
Small Materialized Aggregates:
A Light Weight Index Structure for Data Warehousing

Guido Moerkotte
moer@pi3.informatik.uni-mannheim.de

Lehrstuhl fiir praktische Informatik III, Universitat Mannheim, Germany

Abstract

Small Materialized Aggregates (SMAs for
short) are considered a highly flexible and ver-
satile alternative for materialized data cubes.
The basic idea is to compute many aggregate
values for small to medium-sized buckets of tu-
ples. These aggregates are then used to speed
up query processing. We present the general
idea and present an application of SMAs to
the TPC-D benchmark. We show that ex-
ploiting SMAs for TPC-D Query 1 results in
a speed up of two orders of magnitude. Then,
we investigate the problem of query process-
ing in the presence of SMAs. Last, we briefly
discuss some further tuning possibilities for
SMAs.

1 Introduction

Among the predominant demands put on data ware-
house management systems (DWMSs) is performance,
i.e., the highly efficient evaluation of complex analyt-
ical queries. A very successful means to speed up
query processing is the exploitation of index struc-
tures. Several index structures have been applied to
data warehouse management systems (for an overview
see [2, 171). Among them are traditional index struc-
tures [l, 3, 61, bitmaps [15], and R-tree-like structures

PI.

Permission to copy without fee a6l OT part of this material iS

granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

Since most of the queries against data warehouses
incorporate grouping and aggregation, it seems to be
a good idea to materialize according views. The most
popular of these approaches is the materialized data
cube where for a set of dimensions, for all their possi-
ble grouping combinations, the aggregates of interest
are materialized. Then, query processing against a
data cube boils down to a very efficient lookup. Since
the complete data cube is very space consuming [5,18],
strategies have been developed for materializing only
those parts of a data cube that pay off most in query
processing [lo]. Another approach-based on [14]-is to
hierarchically organize the aggregates [12]. But still
the storage consumption can be very high, even for a
simple grouping possibility, if the number of dimen-
sions and/or their cardinality grows. On the user side,
the data cube operator has been proposed to allow for
easier query formulation [8]. But since we deal with
performance here, we will throughout the rest of the
paper use the term data cube to refer to a materialized
data cube used to speed up query processing.

Besides high storage consumption, the biggest dis-
advantage of the data cube is its inflexibility. Each
data cube implies a fixed number of queries that can
be answered with it. As soon as for example an ad-
ditional selection condition occurs in the query, the
data cube might not be applicable any more. Further-
more, for queries not foreseen by the data cube de-
signer, the data cube is useless. This argument applies
also to alternative structures like the one presented
in [12]. This inflexibility-together with the extrordi-
nary space consumption-maybe the reason why, to
the knowledge of the author, data cubes have never
been applied to the standard data warehouse bench-
mark TPC-D [19]. (cf. Section 2.4 for space require-
ments of a data cube applied to TPC-D data) Our goal
was to design an index structure that allows for effi-
cient support of complex queries against high volumes
of data as exemplified by the TPC-D benchmark.

The main problem encountered is that some queries

476

refuse the application of a (traditional) index struc-
ture (like B-Trees [l, 31 and Extendible Hashing [6])
due to efl’iciency reasons. A typical situation is, when
e.g. more than one tenth of a relation qualifies for a
selection predicate. Then the only effect of using an
index is to turn sequential I/O into random I/O (in
the presence of a non-clustered index). Even worse,
some queries are designed such that the use of an in-
dex structure is prohibitively expensive. An example
of such a query is Query 1 (cf. Fig. 3) of the TPC-
D Benchmark [19]. Its low selectivity-95%-g?% of
all tuples qualify-forbids the use of an index, and a
sequential scan is the only possibility to “efficiently”
evaluate this query. Taking a look at the TPC-D
benchmark results’ it becomes clear that Query 1 is
among the two or three2 most time consuming TPC-D
queries.

Small materialized aggregates (SMAs) are designed
such that they are useful even for queries where tradi-
tional indexes fall short. They differ from traditional
indexes in three important aspects:

They exhibit a very simple sequential organiza-
tion.

They directly reflect (and exploit) the physical or-
ganization of the indexed table.

A single SMA is rarely useful, but in most situa-
tions a set of SMAs is required to answer a query
efficiently.

SMAs share the first property with the lately intro-
duced projection indexes [16]. In fact, SMAs can be
seen as a generalization of projection indexes. In a
projection index on a certain attribute, for all tuples
in the relation to index, the attribute value is stored
sequentially in a file. SMAs generalize this approach
in that an aggregate value is stored for a set of tuples.

The above differences result in several advantages:

SMAs can be used where traditional index struc-
tures fail.

SMAs are very space efficient.

SMAs are easy to implement.

SMAs are cheap to maintain.

SMAs are amenable to bulkloading.

The latter point is especially important for applica-
tions like data warehousing. Although there is this
overwhelming set of advantages, there also exists a
slight disadvantage: query processing-especially the
generation of query execution plans-becomes a little

lsee http://www.tpc.org
2Depending on the platform.

more complex. Hence, we devote one section to this
problem.

The rest of the paper is organized as follows. Sec-
tion 2 presents the basic version of SMAs. This sec-
tion also illustrates the usage of SMAs for process-
ing Query 1 of the TPC-D benchmark and presents
benchmark results for Query 1. Section 3 introduces
query processing techniques exploiting SMAs. Sec-
tion 4 briefly discusses further tuning measures and
improvements of SMAs. Section 5 concludes the pa-
per.

2 The Idea of SMAs

2.1 Definition of simple SMAs

We assume the relations for which SMAs are computed
to be physically organized into a sequence of buckets.
Examples of buckets are single pages or consecutive
sequences of pages. A bucket must reflect the physical
organization of the relation since the order of the en-
tries in the SMA will directly correspond to the phys-
ical order of the buckets on disc. Hence, buckets can
only be sets of consecutive tuples on disk. In this re-
spect, SMAs are similar to projection indexes [16].

The main idea of SMAs is to compute and ma-
terialize a single value (or a set of values) for each
bucket of tuples. These values will be aggregates. For
all buckets, the resulting values are materialized in a
separate SMA-file. The SMA-file is organized sequen-
tially: the value for the first bucket is the first value
in the SMA-file, the second value is the second value
in the SMA-file and so on. Contrary to traditional in-
dex structures, a SMA-file does not contain any other
additional information.

The above situation is illustrated in Figure 1. It
contains three buckets with three tuples each. Ev-
ery tuple contains an attribute L-SHIPDATE whoses
values are specified in the figure. Two SMA-files ma-
terialize the minimum and maximum value found fox
L-SHIPDATE in each bucket. Further, there is one
SMA-file materializing the number of tuples in each
bucket.

SMAs can be specified by a simple SQL query and
a specification of the bucket. However, there is one
major point to obey:

l The select clause may contain only a single entry.

Another restriction we apply for the moment is that
we forbid joins. Hence, we allow only for a single en-
try within the from clause. This restriction will be
relaxed in Section 4. Further, we do not allow an or-
der specification. The use of grouping is defered until
the next subsection, the specification of bucket sizes
until Section 4.

477

SMA-File 1: min 97-02-02 97-04-01 97-05-02

SMA-File 2: max 97-04-22 97-05-07 97-06-03

SMA-File 2: count 3 13 3 1

97-03-I 1 97-04-01

97-04-22 I 97-05-07 I

97-02-02 97-04-28

Bucket 1 Bucket 2 Bucket 3

The following is a typical definition of a SMA called
min:

define sma min
select min(L-SHIPDATE)
from L-LINEITEM

For every page, the minimum of all shipdates of tu-
ples on that page is materialized. The consequence of
this SMA definition is that a single SMA-file is created
which is filled with the minimum values of shipdates
found among the tuples in a bucket. Besides min, we
allow for the aggregate functions max, sum, and count
in the select clause of a SMA definition.

Some of the advantages of SMAs become clear al-
ready. They are very space efficient. Assume that a
bucket corresponds to a 4K-page and a single date field
can be stored in 32 bits, then the size of a single SMA-
file is only l/lOOOth of the size of the original data.
Hence, many SMA-files can easily be supported. Fur-
ther, due to the direct correspondence between SMA-
file entries and buckets (via the order), SMA-files are
easy to update. The algorithms behind are simple and
very efficient. At most one additional page access is
needed for an updated tuple. Last not least, bulkload-
ing a SMA-file requires only simple algorithms and is
very efficient. For every bucket the aggregate can eas-
ily be computed and storing this aggregate is cheap:
only one page access is needed for 1000 pages of tuples.
Since nothing else has to be done (unlike in conven-
tional index structures where pointer updates, split-

Figure 1: Buckets and SMA-Files
ting and the like occur) bulkloading and updating are
both very simple and efficient operations.

2.2 Use and motivation of simple SMAs

In general, SMAs are used for two purposes. Given a
query, SMAs are used

l to evaluate the selection predicate and

l to compute the aggregate values specified in the
select clause of the query.

Whereas the usefulness of SMAs for the computation
of aggregate values is quite obvious, the question arises
how and when SMAs can be used to evaluate selection
predicates. For the case where a bucket contains ex-
actly a single tuple, a SMA degenerates to a projection
index. Hence, we refer the reader to [16] for this case.

Although we defer the general answer to this ques-
tion to Section 3, we give an important use of SMAs
for selection predicate evaluation. It is based on the
exploitation of clustering. We base our discussion on
implicit clustering since (1) we think this is the pre-
dominant application area of SMAs and (2) this case
motivates SMAs quite nicely. Nevertheless, the follow-
ing discussion applies to other clustering strategies as
well.

Implicit clustering-sometimes called clustering by
time of creation (TOC)-is often found in the data
warehouse where new data is appended to the existing
data. The second ingredient for implicit clustering are
date and time values. Examples of important dates

478

97-05-02

97-05-20

97-06-03 I

are dates of order, shipment, arrival of items at the
customer’s site, sending the bill, and payment [ll, 131.
The TPC-D benchmark takes this fact into account by
exhibiting four of these dates. In almost every of its
queries at least one of these dates is referenced.

A time-of-creation clustering strategy is now (often
implicitly) applied if new orders are stored in the data
warehouse by appending them to the old orders. Note
that this will be the case in most data warehouses.
This kind of implicit clustering (which in practice is
often imperfect but still exploitable) results in an im-
plicit clustering on order dates. Since old orders will
be processed earlier than new orders, a similar argu-
ment applies to shipdates and all the other dates men-
tioned before. Note however, that this does not result
in a strict clustering or even ordering on orderdate or
shipdate. Instead, this clustering is approximated by
reality: due to not available parts, a shipdate can be
deferred, some shops might be late in providing their
order information and so on. But the bottom line is
that most likely there is some clustering effect of this
kind, especially since data warehouses often contain
data comprising several years. Figure 2 visualizes the
effect of implicit clustering. For every order tuple, it
contains one point. The x-value of a tuple is the date
of its introduction into the data warehouse and the
y-value is its order date. Since order tuples are typ-
ically introduced into the data warehouse after their
arrival (order) date, all points lie to the right of the
diagonal. Since all data points are clustered around
the diagonal or at least some line close to it, we call
this diagonal data distribution. In practice, there will
be an average time needed before the data is entered
into the database and the real intervals needed will ex-
hibit, a normal distribution around this average time.
Consequently, the clustering effect becomes manifest.
(Note that the TPC-D benchmark is not very realistic
in this respect: it applies uniform distribution within
an interval.) The same applies to shipdate. Assuming
a certain average time needed to prepare the shipment,
the actual times needed will be normally distributed
and, again, the clustering effect becomes manifest. Of
course, this clustering effect can also occur for non-
date values, imprinted by seasonal effects, promotions
and the like.

For (implicitly) clustered data, SMAs can be used
very effectively to select those buckets in which quali-
fying tuples can be found. Consider the query

select count(*)
from L-LINEITEM
where L-SHIPDATE < 97-04-30

and assume that the attribute values shown in Fig. 1
are L-SHIPDATE values. Then, by inspecting the max
SMA-file, it is easy to see that all the tuples in Bucket 1

qualify. By inspecting the min SMA-file, we see that
none of the tuples in Bucket 3 qualify. Bucket 2 is
called ambivalent since it does not qualify due to its
max value and it does not disqualify due to its min
value.

To answer the query we inspect the count SMA-
file to retrieve the total count of qualifying tuples of
Bucket 1 and add the number of qualifying tuples of
Bucket 2. This necessitates accessing Bucket 2. This
example nicely illustrates the exploitation of diagonal
data distribution: only ambivalent buckets have to be
accessed. For clustered data, these ambivalent buckets
are rare.

2.3 Grouping SMAs

Let us consider Query 1 of the TPC-D benchmark (cf.
Fig. 3). This query involves grouping. In order to
be useful, a SMA has to reflect the query’s group
by clause or a finer grouping ([lo]). This is done by
introducing an according group by clause into the
specification of the SMA.

For every possible group, there will be a single
SMA-file containing the aggregated values for this
group. For example, Query 1 results in four groups.
Hence, there will be four SMA-files, one for each com-
bination of L-RETURNFLAG and L-LINESTATUS
values. In order to process Query 1 soleley on the basis
of SMAs, eight SMA definitions are necessary. They
are given in Figure 4 where we took the liberty to ab-
breviate some of the attribute names. The SMAs min
and max do not need a grouping and arc of the kind
discussed before. All the other SMAs group by the
attributes L-RETURNFLAG and L-LINESTATUS.
Hence, each of these SMAs will be mat,erialized in four
SMA-files, one for each possible group. As a total there
will be 26 SMA-files which seems to be quite high a
number, but the next subsection will reveal that the
time to build them as well as their storage costs are
quite low.

Query 1 can now be answered by these,aggregates in
the following way. First, the SMAs min and ma.7: are
used to classify the pages of the relation LINEITEM
into qualifying, disqualifying and ambiva.lent pages.
Second, for each qualifying page, for every group,
the according values are extracted from the remain-
ing SMAs and summed up in a per-group-wise fashion.
For every ambivalent page, the page is visited and the
needed aggregates are computed from the tuples con-
tained in the page. These two steps are performed
concurrently. That is, all the SMAs are scanned se-
quentially and at the same time: for every page in
the LINEITEM file, the corresponding SMA values in
all SMA-files are considered and the according action
of the second step is taken. Note that this results

479

orderdate

-

diagonal
/ / / / / / / / / X / / X / / X / / / /

/
/ X

/
/

/ x x
/ / / / x x

/’ x
/

/
/

I >

date of introduction
into the data warehouse

Figure 2: Diagonal Data Distribution

SELECT L-RETURNFLAG, L-LINESTATUS,
SUM(L-QUANTITY) AS SUM-QTY,
SUM(L-EXTENDEDPRICE) AS SUM-BASE-PRICE,
SUM(L-EXTENDEDPRICE*(l-L-DISCOUNT)) AS SUM-DISC-PRICE,
SUM(L-EXTENDEDPRICE*(l-L-DISCOUNT)*(l+L-TAX)) AS SUM-CHARGE,
AVC(L-QUANTITY) AS AVG-QTY,
AVG(L-EXTENDEDPRICE) AS AVG-PRICE,
AVG(L-DISCOUNT) AS AVG-DISC,
COUNT(*) AS COUNT-ORDER

FROM LINEITEM
WHERE L-SHIPDDATE <= DATE '1998-12-01' - INTERVAL '[delta]' DAY
GROUP BY L-RETURNFLAG, L-LINESTATUS
ORDER BY L-RETURNFLAG, L-LINESTATUS

Figure 3: Query 1 of the TPC-D Benchmark

480

in a sequential scan of the ambivalent pages in the
LINEITEM file. In a last step, the average aggregates
are computed from the sum aggregates by dividing by
the count aggregate.

Of course, these aggregates are specifically tailored
for Query 1. In this respect the situation is not differ-
ent from computing a data cube for it. However, the
data cube’s definition must include all possible selec-
tion attributes within its grouping clause. Hence, if
order dates, ship dates, and receipt dates are of inter-
est, they must be present in the group specification-
resulting in extremely high storage costs. If one possi-
ble selection predicate has been forgotten while speci-
fying the data cube, then the whole existing material-
ized data cube is of no use anymore. Not so for SMAs,
new SMAs can be easily added for new attributes of in-
terest. Hence, they are much more flexible than data
cubes. Further, they are more versatile. If another
query with restrictions on any of the attributes aggre-
gated in some SMA occures, the SMA can be used to
more efficiently answer the query.

2.4 Performance

In this section we briefly report on some experiments
highlighting the crucial questions concerning the per-
formance of SMA-based query processing: space re-
quirements, creation time and query processing time.
Before we give the actual performance figures let us
recall some basic properties of SMA-files that justify
why a brief performance evaluation is sufficient. First
note that SMA-file sizes are linear in the number of
buckets. Further, exactly one bucket summary has to
be computed for every bucket. Its computation is in-
dependent of other buckets. Hence, it is no problem
to scale SMAs to very large data warehouses. Since
creation and query processing times are also linear in
the number of buckets, it suffices to give the perfor-
mance for a single sufficiently large database. We do
so by discussing the performance for TPC-D Query 1
at a database size of 1 GB, the smallest allowed size
of the TPC-D benchmark. The reason is a lack of disk
space at our institution.

In order to process this query, the eight SMA files
given in the last section are created. The creation
times and space requirements are summarized in the
following table3:

3Measured on a Spare Ultra I, 167 Mhz, with two Barracuda
4GB disks, running Solaris 5.5 using our AODB data warehouse
management system configured at 8MB intertransaction buffer,
1MB intratransaction buffer. AODB has two buffers. One for
pages that are cached between transactions (the intertransaction
buffer), and one buffer for every transaction to process local
data and to cache pages from the intertransaction buffer (the
intratransaction buffer)

sma file 1 @Y 1 dis ext
creation time I 104s I 100s I 101s
size 1468~ 1 1468~ 1 1468~ 1

sma file extdis extdistax
creation time 95s 99s
size 1468~ 1468~

For counts and dates, 4 bytes are needed. For
all other aggregate values we used 8 bytes. The to-
tal space requirement of all SMA-files amounts to
8444 4 K-pages or 33.776 MB. In our system, the
LINEITEM relation consumes 733.33 MB. Hence, the
accumulated size of all SMAs is only about 4 % of the
total space. This shows that though several SMA files
are needed in order to answer a single query, they are
still very space efficient. The creation time for every
SMA (not only a single SMA-file) is less than 2 min-
utes. In comparison, a B+ tree on shipdate (though
of no use for Query 1) consumes about 230 MB. Its
creation time is far beyond the 15 minutes needed to
create all SMAs.

Next, we compare the space requirements of SMAs
with that of a materialized data cube. For Query 1,
6 aggregates of 8 bytes are necessary. Hence, ev-
ery entry in the data cube is 48 byte wide. For the
two flags, 4 possibilities exist. Every date attribute
of LINEITEM (LSHIPDATE, LXOMMITDATE,
L-RECEIPTDATE) has a range of seven years or 2556
days. Hence, for the data cube we get a total storage
requirement [5, 181 of about

l 479.25 KB = 2556l * 4 * 48 B if only one date is
used as a dimension,

l 1196.25 MB = 2556’ * 4 * 48 B if two dates are
added as dimensions, and

l 2985.95 GB = 25563 * 4 * 48 B if all three dates
are added as dimensions.

Adding SMAs for the two missing dates would re-
quire an additional 17.34 MB amounting to a total of
51.12 MB. Comparing 51.12 MB to 2985.95 GB, the
low storage overhead of SMAs compared to material-
ized data cubes becomes obvious.

Considering query response times, two aspects are
of interest. First, the optimal case, that is when
the relation is sorted on the restricted attribute. If
LINEITEM is sorted on shipdate, the query processing
times for Query 1 are 128s for query execution with-
out SMAs (cold & warm start), 4.9s with SMAs (cold

481

define sma max
select max(LSHIPDATE)
from L-LINEITEM

define sma min
select min(LSHIPDATE)
from LLINEITEM

define sma dis
select sum(LDISCOUNT)
from LLINEITEM
group by LRETFLAG, L-LINESTAT

define sma ext
select sum(LEXTENDEDPRICE)
from LLINEITEM
wow by LRETFLAG, L-LINESTAT

define sma count
select count(*)
from LLINEITEM
group by LRETFLAG, L-LINESTAT

define sma extdis
select sum(EXTPRICE * (l-DIS))
from L-LINEITEM
group by LRETFLAG, L-LINESTAT

define sma gty
select sum(L-QUANTITY)
from L-LINEITEM
group by LRETFLAG, L-LINESTAT

define sma extdistax
select sum(EXTPRICE * (l-DIS)

* (l+TAX))
from L-LINEITEM
sow by LRETFLAG, LLINESTAT

Figure 4: The SMAs needed for Query 1 of TPC-D
start) and 1.9s with SMAs (warm start). Processing
Query 1 with SMAs becomes two orders of magnitude
faster!

This is the optimal case. The question remains
what happens if the number of ambivalent buckets
grows. This question is answered by Figure 5. The
x-axis shows the percentage of buckets that have to be
investigated and the runtime of

into qualifying, disqualifying, and ambivalent buck-
ets. Then, we discuss the new algebraic operators
SMAScan and SMA-GAggr. These will use the pro-
cedure grade as a subroutine.

3.1 Partitioning the Buckets of a Relation R

Let us start by considering the different kinds of
atomic selection predicates. They are

1. Query 1 without SMAs
l A=c,

2. Query 1 with SMAs (warm) . A<c(A<c),

The breakeven point is at about 25% of the total num-
ber of buckets. That is, if more than 25% of all buck-
ets are ambivalent and hence have to be accessed, then
SMAs don’t pay anymore. However, even if SMAs are
erroneously applied-e.g. due to a bad decision of the
query optimizer-the overhead remains small with less
than 2% of the total run time.

l A>c(A>c),and

l A<B(A<B)

3 Query Processing

This section discusses the problem of how to exploit
SMAs for query processing. Since they differ consider-
ably from traditional index structures, the generated
plans will look different. As a side effect of discussing
plan generation, the versatility of SMAs will become
clear: SMAs can be exploited in many ways. This is
contrary to data cubes.

where A and B are attributes of a single relation R and
c is a constant. The first goal is to divide the buck-
ets of R into qualifying, disqualifying and ambivalent
buckets. This will be done for a single atomic selection
predicate, and a single SMA. This information is used
to evaluate more complex selection predicates involv-
ing and and of operations. These boolean connectives
can also be used if more than a single SMA can be
exploited.

We describe query processing in the presence of
SMAs in several steps. First, the procedure grade is
described. It partitions the buckets of a relation R

Let BU denote all the buckets of relation R, BUi
the i-th bucket of relation R. Given a SMA mu(A),
maxi(A) denotes the maximum of all values of at-
tribute A found in bucket BUi, analogously, mini(A)
denotes the minimum value. Given an atomic pred-
icate, a single SMA, and a bucket i, we can assess
bucket BUi as follows:

482

140

120

100

80

60

40

20

0 I I I I I I I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 5: Runtime dependent on percentage of buckets to be processed

483

l ForA=c

- if c < mini(A) then BUi E BU,

- if c > maxi(A) then BUi E BUd

- else BUi E BU,

l For A 5 c

- if maxi(A) 5 c then BUi E BU,

- if mini(A) > c then BUi E BUd

- else BUi E BU,

l ForA>c

- if mini(A) 2 c then BlJi E BU,

- if maxi(A) < c then BUi E BUd

- else BUi E BU,

l A<B

- if maxi(A) 5 mini(B) then BUi E BU,

- if mini(A) > maxi(B) then BUi E BUd
- else BUi E BU,

where BU, denotes the qualifying buckets, Bud de-
notes the disqualifying buckets and BU, denotes the
ambivalent buckets. The else case is also applied if the
max/min aggregates are not defined. The correctness
of the above rules should be obvious.

Having two partitions BU:, BU;, BU: and BU;,
BUZ, BUZ for a given predicate/SMA combination,
we can compute the partitions if the two combinations
are conjunctively or disjunctively connected:

and

BU, = BU; f-7 BU;

Bud = BU; u Bud”

Bus = BU \ (BU, ‘J Bud)

or

BU, = BU,luBU;

Bud = BU; n BU;

Bus = BU \ (BU, u Bud)

SMAs with min and max aggregates can also be
exploited for the evaluation of selection predicates if
their definitions contain a group by clause. Consider
SMA definitions of the following form:

define sma name
select m4-V
from R
group by B1,...,Bn

The rules to derive the partitions of BU are similar to
those stated above except that we have to consider the
maximum value of A for all groups. The case for min
is analogous.

But not only min and max aggregates are useful for
selection predicates. If A is the only grouping attribute
in a count SMA, like in

define sma name
select count(*)
from R
group by A

then we can use this information to evaluate selection
predicates on A. Let countA,i[x] denote the number of
tuples in bucket i exhibiting a value x for attribute A.
Then we can partition BU by the following rules. For
every possible value of x, we compute the partitions
for BU” as follows:

l ForA=c

- if x = c and countA,i[z] > 0 then BUi E
BU;

- else BUi E BU$

l ForA<c

- if x 5 c and CountA,i[x] > 0 then BU, E
BU;

- else BUi E BU;

l For A > c

- if x > c and countA,i[x] > 0 then BUi E
BU;

- else BUi E BU$

We then integrate the partitions BU” into a single
partitioning of BU by applying the following rules:

BU, = f-l BU,”

Bud = i)BUi

Bus = & \ (BU, u Bud)

Summarizing, whenever we have a selection pred-
icate involving an attribute A of a relation R and a

484

SMA-definition in which A occurs, we can compute the
partitions of the buckets of relation R into qualifying,
disqualifying and ambivalent buckets. Let us integrate
this procedure into a function grade that for a given
bucket and predicate returns qualifies, disqualifies or
ambivalent. This function will be used within the next
two algebraic operators implementing SMA-Scan and
SMA - GAggr .

3.2 SMA-Scan

The SMA-Scan operator is an operator of the physical
algebra and implements the iterator concept [7]. The
three parameters of the iterator are the relation R to
be scanned, the predicate to be evaluated on its tuples
and a set of SMAs useful for partitioning the buckets
of R.

The iterator is implemented as a class and provides
an init procedure that initializes the internal data
structures and computes the number of the first quali-
fying or ambivalent bucket. Additionally, the bucket is
fetched from disk. This is summarized in a subroutine
getBucket. Successive calls to the function next then
return pointers to qualifying tuples. A tuple qualifies
if it is in a qualifying bucket or if the predicate ap-
plied to the tuples yields true. The pseudo code of
SMA-Scan is given in Figure 6.

3.3 SMA-GAggr

The SMA-GAggr operator computes the GAggr oper-
ator of Dayal [4] in the presence of SMAs. The GAggr
operator performs a grouping together with the com-
putation of aggregates. The SMA-GAggr uses some
SMAs-called selection SMAs-for selecting qualify-
ing buckets and tuples. Hence, it encompasses the
SMA-Scan operator. However, more aggregates-the
aggregate SMAs-are used to compute the queried ag-
gregates. For qualifying buckets, the aggregate values
are readily available within the aggregate SMAs. Am-
bivalent buckets must be inspected explicitly and the
tuples must be grouped in order to compute the ag-
gregate values. As for the SMA-Scan operator, the
SMA-GAggr operator scans the relation and all SMAs
in parallel.

The computation of the aggregates is performed in
three phases in a rather standard manner. For every
group, a tuple wide enough to hold all the result ag-
gregates is allocated. If the result aggregates do not
contain a count(*) and if averages are demanded by the
query, we add it. The aggregate values are initialized
by 0 for sum, count, and avg aggregates. For the lat-
ter, we first compute the sum and divide by the count
in the last phase. For min and max aggregates, the
minimum and maximum values are used for initializa-
tion. In the second phase, for every bucket these values

are then advanced in the obvious way. For example, for
the sum aggregate the aggregate value of some qual-
ifying bucket is added. For ambivalent buckets, the
according value is added for each tuple contained in
it. In the last phase, we divide the sums which should
be averages by the computed count.

The SMA-GAggr is a pipeline breaker. Within its
init function, the result is computed. The next func-
tion then merely returns one result after another. The
pseudocode of SMA-GAggr can be found in Figure 7.

4 Tuning Possibilities

There are several tuning possibilities to further en-
hance the performance of SMAs. The first obvious
tuning measure is the bucket size. Here, the following
trade off must be investigated. If the bucket size is
small, then the SMA-files will become very large and
more I/O for SMAs is the consequence. If the bucket
sizes are large, then-due to imperfect clustering-
many ambivalent buckets occur and for these the orig-
inal relation must be accessed. Note that bucket sizes
below a page size do not make sense.

This trade off can be mitigated by using hierarchi-
cal SMAs. Every SMA-file is again partitioned into
buckets and for each bucket a second level SMA is
computed. The advantage is that even for imper-
fectly clustered relations, the second level SMA is use-
ful for rather high and rather low selectivities. If a
second level bucket qualifies or disqualifies, the first
level SMA-file need not to have to be accessed, which
saves some I/O. If the second level bucket is ambiva,-
lent, then the first, level SMA-file can be exploited to
inspect the situation at a finer grain. Since second
level SMA-files will be very small we do not think that
higher levels are useful. Also it is preferable to switch
to hierarchical SMAs instead of increa.sing the bucket
size.

A last possibility to further enhance the perfor-
mance by SMAs is to generalize SMAs to encompass
semi-joins. To see this, consider queries containing the
following pattern:

select R.*
from R, S
where R.A 0 S.B

where 0 is a comparison operator. If we can associate
a minlmax value of the S.B values with each bucket of
R, SMAs can be used to decrease the input to the scmi-
join. We allow for semi-joins within SMA definitions.
For example, the SMA

define sma lineitem-orderdate
select O-ORDERDATE
from LINEITEM, ORDER
where L-ORDERKEY = O-ORDERKEY

485

class SMA-Scan c
SMA-Scan(R,pred,smas);

init C
currBucketNo = -1; getBucket0;

3

Tuple* next0 {
while(buckets left) {

if(there is an unseen tuple in bucket) {
get this tuple;
if(currGrade == qualifies)

return tuple;
else if (pred(tuple))

return tuple;
else

getBucket();
3

3

getBucket 1
do C

advance currBucketNo; advance all smas;
currGrade = grade(currBucketNo, pred);

3
while(currGrade != qualifies and currGrade != ambivalent)
read bucket currBucketNo;

3:

Figure 6: The SMA-Scan Iterator

class SMA-GAggr (
SMA-GAggr(R, pred, aggregatespec, groupspec, selectionSMAs, aggregateSMAs);

init(const) { /* computes the result */
forall(bucket in buckets) {

switch(grade(bucket, pred)) -i
case qualifies: advance the result aggregates using the

aggregate SMAs;
case disqualifies: do nothing
case ambivalent: advance aggregates by inspecting the

tuples within the bucket;

3
perform post processing for average aggregates;

Tuple* next0 {return next unseen group;)

Figure 7: The SMA-Group Iterator

486

is useful to compute restrictions on L-ORDERDATE
as they occur in TPC-D queries 3, 5, 8, and 10.

5 Conclusion

We introduced SMAs as an alternative to data cubes.
Unlike data cubes, SMAs are more versatile to exploit
in several kinds of queries. If applicable in an optimal
fashion, SMAs can accelerate query execution by sev-
eral orders of magnitude. Further, they are very space
efficient compared to data cubes, especially if the num-
ber of dimensions and possible selections grows.

Some enhancements to SMAs were briefly discussed.
Among them hierarchical SMAs and SMAs encom-
passing semi-joins. We plan further investigations on
these and possibly other variations of SMAs.

References

[l] R. Bayer and E. McCreight. Organization and main-
tenance of large ordered indices. Acta Informatica,
1(4):290-306, 1972.

[2] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. Sigmod Record,
26(1):65-74, 1997.

[3] D. Comer. The ubiquitous B-tree. Computing Sur-
oeys, 11(2):121-137, 1979.

[4] U. Dayal. Of nests and trees: A unified approach
to processing queries that contain nested subqueries,
aggregates, and quantifiers. In VLDB, pages 197-208,
1987.

[5] P. Deshpande, J. Naughton, K. Ramasamy, A. Shukla,
K. Tufte, and Y. Zhao. Cubing algorithms, storage
estimation, and storage and processing alternatives for
OLAP. IEEE Data Engineering Bulletin, 20(1):3-11,
1997.

[6] R. Fagin, J. Nievergelt, N. Pippenger, and H. Strong.
Extendible hashing - a fast access method for dynamic
files. ACM Trans. on Database Systems, 4(3):315-344,
1979.

[7] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2), June
1993.

[8] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data Cube: A relational aggregation operator gen-
erlizing group-by, cross-tab, and sub-totals. In Proc.
IEEE Conference on Data Engineering, pages 152~
169, 1996.

[9] A. Guttman. R-trees: A dynamic index structure
for spatial searching. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 47-57, 1984.

[lo] V. Harinarayan, A. Rajaraman, and J. Ullman. Im-
plementing data cubes efficiently. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 205-
216, 1996.

Pll

WI

[131

P41

1151

WI

[171

PI

P91

W. H. Inmon. Building the Data Warehouse (2nd ed.).
John Wiley & Sons, 1996.

T. Johnson and D. Shasha. Some approaches to in-
dex design for cube forests. IEEE Data Engineering
Bulletin, 20(1):27-35, 1997.

R. Kimball. The Data Warehouse Toolkit. John Wiley
& Sons, 1996.

V. Y. Lum. Multi-attribute retrieval with combined
indexes. Communications of the ACM, 13:660-665,
1970.

P. O’Neil. Model 204 architecture and performance. In
2nd Int. Workshop on High Performance nansaction
Systems, pages 40-59, Pacific Grove, CA, 1987. LNCS
359, Springer.

P. O’Neil and D. Quass. Improved query performance
with variant indexes. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 38-49, 1997.

S. Sarawagi. Indexing OLAP data. IEEE Data Engi-
neering Bulletin, 20(1):36-43, 1997.

A. Shukla, P. Deshpande, J. Naughton, and K. Ra-
masamy. Storage estimation for multidimensional ag-
gregates in the presence of hierarchies. In Proc. Int.
Conf. on Very Lo.rge Data Bosses (VLDB), 1996.

Transaction Processing Council (TPC). TPC Bench-
mark b. http://www.tpc.org, 1995.

487

