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Abstract 
To fulfill the requirement of fast interactive 
multidimensional data analysis, database sys- 
tems precompute aggregate views on some sub- 
sets of dimensions and their corresponding hi- 
erarchies. However, the problem of what to 
precompute is difficult and intriguing. The 
leading existing algorithm, BPUS, has a run- 
ning time that is polynomial in the number of 
views and is guaranteed to be within (0.63 - f) 
of optimal, where f is the fraction of available 
space consumed by the largest aggregate. Un- 
fortunately, BPUS can be impractically slow, 
and in some instances may miss good solu- 
tions due to the coarse granularity at which it 
makes its decisions of what to precompute. In 
view of this, we study the structure of the pre- 
computation problem and show that under cer- 
tain broad conditions on the multidimensional 
data, an even simpler and faster algorithm, 
PBS, achieves the same (0.63 - f) bound. Our 
empirical study of the behavior of PBS shows 
that even when this condition does not hold, 
PBS picks a surprisingly good set of aggregates 
for precomputation. Furthermore, BPUS and 
other previous work has assumed that all ag- 
gregates are either precomputed in their en- 
tirety or not at all. We show that if one re- 
laxes this and allows aggregates to be partially 
precomputed, not only is it possible to find so- 
lutions that are better than those found by pre- 
vious algorithms, in some cases it is even pos- 
sible to find solutions that are better than the 
solution that is ‘optimal’ by the previous defi- 
nition. 
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1 Introduction 
Multidimensional data analysis, as supported by OLAP 
systems, requires the computation of many aggregate 
functions over large amounts of data. To meet the 
performance demands imposed by these applications, 
virtually all OLAP products resort to some degree of 
precomputation of these aggregates. The more that is 
precomputed, the faster queries can be answered; how- 
ever, it is often difficult to determine which are the best 
aggregates to be precomputed given a fixed amount of 
space. Thus, the database administrator tries to fill 
available space with precomputed aggregates in order 
to minimize the average query response time of the sys- 
tem. An important problem a DBA faces is determining 
the amount of space that should be allocated for pre- 
computation. A graph of the average query response 
time corresponding to different amounts of space allo- 
cated for precomputation is shown in Figure 1. Such 
a graph can be used to make an intelligent decision of 
the amount of space for precomputation such that the 
performance gains from adding more space are dimin- 
ishing. A DBA can compute the slope of the graph 
at different points and determine the point at which 
diminishing returns from precomputation outweigh the 
cost of additional disk space. 

C 

Space for precomputation 

Figure 1: A graph of space vs average query cost for a 
lattice. 

Constructing this graph is non-trivial. The prob- 
lem has been shown to be computationally intractable. 
Harinarayan et al. [HRU96] have proposed an elegant 
heuristic algorithm, BPUS, to approximate the optimal 
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solution. Using BPUS, one can determine the best set 
of aggregates for the corresponding amount of precom- 
putation space, and then evaluate the benefit of these 
aggregates. While BPUS is much faster than an ex- 
haustive search, in general it will take several days to 
several months to generate the graph, rendering this 
approach infeasible, which in turn means the DBA will 
have to resort to guesses as to what is a good amount 
of space to dedicate for precomputation. 

In this paper, we propose a simple and fast heuristic 
algorithm, PBS, to select aggregates for precomputa- 
tion. PBS runs several orders of magnitude faster than 
BPUS, and is fast enough to make the exploration of 
the time-space tradeoff feasible during system config- 
uration. However, PBS, like previous solutions, is a 
heuristic algorithm, so a main contribution of this pa- 
per is an exploration of its performance. We examine 
the conditions under which PBS selects views having a 
fixed bound with respect to the optimal set of views. 
Due to its speed, PBS can be used by DBAs to de- 
termine how much space should be allocated for pre- 
computation. Next we examine the materialized view 
selection problem when subsets of aggregates can be 
computed using chunks [DRSN98], and show with an 
example that the benefit of the views selected by PBS 
using chunks can be greater than the benefit of the 
optimal set of views selected without chunk based pre- 
computation. Then we show how BPUS and PBS can 
be adapted to use chunk based precomputation. This 
results in improved performance bounds for both al- 
gorithms. We begin with an example to motivate the 
problem. 

1.1 An Example 
Consider a table of sales with the schema 

Sales(ProductId, StoreId, TimeId, Sales) 

with the intuitive meaning that each tuple represents 
the sales of some product sold in some store at some 
time. We will use this schema as an example through- 
out the paper. There are a number of queries that can 
be asked of this data. For example, one may wish to 
know sales by product; or sales by store; or sales by 
product and store; or sales by store and time; and so 
forth. Each of these queries represents an aggregate 
computation. For example, sales by product and store 
in SQL is just: 

SELECT ProductId, StoreId, SUM (Sales) 
FROM Sales 
GROUP BY ProductId, StoreId 

If the sales table is large, this query will be slow. How- 
ever, if this a gregate is precomputed, the query can be 

Pi answered wit a simple scan of the precomputed aggre- 
gate. In addition, the precomputation of this aggregate 
also benefits queries on aggregates derived from it. For 
example, the following query, which asks for the aggre- 
gated sales grouped by the product can be answered 
using the above aggregate. 

SELECT ProductId, SUM (sales) 
FROM Sales 
GROUP BY ProductId 

Therefore, the task the DBA faces is to choose a set of 
queries to precompute and store. 

1.2 Related Work 

A useful way to describe the full precomputation prob- 
lem is to use the framework proposed by Gray et al. 
[GBLP96] using the cube operator. The cube oper- 
ator is the n-dimensional generalization of the SQL 
group-by operator. The cube on n attributes com- 
putes the group-by aggregates for each possible sub- 
set of these dimensions. In our example, this is: 
{}, { ProductId}, { StoreId}, TimeId}, { ProductId, 
StoreId}, {ProductId, TimeId , {TimeId, StoreId}, 
{ ProductId, StoreId, TimeId}. 

I 

As we mentioned, [HRU96] proposes a greedy algo- 
rithm, BPUS, to find a set of aggregates to materialize. 
BPUS attempts to maximize the benefit of the set of 
aggregates picked. They prove that if the largest ag- 
gregate view occupies a fraction f of the space avail- 
able for precomputation, then the aggregates picked by 
BPUS have a benefit at least (0.63 - f) times the ben- 
efit of the optimal set of views for the same amount of 
space. Other related work includes [GHRU97], where 
the authors consider the selection of views and indexes 
together. [Gupt97] presents a theoretical framework 
for the view-selection problem, and proposes a general 
algorithm and several heuristics, while [UllSS] surveys 
techniques proposed for determining what aggregates 
should be precomputed. 

1.3 Paper Organization 
Section 2 describes the lattice framework and cost 
model for the aggregate selection problem. In Section 3, 
we describe a fast aggregate selection algorithm along 
with bounds on its performance. Section 4 presents 
subset caching using chunks and shows how it affects 
the aggregate selection problem. We carry out an ex- 
perimental evaluation of the different precomputation 
algorithms in Section 5, and present insights into the 
problem of aggregate selection. Section 6 presents our 
conclusions. 

2 Problem Formulation 

2.1 Lattice Framework for Multidimensional 
Datasets 

Queries on multidimensional datasets can be modeled 
by the data cube operator. For distributive function 
such as sum, min, max, etc., some aggregates can be 
computed from another aggregate. In the example 
schema of Section 1.1, the aggregate on {ProductId, 
StoreId} can be used to answer a query on {ProductId}. 
This relation between aggregate views can be used to 
place them within a lattice framework as proposed in 
[HRU96] and [BPT97]. Aggregates are vertices of an 
n-dimensional cube. The following properties define a 
hypercube lattice I!Z of aggregates. 

(a) There exists a partial order 3 between aggregate 
views in the lattice. For aggregate views u and 
v, v 1 u if and only if v can be answered using the 
results of u by itself. 

(b) There is a base view in the lattice, upon which 
every view is dependent. The base view is the 
database. 
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(c) There is a completely aggregated view “ALL”, 
which can be computed from any other view in 
the lattice. 

The aggregate selection problem is equivalent to select- 
ing vertices from the underlying hypercube lattice. For 
example, the lattice C in Figure 2 represents the cube of 
the schema described in Section 1.1. The three dimen- 
sions ProductId, StoreId, TimeId are represented by P, 
S, T respectively, and an aggregate view is labeled us- 
ing the names of the attributes it is aggregated on. For 
example, view PS is aggregated on attributes Produc- 
tId and StoreId. In Figure 2, if an edge connects two 
views, then the higher view can be used to precompute 
the other view. For example, there is an edge between 
PS and P. This means that PS can be used to compute 
P. If there is no precomputation, a query on P (Pro- 
ductId) has to be answered using the base data, PST 
(Sales table). 

(1) 
Figure 2: The hypercube lattice corresponding to the 
example in Section 1.1. The numbers are aggregate 
sizes in tuples. 

One can define some functions on hypercube lattices. 
For an aggregate v, parent, children and descendant are 
defined as follows: 

parent(v) = {u 121-x u; 3 w, 2, 3 w, w + u} 
children(v) = {u 1 u -t w; i4 w, u 4 w, w 4 w} 

descendants(v) = {u 1 u 5 w} 

2.2 Cost Model 
We use the cost model proposed by [HRU96], in which 
the cost of answering a query (time of execution) is 
assumed to be equal to the number of tuples in the 
aggregate used to answer the query. To justify this 
cost model, they considered the different situations that 
can occur when answering a query from an aggregate. 
Namely, the presence or absence of an index on the 
aggregate, and whether the query asks for an entire 
aggregate or a subset of an aggregate. An experimental 
validation of this cost model is provided in [HRU96]. 
They found that there is an almost linear relationship 
between size and running time of a query. In summary, 
we assume that the cost of answering a query q is equal 
to the number of tuples read to return the answer. 

2.3 The Benefit Metric 
Informally, the benefit of an aggregate view w is com- 
puted by adding up the savings in query cost for each 
view w (including w) over answering it from the base 

view. If a set S of aggregate views is chosen for materi- 
alization, the benefit of S is the sum of the benefits of 
all views in S. The same metric is used by [HRU96]. 

Definition 2.1. Let S be the set of aggregates selected 
for precomputation. The least cost view in S which can 
be used to answer a query on w is denoted by L(w). 

Let C(w) be the cost of computing another view from w. 
Looking back to our cost model, C(w) is the number of 
tuples in 21. 

Definition 2.2. The benefit of u with respect to S, 
B(u,S), is defined as 

I. For each aggregate view w 5 u, t?, is defined as: 

1.1 Let w be the least cost view in S such that 
0 5 w. (w = L(w)) 

1.2 iC2J < C(w), then B,, = C(w) - C(u), else 

2. aw; = cv+ & - 
In short, for each view w that is a descendant of u, 
we check to see if computing w from u is cheaper than 
computing w from any other view in the set S. If this 
is the case, then precomputing u benefits w. Since all 
aggregates can be computed from the (unaggregated) 
base data, and S contains the base data, in step 1.1 we 
can always find a least cost aggregate view w (the base 
data in the worst case). Our goal is to maximize the 
benefit of a set of aggregates given a fixed amount of 
space. This leads us to define another metric derived 
from benefit. In the rest of the paper, we will use benefit 
per unit space rather than just benefit since we assume 
that space is a constraint. 
Definition 2.3. The benefit per unit space of a view u 
is defined as: 

wu, S) 
fL(u,S) = ,u, = 6 ~vw)) - C(u)), 

where w + u, C(L(w)) > C(u), ]u] = C(u) = size of u. 

2.4 Average Query Cost 
The effect of maximizing benefit per unit space of a 
set of aggregates is not intuitively obvious. In par- 
ticular, it is hard to understand the improvement in 
query response time when the benefit increases by some 
amount. To overcome this drawback of benefit, we de- 
fine a new metric Average Query Cost, which is anal- 
ogous to query response time. An improvement in av- 
erage query cost is equivalent to a corresponding im- 
provement in average query response time. We use this 
characteristic in the experimental evaluation, where av- 
erage query cost is used as the metric to plot graphs 
and explore query response time as space available for 
precomputation is increased. 

Consider a lattice C with n views, ~1,. . . , wn. There 
are n different templates for queries, one for each view: 
Ql,Q2,..., Q,. Let there be a set S of aggregate views 
precomputed, so that a query on view wi can be most 
cheaply answered from a view L(wi) = wi E S. Let 
queries on C occur with probabilities pl,p2,. . . ,p,. 
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Definition 2.4. The average query cost is defined as: 

ePiC(Wi), (1) 
i=l 

where C(wi) is the cost of answering a query Qi on a 
view Vi. 

2.5 Reconciling these two metrics 
We have two different metrics for the goodness of a 
precomputation. The first is maximizing the benefit 
per unit space of a precomputation, and the second is 
minimizing the average query cost,. In this section we 
show that optimizing either of these two metrics leads 
to the same solution. First, we have to account for 
query probabilities in the benefit computation. We do 
this by modifying step 2 of the benefit computation in 
Definition 2.2 to: 

This modified benefit formula is used in [HRU96] to 
maximize the benefit of a set of aggregates (IZJ is the 
size of the Database, D.): 

CP” * (PI - C(L(v))) = PI - CP” .C(L(v)) (2) 
VEL UEL 

We prove in [SDN98] that maximizing the benefit 
(Equation 2) is the same as minimizing the average 
query cost (Equation 1). 

2.6 Precomputation of Aggregates 
There is a tradeoff between the amount of space allo- 
cated for precomputation, and the average query cost 
(query response time); more space implies a smaller av- 
erage cost of queries (faster response time). Precomput- 
ing a subset of the aggregates involves intelligently pick- 
ing a subset of the aggregates using a limited amount 
of space. For example, consider a lattice in which all 
aggregates have an equal probability of being queried. 
Figure 3 shows the average cost of queries on the lat- 
tice as the amount of space allocated for precomputa- 
tion is increased. The average query cost corresponds 
to the optimal set of aggregates for a given amount of 
space. A small amount of precomputation dramatically 
improves the average query cost. The improvement in 
average query cost decreases as more space is allocated 
for precomputation. 

To find the optimal set of views to precompute, one 
can enumerate all possible combinations of aggregate 
views and find the one which results in the minimum 
average query cost or the maximum benefit. Finding 
the optimal set of aggregates in this manner has a com- 
plexity of 0(2n), where n is the number of aggregates 
in the schema. If d is the number of dimensions in the 
schema, and there are no hierarchies, then n = 2d, SO 

the cost of finding the optimal combination grows a~ 
22d. For 6 dimension and no hierarchies, the cost is of 
the order of 264! Clearly, computing the optimal set of 
aggregates exhaustively is not feasible; this is in fact an 
intractable problem (NP-hard). 

1.2s+o6 

2ococO- 

lcocm- 

Figure 3: Average Query Cost of a 4 dimensional lattice 
as the amount of space available for precomputation is 
increased. The average query cost corresponds to the 
optimal set of aggregates for a given amount of space. 

In view of this, [HRU96] presents an algorithm, 
BPUS, that uses the benefit per unit space of an ag- 
gregate. The inputs to BPUS are: space - the amount 
of space available for precomputation, and A, a set ini- 
tially containing all aggregates in the lattice, except the 
database. The output is S, the set of aggregates to be 
precomputed. The algorithm assumes that queries are 
uniformly distributed. 

Algorithm BPUS 
WHILE (space > 0) DO 

w = aggregate with max. benefit per unit space in A 
IF (space - IwI > 0) THEN 

space = space - IwI 
s=suw 
d=d-w 

‘ELSE 
space = 0 

S is the set of aggregates picked by BPUS 

The authors proved that the benefit of the aggregates 
selected by BPUS is no worse than (0.63 - f) times 
the optimal benefit; if no aggregate view occupies more 
than some fraction f of the total space available for 
precomputation. There is no bound if f > 0.63. For 
example, if some view occupies 50% of the space avail- 
able then all one knows is that the result achieves at 
least 13% of the optimal benefit. The order of BPUS is 
O(k . n2), where k is the number of aggregat,es selected 
for precomputation, and n is the number of vertices in 
the lattice. We have observed experimentally that 10% 
to 50% of the aggregates are picked before improve- 
ments in response time diminish as additional space is 
allocated for precomputation. If IO% of the aggregates 
are selected for precomputation, k = n/10, and the 
complexity of BPUS becomes O(n3). Though the com- 
plexity is polynomial, for a real dataset it may result 
in too much time spent in making a decision of what 
aggregates should be precomputed as we see next. 
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3 Fast Aggregate Selection 
A major drawback of the BPUS algorithm is its run- 
ning time. To measure the execution time of BPUS, we 
implemented it with complexity 0(/c . n2), and used a 
six dimensional schema with a five level hierarchy on 
each dimension, with hierarchy sizes (100, 50, 25, 5, 2). 
The first number (100) is the cardinality of the dimen- 
sion, and the other numbers are (in order) the distinct 
values in its hierarchy. The corresponding datacube 
lattice has 46656 aggregates. The database had 10M 
tuples, and the space allocated for precomputation was 
1.6 billion tuples, which is about 1% of the cube size. 
The machine it was run on was a 200 MHz dual pro- 
cessor Ultra Spare I running Solaris 2.5.2, with 256 MB 
of main memory. For this schema, our implementation 
of BPUS took 1193 sets to pick one aggregate. If 10% 
of the aggregates are picked, BPUS will pick 4665 ag- 
gregates, and take about 64 days to determine the set 
of aggregates to be precomputed. If one tries to plot a 
graph such as in Figure 1, we estimate that it will take 
around 640 days to do so using BPUS. Clearly, this is 
a large amount of time that a user has to wait before 
he knows how much space should be used, or what ag- 
gregates should be precomputed. With this in mind, 
our goal is to design an efficient algorithm that doesn’t 
sacrifice accuracy for speed. We designed a simple al- 
gorithm, PBS, with an O(nlogn) worst case execution 
time, and proven performance bounds for PBS under 
certain conditions on hypercube lattices. On the above 
6 dimensional schema, PBS run in less than 1 second, 
compared to 64 days for BPUS. In addition, in Sec- 
tion 5, we experimentally evaluate PBS and show that 
it performs well even when the conditions on the lattice 
are relaxed. PBS can be used to plot a graph such as 
Figure 1, which a DBA can use to compute the slope of 
the graph at different points and determine the point 
at which diminishing returns from precomputation out- 
weigh the cost of additional disk space. 
3.1 PBS 
PBS, which stands for Pick By Size, picks aggregates for 
precomputation in increasing order of their size. The 
inputs to PBS are: space - the amount of space avail- 
able for precomputation and A, a set initially contain- 
ing all aggregates in the lattice. The output is S, the 
set of aggregates to be materialized. PBS assumes that 
queries on all aggregates are equally likely. 

Algorithm PBS 

WHILE (space > 0) DO 
w = smallest(d) 
IF (space - IwI > 0) THEN 

space = space - IwI 
s=suw 
d=d-w 

‘ELSE 
space = 0 

S is the set of aggregates picked by PBS 

In the algorithm, smallest(d) is a function which re- 
turns the view having the smallest size in set A. The 

order of PBS is O(nlogn), which arises from the cost 
of sorting the aggregates by size. Next, we explore 
the conditions under which PBS guarantees the (0.63 
- f) bound by proposing a subset of hypercube lattices 
which we will call SR-hypercube lattices. 
3.2 SR-Hypercube Lattices 
Consider the subclass of hypercube lattices with an or- 
dering between the sizes of aggregates and their par- 
ents. More specifically, for all aggregates v, w satisfying 
w = parent(v), and k = Ichildren(v)I, 

1-‘I< 1 - when IwI # IZY)l 
1’1~1 - l+k 

where 2, is the database. We call such lattices Site 
Restricted, or SR-hypercube lattices. Intuitively, this 
means that if Ichildren = 5, then the (WI 2 617~1. 
Though this appears to be a rather strong condition 
to impose on the structure of a lattice, it is in fact 
quite likely to be satisfied. For example, the hypercube 
lattice in Figure 2 is size restricted. To verify that a hy- 
percube lattice is size restricted, one can use an aggre- 
gate size estimator which guarantees that the error in 
the estimate is bounded. One such estimator based on 
probabilistic counting is presented in [SDNR96]. Once 
the size estimates have been obtained, it is a simple 
matter to perform comparisons between aggregate sizes 
and determine whether the lattice is size restricted. 
3.3 PBS on SR-Hypercube Lattices 
In this section, we prove a bound on the benefit of the 
set of aggregates picked by PBS in relation to the op- 
timal set for SR-hypercube lattices. First we prove a 
bound for a subset of SR-hypercube lattices. Then we 
extend it to all SR-hypercube lattices. 

Theorem 3.1. Consider a SR-hypercube lattice where 
VW E C, w # V, 12~1 # IV/. The ratio of the benefits of 
PBS and optimal is at least (0.63 - f); f is the ratio of 
the largest aggregate size to the amount of space avail- 
able for precomputation. Intuitively, this is the subset 
of SR-hypercube lattices in which aggregate sizes do not 
“saturate” and become equal to the database size. 

Proof. Harinarayan et al. [HRU96] prove that if f is 
the ratio of the size of the largest view to the size of 
the database, then BPUS will pick a set of aggregate 
views whose benefit is no less than (0.63 - f) of the op- 
timal benefit. We prove the bound on PBS by showing 
that PBS and BPUS pick the same set of aggregates. 
The proof is by induction on the number of aggregates 
picked. 

Consider a d dimensional SR-hypercube lattice 
where the ratio of the size of a view and its parent 
is 5 l/(1 + k). The level number of an aggregate in 
the lattice is defined as the number of attributes it is 
aggregated on, and two aggregates with the same level 
number are said to be at the same level. The first ag- 
gregate picked by PBS is “ALL”, the smallest view in 
the lattice. As the basis of induction, let us examine 
the first aggregate view picked by BPUS. If i is the level 
number, and & is the ratio of the size of a view and the 
largest of its children, then the number of children that 
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Table 1: The initial benefits per unit space of views in 
a d dimensional SR-hypercube lattice. 

Level View # ben. 
size views 
=s 20 

2 se1 2l 

2 a2 22 

Benefit per 
unit space 

a node at level i has is greater than or equal to i. There- 
fore, .!?i 2 1 +i. When no views are selected for precom- 
putation, the benefits per unit space of views are listed 
in Table 1. Assuming that V > s lJ!z; &, 0 < k < d, 
the maximum values of the benefits per unit space are: 

Since ei 2 2, the smallest view has the highest benefit 
per unit space initially, and is picked by BPUS. Hence, 
the first view picked by both PBS and BPUS is the 
smallest in size. 

Let us assume that aggregates are picked by size un- 
til T have been picked. The (T + l)th aggregate picked 
by PBS is the smallest in size among the remaining un- 
picked aggregates. Let us examine the structure of the 
lattice and find the (r+ l)th view that will be picked by 
BPUS. Since aggregate views have been picked by size 
so far, and the size of an aggregate w is greater than the 
size of any of its children, children of w are picked before 
21. This results in a precomputation frontier (Figure 4). 
Aggregate views on this frontier have all their children 
already selected for precomputation. 

Level 

Level 

Frontier 
Figure 4: Shows the precomputation frontier for an SR- 
hypercube lattice. 

We now show that only views on the frontier are 
considered at this point by BPUS for precomputation 
because views inside the frontier have a smaller benefit 
per unit space than some view on the frontier. Consider 
a view u at level j in the lattice. It has a descendant 
u at level i in the lattice, such that u is on the frontier 

PST 

-;i:p 

ST 

P S T 

Figure 5: The example lattice from Section 1.1, where 
aggregates PS and PT have been pruned since they are 
equal in size to the database. 

(Figure 4). The benefit per unit space of 21 is 

<Pl j(j - 1). . . (i + 1) + 1 <!Z?! 
- lzll (i+1+1)(i+2+1)...(j+1) - 12LI 

since the maximum cardinality of Idescendants is 
(j(j - 1) . . . (i + 1) + l), and the size of 21 is at least 
lzll . (i + 1 + l)(i + 2 + 1). . . (j + 1). The benefit per 
unit space of u is lVl/lul. Since u has a higher ben- 
efit per unit space than w, BPUS will not pick 21 at this 
point. Thus, only views on the frontier can be consid- 
ered for precomputation at any point. To show that 
the next aggregate picked will be the smallest remain- 
ing unpicked aggregate, we have to show that among 
views on the frontier, the view with the smallest size 
will now be picked. A view u on the frontier has no 
children that have not yet been selected for precompu- 
tation. The benefit per unit space of u is (1271 - ~u~)/~u~. 
This means that the view with the smallest size has 
the largest benefit per unit space, and will be chosen 
by BPUS. PBS will also pick the view with the small- 
est size. Since BPUS and PBS pick the same set of 
aggregates, the benefit per unit space of the set of ag- 
gregates picked by PBS will be at least (0.63 - f) times 
the optimal benefit. Cl 

Now we extend the above proof to prove a bound for all 
SR-hypercube lattices. In particular, we consider the 
case when the size ratio is satisfied until some level in 
the lattice and then aggregate views have the same size 
as the database V. 

Theorem 3.2. PBS is within (0.63 - f) for a SR- 
hypercube lattice. 

Proof. Consider an SR-hypercube lattice. All aggre- 
gate views which have the same size as the database 
(I4ll4 = 1) h ave zero benefit (IV1 - 1~1 = 0). This 
means that any query which can be answered by scan- 
ning v or w can be answered at equal cost by scan- 
ning the database. Therefore, we can prune the hy- 
percube lattice so that such aggregates are removed. 
Figure 5 shows the pruned lattice corresponding to the 
lattice in Figure 2. In the new lattice, the condition 
stated in Theorem 3.1 is true. That is, w = parent(v); 
l4/14 5 l/G + k), where k = [children(w From 
Theorem 3.1 it follows that the benefit of PBS is no 
less than (0.63 - f) of the optimal benefit. q 

PBS may not achieve this bound for non SR-hypercube 
lattices. This is shown with an example in [SDN98]. 
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3.4 Non-uniform Query Distributions 
PBS assumed that all aggregates have an equal proba- 
bility of being queried. We propose a variation of PBS, 
called PBS-U, in which a user can assign probabilities to 
aggregates. Domain specific knowledge of the schema 
and workload can be used to assign higher probabilities 
of being queried to some aggregates. We extend PBS 
so that the user can associate each aggregate with a 
probability of being queried, which corresponds to the 
frequency with which the aggregate is expected to be 
queried. 

Definition 3.1. The probability weighted size of an ag- 
gregate is equal to the ratio of the size of the aggregate 
to the probability of its occurrence. 

PBS-U picks aggregates in order of their probability 
weighted size: I’uI/pV, where Iv1 is the size of aggre- 
gate view v, and p, is the frequency with which v is 
queried. Aggregates which are more frequently queried 
have their probability weighted size reduced, increasing 
their likelihood of being picked. PBS-U takes as input: 
space - the amount of space available for precomputa- 
tion and A, a set initially containing all views in the 
lattice. The output is S, the set of views to be mate- 
rialized; wt-smallest(d) is a function which returns the 
view having the smallest probability weighted size in 
set A. 

Algorithm PBS-U 
WHILE (space > 0) DO 

w = wt-smallest(d) 
IF (space - IwI > 0) THEN 

space = space - IwI 
s=suw 
d=d-w 

‘ELSE 
space = 0 

S is the set of aggregates picked by PBS-U 

If the lattice formed by considering probability 
weighted sizes of aggregates instead of their sizes is an 
SR-hypercube lattice, then it follows from Theorem 3.2 
that PBS-U has the same bound as PBS. The intuition 
is that with probabilities of occurrence, the benefit per 
unit space of 21 is: p, .r benefit = e Considering the 
lattice as size restricted on jul/pU instead of just IuI, a 
similar proof as Theorem 3.2 holds. 

4 Chunk Based Precomputation 
4.1 Introduction to Chunks 
The idea of chunks for dynamic query caching first ap- 
peared in [DRSN98]. In this paper we adapt it for static 
precomputation. The idea of chunks was motivated by 
MOLAP (Multidimensional OLAP) systems, which use 
multi-dimensional arrays to represent data. Instead of 
storing a large array in simple row major or column ma- 
jor order, they are broken down into chunks and stored 
in a chunked format [SS94, ZDN97]. The distinct val- 
ues for each dimension are divided into ranges and the 
chunks are created based on this division. Figure 6 

shows how the multidimensional space can be broken 
up into chunks. Our observation was that chunks are 
very suitable as a unit of precomputation. Chunks cap- 
ture the notion of semantic regions and divide the entire 
space into uniform semantic regions. In a chunk-based 

ProductId 
Figure 6: Chunking the Multidimensional Space for the 
schema from Section 1.1. 

precomputation scheme, aggregates are broken up into 
chunks, and a chunk becomes the unit of precompu- 
tation. If the database supports multidimensional ar- 
rays, a chunk based aggregate can be implemented as 
a multi-dimensional array. On the other hand, if the 
system is fully relational, a chunked file organization as 
described by [DRSN98] can be used. An additional ad- 
vantage of chunk based precomputation is an efficient 
implementation of the chunk based dynamic caching 
scheme proposed in [DRSN98]. 

When a query is asked, the set of chunks needed to 
answer it are determined. Then depending on what has 
been selected for precomputation, this set of chunks is 
divided into two partitions. The first partition consists 
of chunks that are precomputed, and the results just 
have to be looked up. The second partition consists 
of chunks that have to be computed from other aggre- 
gate chunks. For example, in Figure 7, a query could 
ask for chunks 0 and 1 of {ProductId}. If chunk 0 of 
{ProductId} is precomputed, then the first partition 
consists of chunk 0 of {ProductId}, while the second 
partition consists of chunk 1 of {ProductId}. Chunk 1 
of {ProductId} has to be computed from other aggre- 
gate chunks (ancestors of {ProductId} in the lattice). 
From Figure 7, we see that chunk 1 of {ProductId} 
can be obtained by aggregating chunks 1, 5, 9, 13 of 
{ProductId, StoreId}. By using either a multidimen- 
sional array or a chunked file representation, direct ac- 
cess to these chunks of {ProductId, StoreId} is possible. 
This enables us to compute only missing chunks to de- 
termine the result of a query, rather than computing 
the entire query result. 

4.2 The Motivation for using Chunks 
Let us look at some examples to see how the ability to 
precompute parts of aggregates influences the average 
query cost and benefit per unit space. Figure 8 shows 
the subset of the lattice describing the hypercube for 
the Sales schema restricted to vertices with ProductId 
or StoreId. 

Example 4.1. Consider the hypercube lattice of Fig- 
ure 8. Figure 9 shows a graph with the amount of space 
available for precomputation on the x-axis, and the av- 
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Figure 7: Chunks at different levels. The grid on the 
left corresponds to the aggregate (ProductId, StoreId). 
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Figure 8: Data cube of {ProductId, StoreId}. 
erage query cost on the y-axis. If chunk based precom- 
putation is used, one can obtain a much lower average 
query cost as compared to BPUS or PBS. 

The next example illustrates how the use of chunks can 
yield a better benefit per unit space than the optimal 
precomputation of whole aggregates. 
Example 4.2. Consider the hypercube lattice of Fig- 
ure 8. If the amount of space available for precompu- 
tation in 501 tuples, the optimal algorithm which picks 
whole group bys will be able to fit only ALL, resulting 
in a total benefit of 1999. If we use chunks, with a 25 
tuples per chunk, We can fit ALL as well as 500 tu- 
ples (20 chunks) of P. This results in a benefit of 2499, 
which is larger than the optimal benefit when picking 
whole aggregates. 
From the above examples we can see that the use of 

Figure 9: Graph corresponding to the lattice in Figure 8 

chunking to precompute subsets of aggregates makes 
it possible for one to design algorithms with a lower 
average query cost than algorithms which assume that 
the granularity of precomputation is whole aggregates. 
4.3 Cost Model for Chunks 
In this section we look at the benefit per unit space 
of a chunk of an aggregate. Since chunk based pre- 
computation can be thought of a semantic index on the 
data, the linear cost model applies to chunks. Assigning 
probabilities to chunks results in a huge increase in the 
size of the lattice and renders all proposed algorithms 
expensive and inefficient. Therefore, we assume that 
all chunks of an aggregate have the same probability 
of being queried as the aggregate. We start with two 
examples that examine the benefit per unit space of a 
chunk. 

Example 4.3. In this example we examine how pre- 
computing a chunk can have some benefit. Assume in 
the lattice of Figure 2 that all chunks of PS are precom- 
puted. To answer a query on ALL, we have to compute 
chunk 0 of ALL. This can be done by scanning chunks 
O-15 of PS (Figure 7), which is cheaper than scanning 
the database PST. Let us analyze what happens when 
chunk 0 of S (which is a descendant of PS) is precom- 
puted. Chunk 0 of S and chunks 4-15 of PS can be ag- 
gregated to compute ALL. Hence precomputing a chunk 
of S saves us the scan of chunka O-3 of PS. 

Example 4.4. Consider the lattice of Figure 2 and as- 
sume that all chunks of S are precomputed and nothing 
else is precomputed. To answer a query on ALL, we 
have to scan chunks O-3 of S (Figure 7). In this sce- 
nario, let us analyze the benefit of a chunk of P. Since 
S is not an ancestor of P in the lattice, P doesn’t benefit 
the computation of ALL even if the size of P is smaller 
than the size of S. 

The observations of the above examples are summa- 
rized in the following lemmas. 

Lemma 4.1. Let S be the set of aggregates selected for 
precomputation. If w E S, w = L(w) and v 4 u 4 w 
then the computation of a chunk of u benefits v. 

Proof. Since Y + u 4 w, precomputing a chunk of u 
saves a scan of the corresponding set of chunks of w in 
answering a query on 21. cl 

Lemma 4.2. Let S be the set of aggregates selected for 
precomputation. If w E S, w = L(v) and u 74 w then 
the computation of a chunk of u does not benefit v. 

Proof. Since u # w, precomputing a chunk of u does 
not benefit a query on v being answered from w. 0 

We now formalize the notion of the benefit per unit 
space of a chunk in the following theorem. 

Theorem 4.1. For a hypercube lattice with a set S 
of aggregates precomputed, Bs(uC, S) 5 B, (u, S), where 
u E S, uC is a chunk of u. In other words, the benefit 
per unit space of a chunk of u is 5 the benefit per unit 
space of u. 
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Proof. We have seen in Lemmas 4.1 and 4.2 that de- 
pending on the aggregate used to answer a query, a 
chunk can have a zero or non-zero benefit. A chunk 
of u benefits an aggregate v only when v 4 u, u 4 
L(v), C(L(v)) > C(u). Let us assume that this holds 
and let w = L(v), then the benefit per unit space of u 
to v is I 

i . (C(w) - C(u)) (3) 

Let us compute the benefit per unit space of a chunk 
UC. * 

h * (C(w’) - C(w)) 
where w’ is the set of chunks of w which don’t have 
be scanned to compute v if u, is precomputed. Let 
n/(u), N(w) be the number of chunks of u and w re- 
spectively. Then, 

14 = C(‘LLc) = n/(u) N(w) C(w) c(u> and ]w’] = C(w’) = N(u). No 

from the chunk decomposition of aggregates. Using 
this, Equation 4 becomes 

h . (C(w) - C(‘zL)) (5) 

This is the same as the benefit per unit space of u to 
v (Equation 3). We can now rewrite the definition of 
benefit per unit space (Definition 2.3) to account for 
chunks: 

Bs(% S) = h ~w(v)) - C(U))> (6) 

v + u, C(Jqv)) > C(u), u 4 L(v). The difference be- 
tween Definition 2.3 and Equation 6 is in the additional 
condition u 4 L(v) which says that L(v) should be an 
ancestor of u for a chunk to have a non-zero benefit 
per unit space. Therefore, the benefit per unit space 
of a chunk of an aggregate is less than or equal to the 
benefit of the entire chunk. 0 

4.4 Algorithms using Chunk based Precompu- 
tation 

At a first glance, it looks like the ability to precompute 
subsets of aggregates makes the precomputation prob- 
lem even harder. Not only do aggregates have to be 
selected, a decision of which subset of the aggregate to 
precompute also has to be made. We demonstrate that 
this ability has not made the problem harder, and show 
how BPUS and PBS can be modified to work in this 
situation. 

When aggregates are decomposable into chunks, the 
resulting lattice is an AND-OR View Graph as de- 
fined by Gupta [Gupt97]. Gupta proposes algorithms 
for AND-OR view graphs that are exponential. Since 
the number of chunks can be very large (depending on 
the data), exponential algorithms are clearly unpracti- 
cal. We design polynomial algorithms that are based 
on BPUS and PBS. 

We proved in Theorem 4.1 that the benefit per unit 
space of a chunk of an aggregate v is less than or equal 
to the benefit per unit space of v. Since BPUS is a 
greedy algorithm, picking the aggregate with the maxi- 
mum benefit per unit space at each step, it will pick 
whole aggregates rather than chunked subsets of an 
aggregate. We use this observation to define BPUS- 
C, which uses chunks to improve the benefit per unit 
space of a precomputation. The inputs to BPUS-C are: 
space - the amount of space available for precomputa- 
tion, and A, a set initially containing all aggregates in 
the lattice, except the database. The output is S, the 
set of aggregates to be precomputed. 

Algorithm BPUS-C 
Run Algorithm BPUS on the lattice 
w = aggregate with max. benefit per unit space in A 
Add k chunks of w to S, k. (wcl 5 available space 
S is the set of aggregates picked by BPUS-C 

For a general hypercube lattice, it is hard to quantify 
the exact benefit of S. BPUS has a (0.63 - f) bound 
and BPUS-C picks a subset of an aggregate not chosen 
by BPUS, in addition to picking the whole aggregates 
chosen by BPUS. Therefore, the benefit of S produced 
by BPUS-C is greater than or equal to that of BPUS. 
To obtain the (0.63 - f) performance bound for SR- 
hypercube lattices, PBS-C has to duplicate the opera- 
tions of PBS. PBS-C takes the same inputs as BPUS- 
C and produces the same output as BPUS-C. PBS-C 
differs from BPUS-C in the first step. Instead if run- 
ning BPUS on the lattice, PBS-C runs PBS on the lat- 
tice. For SR-hypercube lattices, we can obtain a tighter 
bound on the benefit with respect to the benefit of the 
optimal precomputation. 

Theorem 4.2. For a SR-hypercube lattice, let f’ be the 
ratio of the size of the largest chunk size and the space 
available for precomputation. Then the benefit of PBS- 
C and BPUS-C is (0.63 - f’) times the optimal benefit. 

Proof. When BPUS or PBS is run on a SR-hypercube 
lattice, the cheapest way to precompute an aggregate 
is either from itself (if it has been selected for precom- 
putation), or from the database, V (if it hasn’t been 
selected). Then the following holds: 

v -x 21 A C@(v)) > C(u) =s v = L(v) A u 4 L(v) 

Examining Equation 6, this means that the benefit per 
unit space of a chunk of IL is always equal to the benefit 
per unit space of u. In this situation, we can still pick 
whole aggregates, and when a whole aggregate doesn’t 
fit, we can precompute as many chunks as possible of 
the aggregate with largest benefit per unit space. Since 
uc and u have equal benefit per unit space, the perfor- 
mance bound can be quantified. The f, the ratio of 
the size of the largest aggregate to the space becomes 
f’, the ratio of the size of the largest chunk size to the 
space. PBS-C and BPUS-C will pick the same aggre- 
gates for a SR-hypercube lattice. Therefore, the benefit 
of aggregates picked by both PBS-C and BPUS-C is at 
least (0.63 - f’) t imes the optimal benefit. 0 
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In summary, the ability to precompute chunk based 
subsets of aggregates improves the benefit of a set of 
aggregates precomputed with respect to the optimal set 
(of whole aggregates) for a given amount of space. For 
example, if the largest aggregate has a size of 50MB, 
the unit of precomputation has a size of 4KB, and the 
space available for precomputation is 200MB, then f = 
50/200 = 0.25. So the bound of PBS and BPUS is 
(0.63 - 0.25) = 0.38. On the other hand, PBS-C and 
BPUS-C modified to use aggregate subset caching have 
a bound of (0.63 - 41204800) = 0.62998, or almost 0.63 
for a SR-hypercube lattice. 

5 Experimental Evaluation 
In our experiments, we study the average query cost 
of a precomputation as the amount of space available 
for precomputation is increased. We performed exper- 
iments on datasets generated from real-life data distri- 
butions, and synthetic data. We assume that queries 
on any aggregate are equally likely, and use analytical 
formulas presented in [SDNR96, RS97] to estimate the 
size of aggregates formed by the data cube operator. 
For example, consider a relation R having attributes 
A, B, C and D. Suppose we want to estimate the size of 
the group by on attributes A and B. If the number of 
distinct values of A is nA and that of B is nB, then the 
number of elements in A x B is n, = nAng. Let ID] 
be the number of tuples in the database. Using these 
values and an assumption that tuples are uniformly dis- 
tributed, the number of elements in the group by on A 
and B is: n, - n,(l - l/n,)l”l. This is similar to rela- 
tional group by size estimation. 

5.1 Experiments on distributions found in 
Real-datasets 

We ran experiments on datasets generated from data 
distributions found in four real-life datasets. The data 
distributions appeared in [AAD+96]. They are derived 
from sales transactions of department stores and mail- 
order companies. The number that appears next to an 
attribute represents the number of distinct values. We 
now describe the datasets. 

Dataset Rl Contains data with 5.5 million tuples, 
for a mail order company. Each transaction has 
four attributes: customer id (213972), order date 
(2589), product id (15836), and the catalog used 
for ordering (214). 

Dataset R2 Contains data with 7.5 million tuples, 
describing grocery purchases of customers from a 
supermarket. There are five attributes in each 
transaction: date of purchase (1092), shopper type 
(195), store code (415), the state in which the store 
is located (46), the product group of the item pur- 
chased (118). 

Dataset R3 This is data with 9 million tuples from 
a department store. Each transaction has five at- 
tributes: the store id (17), date of purchase (15), 
the UPC of the product (85161), the department 
number (44), and the SKU number (63895). 

Dataset R4 Contains data with 3 million tuples from 
a department store. Each transaction has a total 

of six attributes: the store number (4), the date of 
purchase (15), item number (26412), the business 
center (6), the merchandising group (22496), and 
a sequence number (255). 

Using the dimension sizes in datasets Rl, R2 and R3, 
we estimated aggregate sizes and found that the result- 
ing lattice is size restricted. Figures 10, 11, 12 illus- 
trate how the average query cost varies with the space 
available for precomputation. The data cubes for all 
three schemas are SR-hypercube lattices, hence PBS 
and BPUS pick the same set of aggregates. PBS-C has 
a lower average query cost than PBS because it picks 
a subset of an aggregate when PBS and BPUS cannot 
pick any aggregate (Figure 13). Figure 11 has been 
truncated along the x-axis to show the effect of chunk 
based precomputation in greater detail. 

Dataset R4 has 6 dimensions, and one of the dimen- 
sions (store number) has only 4 distinct values. This 
means the data cube of R4 is not a SR-hypercube lat- 
tice. In this case, we plot the relative error of PBS 
and PBS-C with respect to BPUS. If AQC(PBS) is the 
average query cost of the set of aggregates picked by 
PBS, then the relative error between PBS and BPUS 
is: (AQC(PBS) - AQC(BPUS))/ AQC(BPUS). Fig- 
ure 14 shows the relative errors of PBS and PBS-C 
with respect to BPUS. The error of PBS is quite small 
(5 0.08%). PBS-C does better than BPUS because it 
has the ability to precompute subsets of an aggregate. 

5.2 Synthetic datasets 
Real datasets do not give us the flexibility to vary the 
increase in size between an aggregate and its parent. 
So, we ran some experiments to study how the aver- 
age query cost of the set of aggregates picked by PBS 
varies with respect to the optimal set as the lattice 
deviates from the size restrictions. The dataset had 
four dimensions, and 1.2 million tuples. In the initial 
configuration, aggregates formed a SR-hypercube lat- 
tice. Then, we increased the fraction between a ag- 
gregate and its parent by small increments of 0.20. 
For example, if u = parent(v), and ]v]/]u] = E, 
then C is successively increased to I + .lO, ! + .30, 
1 + .50. Figure 15 shows the results of this experi- 
ment. The relative error of PBS-C with respect to op- 
timal is AQC(PBS-C) - AQC(OPT)/AQC(OPT) Ini- 
tially, when the offset is increased, the error increases, 
but then starts decreasing. A negative error means 
that PBS-C can do better than the optimal set result- 
ing from picking full aggregates. We have compared 
PBS-C with the optimal algorithm which picks whole 
aggregates since optimally deciding which subsets of 
aggregates to pick in addition to which aggregate to 
pick is too computationally expensive. We found that 
the error of PBS-C doesn’t exceed 30%. This makes it 
practically useful for general hypercube lattices. 

6 Conclusions 
Precomputing aggregates on some subsets of dimen- 
sions and their corresponding hierarchies can substan- 
tially reduce the response time of a query. However, 
the decision of what to precompute is not easy. Algo- 
rithms have been proposed to solve this problem, and 
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Figure 10: The average query cost as space is varied 
for dataset Rl 

Figure 12: The average query cost as space is varied 
for dataset R3. 

Figure 14: The relative error of PBS and PBS-C with 
respect to BPUS as space is varied for dataset R4. 

Figure 11: The average query cost as space is varied 
for dataset R2. 

Aggregate picked 

/ 
Next aggregate picked \ \ 

/ 
\ -4 \ / -. -. . . . . . . 

I Space for Precomputation 

Aggregatk subset precomputation 

Figure 13: Illustrates when PBS-C is better than PBS 
as the amount of space is varied. 

Figure 15: The relative for the synthetic dataset. 
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the most accurate algorithm, BPUS, guarantees that 
the set of aggregates it picks will not have a benefit 
worse than (0.63 - f) times optimal, where f is the 
fraction of available space used by the largest view. 

Depending on the size of the lattice, BPUS could 
take from several days to several months to find a set 
of aggregates to be materialized. We designed a fast 
algorithm PBS with complexity O(n logn), where n is 
the number of vertices in the lattice. We proved that 
for SR-hypercube lattices, a broad class of hypercube 
lattices, PBS achieves (0.63 - f) times the optimal ben- 
efit. We showed that the execution times of BPUS and 
PBS can vary by several orders of magnitude, 64 days vs 
0.37 seconds. We introduced chunk based precomputa- 
tion and showed how using chunks for aggregate subset 
precomputation can make the benefit larger than the 
“optimal” benefit when picking whole aggregates. We 
designed a benefit based cost model for chunks, and 
extended BPUS and PBS to use chunk based precom- 
putation. We showed that for SR-hypercube lattices, 
BPUS and PBS achieve a benefit that is not less than 
(0.63-f’) of optimal, where f’ is the ratio of the largest 
chunk size to the space available for precomputation. 

In the experimental evaluation, we performed exper- 
iments on data generated from distributions found in 
real-life, and synthetic datasets to see how the aver- 
age query cost of aggregates picked by PBS and PBS-C 
varies with the amount of space available for precompu- 
tation. We found that the lattice embedded by three of 
the four real-life datasets is size restricted, corroborat- 
ing the assertion that SR-hypercube lattices occur com- 
monly. In the remaining real-life dataset, we showed 
that the difference in the average query cost of PBS-C 
relative to that of BPUS is small. To study the ef- 
fect of changing the restriction on aggregate sizes, we 
generated a 4 dimensional synthetic data and varied ag- 
gregate sizes to worsen the performance of PBS-C. We 
found that the average query cost of PBS-C was never 
worse than 30% of optimal. 

To enable a DBA to determine how much space 
should be allocated for precomputation, it is useful to 
plot a graph of the average query cost vs. the space 
available for precomputation (Figure 10). Either PBS 
or PBS-C can be used for this purpose. To conclude, 
we discuss which algorithm is appropriate for a given 
lattice. The algorithm of choice will depend on the ex- 
istence of chunks. If chunking is supported, then the 
chunked version, BPUS-C or PBS-C should be used. If 
chunk are not supported, then the non-chunked version 
can be used. If we assume support for chunks, then 
for a hypercube lattice, the only algorithm known to 
date to have a provable bound on the benefit is BPUS. 
A major drawback is the execution time of BPUS. A 
simple approach in this case is to use PBS-C. While 
PBS-C performed well in our empirical study, there is 
no known theoretical bound on the benefit of the set 
of aggregates picked by PBS-C for a general hypercube 
lattice. If it is important to find the set of views to be 
precomputed quickly, and the user can tolerate a poten- 
tially slightly higher average query cost, then PBS-C is 
ideal. For SR-hypercube lattices, PBS-C guarantees a 
(0.63 - f’) error bound, and should be used. 
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