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Abstract 

Data warehouses collect data into materi- 
alized views for analysis. After some time, 
some of the data may no longer be needed 
or may not be of interest. In this pa- 
per, we handle this by expiring or remov- 
ing unneeded materialized view tuples. A 
framework supporting such expiration is 
presented. Within it, a user or adminis- 
trator can declaratively request expirations 
and can specify what type of modifications 
are expected from external sources. The lat- 
ter can significantly increase the amount of 
data that can be expired. We present effi- 
cient algorithms for determining what data 
can be expired (data not needed for main- 
tenance of other views), taking into account 
the types of updates that may occur. 

1 Introduction 

Materialized views are often used to store warehouse 
data. The amount of data copied into these views 
may be very large; for instance, [JMS95] cites a ma- 
jor telecommunications company that collects 75GB 
of detailed call data every day or 27TB a year. Even 
with cheap disks, it will be desirable to remove some 
of the data from the views, either because it is no 
longer of interest or no longer relevant. Often, a 
summary of the removed data will suffice. In the 
telecommunication example, for instance, only de- 
tailed call data for the most recent year, and sum- 
mary data from previous years, may be kept. 

The traditional way of removing data from mate- 
rialized views is deletion. When tuples are deleted 
from a view or a relation, the effect must be prop- 
agated to all “higher-level” views defined on the 
view/relation undergoing the deletion. However, 
sometimes the desired semantics are different. In 
particular, when the data is removed due to space 
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constraints alone, it is desirable not to affect the 
higher-level views. In this paper, we propose a 
framework that gives us the option to gracefully 
ezpcpire data, so that the higher-level views remain 
unaffected and can be maintained consistently with 
respect to future updates. The difference between 
deletion and expiration is further illustrated next. 

EXAMPLE 1.1 Suppose the following base rela- 
tion views copy data from source relations external 
to the warehouse. (These views will be used as a 
running example in this paper.) 

l Customer(cust Id, info) contains information 
about each customer identified by the key 
cust Id. For conciseness, we shall refer to 
Customer as C. 

l Order(ordId, custld, clerk), denoted 0, con- 
tains for each order, the customer who re- 
quested the order and the clerk who processed 
the order. 

l LineItem(partId, ordld, qty, cost), denoted L, 
details the quantity of the parts and the unit 
cost of each part requested in each order. 

Consider a simple materialized view V storing or- 
der information for expensive parts. V is defined as 
a natural join of 0 and L, with the selection con- 
dition L.cost > 99, followed by a projection onto 
relevant attributes. The current state of 0, L, and 
V is depicted in Figure 1. 

In reality, tables 0 and L (often called fact tables) 
can become quite large. Suppose that the warehouse 
administrator decides to delete “old” L tuples with 
ordId < 2. Thus, 11 and 12 are deleted, as if they 
have never existed in L. As a result, ~1 is deleted 
from V, which might not be desirable if users still 
expect V to reflect information about old tuples (es- 
pecially if the view contains summary data). 

The method we propose instead is to expire L tu- 
ples with ordId < 2. Tuple 11 can be safely removed 
from L because ll.cost < 99. On the other hand, 
12 must be retained because it might be needed to 
correctly update V if another tuple with ordld = 1 
is inserted into 0. Notice that V remains unaffected 
by the expiration of L tuples. Furthermore, after 
the expiration, there is still enough information in L 
to maintain V with respect to future updates. 

If we know the types of modifications that may 
take place in the future, we may be able to remove 
tuples like 12. For example, suppose both 0 and 
L are “append-only.” That is, the source relations 
(that 0 and L are based on) never delete tuples. 
Moreover, an insertion to 0 always has an ordld 



0 ordId m&Id clerk 

1 456 Clerk1 
3 789 Clerk2 

L partId ordld qty cost 

1: a 1 1 19.99 
2: b 1 2 250.00 
3: c 3 1 500.00 

V pa&Id qty cost custld clerk 

IQ: b 2 250.00 456 Clerk1 
212: c 1 500.00 789 Clerk2 

Figure 1: Current state of 0, L, and V. 

greater than the current maximum ordId in 0; in- 
sertions to L always refer to the most recent order, 
i.e., the 0 tuple with the maximum ordId. In this 
case, we can expire both 11 and 12 since they will 
never be needed to maintain V. In fact, it is pos- 
sible to expire the entire L and 0 views except for 
the tuple recording the most recent order. In our 
framework, one can define applications constraints, 
such as “append-only,” using a general constraint 
language, so that the system can remove as much 
data as possible. 0 

To recap, although expired tuples are physically 
removed from the extension of a view, they still ex- 
ist logically from the perspective of the higher-level 
views. Our expiration scheme guarantees that expi- 
ration never results in incomplete answers for view 
maintenance queries, given any possible source up- 
dates. Knowledge of constraints on these updates 
can dramatically improve the effectiveness of expi- 
ration. User queries may, however, request data that 
has been expired. In such cases an incomplete an- 
swer must be provided, with an appropriate descrip- 
tion of the available requested data. 

Unfortunately, current warehouse products pro- 
vide very little support for gracefully expiring data. 
Every time there is a need to expire data, it is up 
to the administrator to manually examine view def- 
inition queries and view maintenance queries and to 
check if underlying data is needed for maintenance. 
This “solution” is clearly problematic since not only 
is it inefficient, but it is prone to human error which 
can easily lead to the expiration of needed data. Fur- 
thermore, deciding what is needed and what can 
be expired is complicated by the presence of con- 
straints. If a conservative approach is used (e.g., 
constraints are not taken into account), then the 
storage requirement of the warehouse may become 
prohibitively large. 

In this paper we propose a framework wherein 
expiration of data is managed, not manually, but by 
the system. In particular: 

l The administrator or users can declaratively re- 
quest to expire part of a view, and the system 
automatically expires as much unneeded data 
as possible. 

l The administrator can declare in a general way 
constraints that apply to the application data 
as well as changes to the data (e.g., table 0 is 

append-only), and the system uses this knowl- 
edge to increase the amount of data that may 
be expired. 

l The administrator or users can change frame- 
work parameters (e.g., by defining additional 
views or changing application constraints) dy- 
namically, and the system determines the effects 
of these changes on what data is deemed needed 
and what data can be expired. 

For this framework we develop efficient algorithms 
that check what data can be expired, handle inser- 
tions of new data, and manage changes to views and 
constraints. We also illustrate, using the TPC-D 
benchmark [Corn], the benefits of incorporating con- 
straints into the management of expired data. 

The rest of the paper proceeds as follows. In 
Section 2, we introduce our expiration framework 
and identify problems that need to be solved. The 
central problem of identifying the needed tuples is 
solved in Section 3, while Section 4 extends the 
mechanism to take into account input constraints. 
We illustrate in Section 5 that the “constraint- 
aware” solution can lead to much more data being 
expired. In Section 6, we develop algorithms that 
handle changes to the framework parameters. We 
discuss related work in Section 7. 

2 Framework 

In this section, we present our framework for expira- 
tion. We then give an overview of the problems that 
we address in the rest of the paper to implement the 
framework. 
Tables and Queries: We consider two types of 
warehouse tables: base relations and materialized 
views. Each base relation (e.g., Order) has an ex- 
tension that stores persistently a bag of tuples ob- 
tained from a source relation external to the ware- 
house. Each (materialized) view V has an exten- 
sion that stores the answer to its definition query, 
Def(V), which is of the form r/~~ap(x~e~R). (We 
assume that 7f, 6, and x bag operators.) 

For instance, we can define a view ClerkCust to 
obtain the sum of the recent, expensive purchases 
made by a customer from some clerk. Furthermore, 
ClerkCust only considers old customers that placed 
an order recently for an expensive item. The defini- 
tion query of ClerkCust is as follows. 
~clerk,C.cudtld,SUM(qty+cost) as sum,COUNT(+) as cnt 

g.L.cost>99 A C.custld<SOO A O.ordId>lOOO 
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~L.ordId=O.ordId A O.custId=C.custId 
(CXOXL) 

In general, the project specification A of a definition 
query is a set of attributes and aggregate functions 
(e.g., SUM). If A contains aggregate functions, any 
element in A that is not an aggregate function is 
a grouping attribute (e.g., C.custId). Condition P 
is a conjunction of atomic conditions, like selection 
condition L.cost > 99, and join condition L.ordId = 
O.ordId. Finally, R is a set of tables (i.e., no self- 
joins); each table is either a base relation or a view. 

A view V needs to be maintained when there are 
changes to the tables that V is defined on. For in- 
stance, let us assume that Def(V) is as.b=~.~(SxT). 
We assume that changes to table S are stored in 
delta relation tables AS and vS, where AS con- 
tains the new inserted and updated tuples, and VS 
contains the old deleted and updated tuples. To in- 
crementally maintain V, we compute AV and VV 
using the maintenance queries shown below. 

~As.b=T.c(ASXT) u ~AS.b=AT.e(AsX AT) U 
~s.b=AT.e(SxAT) u ~,s.b=vT.c(VsxVT)(l) 

~,s.bd’.c(VSxT) u flvs.b=aT.c(VSXAT) u 
~s.b=oz’.c(SxvT) u aas.b=vT.,(ASx VT) (2) 

These queries use the pre-state of S and T, i.e., be- 
fore the insertions, and then the deletions, are ap- 
plied. Other queries may be used if updates are ap- 
plied differently, but they should still have the same 
form. We use Maint(V) to denote the set of main- 
tenance queries for computing the insertions to and 
deletions from V. 
Expiration: A user may issue an expiration request 
of the form gp(T) on any base relation or view T. 
This requests that all the T tuples in up(T) be re- 
moved from T’s extension. Once a tuple is expired, 
it can no longer be accessed by any query. How- 
ever, in our framework, we only expire ap(T) tu- 
ples that are not “needed” (later defined formally) 
by maintenance queries. Conceptually, we partition 
the extension of each base relation or view T into 
T+, T-, and Texp, as shown in Figure 2. The tuples 
in T+ are accessible to any query and are needed 
by maintenance queries. The tuples in T- are ac- 
cessible to any query but are not needed by mainte- 
nance queries. The tuples in Texp are expired, are 
not accessible, and are not needed by maintenance 
queries. The tuples in T+ and T- comprise T’s real 
extension, which is the extension kept persistently. 

The tuples in Tt , T- , and Texp comprise T’s full 
extension. (The full extension of T is referred to 
in queries simply as ‘7” .) The conceptual parti- 
tions T+ and T- are realized in T’s real extension 
by keeping a boolean attribute needed for each tu- 
ple. The needed attribute of a tuple t is set to true if 
t E T+ and false otherwise. Given an expiration re- 
quest up(T), conceptually the request is satisfied by 
removing ap(T-) from T- and “moving” them to 
Texp, as depicted in Figure 3. We keep the most re- 
cent expiration request up!(T) on T in LastReq(T). 
When a new expiration request up(T) is issued, the 
request is modified as ap,pl(T) and LastReq(T) is 
set to ~pvp~ (T). This is done because we do not 
“unexpire” any expired data in our framework. 
Effect of Expiration on Queries: Although all 
queries (user queries, maintenance queries and def- 
inition queries) are formulated in terms of full ex- 
tensions, only the tuples in the real extensions can 
be used in answering the query. Conceptually, the 
answer returned for & is the answer for the “query” 
Access(Q), which is the same as & but with each 
T referred to in & replaced by Tt U T-. Similarly, 
the complete answer to Q is the answer returned 
for the “query” Complete(Q), which is the same as 
Q but with each T referred to in Q replaced by 
Tt U T- U Terf’ (i.e., suppose that tuples in Texp 
are accessible to Complete(Q)). We say the answer 
to Q is complete if the answer to Access(Q) is the 
same as the answer to Complete(Q). Otherwise, the 
answer is incomplete. We say that a tuple t E T 
(i.e., t E (Tt U T- U Te”P)) is needed in answering 
Q if the answer to Complete(Q) is different depend- 
ing on whether t is removed from T’s extension or 
not. This definition of “needed” works for aggre- 
gate views since we require the COUNT function to be 
included. This is reasonable because COUNT is help- 
ful in maintaining views with AVG, SUM, MAX or MIN 
([QuW). 

Since we guarantee that only tuples not needed 
by maintenance queries can be expired, the answer 
to any maintenance query Q is always complete. On 
the other hand, the answer to a user or definition 
query Q may be incomplete. In case of a user query, 
a query Q’, where Access(Q) = Complete(Q’), is re- 
turned in addition to Q’s incomplete answer. Q’ 
is used to help describe the incomplete answer re- 
turned. In case of a definition query Q = Def(V), 
if the answer to Q is incomplete, V is not initialized 
and a query Q’, where Access(Q) = Complete(Q’), 
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is returned as an alternative definition query for V. 
Constraints: To help decrease the number of tu- 
ples that are deemed needed (see Figure 4), we may 
associate with each table T a set of constraints, 
Constraints(T) which describe the contents of the 
delta relations AT and VT in a constraint specifi- 
cation language (Section 4). The constraints of base 
relations are provided by the administrator based 
on his knowledge of the application (e.g., “table 0 
is append-only”). The constraints of a view V are 
computed from the constraints of the tables that V 
is defined on. We do not assume that the input 
constraints characterize the application completely. 
We only assume that the administrator inputs con- 
straints that he knows are implied by the appli- 
cation. In the worst case, the administrator may 
not know any guarantees on the delta and may set 
Constraints(T) to be empty. 
Framework Summary: Table 2 gives a summary 
of the framework. Henceforth, we denote the set of 
all tables as 7, the set of all constraints as C, and the 
set of all maintenance queries as E. There are several 
problems that need to be solved to implement our 
framework: 

1. 

2. 

3. 

4. 

5. 

6. 

Initial Extension Marking: Given an initial 
configuration of tables ‘T where none of the ta- 
bles have any expired tuples yet, we must iden- 
tify and mark which tuples are needed by the 
maintenance queries & by setting the needed at- 
tribute of these tuples to true. 
Initial Extension Marking With Con- 
straints: This problem is the same as (1) but 
in addition, we are also given a set of constraints 
C, which can potentially decrease the number of 
tuples whose needed attribute is set. 
Constraints of Views: In solving the first two 
problems, we must compute the constraints of 
each view V E ‘T from the constraints of under- 
lying tables. 
Incomplete Answers: For each user query Q, 
we must determine if the answer to & is com- 
plete. If not, we must determine a modified 
query Q’ whose complete answer is the same as 
the incomplete answer returned for Q. 
Changes to 7: When a new view V is being 
added to the initial configuration of tables 7, 
we must determine if the answer to Q = Oef (V) 
is complete. Techniques for (4) apply here. If 
the answer to Q is not complete, we must de- 
termine a modified view definition query Q’ as 
a suggested alternative definition query. Once 
Def (V) has a complete answer, for each table T 
that V is defined on, we must determine which 
tuples are now needed because of the addition 
of V, and mark these tuples appropriately. 
Changes To C: If the constraints are changed 
to expire more tuples, we must determine the 
effects of the change on the extension marking 
of each table T. 

7. Insertions: If there are insertions AT to a ta- 
ble T, we must determine the needed attribute 
value of each tuple inserted. (There is no prob- 
lem with deletions.) 

Note that the first two problems need to be solved 
once, when the initial configuration is given. Hence, 
efficiency is not at a premium. The third, fifth and 
sixth problems are also solved infrequently. On the 
other hand, the fourth and seventh problems are 
solved fairly frequently and require reasonably ef- 
ficient solutions. In the rest of the paper, Section 3 
is devoted to the first problem; Section 4 is devoted 
to the second problem; and Section 6 is devoted to 
the last three problems. The algorithms developed 
are reasonably efficient. Due to space constraints, 
we do not present our solution to the third problem. 
That is, for this paper, we assume that the adminis- 
trator provides not only the constraints of the base 
relations but also the constraints of the views. We 
also do not present our solution to the fourth prob- 
lem. Our preliminary solutions to these problems 
appear in [LGM97]. 

3 Extension Marking 
In this section, we assume we are given an initial 
configuration 7 (base relations and views) and none 
of tables have any expired tuples yet. For each table 
T E 7, we identify which T tuples are needed by 
maintenance queries. We mark the needed tuples by 
setting the needed attribute. 

As mentioned earlier, this marking is done only 
when the initial configuration is submitted and not 
for each expiration request. Once the marking is 
done, any subsequent expiration request ap(T) is 
processed very efficiently by removing the tuples 
bpAneeded=false(T) from T’s real extension. 

Before we present how the needed tuples are iden- 
tified, we introduce maintenance expressions, which 
are subqueries of maintenance queries. For instance, 
suppose we have a view V whose definition query is 
of the form X~ap( XRERR), where A does not have 
any aggregate functions. The maintenance queries 
(e.g., Queries (1) and (2)) of V are of the form 

where Ri may include delta relations. We call each 
subquery rA,gp, ( XRE~, R) a maintenance expres- 
sion. Notice that if a tuple is needed by some 
maintenance expression, it is needed by some main- 
tenance query. Also, if a tuple is not needed by 
any maintenance expression, it is not needed by any 
maintenance query. In [GMLY98], we show that 
the maintenance queries of aggregate views (such 
as ClerkCust) can also be decomposed into main- 
tenance expressions. Henceforth, we use E for the 
maintenance expressions of 7. 

We now present a lemma that defines a function 
Needed(T, E) and identifies using this function, all 
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Table 1: Summary of Framework 
base relation T 1. real extension (T+ UT-); 2. full extension (T+ U T- U Te’P); 

3. Constraints(T); 4. LastReq(T) 
view T 1. real extension (T+ U T-j; 2. full extension (T+ U T- U Terp); 

3. Constraints(T); 4. De@); 5. Maint(T); 6. kastReq(T) ” 
delta relation AT extension with no conceptual partitions) containing insertions to T 
delta relation VT extension with no conceptual partitions) containing deletions from T 
expiration request bp (T) satisfied by removil _ ng a7~tT-j from T’s real extension \ , 

query Q refers to full extensions (e.g., as “T”) only and never partitions 
user query CJ 

definition query Q 
- 1- 

mamtenance query Q 
7 

1. cannot refer to delta relations; 2. if answer is incomplete, 
Q’ (Access(Q) =Complete(Q’)) is returned to describe incomplete answer 
1. cannot refer to delta relations: 2. if answer is incomnlete. 
Q’ (Access(Q) =Complete(Q’)) ’ 

L I 

is returned as alternative definition 
1. can refer to delta relations; 2. answer IS always complete 
set of all warehouse tables 

c UTF7 Constraints(T) 
& view vF7 Maint(V) 

and only the T tuples that are needed by the main- 
tenance expressions in E. We refer to the following 
functions in the lemma: Closure, Ignore, and Map. 

Function Closure(P) returns the closure of the 
input conjunctive condition ([UllSS]). 

Function Ignore(P, 7) modifies the conjunctive 
condition P by replacing any atomic condition 
that uses an attribute of a table in 7 with true. 
For instance, if P is R.a > S.b A S.b > T.c, 
Ignore(P, {S}) ’ t IS rue A true or simply true. No- 
tice that Ignore(Closure(P), {S}) is R.a > T.c. 

Function Map( E, T) acts on a maintenance expres- 
sion E and returns a query that identifies the T tu- 
ples needed by E. 

Definition 3.1 (Map) Let E be r~cp(x~~~R), 
and 2, be the delta relations in R. Map(E,T) is {} 
if T $ R. Otherwise, Map(E,T) is 
~A~~=~(T)~‘I~~~~~(cI~~“~~(~),‘D~) ( x RE(R-qR), where 

V’ is V - {T}. 0 

That is, if T is not referenced in E, Map returns {}. 
This is the common case since most maintenance 
expressions do not refer to a specific table T. If T 
is referred to in E, Map returns a new expression 
obtained by first removing the delta relations in 2) 
from the cross product. Then, the closure of the 
condition P is computed. Then, P is modified to 
ignore any atomic condition that refers to any delta 
relation. Finally, the projected attributes is changed 
to Attrs(T), the attributes of the table T. 

Lemma 3.1 Given a table T and a set of mainte- 
nance expression &, Needed(T, E) is defined as 

U WE, T). 
EEE 

The query %Att,,(TINeeded(T,f) returns all and 
only the tuples in T that are needed by the mainte- 
nance expressions in 8. cl 

Note that Needed may list a needed tuple t E T 
more times than t appears in T. Hence, the semi- 
join ([x) operation, which is equivalent to an exists 
condition (e.g., SQL EXISTS condition), is used to 
obtain the T tuples needed for f. The proof of 
Lemma 3.1 is in [GMLY98]. We give the intuition 
behind the proof in the next example. 

EXAMPLE 3.1 Suppose we are given one of the 
maintenance expressions of ClerkGust as the main- 
tenance expression E in question. 
E = ~AO.clerk,C.custId,L.gty,L.eost 

~L.cost>99hC.custld<500hA0.ordld>1000 

~L.ordId=AO.ordId/rAO.cu~tId=C.custId 
(CxAOxL) 

Let us consider what L tuples are needed by E. 
We claim that Map(E, L), shown below, identifies all 
these L tuples. 
~Attrs(L)~L.cost>99hC.cust~d<500AL.ordld>1000(~~~) 

Notice that Map(E, L) excludes A0 from the cross 
product and consequently ignores all the atomic con- 
ditions in E that refer to A0 attributes. Intuitively, 
this means that we cannot say that an L tuple tL is 
not needed even if there does not exist a A0 tuple 
that tL can join with. This is reasonable because 
although tL may not join with any of the current in- 
sertions to 0 (i.e., current extension of AO) , it may 
join with future insertions (i.e., extension of A0 at 
some later point in time). We can only set tL.needed 
to false if for any AO, tL only joins with A0 tuples 
that are not needed themselves. For instance, any 
A0 tuple that has an ordld less than or equal to 
1000 is not needed in answering E. Since there is an 
atomic condition L.ordId = AO.ordId in E, any L 
tuple that has an ordId less than or equal to 1000 is 
also not needed in answering E. This illustrates the 
need for computing the closure of the atomic con- 
ditions before ignoring the atomic conditions that 
use delta relation attributes. Thus, in our example, 
Map(E, L) has the atomic condition L.ordId > 1000. 
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While Nap(E, L) identifies all the needed L tu- 
ples, it may list an L tuple TV more times than 
tL appears in L. For instance, Map(E, L) per- 
forms a cross product between C and L without 
applying any conditions between them. Hence, 
Map(E, L) lists TV as many times as there are C tu- 
ples. In report [GMLY98], we discuss how to make 
Nap( E, L) more efficient by avoiding cross products. 
Thus, to obtain the correct bag of tuples, the query 
L D<Attrs(L) Nap(E, L) is used. 0 

4 Extension Marking With Con- 
straints 

Given a set of tables 7, maintenance expressions 
8, and now a set of constraints C, our goal is to 
mark the tuples that are needed by the maintenance 
expressions. The constraints may lead to a decrease 
of the number of needed tuples. 

Marking tuples entails solving two problems. 
First, the maintenance expressions in & need to be 
modified using C to produce a new set of expres- 
sions EC. Second, the function Needed(T, E) needs 
to be modified to Neededc(T,&c) that acts on the 
new set of maintenance expressions. Needed is not 
adequate because it assumes a maintenance expres- 
sion of the form rAa~( x R~RR), which is devoid of 
exists and not exists conditions (expressed us- 
ing the D< and D< operators). Unfortunately, the 
expressions in & may contain such conditions. 

Before we solve these two problems, we present a 
constraint language CL for specifying the constraints 
in C. In Section 4.2, we give the algorithm that uses 
C to produce & from E. We present in Section 4.3 
the function Needek that acts on EC. 

4.1 Constraint Language 

A CL constraint is an equivalence conforming to one 
of the two forms shown below, where each R and T 
is either a base relation, a delta relation or a view. 

UP LNS (~RERR)--P,,,(xRERR)D<T 

UP LH.5 (xRE~R)~~P~~~(xRERR)D<T 

A CL constraint c states that the query on c’s left 
hand side is guaranteed to return the same bag of 
tuples as the query on c’s right hand side. We de- 
note the query on the right hand side and the left 
hand side of a constraint c as RHS(c) and LHS(c), 
respectively. In any constraint c, the conditions in 
RHS(c) logically imply the conditions in LHS(c) 
(i.e., pRHS * ?~jfS). Also, exists or not exists 
conditions can be introduced in RHS(c). Even 
though RHS(c) h as more conditions than LHS(c), 
constraint c states that the two queries are equiva- 
lent. 

In the discussion, we often refer to a constraint c 
of the form R z apRNS (R)XT (or ET) as context- 
free, since R can be substituted by RHS(c) in any 
query that R is in. More general constraints that 

have selection or join conditions on the left hand 
side are called context-sensitioe. 

CL can express many constraints that occur in 
warehousing applications as we illustrate next. (We 
refer the reader to [GMLY98] for a discussion of CL’s 
expressibility.) Furthermore, we will see that CL’s 
syntax is particularly well suited for modifying main- 
tenance expressions. 

EXAMPLE 4.1 Figure 5 gives the CL constraints 
which an administrator may input because they are 
implied by the scenario in Example 1.1. Note that 
most of the constraints are context-free. We now 
give the intuition behind each constraint. 
Append-only constraints: We alluded in Exam- 
ple 1.1 that 0 is append-only. That is, no tuple is 
ever deleted from 0 and every inserted 0 tuple has 
an ordld value greater than the maximum ordld 
value so far. The append-only behavior of 0 is cap- 
tured by Constraint (3), which states that ~0 is 
always empty, and by Constraint (4), which states 
that the ordld values of the inserted 0 tuples are 
greater than the maximum ordId value so far. L 
also has an append-only behavior which is captured 
in Constraints (5), (6) and (7). Intuitively, inser- 
tions to L represent new line items of the most re- 
cent order (0 tuple with maximum ordld) or of new 
incoming orders (A0 tuples) . Constraints (6) and 
(7) are used to describe the insertions to L. That 
is, inserted L tuples that join with A0 have ordld 
values greater than the maximum ordId. Inserted L 
tuples that join with 0 have ordld values equal to 
the maximum ordld. 
Key constraints: The schema in Example 1.1 as- 
sumes that custld is the key of C. The constraints 
below are implied by this key constraint. Con- 
straints (8) and (9), which use the table renaming 
operator p, enforce the functional dependency im- 
plied by the key constraint. Finally, Constraint (10) 
enforces that none of the keys of the inserted tuples 
are in C. Similar constraints are implied by the as- 
sumptions that ordld is the key of 0 and both ordId 
and partld make up the key of L. 
Referential integrity constraints: Given the 
schema introduced in Example 1.1, it is reasonable 
to assume that there is a referential integrity con- 
straint from O.custId to key C.custId. Constraints 
(11) to (13) express this assumption. Similar con- 
straints are used to express a referential integrity 
constraint from attribute L.ordId to key O.ordId. 
Weak minimality constraints: It is also reason- 
able to assume that deletions from C are weakly min- 
imal [GL95]. That is, all the deleted C tuples were 
previously in C (Constraint (14)). 0 

4.2 Modifying Maintenance Expressions 

Given a maintenance expression E, we now mod- 
ify E by applying a given set of CL constraints 
to it. Intuitively, since LHS(c) and RHS(c) of a 
CL constraint c are equivalent, whenever LHS(c) 
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vo - ~false(VO) 
- 

A0 - AO~AO.ordId<O.ordIdO 

VL q ~false (VL) 

crAo.ordId=aL.ordrd(AOXAL) = ~AO.ordId=AL.ordId(AOX (ALD<AL.ordIdlo.ordIdO)) 

(3) 

(4) 

(5) 

(6) 
~O.ordId=AL.ordId(OXA~) = 

- 
~O.ordId=AL.ordId(OX(~J=AL.ordId<O.ordIdO)) (7) 

c f 
- 

Ct><(C. custId=C’.custId)h(C.injo#C’.injo) PC’(c) (8) 
- 

vc = VCK( c. v custId=vC’.custId)h(VC.in jo#vC’.in jo) PvC,(vc) (9) 
- 

AC q AC D<AC.custId=C.custId c 

0 = 0 ~O.custId=C.eustId c 

A0 = A0 KAO.eustId=C.custId c 

vo q vo KvO.custId=C.custId c 

vc = vcy c. v custId=C.partId)h(vC.in jo=C.in jo) c 

Figure 5: Example CL Constraints 

(10) 

(11) 

(12) 

(13) 

(14) 

“matches” a subquery of E, we can substitute 
RHS(c) for LHS( c in E. We say a constraint c is ) 
applied to E when we successfully match LHS(c) to 
a subquery of E and replace the matching subquery 
with RHS(c). The challenge is of course in deter- 
mining whether LHS(c) matches some subquery of 
E since a syntactic check does not suffice. The next 
example illustrates how a constraint is applied. 
EXAMPLE 4.2 Most of the constraints in Exam- 
ple 4.1 are context-free and applying them is triv- 
ial. For instance, applying Constraint (3) simply re- 
quires finding occurrences of ~0 in a maintenance 
expression E and replacing it with ar,l,,(vO). To 
make the example more interesting, let us suppose 
constraint c is Constraint (7), and apply it to the 
following maintenance expression E of ClerkCust. 
~O.clerk,C.cu3tId,AL.~t~,AL.~~~t 

~ALmst>99AC.custId<5OOAO.ordId>lOOO 

~O.ordId=AL.ordIdAO.custId=C.custld 
(CxOxAL) 

Maintenance expression E can be rewritten as 
~O.clerk,C.custId,AL.~t~,AL.eost 

~AL.cost>99AC.custId<500AO.ordId>1OOO 

~O.custId=C.custId 

(CX~O.ordId=AL.ordld(OXAL)). 
Clearly LHS( c matches a subquery of E. Hence, ) 
we can replace the matching subquery with RHS(c), 
yielding the following maintenance expression. 
~O.clerk,C.custId,AL.qty,ALmst 

~AL.cost>99AC.eustId<500AO.ordId>1000 

~O.ordId=AL.ordIdAO.cuatId=C.eustId - 
(cxox (AL ~L.ordId<O.ordId 0)) 

0 

The previous example illustrated algorithm Apply 
(Algorithm 4.1, Figure 6) for applying a constraint 
c on a maintenance expression E. Apply first checks 
if the tables in LHS(c) are also in E (Line 1). This 
check suffices since we only handle view definitions 
with no self-joins. It then checks if the conditions in 
E imply the conditions in LHS(c) (Line 2). This can 
be done efficiently because the conditions involved 

are conjunctive [Ull89]. (It can be done in O(n3) 
time, where 72 is the number of distinct attributes 
in the conditions.) If both checks are passed, then 
LHS(c) matches a subquery of E. For instance, - 
suppose that E is rA~p( XR~RR)IXS..D<T.., and 
LHS(c) is gp,,,( x~~uU). If U C R and P + 
PLHS, it is guaranteed that E is equivalent to- 
~TTA~P((xRE(R-u)R)x~~,,,(xu~uU))D<S..D<T... 

The subquery of E that matches LHS(c) can then 
be replaced by RHS(c). Redundant conditions are 
eliminated in Line 3 of Apply by solving another im- 
plication problem. 

Although Apply always modifies E to an equiva- 
lent expression, it is not complete since it may not 
apply a constraint even when equivalence is pre- 
served. This is because Line 2 only takes into ac- 
count the selection and join conditions in P, but 
not the exists and not exists conditions given 
by the D< and D< operators. (Exists conditions 
can be handled but it is not shown in Apply.) To 
obtain a complete algorithm, the implication prob- 
lem P’ j PLHS must be solved, where P’ is the 
conjunction of all the selection, join, exists and 
not exists conditions. Unfortunately, there are no 
known complete algorithms to solve the general im- 
plication problem with a mixture of existential and 
universal quantifiers ([YL87]). 

In Section 4.3, we develop an algorithm to com- 
pute the closure of a conjunctive condition which 
may include exists conditions but only atomic not 
exists conditions. This algorithm can be useful in 
solving a more general implication problem than the 
one in Line 2. However, we do not show it here 
since taking into account exists and not exists 
conditions is not critical in Apply. This is because 
in practice, many constraints are context-free and 
can be applied easily. Context-sensitive constraints, 
like the append-only and implication constraints in 
Example 4.1, usually only require examining the se- 
lection and join conditions of E. 

506 



Algorithm 4.1 Apply 
Input: maintenance expression E, CL constraint c 
Output: true if c is applied, false otherwise 
Side effect: may modify E 
Let E be of the form: ~~(~~F(xR~RR)KS..D<T) 
Let c be of the form: 

2. If P + PLHS 
3. Remove conditions in P implied by PRHS 
4. E + ~d(~7’APRHS(XRcRR)) 

b<S..bW..EZT 

5. Return true 
6. Return false 0 

Algorithm 4.2 Modi.fy 
Input: maint. expression E, CL constraints C 
Side effect: may modify expression E 
1. change c true 
2. While (change = true) 

3. change t false 
4. For (each constraint c in C) 

5. If (Apply(E,c) = true) 
6. Remove c from C, change t true 0 

Figure 6: Modifying a Maintenance Expression 
So far, we have discussed how a single constraint 

is applied to E. When there is a set of constraints to 
be applied, the order of application does not matter 
([GMLY98]). Algorithm 4.2 (Figure 6) shows the 
algorithm Modify for applying a set of constraints C 
to E. Although efficiency is not at a premium when 
marking extensions, Modify has a tolerable overall 
complexity of O((C12 . n3), assuming the check in 
Line 1 of Apply is done in constant time. (C( is the 
number of constraints and n is the number of distinct 
attributes used in P of E. 

4.3 Deriving Needek 

Given the maintenance expressions 8, we can use 
Modify to alter each expression in 8 based on C, 
and produce a new set of expressions &c. In this 
section, we first discuss why using Needed on & is 
not satisfactory. We then develop a fairly efficient 
Neede& function which handles exists and some 
not exists conditions. In the latter part of the 
section, we give a lemma that formally describes the 
properties of Neede& . 
Problem with Needed: Strictly speaking, Needed 
was not defined to work with maintenance expres- 
sions with exists and not exists conditions. Nev- 
ertheless, function Needed(T, &) can be adapted 
to apply to EC by modifying Map(E, T). That is, 
for each E = TA~~(x~~~R)KS..~%J.. in EC, 
Map( E, T) returns the following query. 

The above query still works but may deem more 
tuples as needed since Closure only takes into ac- 
count the selection and join conditions but not the 
exists and not exists conditions. 

Later in this section, we develop a new func- 
tion Closurec, which takes into account exists and 
atomic not exists conditions. We then define Mapc 
similar to Map but using Closurec, and Neededc 
similar to Needed but using Mapc. Before we derive 
Closurec, we illustrate why taking into account the 
exists and not exists conditions is important. 

EXAMPLE 4.3 In this example, we compare the 
tuples returned by Map(&) 0) and Mapc ( EC, 0)) 
where EC is obtained by applying constraints to 
E = nO.elerk,AC.eustZd,L.qty,L.cost 

~L.cost>99AAC.custId<5OOAO.ordZd>1OOO 

~O.ordZd=L.ordZdhO.custld=aC.custld 
(ACxOxL). 

Let us suppose that only the constraints express- 
ing the following information are applied to E: (1) 
custId is the key of C (Constraint (10)); and (2) a 
referential integrity holds from O.custId to C.custId 
(Constraint (11)). The modified maintenance ex- 
pression EC is as follows: 
EC = ~O.clerk,AC.eustId,L.gty,L.eost 

~L.cost>99AAC.custld<5OOAOmdld>1OOO 

~O.ordZd=L.ordZdAO.custld=hC.eustld 

((AC D<AC.eustZd=C.custZdC) X 

(0 D<O.eustZd=C.custIdC)XL). 

Notice that Map( EC, 0) returns 
rAttm(O) 

((0 KO.custZd=C.custZdC) x L), 

after computing the closure of the selection and join 
conditions, ignoring the conditions referring to AC, 
and removing AC from the cross product, 

On the other hand, let us suppose that Mapc uses 
the function Closurec to “handle” exists and not 
exists conditions obtaining the following expres- 
sion from EC. 

~O.clerk,AC.eustZd,L.gty,L.cost 

~L.cost>99AAC.custId<5OOAO.ordld>1OOO 

~O.ordZd=L.ordZdAO.custZd=AC.custZd 

((AC D<custIdC KcustIdC) X 

(0 D(O.custZd=C.custZdAO.~~~tZd#C.custldC 

&ustZdC) XL) 

Given the above expression, Mapc returns 

rAttrs(0) 

((0 IXO.custId=C.custIdAO.custZd#C.custldC 

D<O.custZd=C.custIdC) XL). 

This query has an empty answer because the exists 
condition on 0 is contradictory! Hence, Mapc ( EC, 0) 
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states that no 0 tuple is needed in answering E, 
which makes sense because the new customers do not 
have any orders yet according to the constraints. On 
the other hand, Hap( EC, 0) returns a possibly severe 
overestimate of the 0 tuples needed. 0 

Alternative representation of K’s and [x’s: 
For convenience, we develop Closurec to work on 
maintenance expressions that represent exists and 
not exists conditions differently. Instead of rep - 
resenting them using the D< and D< operators, we 
represent them as conditions that are combined 
with the selection and join conditions. For in- 
stance, the query R D<R.a=S.a S is represented 
at? %,~S(R.ca=&.cz)(R), where Si is a tuple vari- 
able ([Ull89]). The query R D<R,a=S.o S is repre- 
sented as 0 ~3.5f”~S(R.a=S~‘~.a) (R), or alternatively 

~ysa-’ ES(R.~#S;“.~) (R). We call this new represen- 
tation the quantifier representation, and the previ- 
ous one, the operator representation. 

In the quantifier representation, we make implicit 
tuple variables, like “R” in the exists condition 
3Si E S(R.a = Si .a), explicit. For instance, given 
the maintenance expression EC as shown Example 
4.3, its quantifier representation is 
~Oo.clerk,ACo.custId,lo.gty,lo.cost a?,(ACxOxL). 

P’ in this case is 
Lo.cost > 99 A AC,.custId < 500 A Oo.ordId > 1000 A 

Oi,.ordId = Lo.ordId A Oo.custId = ACo.custId A 

VC;” (A& .custId # C;S3.custId) A 

3C1 (00 .custId = Cl .custId). (15) 

We assign the tuple variables mechanically as fol- 
lows. For a table T appearing in the cross product 
(e.g., AC), we assign the tuple variable To (e.g., 
AC’s). For a table T appearing in an exists con- 
dition R D< T, we assign a unique tuple variable 
Ti (e.g., Cl), where i > 0. For a table T appear- 
ing in a not exists condition R D< T, we assign a 
unique tuple variable qf”j (e.g., C,““‘). Henceforth, 
we use “Y to denote either a free variable To, or an 
existentially quantified variable Ti, or a universally 
quantified tuple variable TJf*‘. 
Deriving Closurec, Mapc, and Neeededc: In 
general, given a maintenance expression E = 
rAap( x RERR) in quantifier representation, we can 
always obtain the prenez normal form (PNF) of ‘P, 
where all the quantifiers precede a quantifier-free 
condition expression ([PMWSO]). That is P in PNF 
is of the form 3Ri..3Sj..VT,““‘..VUPSi(P’), where P’ 
is a quantifier-free condition. 

Assuming P’ is conjunctive for now, Closurec 
simply derives new atomic conditions from ones 
that use universally quantified tuple variables (e.g., 
Tr”j), and then uses the old Closure function to 
obtain the closure. More specifically, Closure uses 
standard axioms (e.g., transitivity) to derive atomic 

conditions. Closurec adds the following two ax- 
ioms to derive additional atomic conditions from 
ones that use universally quantified variables. 

1. Let 0 be =,f,<,<,>, or >. 5’:“j.a 6 T.b a 
S.a ,tJ T.6. 

2. Sy”’ .a = Tj .b + .!?:“‘.a = S;“j.a. 

The first axiom states that if 5’f”j.a 0 T.6 holds, it 
means that a attribute of all the S tuples are related 
to T.b in the same way. Hence, an atomic condition 
S.a 6 T.b holds regardless of whether S is existen- 
tially or universally quantified. The second axiom 
states that if Sy”j .a is equated to an attribute of an 
existentially quantified tuple variable, it must be the 
case that the a attributes of all the S tuples have the 
same value. We now illustrate Closurec. 

EXAMPLE 4.4 Let us suppose we are given 
a maintenance expression E = rAap( XRER R), 
where P is Expression (15). Since both (2’1 and 
Cyi are tuple variables ranging over the domain of 
table C’s tuples, and Ci”’ is a universally quanti- 
fied tuple variable, any atomic condition that ap- 
plies to Ci*j must also apply to Cl. That is, a 
condition that applies to all tuples must apply to a 
particular tuple. For instance, the atomic condition 
A&.custId # C;“j .custId implies the atomic con- 
dition ACo.custId # Cl.custId. Notice that when 
Closure is run on (P’~(ACs.custld # Cl.custId)), 
the contradictory atomic conditions 00 .custId = 
Cl.custId and Oo.custId # Cl.custId are derived. 
Hence, Map(0, E) is guaranteed to return an empty 
answer which is consistent with Example 4.3. 0 

Algorithm 4.3 Closurec 
Input: conjunctive condition P possibly 

with exists and (atomic) not exists 
conditions in quantifier representation 

Output: closure of P 
1. Derive PNF of P of the form iL.ZL.V..V..(P’), 

where P’ is quantifier-free 
2. Derive P” from P’ based on the axioms used 

by Closure plus the two additional axioms for 
universally quantified tuple variables. 

3. Return 3..3..V..V..(Closure(P”)) 0 

Figure 7: Closurec 
The example illustrated Closurec (Algorithm 

4.3, Figure 7) which computes the closure of a con- 
junctive condition P, possibly with exists and not 
exists conditions. Closurec first converts P to its 
PNF, obtaining a quantifier-free condition P’ (Line 
1). To ensure that P’ is still conjunctive, we assume 
that not exists conditions is a single atomic condi- 
tion or a disjunction of atomic conditions. Any not 
exists condition that does not conform to the previ- 
ous restriction is ignored (replaced with true) when 
computing the closure. Using the axioms used by 
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Closure plus the two additional axioms introduced, 
Closurec derives the atomic conditions implied by 
P’ (Line 2). We refer the reader to [GMLY98] for 
more details on how the axioms are applied. 

Using Closurec, we define Nape to be the same 
as Map except that it uses Closurec, and Neededc 
to be the same as Needed except that it uses Hapc. 
The next lemma formally describes the properties of 
Neededc. (See [GMLY98] for the proof.) 

Lemma 4.1 Given a table T and a set of mainte- 
nance expression EC obtained by applying constraints 
C on E, the query 

Need&@‘,&) = IJ Map,(&,T), 
EC EEc 

returns all the tuples in T that are needed by the 
maintenance expressions in 8~. If all constraints 
in C using not exists conditions are of the form 
OP LHS (XRERR) = bP,,s( XRERR)D<~T where p 
is a disjunction of atom& conditions, the query 
mAtt,(qNeeded(T, 8) returns only the tuples in 
T that are needed by the maintenance expressions in 
EC. Furthermore, for any set of constraints C, it is 
guaranteed that Neede& (T, EC) 2 Needed(T, Ic) E 
Needed(T, E). 0 

5 Discussion 

Although Lemma 4.1 itself does not guarantee that 
Neededc always returns strictly fewer tuples than 
Needed, we now illustrate that in practice, Neededc 
often returns much fewer tuples. 
ClerkCust View: The ClerkCust view has 27 
maintenance expressions, which we assume to com- 
prise E. C are the various in Example 4.1. Table 
5 gives the queries returned by Needed(T, &) and 
Needek(T,&) for tables L, 0 and C. 

The second row of Table 5 shows that 
Neededc (L, &) identifies accurately that none of the 
L tuples are needed by E, while Needed(L, E) deems 
a large number of L tuples as needed. The third 
row of Table 5 shows that Neededc(O,&) identi- 
fies accurately (using a not exists condition) that 
only the one 0 tuple with the maximum ordld 
value is needed. On the other hand, Needed(O,l) 
deems a large number of 0 tuples as needed. The 
fourth row of Table 5 shows that Neededc (C, EC) and 
Needed(C,&) identify the same bag of needed tu- 
ples. This illustrates that using Neededc does not 
always help in reducing the number of tuples that 
are deemed needed. 
TPC-D Benchmark: We now investigate what 
TPC-D ([Corn]) b ase relation tuples are needed as- 
suming certain TPC-D queries are used as views. 
In particular, we focus on 4 out of the 9 TPC-D 
base relations: LINEITEM (L), ORDER (0), CUS- 
TOMER (C) and PART (P). Fact tables L and 0 
contain 86% of the tuples in the benchmark. Hence, 
expiration requests will likely be issued on these two 
tables. We consider two views, V3 and Vs, whose 

definition queries are the TPC-D queries Q3 (“Ship- 
ping Priority Query”) and Q5 (“Local Supplier Vol- 
ume Query”), respectively. We assume that either 
the maintenance expressions of V! or V’s comprise E. 
Finally, the set of constraints C we consider is based 
on the TPC-D “update model” specification. 

To simplify the presentation, we do not give the 
queries returned by the functions but instead give 
the percentage of the base relation tuples that are 
needed. We obtained this percentage for each table 
T (i.e., L, 0, C, and P) by running the queries 
returned by Neededc (T, &cc) and Needed(T, &). We 
then counted the number of tuples in the result and 
divided it by the number of T tuples. 

Table 5 gives the tuples that are needed by the 
maintenance expressions of Va assuming the con- 
straints in C. Neededc identifies that none of the 
L and 0 tuples are needed, and 20% of the C tuples 
are needed. Since P is not referred to in Vz’s defini- 
tion query, none of its tuples are needed to maintain 
Vs. None of the L and 0 tuples are needed because 
of the append-only behavior of L and 0 specified in 
the benchmark, i.e., AL tuples only join with A0 
tuples and vice versa. Only 20% of the C tuples are 
needed because Neededc applies a selection condi- 
tion on C with 20% selectivity. On the other hand, 
Needed deems all of the L and 0 tuples as needed. 

Table 5 shows similar results assuming the main- 
tenance expressions of view Vs comprise E. Note 
that both Neededc and Needed identify that all the 
tuples of C and P are needed. This is because Vs ‘s 
definition query does not apply any selection con- 
ditions on C nor P. Had there been appropriate 
constraints, then Needee would mark some C and 
P tuples as unneeded. 

The previous study shows that using constraints 
allows greater flexibility for expiration and can sig- 
nificantly decrease storage requirements when data 
is no longer needed. Furthermore, it is likely that 
the efficiency of view maintenance is improved be- 
cause the expired data is no longer processed by the 
maintenance expressions. 

6 Dynamic Setting 

In the previous two sections, we focused on an ini- 
tial static setting wherein we are given a set of tables 
7, a set of maintenance expressions E, and a set of 
constraints C. In this section, we explore how to 
cope with a dynamic setting wherein some of these 
parameters can be changed. We also drop the as- 
sumption that none of the tuples have been expired. 

Before discussing the algorithms, it is important 
to note that even when parameters change, an ex- 
piration request o’p (T) is satisfied by removing the 
tuples in ~Ptmeeded=false(T)~ 

Also, note that the queries returned by Neededc 
(and Needed) still have complete answers even after 
some tuples have been expired. This is because any 
query returned by Neededc takes the union of ex- 
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Table 2: Comparison of Needek and Needed Using ClerkCust 

Table T leededc(T, EC) leeded(T, E) 

L 0 xAttrs(L) ~L.cost>99hL.ordId>lOOO (L) 

0 rAttrs(0) ~O.custId<500hO.ordId>lOOO rAttrs(0) ~O.custld<500hO.ordld>lOOO (0) - 

(“~O.ordId<O’.ordIdPO’O) 
C ~Attrs(C)~C.custld<SOO(C) ~Attrs(C)~C.custId<500(C) 

Table 3: Comparison of Need& and Needed Using 
TPC-D Query &3 

Table T Ieededc(T,&) Ieeded(T,&) 

L OYO 100% 
0 OYO 100’70 
c 20% 20% . 
P 11 OYO I 0% I 

pressions derived from maintenance expressions us- 
ing Map,. Since we guaranteed that all the tuples 
that are needed by maintenance expressions are not 
expired, the completeness of the queries returned by 
Neede& follows. We now outline the algorithms for 
coping with various changes. 
Changes to 7: Suppose Def(V) has a complete 
answer and V is added to 7. We must iden- 
tify for each table T that V is defined on, which 
of the T tuples previously deemed as unneeded is 
now needed to maintain V. A reasonably effi- 
cient solution to the problem is to use the query 
~needed=false(T)D<Attrs(T)Needed(T, fv), where fv 
are the maintenance expressions of V. This query 
identifies the T tuples that are now needed. 
Changes To C: We only allow changes to C 
that expire more tuples. There are two types of 
changes that satisfy this condition. First, a con- 
straint may have been added to C. Second, a con- 
straint c previously in C may have been changed 
so that conditions are removed from LHS(c) or 
added to &75’(c). To update the extension 
markings, for each table T, we use the query 
~needed=true(T)D<~ttrs(~) Needek (T, E), to identify 
the T tuples that were previously deemed needed, 
but must now be marked as unneeded. Further, 
assuming the change to C is due to a change in 
Constraint(S), f or some table S, we only need to 
modify the extension marking of a table T defined 
on S. This is valid if the administrator inputs all 
constraints. If this assumption does not hold, we 
show in [GMLY98] h ow to identify the tables whose 
extension marking may be modified. 
Insertions: Periodically, insertions AT and dele- 
tions VT are computed for each table T. While 
deleting the VT tuples from T does not pose any 
problem, inserting the AT tuples into T may. First, 
the inserted tuples need to be marked as needed or 
unneeded. Second, some of the unneeded tuples may 
need to be expired. The two problems are solved by 
performing the following procedure. 

1. Insert AT and set needed attribute to false 
for all inserted tuples. 

Table 4: Comparison of Needee and Needed 
TPC-D Query Q5 

Table T Ieede+(T, EC) Ieeded(T, E) 

L 0% 100% 
0 OYO 100% 

Using 

c 11 lOi& I 100% 
P 11 100% 100% 

2. Set the needed = true for the T tuples in 
~needed=false(T)~Attrs(T)Needed(T, E). 

3. Expire T tuples in (7Fhneeded=false(T), where 
LastReq(T) = gp(T) 

The first step assumes all AT tuples are unneeded 
and do not need to be expired. The second step 
marks the AT tuples that are needed. The last step 
expires unneeded AT according to LastReq(T). 

7 Related Work 

One of the problems that our framework tackles 
is how to maintain a view when only parts of the 
underlying tables are accessible. Most work on 
view maintenance assumes that the complete un- 
derlying tables are accessible, for example, [BLT86, 
GL95,GMS93,QW91]. However, there has also been 
work on view maintenance that assumes otherwise. 
[BT88] and [GJM96] identified self-maintainable 
views that can be maintained without accessing un- 
derlying tables. [QGMW96] and [HZ961 tried to 
make a view self-maintainable by defining auxil- 
iary views such that the view and the auxiliary 
views together are self-maintainable. The func- 
tion Needed(T, E) we introduce serves essentially the 
same purpose as an auxiliary view, although it does 
not have to be maintained as such. [HZ961 developed 
a framework wherein the attributes of a table may 
be inaccessible. In our framework, the tuples of a 
table can be made inaccessible. It will be important 
in future work to combine both approaches. 

Our framework also takes advantage of the avail- 
able constraints in order to reduce the size of 
Needed(T, E) and increase the effectiveness of expi- 
ration. This is different from, but related to, the use 
of constraints in the area of semantic query optimiza- 
tion [CGM88]. It is important to point out their 
connection since semantic query optimization has 
largely been ignored in view maintenance literature. 
Indeed, there has been some prior work in improving 
view maintenance using constraints; however, they 
all use special-case algorithms to take advantage of 
specific constraints. For instance, [QGMW96] used 

510 



a specialized algorithm that exploits key and ref- 
erential integrity constraints to eliminate mainte- 
nance expressions. [GJM96] used key constraints to 
rewrite maintenance expressions for a view to use 
itself. [JMS95] introduced chronicles that are up- 
dated in a special manner, and showed that views 
defined on chronicles can be maintained efficiently. 
In our approach, we can describe chronicles using 
constraints and infer that the entire chronicles can 
be safely expired. In summary, the techniques we in- 
troduce generalize special-case algorithms. Further- 
more, since we exploit a broader class of constraints, 
we improve on many of the algorithms. 

Our framework also introduces “incomplete” ta- 
bles. There has been numerous work on incomplete 
databases ([AHV95]). We are now investigating how 
previous work in the area can be used to solve some 
of the problems borne out of the framework. For 
instance, [LevSG]‘s work on obtaining complete an- 
swers from an incomplete database is helpful in solv- 
ing the fourth problem stated in Section 2. 

The algorithms in [BCL89] for detecting irrele- 
vant updates can be modified to detect unneeded tu- 
ples. This can be done by treating the maintenance 
expressions as views and treating a tuple t E T as 
if it were an insertion. However, the algorithms in 
[BCL89] do not work with constraints. Also, they 
require a satisfiability test for each tuple t. Our 
method is more “set-oriented” since it uses queries. 

8 Conclusion 

We have presented a framework for system-managed 
removal of warehouse data that avoids affecting the 
user-defined materialized views. Within it, the user 
or administrator can declaratively specify what he 
wants to expire and the system removes as much 
data as possible. The administrator can also input 
constraints (implied by the application) which the 
system uses to expire more data, as we illustrated 
using the TPC-D benchmark. We identified prob- 
lems borne out of the framework and we solved the 
central problems by developing efficient algorithms. 
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