1). To ensure that P’ is still conjunctive, we assume
that not exists conditions is a single atomic condi-
tion or a disjunction of atomic conditions. Any not
exists condition that does not conform to the previ-
ous restriction is ignored (replaced with true) when
computing the closure. Using the axioms used by

508

Closure plus the two additional axioms introduced,
Closurec derives the atomic conditions implied by
P’ (Line 2). We refer the reader to [GMLY98] for
more details on how the axioms are applied.

Using Closurec, we define Nape to be the same
as Map except that it uses Closurec, and Neededc
to be the same as Needed except that it uses Hapc.
The next lemma formally describes the properties of
Neededc. (See [GMLY98] for the proof.)

Lemma 4.1 Given a table T and a set of mainte-
nance expression EC obtained by applying constraints
C on E, the query

Need&@‘,&) = IJ Map,(&,T),
EC EEc

returns all the tuples in T that are needed by the
maintenance expressions in 8~. If all constraints
in C using not exists conditions are of the form
OP LHS (XRERR) = bP,,s(XRERR)D<~T where p
is a disjunction of atom& conditions, the query
mAtt,(qNeeded(T, 8) returns only the tuples in
T that are needed by the maintenance expressions in
EC. Furthermore, for any set of constraints C, it is
guaranteed that Neede& (T, EC) 2 Needed(T, Ic) E
Needed(T, E). 0

5 Discussion

Although Lemma 4.1 itself does not guarantee that
Neededc always returns strictly fewer tuples than
Needed, we now illustrate that in practice, Neededc
often returns much fewer tuples.
ClerkCust View: The ClerkCust view has 27
maintenance expressions, which we assume to com-
prise E. C are the various in Example 4.1. Table
5 gives the queries returned by Needed(T, &) and
Needek(T,&) for tables L, 0 and C.

The second row of Table 5 shows that
Neededc (L, &) identifies accurately that none of the
L tuples are needed by E, while Needed(L, E) deems
a large number of L tuples as needed. The third
row of Table 5 shows that Neededc(O,&) identi-
fies accurately (using a not exists condition) that
only the one 0 tuple with the maximum ordld
value is needed. On the other hand, Needed(O,l)
deems a large number of 0 tuples as needed. The
fourth row of Table 5 shows that Neededc (C, EC) and
Needed(C,&) identify the same bag of needed tu-
ples. This illustrates that using Neededc does not
always help in reducing the number of tuples that
are deemed needed.
TPC-D Benchmark: We now investigate what
TPC-D ([Corn]) b ase relation tuples are needed as-
suming certain TPC-D queries are used as views.
In particular, we focus on 4 out of the 9 TPC-D
base relations: LINEITEM (L), ORDER (0), CUS-
TOMER (C) and PART (P). Fact tables L and 0
contain 86% of the tuples in the benchmark. Hence,
expiration requests will likely be issued on these two
tables. We consider two views, V3 and Vs, whose

definition queries are the TPC-D queries Q3 (“Ship-
ping Priority Query”) and Q5 (“Local Supplier Vol-
ume Query”), respectively. We assume that either
the maintenance expressions of V! or V’s comprise E.
Finally, the set of constraints C we consider is based
on the TPC-D “update model” specification.

To simplify the presentation, we do not give the
queries returned by the functions but instead give
the percentage of the base relation tuples that are
needed. We obtained this percentage for each table
T (i.e., L, 0, C, and P) by running the queries
returned by Neededc (T, &cc) and Needed(T, &). We
then counted the number of tuples in the result and
divided it by the number of T tuples.

Table 5 gives the tuples that are needed by the
maintenance expressions of Va assuming the con-
straints in C. Neededc identifies that none of the
L and 0 tuples are needed, and 20% of the C tuples
are needed. Since P is not referred to in Vz’s defini-
tion query, none of its tuples are needed to maintain
Vs. None of the L and 0 tuples are needed because
of the append-only behavior of L and 0 specified in
the benchmark, i.e., AL tuples only join with A0
tuples and vice versa. Only 20% of the C tuples are
needed because Neededc applies a selection condi-
tion on C with 20% selectivity. On the other hand,
Needed deems all of the L and 0 tuples as needed.

Table 5 shows similar results assuming the main-
tenance expressions of view Vs comprise E. Note
that both Neededc and Needed identify that all the
tuples of C and P are needed. This is because Vs ‘s
definition query does not apply any selection con-
ditions on C nor P. Had there been appropriate
constraints, then Needee would mark some C and
P tuples as unneeded.

The previous study shows that using constraints
allows greater flexibility for expiration and can sig-
nificantly decrease storage requirements when data
is no longer needed. Furthermore, it is likely that
the efficiency of view maintenance is improved be-
cause the expired data is no longer processed by the
maintenance expressions.

6 Dynamic Setting

In the previous two sections, we focused on an ini-
tial static setting wherein we are given a set of tables
7, a set of maintenance expressions E, and a set of
constraints C. In this section, we explore how to
cope with a dynamic setting wherein some of these
parameters can be changed. We also drop the as-
sumption that none of the tuples have been expired.

Before discussing the algorithms, it is important
to note that even when parameters change, an ex-
piration request o’p (T) is satisfied by removing the
tuples in ~Ptmeeded=false(T)~

Also, note that the queries returned by Neededc
(and Needed) still have complete answers even after
some tuples have been expired. This is because any
query returned by Neededc takes the union of ex-

509

Table 2: Comparison of Needek and Needed Using ClerkCust

Table T leededc(T, EC) leeded(T, E)

L 0 xAttrs(L) ~L.cost>99hL.ordId>lOOO (L)

0 rAttrs(0) ~O.custId<500hO.ordId>lOOO rAttrs(0) ~O.custld<500hO.ordld>lOOO (0) -

(“~O.ordId<O’.ordIdPO’O)
C ~Attrs(C)~C.custld<SOO(C) ~Attrs(C)~C.custId<500(C)

Table 3: Comparison of Need& and Needed Using
TPC-D Query &3

Table T Ieededc(T,&) Ieeded(T,&)

L OYO 100%
0 OYO 100’70
c 20% 20% .
P 11 OYO I 0% I

pressions derived from maintenance expressions us-
ing Map,. Since we guaranteed that all the tuples
that are needed by maintenance expressions are not
expired, the completeness of the queries returned by
Neede& follows. We now outline the algorithms for
coping with various changes.
Changes to 7: Suppose Def(V) has a complete
answer and V is added to 7. We must iden-
tify for each table T that V is defined on, which
of the T tuples previously deemed as unneeded is
now needed to maintain V. A reasonably effi-
cient solution to the problem is to use the query
~needed=false(T)D<Attrs(T)Needed(T, fv), where fv
are the maintenance expressions of V. This query
identifies the T tuples that are now needed.
Changes To C: We only allow changes to C
that expire more tuples. There are two types of
changes that satisfy this condition. First, a con-
straint may have been added to C. Second, a con-
straint c previously in C may have been changed
so that conditions are removed from LHS(c) or
added to &75’(c). To update the extension
markings, for each table T, we use the query
~needed=true(T)D<~ttrs(~) Needek (T, E), to identify
the T tuples that were previously deemed needed,
but must now be marked as unneeded. Further,
assuming the change to C is due to a change in
Constraint(S), f or some table S, we only need to
modify the extension marking of a table T defined
on S. This is valid if the administrator inputs all
constraints. If this assumption does not hold, we
show in [GMLY98] h ow to identify the tables whose
extension marking may be modified.
Insertions: Periodically, insertions AT and dele-
tions VT are computed for each table T. While
deleting the VT tuples from T does not pose any
problem, inserting the AT tuples into T may. First,
the inserted tuples need to be marked as needed or
unneeded. Second, some of the unneeded tuples may
need to be expired. The two problems are solved by
performing the following procedure.

1. Insert AT and set needed attribute to false
for all inserted tuples.

Table 4: Comparison of Needee and Needed
TPC-D Query Q5

Table T Ieede+(T, EC) Ieeded(T, E)

L 0% 100%
0 OYO 100%

Using

c 11 lOi& I 100%
P 11 100% 100%

2. Set the needed = true for the T tuples in
~needed=false(T)~Attrs(T)Needed(T, E).

3. Expire T tuples in (7Fhneeded=false(T), where
LastReq(T) = gp(T)

The first step assumes all AT tuples are unneeded
and do not need to be expired. The second step
marks the AT tuples that are needed. The last step
expires unneeded AT according to LastReq(T).

7 Related Work

One of the problems that our framework tackles
is how to maintain a view when only parts of the
underlying tables are accessible. Most work on
view maintenance assumes that the complete un-
derlying tables are accessible, for example, [BLT86,
GL95,GMS93,QW91]. However, there has also been
work on view maintenance that assumes otherwise.
[BT88] and [GJM96] identified self-maintainable
views that can be maintained without accessing un-
derlying tables. [QGMW96] and [HZ961 tried to
make a view self-maintainable by defining auxil-
iary views such that the view and the auxiliary
views together are self-maintainable. The func-
tion Needed(T, E) we introduce serves essentially the
same purpose as an auxiliary view, although it does
not have to be maintained as such. [HZ961 developed
a framework wherein the attributes of a table may
be inaccessible. In our framework, the tuples of a
table can be made inaccessible. It will be important
in future work to combine both approaches.

Our framework also takes advantage of the avail-
able constraints in order to reduce the size of
Needed(T, E) and increase the effectiveness of expi-
ration. This is different from, but related to, the use
of constraints in the area of semantic query optimiza-
tion [CGM88]. It is important to point out their
connection since semantic query optimization has
largely been ignored in view maintenance literature.
Indeed, there has been some prior work in improving
view maintenance using constraints; however, they
all use special-case algorithms to take advantage of
specific constraints. For instance, [QGMW96] used

510

a specialized algorithm that exploits key and ref-
erential integrity constraints to eliminate mainte-
nance expressions. [GJM96] used key constraints to
rewrite maintenance expressions for a view to use
itself. [JMS95] introduced chronicles that are up-
dated in a special manner, and showed that views
defined on chronicles can be maintained efficiently.
In our approach, we can describe chronicles using
constraints and infer that the entire chronicles can
be safely expired. In summary, the techniques we in-
troduce generalize special-case algorithms. Further-
more, since we exploit a broader class of constraints,
we improve on many of the algorithms.

Our framework also introduces “incomplete” ta-
bles. There has been numerous work on incomplete
databases ([AHV95]). We are now investigating how
previous work in the area can be used to solve some
of the problems borne out of the framework. For
instance, [LevSG]‘s work on obtaining complete an-
swers from an incomplete database is helpful in solv-
ing the fourth problem stated in Section 2.

The algorithms in [BCL89] for detecting irrele-
vant updates can be modified to detect unneeded tu-
ples. This can be done by treating the maintenance
expressions as views and treating a tuple t E T as
if it were an insertion. However, the algorithms in
[BCL89] do not work with constraints. Also, they
require a satisfiability test for each tuple t. Our
method is more “set-oriented” since it uses queries.

8 Conclusion

We have presented a framework for system-managed
removal of warehouse data that avoids affecting the
user-defined materialized views. Within it, the user
or administrator can declaratively specify what he
wants to expire and the system removes as much
data as possible. The administrator can also input
constraints (implied by the application) which the
system uses to expire more data, as we illustrated
using the TPC-D benchmark. We identified prob-
lems borne out of the framework and we solved the
central problems by developing efficient algorithms.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Founda-
tions of Databases. Addison-Wesley Publishing
Company, 1995.

[BCL89] J. Blakely, N. Coburn, and P. Larson. Up-
dating derived relations: Detecting irrelevant
and autonomously computable updates. TODS,
14(3):369-400, September 1989.

IBLT861 J. A. Blakelev. P.-A. Larson, and F. W. Tompa.
Efficiently uphating materiahzed views. In P&-
ceedings of the 1986 ACM SIGMOD Inter-
national Conference on Management of Data,
pages 61-71, May 1986.

[BT88] J. A. Blakeley and F. W. Tompa. Maintaining
materialized views without accessing base data.
Information Systems, 13(4):393-406, 1988.

[CGM88]

[Cod

[GJM96]

[GLSS]

[GMLY98]

[GMS93]

[HZ961

[JMS95]

[Lev96]

[LGM97]

[PMWSO]

[QGMW96]

[Qua961

[QWgll

[Ull89]

[YL87]

U. Chakravarthy, J. Grant, and J. Minker. Foun-
dations of semantic query optimization for de-
ductive databases. In Foundations of Deductive
Databasea and Logic Programming, pages 243-
273. Morgan Kaufman, 1988.

TPC Committee. Transaction Processing Coun-
cil. Available at: http://www.tpc.org/.

A. Gupta, H. Jagadish, and I. S. Mumick. Data
integration using self-maintainable views. In
Proceedings of the 1996 International Conjer-
ence on Extending Database Technology, March
1996.

T. Griffin and L. Libkin. Incremental mainte-
nance of views with duplicates. In Proceedings
of the 1995 ACM SIGMOD International Con-
ference on Management of Data, pages 328-339,
May 1995.

H. Garcia-Molina, W. Labio. and J. Yang. Ex-
piring data from a warehousk. Technical report,
Stanford University, 1998.
Available at http://www-db:stanford.edu/pub/-
papers/newexpire.ps.

A. Gupta, I. S. Mumick, and V. S. Subrah-
manian. Maintaining views incrementally. In
Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data,
pages 157-166, May 1993.

R. Hull and G. Zhou. A framework for sup-
porting data integration using the materialized
and virtual approaches. In Proceedings of the
1996 ACM SIGMOD International Conference
on Management of Data, pages 481-492, June
1996.

H. V. Jagadish, I. S. Mumick, and A. Silber-
schatz. View maintenance issues for the chroni-
cle data model. In Proceedings of the Fourteenth
ACM Symposium on Principles of Database
Systems, pages 113-124, May 1995.

A. Y. Levy. Obtaining complete answers from in-
complete databases. In Proceedings of the 1996
International Conference on Very Large Data
Bases, pages 402-412, September 1996.

W. Labio and H. Garcia-Molina. Expiration and
partially materialized views. Technical report,
Stanford University, 1997. Available at http:-
//www-db.stanford.edu/pub/papers/expire.ps.

B. Partee, A. Meulen, and R. Wall. Mathemat-
ical Methods in Linguistics. Kluwer Academic
Publishers, 1990.

D. Quass, A. Gupta, I. S. Mumick, and
J. Widom. Making views self-maintainable for
data warehousing. In Proceedings of the 1996
International Conference on Parallel and Dis-
tributed Information Systems, pages 158-169,
December 1996.

D. Quass. Maintenance expressions for views
with aggregation. In In Workshop on Materi-
alized Views: Techniques and Applications, in
cooperation with ACM SIGMOD, June 1996.

X. Qian and G. Wiederhold. Incremental recom-
putation of active relational expressions. IEEE
Transactions on Knowledge and Data Engineer-
ing, 3(3):337-341, September 1991.

J. D. Ullman. Database and Knowledge-Ease
Systems, Vo1.2. Computer Science Press, 1989.

H. Yang and P.-A. Larson. Query transforma-
tion for PSJ-queries. In Proceedings of the 1987
International Conference On Very Large Data
Bases, pages 245-254, October 1987.

511

