
Materialized View Selection for Multidimensional
Datasets*

Amit Shukla
amit@cs.wisc.edu

Prasad M. Deshpande
pmd@cs.wisc.edu

Computer Sciences Department
University of Wisconsin - Madison

Madison, WI 53706

Abstract
To fulfill the requirement of fast interactive
multidimensional data analysis, database sys-
tems precompute aggregate views on some sub-
sets of dimensions and their corresponding hi-
erarchies. However, the problem of what to
precompute is difficult and intriguing. The
leading existing algorithm, BPUS, has a run-
ning time that is polynomial in the number of
views and is guaranteed to be within (0.63 - f)
of optimal, where f is the fraction of available
space consumed by the largest aggregate. Un-
fortunately, BPUS can be impractically slow,
and in some instances may miss good solu-
tions due to the coarse granularity at which it
makes its decisions of what to precompute. In
view of this, we study the structure of the pre-
computation problem and show that under cer-
tain broad conditions on the multidimensional
data, an even simpler and faster algorithm,
PBS, achieves the same (0.63 - f) bound. Our
empirical study of the behavior of PBS shows
that even when this condition does not hold,
PBS picks a surprisingly good set of aggregates
for precomputation. Furthermore, BPUS and
other previous work has assumed that all ag-
gregates are either precomputed in their en-
tirety or not at all. We show that if one re-
laxes this and allows aggregates to be partially
precomputed, not only is it possible to find so-
lutions that are better than those found by pre-
vious algorithms, in some cases it is even pos-
sible to find solutions that are better than the
solution that is ‘optimal’ by the previous defi-
nition.

This research is supported by a gift from NCR Corp., and by
ARPA through Rome Air Force Laboratory contract F30602-97-
2-0247

Permission to copy without fee all or part of this material is
gmnted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

Jeffrey F. Naughton
naughton@cs.wisc.edu

1 Introduction
Multidimensional data analysis, as supported by OLAP
systems, requires the computation of many aggregate
functions over large amounts of data. To meet the
performance demands imposed by these applications,
virtually all OLAP products resort to some degree of
precomputation of these aggregates. The more that is
precomputed, the faster queries can be answered; how-
ever, it is often difficult to determine which are the best
aggregates to be precomputed given a fixed amount of
space. Thus, the database administrator tries to fill
available space with precomputed aggregates in order
to minimize the average query response time of the sys-
tem. An important problem a DBA faces is determining
the amount of space that should be allocated for pre-
computation. A graph of the average query response
time corresponding to different amounts of space allo-
cated for precomputation is shown in Figure 1. Such
a graph can be used to make an intelligent decision of
the amount of space for precomputation such that the
performance gains from adding more space are dimin-
ishing. A DBA can compute the slope of the graph
at different points and determine the point at which
diminishing returns from precomputation outweigh the
cost of additional disk space.

C

Space for precomputation

Figure 1: A graph of space vs average query cost for a
lattice.

Constructing this graph is non-trivial. The prob-
lem has been shown to be computationally intractable.
Harinarayan et al. [HRU96] have proposed an elegant
heuristic algorithm, BPUS, to approximate the optimal

488

solution. Using BPUS, one can determine the best set
of aggregates for the corresponding amount of precom-
putation space, and then evaluate the benefit of these
aggregates. While BPUS is much faster than an ex-
haustive search, in general it will take several days to
several months to generate the graph, rendering this
approach infeasible, which in turn means the DBA will
have to resort to guesses as to what is a good amount
of space to dedicate for precomputation.

In this paper, we propose a simple and fast heuristic
algorithm, PBS, to select aggregates for precomputa-
tion. PBS runs several orders of magnitude faster than
BPUS, and is fast enough to make the exploration of
the time-space tradeoff feasible during system config-
uration. However, PBS, like previous solutions, is a
heuristic algorithm, so a main contribution of this pa-
per is an exploration of its performance. We examine
the conditions under which PBS selects views having a
fixed bound with respect to the optimal set of views.
Due to its speed, PBS can be used by DBAs to de-
termine how much space should be allocated for pre-
computation. Next we examine the materialized view
selection problem when subsets of aggregates can be
computed using chunks [DRSN98], and show with an
example that the benefit of the views selected by PBS
using chunks can be greater than the benefit of the
optimal set of views selected without chunk based pre-
computation. Then we show how BPUS and PBS can
be adapted to use chunk based precomputation. This
results in improved performance bounds for both al-
gorithms. We begin with an example to motivate the
problem.

1.1 An Example
Consider a table of sales with the schema

Sales(ProductId, StoreId, TimeId, Sales)

with the intuitive meaning that each tuple represents
the sales of some product sold in some store at some
time. We will use this schema as an example through-
out the paper. There are a number of queries that can
be asked of this data. For example, one may wish to
know sales by product; or sales by store; or sales by
product and store; or sales by store and time; and so
forth. Each of these queries represents an aggregate
computation. For example, sales by product and store
in SQL is just:

SELECT ProductId, StoreId, SUM (Sales)
FROM Sales
GROUP BY ProductId, StoreId

If the sales table is large, this query will be slow. How-
ever, if this a gregate is precomputed, the query can be

Pi answered wit a simple scan of the precomputed aggre-
gate. In addition, the precomputation of this aggregate
also benefits queries on aggregates derived from it. For
example, the following query, which asks for the aggre-
gated sales grouped by the product can be answered
using the above aggregate.

SELECT ProductId, SUM (sales)
FROM Sales
GROUP BY ProductId

Therefore, the task the DBA faces is to choose a set of
queries to precompute and store.

1.2 Related Work

A useful way to describe the full precomputation prob-
lem is to use the framework proposed by Gray et al.
[GBLP96] using the cube operator. The cube oper-
ator is the n-dimensional generalization of the SQL
group-by operator. The cube on n attributes com-
putes the group-by aggregates for each possible sub-
set of these dimensions. In our example, this is:
{}, { ProductId}, { StoreId}, TimeId}, { ProductId,
StoreId}, {ProductId, TimeId , {TimeId, StoreId},
{ ProductId, StoreId, TimeId}.

I

As we mentioned, [HRU96] proposes a greedy algo-
rithm, BPUS, to find a set of aggregates to materialize.
BPUS attempts to maximize the benefit of the set of
aggregates picked. They prove that if the largest ag-
gregate view occupies a fraction f of the space avail-
able for precomputation, then the aggregates picked by
BPUS have a benefit at least (0.63 - f) times the ben-
efit of the optimal set of views for the same amount of
space. Other related work includes [GHRU97], where
the authors consider the selection of views and indexes
together. [Gupt97] presents a theoretical framework
for the view-selection problem, and proposes a general
algorithm and several heuristics, while [UllSS] surveys
techniques proposed for determining what aggregates
should be precomputed.

1.3 Paper Organization
Section 2 describes the lattice framework and cost
model for the aggregate selection problem. In Section 3,
we describe a fast aggregate selection algorithm along
with bounds on its performance. Section 4 presents
subset caching using chunks and shows how it affects
the aggregate selection problem. We carry out an ex-
perimental evaluation of the different precomputation
algorithms in Section 5, and present insights into the
problem of aggregate selection. Section 6 presents our
conclusions.

2 Problem Formulation

2.1 Lattice Framework for Multidimensional
Datasets

Queries on multidimensional datasets can be modeled
by the data cube operator. For distributive function
such as sum, min, max, etc., some aggregates can be
computed from another aggregate. In the example
schema of Section 1.1, the aggregate on {ProductId,
StoreId} can be used to answer a query on {ProductId}.
This relation between aggregate views can be used to
place them within a lattice framework as proposed in
[HRU96] and [BPT97]. Aggregates are vertices of an
n-dimensional cube. The following properties define a
hypercube lattice I!Z of aggregates.

(a) There exists a partial order 3 between aggregate
views in the lattice. For aggregate views u and
v, v 1 u if and only if v can be answered using the
results of u by itself.

(b) There is a base view in the lattice, upon which
every view is dependent. The base view is the
database.

489

(c) There is a completely aggregated view “ALL”,
which can be computed from any other view in
the lattice.

The aggregate selection problem is equivalent to select-
ing vertices from the underlying hypercube lattice. For
example, the lattice C in Figure 2 represents the cube of
the schema described in Section 1.1. The three dimen-
sions ProductId, StoreId, TimeId are represented by P,
S, T respectively, and an aggregate view is labeled us-
ing the names of the attributes it is aggregated on. For
example, view PS is aggregated on attributes Produc-
tId and StoreId. In Figure 2, if an edge connects two
views, then the higher view can be used to precompute
the other view. For example, there is an edge between
PS and P. This means that PS can be used to compute
P. If there is no precomputation, a query on P (Pro-
ductId) has to be answered using the base data, PST
(Sales table).

(1)
Figure 2: The hypercube lattice corresponding to the
example in Section 1.1. The numbers are aggregate
sizes in tuples.

One can define some functions on hypercube lattices.
For an aggregate v, parent, children and descendant are
defined as follows:

parent(v) = {u 121-x u; 3 w, 2, 3 w, w + u}
children(v) = {u 1 u -t w; i4 w, u 4 w, w 4 w}

descendants(v) = {u 1 u 5 w}

2.2 Cost Model
We use the cost model proposed by [HRU96], in which
the cost of answering a query (time of execution) is
assumed to be equal to the number of tuples in the
aggregate used to answer the query. To justify this
cost model, they considered the different situations that
can occur when answering a query from an aggregate.
Namely, the presence or absence of an index on the
aggregate, and whether the query asks for an entire
aggregate or a subset of an aggregate. An experimental
validation of this cost model is provided in [HRU96].
They found that there is an almost linear relationship
between size and running time of a query. In summary,
we assume that the cost of answering a query q is equal
to the number of tuples read to return the answer.

2.3 The Benefit Metric
Informally, the benefit of an aggregate view w is com-
puted by adding up the savings in query cost for each
view w (including w) over answering it from the base

view. If a set S of aggregate views is chosen for materi-
alization, the benefit of S is the sum of the benefits of
all views in S. The same metric is used by [HRU96].

Definition 2.1. Let S be the set of aggregates selected
for precomputation. The least cost view in S which can
be used to answer a query on w is denoted by L(w).

Let C(w) be the cost of computing another view from w.
Looking back to our cost model, C(w) is the number of
tuples in 21.

Definition 2.2. The benefit of u with respect to S,
B(u,S), is defined as

I. For each aggregate view w 5 u, t?, is defined as:

1.1 Let w be the least cost view in S such that
0 5 w. (w = L(w))

1.2 iC2J < C(w), then B,, = C(w) - C(u), else

2. aw; = cv+ & -
In short, for each view w that is a descendant of u,
we check to see if computing w from u is cheaper than
computing w from any other view in the set S. If this
is the case, then precomputing u benefits w. Since all
aggregates can be computed from the (unaggregated)
base data, and S contains the base data, in step 1.1 we
can always find a least cost aggregate view w (the base
data in the worst case). Our goal is to maximize the
benefit of a set of aggregates given a fixed amount of
space. This leads us to define another metric derived
from benefit. In the rest of the paper, we will use benefit
per unit space rather than just benefit since we assume
that space is a constraint.
Definition 2.3. The benefit per unit space of a view u
is defined as:

wu, S)
fL(u,S) = ,u, = 6 ~vw)) - C(u)),

where w + u, C(L(w)) > C(u),]u] = C(u) = size of u.

2.4 Average Query Cost
The effect of maximizing benefit per unit space of a
set of aggregates is not intuitively obvious. In par-
ticular, it is hard to understand the improvement in
query response time when the benefit increases by some
amount. To overcome this drawback of benefit, we de-
fine a new metric Average Query Cost, which is anal-
ogous to query response time. An improvement in av-
erage query cost is equivalent to a corresponding im-
provement in average query response time. We use this
characteristic in the experimental evaluation, where av-
erage query cost is used as the metric to plot graphs
and explore query response time as space available for
precomputation is increased.

Consider a lattice C with n views, ~1,. . . , wn. There
are n different templates for queries, one for each view:
Ql,Q2,..., Q,. Let there be a set S of aggregate views
precomputed, so that a query on view wi can be most
cheaply answered from a view L(wi) = wi E S. Let
queries on C occur with probabilities pl,p2,. . . ,p,.

490

Definition 2.4. The average query cost is defined as:

ePiC(Wi), (1)
i=l

where C(wi) is the cost of answering a query Qi on a
view Vi.

2.5 Reconciling these two metrics
We have two different metrics for the goodness of a
precomputation. The first is maximizing the benefit
per unit space of a precomputation, and the second is
minimizing the average query cost,. In this section we
show that optimizing either of these two metrics leads
to the same solution. First, we have to account for
query probabilities in the benefit computation. We do
this by modifying step 2 of the benefit computation in
Definition 2.2 to:

This modified benefit formula is used in [HRU96] to
maximize the benefit of a set of aggregates (IZJ is the
size of the Database, D.):

CP” * (PI - C(L(v))) = PI - CP” .C(L(v)) (2)
VEL UEL

We prove in [SDN98] that maximizing the benefit
(Equation 2) is the same as minimizing the average
query cost (Equation 1).

2.6 Precomputation of Aggregates
There is a tradeoff between the amount of space allo-
cated for precomputation, and the average query cost
(query response time); more space implies a smaller av-
erage cost of queries (faster response time). Precomput-
ing a subset of the aggregates involves intelligently pick-
ing a subset of the aggregates using a limited amount
of space. For example, consider a lattice in which all
aggregates have an equal probability of being queried.
Figure 3 shows the average cost of queries on the lat-
tice as the amount of space allocated for precomputa-
tion is increased. The average query cost corresponds
to the optimal set of aggregates for a given amount of
space. A small amount of precomputation dramatically
improves the average query cost. The improvement in
average query cost decreases as more space is allocated
for precomputation.

To find the optimal set of views to precompute, one
can enumerate all possible combinations of aggregate
views and find the one which results in the minimum
average query cost or the maximum benefit. Finding
the optimal set of aggregates in this manner has a com-
plexity of 0(2n), where n is the number of aggregates
in the schema. If d is the number of dimensions in the
schema, and there are no hierarchies, then n = 2d, SO

the cost of finding the optimal combination grows a~
22d. For 6 dimension and no hierarchies, the cost is of
the order of 264! Clearly, computing the optimal set of
aggregates exhaustively is not feasible; this is in fact an
intractable problem (NP-hard).

1.2s+o6

2ococO-

lcocm-

Figure 3: Average Query Cost of a 4 dimensional lattice
as the amount of space available for precomputation is
increased. The average query cost corresponds to the
optimal set of aggregates for a given amount of space.

In view of this, [HRU96] presents an algorithm,
BPUS, that uses the benefit per unit space of an ag-
gregate. The inputs to BPUS are: space - the amount
of space available for precomputation, and A, a set ini-
tially containing all aggregates in the lattice, except the
database. The output is S, the set of aggregates to be
precomputed. The algorithm assumes that queries are
uniformly distributed.

Algorithm BPUS
WHILE (space > 0) DO

w = aggregate with max. benefit per unit space in A
IF (space - IwI > 0) THEN

space = space - IwI
s=suw
d=d-w

‘ELSE
space = 0

S is the set of aggregates picked by BPUS

The authors proved that the benefit of the aggregates
selected by BPUS is no worse than (0.63 - f) times
the optimal benefit; if no aggregate view occupies more
than some fraction f of the total space available for
precomputation. There is no bound if f > 0.63. For
example, if some view occupies 50% of the space avail-
able then all one knows is that the result achieves at
least 13% of the optimal benefit. The order of BPUS is
O(k . n2), where k is the number of aggregat,es selected
for precomputation, and n is the number of vertices in
the lattice. We have observed experimentally that 10%
to 50% of the aggregates are picked before improve-
ments in response time diminish as additional space is
allocated for precomputation. If IO% of the aggregates
are selected for precomputation, k = n/10, and the
complexity of BPUS becomes O(n3). Though the com-
plexity is polynomial, for a real dataset it may result
in too much time spent in making a decision of what
aggregates should be precomputed as we see next.

491

3 Fast Aggregate Selection
A major drawback of the BPUS algorithm is its run-
ning time. To measure the execution time of BPUS, we
implemented it with complexity 0(/c . n2), and used a
six dimensional schema with a five level hierarchy on
each dimension, with hierarchy sizes (100, 50, 25, 5, 2).
The first number (100) is the cardinality of the dimen-
sion, and the other numbers are (in order) the distinct
values in its hierarchy. The corresponding datacube
lattice has 46656 aggregates. The database had 10M
tuples, and the space allocated for precomputation was
1.6 billion tuples, which is about 1% of the cube size.
The machine it was run on was a 200 MHz dual pro-
cessor Ultra Spare I running Solaris 2.5.2, with 256 MB
of main memory. For this schema, our implementation
of BPUS took 1193 sets to pick one aggregate. If 10%
of the aggregates are picked, BPUS will pick 4665 ag-
gregates, and take about 64 days to determine the set
of aggregates to be precomputed. If one tries to plot a
graph such as in Figure 1, we estimate that it will take
around 640 days to do so using BPUS. Clearly, this is
a large amount of time that a user has to wait before
he knows how much space should be used, or what ag-
gregates should be precomputed. With this in mind,
our goal is to design an efficient algorithm that doesn’t
sacrifice accuracy for speed. We designed a simple al-
gorithm, PBS, with an O(nlogn) worst case execution
time, and proven performance bounds for PBS under
certain conditions on hypercube lattices. On the above
6 dimensional schema, PBS run in less than 1 second,
compared to 64 days for BPUS. In addition, in Sec-
tion 5, we experimentally evaluate PBS and show that
it performs well even when the conditions on the lattice
are relaxed. PBS can be used to plot a graph such as
Figure 1, which a DBA can use to compute the slope of
the graph at different points and determine the point
at which diminishing returns from precomputation out-
weigh the cost of additional disk space.
3.1 PBS
PBS, which stands for Pick By Size, picks aggregates for
precomputation in increasing order of their size. The
inputs to PBS are: space - the amount of space avail-
able for precomputation and A, a set initially contain-
ing all aggregates in the lattice. The output is S, the
set of aggregates to be materialized. PBS assumes that
queries on all aggregates are equally likely.

Algorithm PBS

WHILE (space > 0) DO
w = smallest(d)
IF (space - IwI > 0) THEN

space = space - IwI
s=suw
d=d-w

‘ELSE
space = 0

S is the set of aggregates picked by PBS

In the algorithm, smallest(d) is a function which re-
turns the view having the smallest size in set A. The

order of PBS is O(nlogn), which arises from the cost
of sorting the aggregates by size. Next, we explore
the conditions under which PBS guarantees the (0.63
- f) bound by proposing a subset of hypercube lattices
which we will call SR-hypercube lattices.
3.2 SR-Hypercube Lattices
Consider the subclass of hypercube lattices with an or-
dering between the sizes of aggregates and their par-
ents. More specifically, for all aggregates v, w satisfying
w = parent(v), and k = Ichildren(v)I,

1-‘I< 1 - when IwI # IZY)l
1’1~1 - l+k

where 2, is the database. We call such lattices Site
Restricted, or SR-hypercube lattices. Intuitively, this
means that if Ichildren = 5, then the (WI 2 617~1.
Though this appears to be a rather strong condition
to impose on the structure of a lattice, it is in fact
quite likely to be satisfied. For example, the hypercube
lattice in Figure 2 is size restricted. To verify that a hy-
percube lattice is size restricted, one can use an aggre-
gate size estimator which guarantees that the error in
the estimate is bounded. One such estimator based on
probabilistic counting is presented in [SDNR96]. Once
the size estimates have been obtained, it is a simple
matter to perform comparisons between aggregate sizes
and determine whether the lattice is size restricted.
3.3 PBS on SR-Hypercube Lattices
In this section, we prove a bound on the benefit of the
set of aggregates picked by PBS in relation to the op-
timal set for SR-hypercube lattices. First we prove a
bound for a subset of SR-hypercube lattices. Then we
extend it to all SR-hypercube lattices.

Theorem 3.1. Consider a SR-hypercube lattice where
VW E C, w # V, 12~1 # IV/. The ratio of the benefits of
PBS and optimal is at least (0.63 - f); f is the ratio of
the largest aggregate size to the amount of space avail-
able for precomputation. Intuitively, this is the subset
of SR-hypercube lattices in which aggregate sizes do not
“saturate” and become equal to the database size.

Proof. Harinarayan et al. [HRU96] prove that if f is
the ratio of the size of the largest view to the size of
the database, then BPUS will pick a set of aggregate
views whose benefit is no less than (0.63 - f) of the op-
timal benefit. We prove the bound on PBS by showing
that PBS and BPUS pick the same set of aggregates.
The proof is by induction on the number of aggregates
picked.

Consider a d dimensional SR-hypercube lattice
where the ratio of the size of a view and its parent
is 5 l/(1 + k). The level number of an aggregate in
the lattice is defined as the number of attributes it is
aggregated on, and two aggregates with the same level
number are said to be at the same level. The first ag-
gregate picked by PBS is “ALL”, the smallest view in
the lattice. As the basis of induction, let us examine
the first aggregate view picked by BPUS. If i is the level
number, and & is the ratio of the size of a view and the
largest of its children, then the number of children that

492

Table 1: The initial benefits per unit space of views in
a d dimensional SR-hypercube lattice.

Level View # ben.
size views
=s 20

2 se1 2l

2 a2 22

Benefit per
unit space

a node at level i has is greater than or equal to i. There-
fore, .!?i 2 1 +i. When no views are selected for precom-
putation, the benefits per unit space of views are listed
in Table 1. Assuming that V > s lJ!z; &, 0 < k < d,
the maximum values of the benefits per unit space are:

Since ei 2 2, the smallest view has the highest benefit
per unit space initially, and is picked by BPUS. Hence,
the first view picked by both PBS and BPUS is the
smallest in size.

Let us assume that aggregates are picked by size un-
til T have been picked. The (T + l)th aggregate picked
by PBS is the smallest in size among the remaining un-
picked aggregates. Let us examine the structure of the
lattice and find the (r+ l)th view that will be picked by
BPUS. Since aggregate views have been picked by size
so far, and the size of an aggregate w is greater than the
size of any of its children, children of w are picked before
21. This results in a precomputation frontier (Figure 4).
Aggregate views on this frontier have all their children
already selected for precomputation.

Level

Level

Frontier
Figure 4: Shows the precomputation frontier for an SR-
hypercube lattice.

We now show that only views on the frontier are
considered at this point by BPUS for precomputation
because views inside the frontier have a smaller benefit
per unit space than some view on the frontier. Consider
a view u at level j in the lattice. It has a descendant
u at level i in the lattice, such that u is on the frontier

PST

-;i:p

ST

P S T

Figure 5: The example lattice from Section 1.1, where
aggregates PS and PT have been pruned since they are
equal in size to the database.

(Figure 4). The benefit per unit space of 21 is

<Pl j(j - 1). . . (i + 1) + 1 <!Z?!
- lzll (i+1+1)(i+2+1)...(j+1) - 12LI

since the maximum cardinality of Idescendants is
(j(j - 1) . . . (i + 1) + l), and the size of 21 is at least
lzll . (i + 1 + l)(i + 2 + 1). . . (j + 1). The benefit per
unit space of u is lVl/lul. Since u has a higher ben-
efit per unit space than w, BPUS will not pick 21 at this
point. Thus, only views on the frontier can be consid-
ered for precomputation at any point. To show that
the next aggregate picked will be the smallest remain-
ing unpicked aggregate, we have to show that among
views on the frontier, the view with the smallest size
will now be picked. A view u on the frontier has no
children that have not yet been selected for precompu-
tation. The benefit per unit space of u is (1271 - ~u~)/~u~.
This means that the view with the smallest size has
the largest benefit per unit space, and will be chosen
by BPUS. PBS will also pick the view with the small-
est size. Since BPUS and PBS pick the same set of
aggregates, the benefit per unit space of the set of ag-
gregates picked by PBS will be at least (0.63 - f) times
the optimal benefit. Cl

Now we extend the above proof to prove a bound for all
SR-hypercube lattices. In particular, we consider the
case when the size ratio is satisfied until some level in
the lattice and then aggregate views have the same size
as the database V.

Theorem 3.2. PBS is within (0.63 - f) for a SR-
hypercube lattice.

Proof. Consider an SR-hypercube lattice. All aggre-
gate views which have the same size as the database
(I4ll4 = 1) h ave zero benefit (IV1 - 1~1 = 0). This
means that any query which can be answered by scan-
ning v or w can be answered at equal cost by scan-
ning the database. Therefore, we can prune the hy-
percube lattice so that such aggregates are removed.
Figure 5 shows the pruned lattice corresponding to the
lattice in Figure 2. In the new lattice, the condition
stated in Theorem 3.1 is true. That is, w = parent(v);
l4/14 5 l/G + k), where k = [children(w From
Theorem 3.1 it follows that the benefit of PBS is no
less than (0.63 - f) of the optimal benefit. q

PBS may not achieve this bound for non SR-hypercube
lattices. This is shown with an example in [SDN98].

493

3.4 Non-uniform Query Distributions
PBS assumed that all aggregates have an equal proba-
bility of being queried. We propose a variation of PBS,
called PBS-U, in which a user can assign probabilities to
aggregates. Domain specific knowledge of the schema
and workload can be used to assign higher probabilities
of being queried to some aggregates. We extend PBS
so that the user can associate each aggregate with a
probability of being queried, which corresponds to the
frequency with which the aggregate is expected to be
queried.

Definition 3.1. The probability weighted size of an ag-
gregate is equal to the ratio of the size of the aggregate
to the probability of its occurrence.

PBS-U picks aggregates in order of their probability
weighted size: I’uI/pV, where Iv1 is the size of aggre-
gate view v, and p, is the frequency with which v is
queried. Aggregates which are more frequently queried
have their probability weighted size reduced, increasing
their likelihood of being picked. PBS-U takes as input:
space - the amount of space available for precomputa-
tion and A, a set initially containing all views in the
lattice. The output is S, the set of views to be mate-
rialized; wt-smallest(d) is a function which returns the
view having the smallest probability weighted size in
set A.

Algorithm PBS-U
WHILE (space > 0) DO

w = wt-smallest(d)
IF (space - IwI > 0) THEN

space = space - IwI
s=suw
d=d-w

‘ELSE
space = 0

S is the set of aggregates picked by PBS-U

If the lattice formed by considering probability
weighted sizes of aggregates instead of their sizes is an
SR-hypercube lattice, then it follows from Theorem 3.2
that PBS-U has the same bound as PBS. The intuition
is that with probabilities of occurrence, the benefit per
unit space of 21 is: p, .r benefit = e Considering the
lattice as size restricted on jul/pU instead of just IuI, a
similar proof as Theorem 3.2 holds.

4 Chunk Based Precomputation
4.1 Introduction to Chunks
The idea of chunks for dynamic query caching first ap-
peared in [DRSN98]. In this paper we adapt it for static
precomputation. The idea of chunks was motivated by
MOLAP (Multidimensional OLAP) systems, which use
multi-dimensional arrays to represent data. Instead of
storing a large array in simple row major or column ma-
jor order, they are broken down into chunks and stored
in a chunked format [SS94, ZDN97]. The distinct val-
ues for each dimension are divided into ranges and the
chunks are created based on this division. Figure 6

shows how the multidimensional space can be broken
up into chunks. Our observation was that chunks are
very suitable as a unit of precomputation. Chunks cap-
ture the notion of semantic regions and divide the entire
space into uniform semantic regions. In a chunk-based

ProductId
Figure 6: Chunking the Multidimensional Space for the
schema from Section 1.1.

precomputation scheme, aggregates are broken up into
chunks, and a chunk becomes the unit of precompu-
tation. If the database supports multidimensional ar-
rays, a chunk based aggregate can be implemented as
a multi-dimensional array. On the other hand, if the
system is fully relational, a chunked file organization as
described by [DRSN98] can be used. An additional ad-
vantage of chunk based precomputation is an efficient
implementation of the chunk based dynamic caching
scheme proposed in [DRSN98].

When a query is asked, the set of chunks needed to
answer it are determined. Then depending on what has
been selected for precomputation, this set of chunks is
divided into two partitions. The first partition consists
of chunks that are precomputed, and the results just
have to be looked up. The second partition consists
of chunks that have to be computed from other aggre-
gate chunks. For example, in Figure 7, a query could
ask for chunks 0 and 1 of {ProductId}. If chunk 0 of
{ProductId} is precomputed, then the first partition
consists of chunk 0 of {ProductId}, while the second
partition consists of chunk 1 of {ProductId}. Chunk 1
of {ProductId} has to be computed from other aggre-
gate chunks (ancestors of {ProductId} in the lattice).
From Figure 7, we see that chunk 1 of {ProductId}
can be obtained by aggregating chunks 1, 5, 9, 13 of
{ProductId, StoreId}. By using either a multidimen-
sional array or a chunked file representation, direct ac-
cess to these chunks of {ProductId, StoreId} is possible.
This enables us to compute only missing chunks to de-
termine the result of a query, rather than computing
the entire query result.

4.2 The Motivation for using Chunks
Let us look at some examples to see how the ability to
precompute parts of aggregates influences the average
query cost and benefit per unit space. Figure 8 shows
the subset of the lattice describing the hypercube for
the Sales schema restricted to vertices with ProductId
or StoreId.

Example 4.1. Consider the hypercube lattice of Fig-
ure 8. Figure 9 shows a graph with the amount of space
available for precomputation on the x-axis, and the av-

494

Productrd ‘Chu/nk Number
0 1 2 3

t
ProductId

Figure 7: Chunks at different levels. The grid on the
left corresponds to the aggregate (ProductId, StoreId).

Aggregate
size

‘0 1 ALL

Figure 8: Data cube of {ProductId, StoreId}.
erage query cost on the y-axis. If chunk based precom-
putation is used, one can obtain a much lower average
query cost as compared to BPUS or PBS.

The next example illustrates how the use of chunks can
yield a better benefit per unit space than the optimal
precomputation of whole aggregates.
Example 4.2. Consider the hypercube lattice of Fig-
ure 8. If the amount of space available for precompu-
tation in 501 tuples, the optimal algorithm which picks
whole group bys will be able to fit only ALL, resulting
in a total benefit of 1999. If we use chunks, with a 25
tuples per chunk, We can fit ALL as well as 500 tu-
ples (20 chunks) of P. This results in a benefit of 2499,
which is larger than the optimal benefit when picking
whole aggregates.
From the above examples we can see that the use of

Figure 9: Graph corresponding to the lattice in Figure 8

chunking to precompute subsets of aggregates makes
it possible for one to design algorithms with a lower
average query cost than algorithms which assume that
the granularity of precomputation is whole aggregates.
4.3 Cost Model for Chunks
In this section we look at the benefit per unit space
of a chunk of an aggregate. Since chunk based pre-
computation can be thought of a semantic index on the
data, the linear cost model applies to chunks. Assigning
probabilities to chunks results in a huge increase in the
size of the lattice and renders all proposed algorithms
expensive and inefficient. Therefore, we assume that
all chunks of an aggregate have the same probability
of being queried as the aggregate. We start with two
examples that examine the benefit per unit space of a
chunk.

Example 4.3. In this example we examine how pre-
computing a chunk can have some benefit. Assume in
the lattice of Figure 2 that all chunks of PS are precom-
puted. To answer a query on ALL, we have to compute
chunk 0 of ALL. This can be done by scanning chunks
O-15 of PS (Figure 7), which is cheaper than scanning
the database PST. Let us analyze what happens when
chunk 0 of S (which is a descendant of PS) is precom-
puted. Chunk 0 of S and chunks 4-15 of PS can be ag-
gregated to compute ALL. Hence precomputing a chunk
of S saves us the scan of chunka O-3 of PS.

Example 4.4. Consider the lattice of Figure 2 and as-
sume that all chunks of S are precomputed and nothing
else is precomputed. To answer a query on ALL, we
have to scan chunks O-3 of S (Figure 7). In this sce-
nario, let us analyze the benefit of a chunk of P. Since
S is not an ancestor of P in the lattice, P doesn’t benefit
the computation of ALL even if the size of P is smaller
than the size of S.

The observations of the above examples are summa-
rized in the following lemmas.

Lemma 4.1. Let S be the set of aggregates selected for
precomputation. If w E S, w = L(w) and v 4 u 4 w
then the computation of a chunk of u benefits v.

Proof. Since Y + u 4 w, precomputing a chunk of u
saves a scan of the corresponding set of chunks of w in
answering a query on 21. cl

Lemma 4.2. Let S be the set of aggregates selected for
precomputation. If w E S, w = L(v) and u 74 w then
the computation of a chunk of u does not benefit v.

Proof. Since u # w, precomputing a chunk of u does
not benefit a query on v being answered from w. 0

We now formalize the notion of the benefit per unit
space of a chunk in the following theorem.

Theorem 4.1. For a hypercube lattice with a set S
of aggregates precomputed, Bs(uC, S) 5 B, (u, S), where
u E S, uC is a chunk of u. In other words, the benefit
per unit space of a chunk of u is 5 the benefit per unit
space of u.

495

Proof. We have seen in Lemmas 4.1 and 4.2 that de-
pending on the aggregate used to answer a query, a
chunk can have a zero or non-zero benefit. A chunk
of u benefits an aggregate v only when v 4 u, u 4
L(v), C(L(v)) > C(u). Let us assume that this holds
and let w = L(v), then the benefit per unit space of u
to v is I

i . (C(w) - C(u)) (3)

Let us compute the benefit per unit space of a chunk
UC. *

h * (C(w’) - C(w))
where w’ is the set of chunks of w which don’t have
be scanned to compute v if u, is precomputed. Let
n/(u), N(w) be the number of chunks of u and w re-
spectively. Then,

14 = C(‘LLc) = n/(u) N(w) C(w) c(u> and]w’] = C(w’) = N(u). No

from the chunk decomposition of aggregates. Using
this, Equation 4 becomes

h . (C(w) - C(‘zL)) (5)

This is the same as the benefit per unit space of u to
v (Equation 3). We can now rewrite the definition of
benefit per unit space (Definition 2.3) to account for
chunks:

Bs(% S) = h ~w(v)) - C(U))> (6)

v + u, C(Jqv)) > C(u), u 4 L(v). The difference be-
tween Definition 2.3 and Equation 6 is in the additional
condition u 4 L(v) which says that L(v) should be an
ancestor of u for a chunk to have a non-zero benefit
per unit space. Therefore, the benefit per unit space
of a chunk of an aggregate is less than or equal to the
benefit of the entire chunk. 0

4.4 Algorithms using Chunk based Precompu-
tation

At a first glance, it looks like the ability to precompute
subsets of aggregates makes the precomputation prob-
lem even harder. Not only do aggregates have to be
selected, a decision of which subset of the aggregate to
precompute also has to be made. We demonstrate that
this ability has not made the problem harder, and show
how BPUS and PBS can be modified to work in this
situation.

When aggregates are decomposable into chunks, the
resulting lattice is an AND-OR View Graph as de-
fined by Gupta [Gupt97]. Gupta proposes algorithms
for AND-OR view graphs that are exponential. Since
the number of chunks can be very large (depending on
the data), exponential algorithms are clearly unpracti-
cal. We design polynomial algorithms that are based
on BPUS and PBS.

We proved in Theorem 4.1 that the benefit per unit
space of a chunk of an aggregate v is less than or equal
to the benefit per unit space of v. Since BPUS is a
greedy algorithm, picking the aggregate with the maxi-
mum benefit per unit space at each step, it will pick
whole aggregates rather than chunked subsets of an
aggregate. We use this observation to define BPUS-
C, which uses chunks to improve the benefit per unit
space of a precomputation. The inputs to BPUS-C are:
space - the amount of space available for precomputa-
tion, and A, a set initially containing all aggregates in
the lattice, except the database. The output is S, the
set of aggregates to be precomputed.

Algorithm BPUS-C
Run Algorithm BPUS on the lattice
w = aggregate with max. benefit per unit space in A
Add k chunks of w to S, k. (wcl 5 available space
S is the set of aggregates picked by BPUS-C

For a general hypercube lattice, it is hard to quantify
the exact benefit of S. BPUS has a (0.63 - f) bound
and BPUS-C picks a subset of an aggregate not chosen
by BPUS, in addition to picking the whole aggregates
chosen by BPUS. Therefore, the benefit of S produced
by BPUS-C is greater than or equal to that of BPUS.
To obtain the (0.63 - f) performance bound for SR-
hypercube lattices, PBS-C has to duplicate the opera-
tions of PBS. PBS-C takes the same inputs as BPUS-
C and produces the same output as BPUS-C. PBS-C
differs from BPUS-C in the first step. Instead if run-
ning BPUS on the lattice, PBS-C runs PBS on the lat-
tice. For SR-hypercube lattices, we can obtain a tighter
bound on the benefit with respect to the benefit of the
optimal precomputation.

Theorem 4.2. For a SR-hypercube lattice, let f’ be the
ratio of the size of the largest chunk size and the space
available for precomputation. Then the benefit of PBS-
C and BPUS-C is (0.63 - f’) times the optimal benefit.

Proof. When BPUS or PBS is run on a SR-hypercube
lattice, the cheapest way to precompute an aggregate
is either from itself (if it has been selected for precom-
putation), or from the database, V (if it hasn’t been
selected). Then the following holds:

v -x 21 A C@(v)) > C(u) =s v = L(v) A u 4 L(v)

Examining Equation 6, this means that the benefit per
unit space of a chunk of IL is always equal to the benefit
per unit space of u. In this situation, we can still pick
whole aggregates, and when a whole aggregate doesn’t
fit, we can precompute as many chunks as possible of
the aggregate with largest benefit per unit space. Since
uc and u have equal benefit per unit space, the perfor-
mance bound can be quantified. The f, the ratio of
the size of the largest aggregate to the space becomes
f’, the ratio of the size of the largest chunk size to the
space. PBS-C and BPUS-C will pick the same aggre-
gates for a SR-hypercube lattice. Therefore, the benefit
of aggregates picked by both PBS-C and BPUS-C is at
least (0.63 - f’) t imes the optimal benefit. 0

496

In summary, the ability to precompute chunk based
subsets of aggregates improves the benefit of a set of
aggregates precomputed with respect to the optimal set
(of whole aggregates) for a given amount of space. For
example, if the largest aggregate has a size of 50MB,
the unit of precomputation has a size of 4KB, and the
space available for precomputation is 200MB, then f =
50/200 = 0.25. So the bound of PBS and BPUS is
(0.63 - 0.25) = 0.38. On the other hand, PBS-C and
BPUS-C modified to use aggregate subset caching have
a bound of (0.63 - 41204800) = 0.62998, or almost 0.63
for a SR-hypercube lattice.

5 Experimental Evaluation
In our experiments, we study the average query cost
of a precomputation as the amount of space available
for precomputation is increased. We performed exper-
iments on datasets generated from real-life data distri-
butions, and synthetic data. We assume that queries
on any aggregate are equally likely, and use analytical
formulas presented in [SDNR96, RS97] to estimate the
size of aggregates formed by the data cube operator.
For example, consider a relation R having attributes
A, B, C and D. Suppose we want to estimate the size of
the group by on attributes A and B. If the number of
distinct values of A is nA and that of B is nB, then the
number of elements in A x B is n, = nAng. Let ID]
be the number of tuples in the database. Using these
values and an assumption that tuples are uniformly dis-
tributed, the number of elements in the group by on A
and B is: n, - n,(l - l/n,)l”l. This is similar to rela-
tional group by size estimation.

5.1 Experiments on distributions found in
Real-datasets

We ran experiments on datasets generated from data
distributions found in four real-life datasets. The data
distributions appeared in [AAD+96]. They are derived
from sales transactions of department stores and mail-
order companies. The number that appears next to an
attribute represents the number of distinct values. We
now describe the datasets.

Dataset Rl Contains data with 5.5 million tuples,
for a mail order company. Each transaction has
four attributes: customer id (213972), order date
(2589), product id (15836), and the catalog used
for ordering (214).

Dataset R2 Contains data with 7.5 million tuples,
describing grocery purchases of customers from a
supermarket. There are five attributes in each
transaction: date of purchase (1092), shopper type
(195), store code (415), the state in which the store
is located (46), the product group of the item pur-
chased (118).

Dataset R3 This is data with 9 million tuples from
a department store. Each transaction has five at-
tributes: the store id (17), date of purchase (15),
the UPC of the product (85161), the department
number (44), and the SKU number (63895).

Dataset R4 Contains data with 3 million tuples from
a department store. Each transaction has a total

of six attributes: the store number (4), the date of
purchase (15), item number (26412), the business
center (6), the merchandising group (22496), and
a sequence number (255).

Using the dimension sizes in datasets Rl, R2 and R3,
we estimated aggregate sizes and found that the result-
ing lattice is size restricted. Figures 10, 11, 12 illus-
trate how the average query cost varies with the space
available for precomputation. The data cubes for all
three schemas are SR-hypercube lattices, hence PBS
and BPUS pick the same set of aggregates. PBS-C has
a lower average query cost than PBS because it picks
a subset of an aggregate when PBS and BPUS cannot
pick any aggregate (Figure 13). Figure 11 has been
truncated along the x-axis to show the effect of chunk
based precomputation in greater detail.

Dataset R4 has 6 dimensions, and one of the dimen-
sions (store number) has only 4 distinct values. This
means the data cube of R4 is not a SR-hypercube lat-
tice. In this case, we plot the relative error of PBS
and PBS-C with respect to BPUS. If AQC(PBS) is the
average query cost of the set of aggregates picked by
PBS, then the relative error between PBS and BPUS
is: (AQC(PBS) - AQC(BPUS))/ AQC(BPUS). Fig-
ure 14 shows the relative errors of PBS and PBS-C
with respect to BPUS. The error of PBS is quite small
(5 0.08%). PBS-C does better than BPUS because it
has the ability to precompute subsets of an aggregate.

5.2 Synthetic datasets
Real datasets do not give us the flexibility to vary the
increase in size between an aggregate and its parent.
So, we ran some experiments to study how the aver-
age query cost of the set of aggregates picked by PBS
varies with respect to the optimal set as the lattice
deviates from the size restrictions. The dataset had
four dimensions, and 1.2 million tuples. In the initial
configuration, aggregates formed a SR-hypercube lat-
tice. Then, we increased the fraction between a ag-
gregate and its parent by small increments of 0.20.
For example, if u = parent(v), and]v]/]u] = E,
then C is successively increased to I + .lO, ! + .30,
1 + .50. Figure 15 shows the results of this experi-
ment. The relative error of PBS-C with respect to op-
timal is AQC(PBS-C) - AQC(OPT)/AQC(OPT) Ini-
tially, when the offset is increased, the error increases,
but then starts decreasing. A negative error means
that PBS-C can do better than the optimal set result-
ing from picking full aggregates. We have compared
PBS-C with the optimal algorithm which picks whole
aggregates since optimally deciding which subsets of
aggregates to pick in addition to which aggregate to
pick is too computationally expensive. We found that
the error of PBS-C doesn’t exceed 30%. This makes it
practically useful for general hypercube lattices.

6 Conclusions
Precomputing aggregates on some subsets of dimen-
sions and their corresponding hierarchies can substan-
tially reduce the response time of a query. However,
the decision of what to precompute is not easy. Algo-
rithms have been proposed to solve this problem, and

497

Figure 10: The average query cost as space is varied
for dataset Rl

Figure 12: The average query cost as space is varied
for dataset R3.

Figure 14: The relative error of PBS and PBS-C with
respect to BPUS as space is varied for dataset R4.

Figure 11: The average query cost as space is varied
for dataset R2.

Aggregate picked

/
Next aggregate picked \ \

/
\ -4 \ / -. -.

I Space for Precomputation

Aggregatk subset precomputation

Figure 13: Illustrates when PBS-C is better than PBS
as the amount of space is varied.

Figure 15: The relative for the synthetic dataset.

498

the most accurate algorithm, BPUS, guarantees that
the set of aggregates it picks will not have a benefit
worse than (0.63 - f) times optimal, where f is the
fraction of available space used by the largest view.

Depending on the size of the lattice, BPUS could
take from several days to several months to find a set
of aggregates to be materialized. We designed a fast
algorithm PBS with complexity O(n logn), where n is
the number of vertices in the lattice. We proved that
for SR-hypercube lattices, a broad class of hypercube
lattices, PBS achieves (0.63 - f) times the optimal ben-
efit. We showed that the execution times of BPUS and
PBS can vary by several orders of magnitude, 64 days vs
0.37 seconds. We introduced chunk based precomputa-
tion and showed how using chunks for aggregate subset
precomputation can make the benefit larger than the
“optimal” benefit when picking whole aggregates. We
designed a benefit based cost model for chunks, and
extended BPUS and PBS to use chunk based precom-
putation. We showed that for SR-hypercube lattices,
BPUS and PBS achieve a benefit that is not less than
(0.63-f’) of optimal, where f’ is the ratio of the largest
chunk size to the space available for precomputation.

In the experimental evaluation, we performed exper-
iments on data generated from distributions found in
real-life, and synthetic datasets to see how the aver-
age query cost of aggregates picked by PBS and PBS-C
varies with the amount of space available for precompu-
tation. We found that the lattice embedded by three of
the four real-life datasets is size restricted, corroborat-
ing the assertion that SR-hypercube lattices occur com-
monly. In the remaining real-life dataset, we showed
that the difference in the average query cost of PBS-C
relative to that of BPUS is small. To study the ef-
fect of changing the restriction on aggregate sizes, we
generated a 4 dimensional synthetic data and varied ag-
gregate sizes to worsen the performance of PBS-C. We
found that the average query cost of PBS-C was never
worse than 30% of optimal.

To enable a DBA to determine how much space
should be allocated for precomputation, it is useful to
plot a graph of the average query cost vs. the space
available for precomputation (Figure 10). Either PBS
or PBS-C can be used for this purpose. To conclude,
we discuss which algorithm is appropriate for a given
lattice. The algorithm of choice will depend on the ex-
istence of chunks. If chunking is supported, then the
chunked version, BPUS-C or PBS-C should be used. If
chunk are not supported, then the non-chunked version
can be used. If we assume support for chunks, then
for a hypercube lattice, the only algorithm known to
date to have a provable bound on the benefit is BPUS.
A major drawback is the execution time of BPUS. A
simple approach in this case is to use PBS-C. While
PBS-C performed well in our empirical study, there is
no known theoretical bound on the benefit of the set
of aggregates picked by PBS-C for a general hypercube
lattice. If it is important to find the set of views to be
precomputed quickly, and the user can tolerate a poten-
tially slightly higher average query cost, then PBS-C is
ideal. For SR-hypercube lattices, PBS-C guarantees a
(0.63 - f’) error bound, and should be used.

References
[AAD+96]

[BPT97]

[DRSN98]

[GBLP96]

[GHRU97]

[Gupt97]

[HRU96]

[RS97]

[SS94]

[SDNR96]

[SDN98]

[U1196]

[ZDN97]

S. Agarwal, R. Agrawal, P.M. Deshpande,
A. Gupta, J.F. Naughton, R. Ramakrish-
nan, S. Sarawagi. On the Computation of
Multidimensional Aggregates, Proc. of the
22nd Int. VLDB Conf., 506-521, 1996.

E. Baralis, S. Paraboschi, E. Teniente. Ma-
terialized View Selection in a Multidimen-
sional Database, Proc. of the 239-d Int.
VLDB Conf., 1997.

P.M. Deshpande, K. Ramasamy, A. Shukla,
J.F. Naughton. Caching Multidimensional
Queries Using Chunks. Proc. ACM SIG-
MOD Int. Conf. on Man. of Data, 1998.

J. Gray, A. Bosworth, A. Layman, H. Pira-
hesh. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-
Tab, and Sub-Totals, Proc. of the 12th Int.
Conf. on Data Engg., pp 152-159, 1996.

H. Gupta, V. Harinarayan, A. Rajaraman,
J.D. Ullman. Index Selection for OLAP.
Proc. of the 13th ICDE, 208-219, 1997.

H. Gupta. Selection of Views to Material-
ize in a Data Warehouse. Proc. of the Sixth
ICDT, 98-112,1997.

V. Harinarayan, A. Rajaraman, J.D. Ull-
man. Implementing Data Cubes Efficiently,
Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 205-227, 1996.

K.A. Ross, D. Srivastava. Fast Computa-
tion of Sparse Datacubes. Proc. of the 23rd
Int. VLDB Conf., 116-125,1997.

S. Sarawagi and M. Stonebraker. Effi-
cient Organization of Large Multidimen-
sional Arrays. Proc. of the 11 th Int. Conf.
on Data Engg., 1994.

A. Shukla, P.M. Deshpande, J.F. Naughton,
K. Ramasamy, Storage Estimation for Mul-
tidimensional Aggregates in the Presence of
Hierarchies, Proc. of the 22nd Int. VLDB
Conf., 522-531, 1996.

A. Shukla, P.M. Deshpande, J.F. Naughton.
Materialized View Selection for Mul-
tidimensional Datasets. Available from
www.cs.wisc.edu/-samit.

J.D. Ullman, Efficient Implementation of
Data Cubes Via Materialized Views A sur-
vey of the field for the 1996 KDD confer-
ence.

Y. Zhao, P.M. Deshpande, J.F. Naughton.
An Array-Based Algorithm for Simulta-
neous Multidimensional Aggregates, Proc.
ACM SIGMOD Int. Conf. on Management
of Data, 159-170, 1997.

499

