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Abstract 

The design of secure buffer managers for 
database systems supporting real-time applica- 
tions with firm deadlines is studied here. We first 
identify the design challenges and then present 
SABRE, a new buffer manager that aims to ad- 
dress these challenges. SABRE guarantees covert 
channel-free security, employs a fully dynamic 
one-copy allocation policy for efficient usage of 
buffer resources, and incorporates several opti- 
mizations for reducing the number of killed trans- 
actions and for decreasing the unfairness in the 
distribution of killed transactions across secu- 
rity levels. Using a detailed simulation model, 
the real-time performance of SABRE is evalu- 
ated against unsecure conventional and real-time 
buffer management policies. Our experiments 
show that SABER provides security with only a 
modest drop in real-time performance. Finally, we 
present FSABRE, an adaptive admission control- 
augmented version of SABRE, which efficiently 
ensures close to ideal fairness across transaction 
security levels while remaining within the infor- 
mation leakage bandwidth limits specified in mil- 
itary standards. 

1 Introduction 
Many applications of real-time database systems (RTDBS) 
arise in safety-critical installations and military systems 
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where enforcing security is crucial to the success of the en- 
terprise. Security violations in an RTDBS can occur if, for 
example, information from the “secret” database is trans- 
ferred by corrupt high security transactions to the “pub- 
lic” database where they are read by conspiring low se- 
curity transactions. Such direct violations can be elimi- 
nated by implementing the classical Bell-LaPadula security 
model [ 131 which imposes restrictions on the data opera- 
tions permitted to transactions, based on their security lev- 
els. The Bell-LaPadula model is not sufficient, however, to 
protect from “covert channels”. A covert channel is an indi- 
rect means by which a high security transaction can transfer 
information to a low security transaction [ 121. For example, 
if a low security transaction requests access to an exclusive 
resource, it will be delayed if the resource is already held 
by a high security transaction, otherwise it will be granted 
the resource immediately. The presence or absence of the 
delay can be used as a “signaling” or encoding mechanism 
by a high security transaction passing secret information to 
the low security transaction. Note that, from the system per- 
spective, nothing “obviously illegal” has been done in this 
process by the conspiring transactions. 

Covert channels can be prevented by ensuring that low 
security transactions do not “see” high security transactions 
-this notion is formalized in [7] as non-interference, that is, 
low security transactions should not be able to distinguish 
between the presence or absence of high security transac- 
tions. This can be implemented, for example, by providing 
higherpriority to low security transactions whenever a con- 
flict occurs between a low security transaction and a high 
security transaction. From a system perspective, it trans- 
lates to developing database managers that support the non- 
interference feature. 

In a recent study [6], we made a detailed investigation of 
the performance implications of providing covert-channel- 
free security in the context of real-time applications with 
“firm-deadlines” [9]. For such applications, completing a 
transaction after its deadline has expired is of no utility and 
may even be harmful. Therefore, transactions that miss 
their deadlines are “killed”, that is, immediately aborted and 
discarded from the system without being executed to com- 
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pletion. Accordingly, the performance metric is the per- 
centage of killed transactions.’ 

The focus in our earlier study was on the design of high- 
performance secure concurrency control managers. We 
move on, in this paper, to considering the equally important 
and related issue of designing buffer managers that can both 
guarantee security and provide good real-time performance. 

Design Challenges 

Buffer managers take advantage of the temporal locality 
typically exhibited in database reference patterns to en- 
hance system performance by minimizing disk activity. In 
doing so, however, they open up possibilities for covert 
channels - in fact, many more than those associated with 
concurrency control. For example, the presence or absence 
of a delay in acquiring a free buffer slot, or the presence or 
absence of a specific data page in the buffer pool, or the allo- 
cation of a particular (physical) buffer slot, could all be used 
as channel mediums, whereas in concurrency control, data 
access time is the primary medium. Apart from this “multi- 
tude of channel mediums” problem, there are several addi- 
tional problems that arise while integrating security into the 
RTDBS framework in general, and into the buffer manager 
in particular: 

First, a secure RTDBS has to simultaneously satisfy two 
requirements, namely, provide security and minimize the 
number of killed transactions. Unfortunately, the mech- 
anisms for achieving the individual goals often work at 
cross-purposes. In an RTDBS, high priority is usually given 
to transactions with earlier deadlines in order to help their 
timely completion. On the other hand, in secure DBMS, 
low security transactions are given high priority in order 
to avoid covert channels (as described earlier). Now con- 
sider the situation wherein a high security process submits a 
transaction with a tight deadline in a secure RTDBS. In this 
case, it becomes difficult to assign a priority since assign- 
ing a high priority may cause a security violation whereas 
assigning a low priority may result in a missed deadline. 

Second, a major problem arising out of the preferential 
treatment of low security transactions is that of “fairness” - 
high security transactions usually form a disproportionately 
large fraction of the killed transactions. Note that this is an 
especially problematic issue because it is the “VIPs”, that is, 
the high security transactions, that are being discriminated 
against in favor of the “common-folk”, that is, the low se- 
curity transactions. 

Unfortunately, achieving fairness without permitting 
covert channels appears to be funa!amentally impossible 
for dynamically changing workloads. The issue then is 
whether it is possible to design fair systems while still guar- 
anteeing that the covert channel information leakage band- 
width is within acceptable levels. 

w, it is straightforward to eliminate covert channels 
by using “static” resource allocation policies wherein each 
transaction security class has a pre-assigned buffer space, 
or by using “replication’‘-based policies wherein multiple 

copies of data pages are maintained. However, such poli- 
cies may result in very poor resource utilization. The chal- 
lenge therefore is to design “dynamic” and “one-copy” poli- 
cies that are demonstrably secure. 

Finally, unlike concurrency control, which essentially 
deals only with regulating data access, a buffer manager 
has multiple components- buffer allocation, buffer replace- 
ment and pin synchronization [8], all of which have to be 
made secure. 

In summary, for all of the above reasons, making a real- 
time buffer manager implementation secure involves sig- 
nificant design complexity. We have conducted a detailed 
study of this issue and report on the results here. To the best 
of our knowledge, these results represent the jrst work in 
the area of secure real-time buffer management. 

2 Related Work 
The only prior research we are aware of on secure buffer 
management is the recent study by Warner et al [ 161 in the 
context of conventional (i.e. non-real-time) DBMS. A num- 
ber of design alternatives for secure buffer allocation, re- 
placement and synchronization were explored in this study. 
In particular, they statically divided the buffer pool among 
the various security levels,2 but also presented a dynamic 
scheme called “slot stealing” wherein buffers, currently un- 
derutilized at the low security level, could be borrowed by 
high security transactions. Later, if needed, these borrowed 
slots could be reclaimed by the low security transactions. 
They also considered replication-based schemes wherein 
multiple copies of the same disk page could be present in the 
buffer pools of various security levels. Finally, the perfor- 
mance of these policies was evaluated on a simulated model 
of a buffer manager. 

While their dynamic allocation scheme is an interesting 
approach, it suffers from two problems: First, it is onlypar- 
tially dynamic, since low security transactions are not al- 
lowed to utilize the currently unused buffer slots of high 
security transactions. Therefore, resource wastage could 
still result. Second, it must be ensured that the number of 
unpinned clean buffer slots in the high security buffer pool 
must at all times be as large as the number of slots borrowed 
from the low security pool. This is necessary to support 
the immediate return of slots reclaimed by the low security 
transactions and thereby to prevent covert channels. The 
utility of the slot stealing is diminished by this constraint 
since it places restrictions on the high security accesses. 

Our work differs from the above in that, apart from ad- 
dressing real-time applications, we consider (a) fully dy- 
namic and unconstrained one-copy allocation policies, (b) 
the buffer manager’s performance role in the context of an 
entire system where all remaining components are secure, 
and (c) the issue of fairness across security levels. 

Just as there has been little prior research on secure 
buffer management, there has been a similar paucity with 
regard to (unsecure) real-time buffer management. The 

2A scheme where the static buffer allocation is periodically reviewed 
and altered is also presented, but this scheme can result in covert channels. 1 Or equivalently, the percentage of missed deadlines. 
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only work that we are aware of are [ 10, 1 l] in which real- 
time versions of the popular LRU [4] and DBMIN [2] poli- 
cies were developed and evaluated. The results of these 
studies were inconclusive, however, since they arrived at 
differing conclusions regarding the utility of adding real- 
time information to buffer management. 

3 Security Model 

Most secure database systems have access control mecha- 
nisms based on the Bell-LaPadula model [ 131. This model 
is specified in terms of subjects and objects. An object is a 
data item, whereas a subject is a process that requests ac- 
cess to an object. Each object in the system has a clussij- 
cation level (e.g., Secret, Classified, Public, etc.) based on 
the security requirement. Similarly, each subject has a cor- 
responding clearance level based on the degree to which it 
is trusted by the system. 

The Bell-LaPadula model imposes two restrictions on 
all data accesses: 

1. A subject is allowed read access to an object only if 
the former’s clearance is higher than or identical to the 
latter’s classification 

2. A subject is allowed write access to an object only if 
the former’s clearance is identical to or lower than the 
latter’s classification. 

TRANSACTION DATA 
CLEARANCE CLASSIFICATION 

SECRET 

PUBLIC 

R/W 

Figure 1: Bell-LaPadula access restrictions 

The Bell-LaPadula conditions effectively enforce a “read 
below, write above” constraint on transaction data accesses 
(an example is shown in Figure l), and thereby prevent di- 
rect unauthorized access to secure data. They are not suf- 
ficient, however, to protect from “covert channels”, as de- 
scribed in the Introduction. 

One approach to tackling covert channels is by introduc- 
ing “noise” in the form of dummy transactions. The prob- 
lem with this solution, however, is its inefficiency stem- 
ming from the considerable waste of system resources by 
the dummy transactions. An alternative approach is the 
non-interference formalism described in the Introduction - 
we exclusively use this approach here. 

3.1 Orange Security 

For many real-time applications, security is an “all-or- 
nothing” issue, that is, it is a correctness criterion. In such 
“full-secure” applications, metrics such as the number of 
killed transactions or the fairness across transaction clear- 
ance levels are secondary performunce issues. However, 
there are also applications for whom it is acceptable to 
have well-defined bounded-bandwidth covert channels in 
exchange for performance improvement. For example, the 
US military’s security standards, which are defined in the 
so-called “Orange Book” [3], specify that covert channels 
with bandwidth of less than one bit per second are typically 
acceptable-we will hereafter use the term “orange-secure” 
to refer to such applications. 

In this study, we consider the design of buffer managers 
for both full-secure and orange-secure real-time applica- 
tions. 

4 Buffer Model 

Buffer managers attempt to utilize the temporal locality 
typically exhibited in database reference patterns to maxi- 
mize the number of buffer hits and thereby reduce disk ac- 
tivity. Three kinds of reference localities are usually ob- 
served: inter-transaction locality (i.e. “hot spots”), intru- 
transaction locality (transaction’s internal reference local- 
ity), and restart locality (restarted transactions make the 
same sequence of accesses as their original incarnation). 

At any given time, the slots in the buffer pool can be 
grouped into the following four categories: Pinned - 
Buffer slots containing valid pages that are currently be- 
ing accessed (in read or write mode) by executing trans- 
actions; Active - Buffer slots containing valid pages that 
have been earlier accessed by currently executing transac- 
tions; Dormant - Buffer slots containing valid pages that 
have not been accessed by any currently executing transac- 
tion (these pages were brought in by previously completed 
transactions); Empty-Buffer slots that are empty. Further, 
the first three categories (Pinned, Active, and Dormant) can 
be further subdivided into clean and dirty groups, which 
contain the set of clean and dirty (i.e. modified) pages, re- 
spectively, of that category. 

In addition to the traditional buffer management com- 
ponents [8] of allocution, replacement and pin synchro- 
nization, an additional component that arises specifically in 
the secure real-time domain is pin preemption. Consider 
the case, for example, where a low clearance transaction 
requests buffer space but the slots currently held by high 
clearance transactions which would normally be candidates 
for replacement cannot be forced out because they are all 
pinned. In this case, one option is for the low clearance 
transaction to wait for slots to become unpinned but this 
would immediately result in covert channel possibilities. 
Therefore, there appears to be no choice but to “break the 
pin”, that is, permit the replacement with the proviso that 
the high clearance transaction holding the original pin is im- 
mediately notified that the page it had assumed to be stable 



had actually been replaced - the high clearance transaction 
can then either abort or, preferably, redo the corrupted op- 
eration at a later time. 

Security considerations are not the only reason for sup- 
porting pin preemption. Consider, for example, the case 
where a tight-deadline transaction wishes to utilize the slot 
currently pinned by a slack-deadline transaction. If the ur- 
gent transaction is blocked, this would mean that high pri- 
ority transactions are being blocked by low priority trans- 
actions, a phenomenon known as priority inversion in the 
real-time literature [ 151. Priority inversion can cause the af- 
fected high-priority transactions to miss their deadlines and 
is clearly undesirable. Therefore, pin preemption is useful 
from real-time considerations also. 

5 Buffer Management Policies 

In this section, we present the set of buffer management 
policies evaluated in our study, which cover the spectrum 
from unsecure non-real-time policies to fully secure real- 
time policies. 

5.1 The SABRE Policy 

Our new SABRE (Secure Algorithm for Buffering in 
Real-time Environments) policy provides complete covert- 
channel-free security. It is fully dynamic since there is no 
preallocation of buffer slots to security levels, and uncon- 
strained in that no restrictions are placed on high clearance 
transaction accesses. Further, only one copy of a data page 
is maintained in the buffer pool. These features ensure effi- 
cient use of buffer resources. Finally, it incorporates several 
optimizations both for reducing the overall number of killed 
transactions and for decreasing the unfairness in the distri- 
bution of killed transactions across clearance levels. We de- 
scribe its design in more detail below. 

51.1 Priority Assignment 

As mentioned in the Introduction, assigning priorities in a 
secure RTDBS is rendered difficult due to having to satisfy 
multiple functionality requirements. Given the paramount 
importance of security, the database system is forced to as- 
sign transaction priorities based primarily on clearance lev- 
els and only secondarily on deadlines. In particular, prior- 
ities are assigned as a vector P = (LEVEL, INTRA), where 
LEVEL is the transaction clearance level and INTRA is the 
value assigned by the priority mechanism used within the 
level. Clearance levels are numbered from zero upwards, 
with zero corresponding to the lowest security level. Fur- 
ther, priority comparisons are made in lexicographic order 
with lower priority values implying higher priority. 

With the above scheme, transactions at a lower clear- 
ance have higher priority than all transactions at a higher 
clearance, a necessary condition for non-interference. For 
the intra-level priority mechanism, any priority assignment 
that results in good real-time performance can be used. For 
example, the classical Earliest Deadline assignment [14] 

wherein transactions with earlier deadlines have higher pri- 
ority than transactions with later deadlines. In this case, the 
priority vector would be P = (LEVEL, DEADLINE) -this pri- 
ority assignment is used in SABRE. 

51.2 Security Features 

Merely assigning priorities in the manner described above 
is not sufJicient, however, to make the buffer manager se- 
cure in terms of the non-interference requirement. We de- 
scribe below the main additional features incorporated in 
SABRE to ensure covert-channel-free security (the com- 
plete set of features is available in [5]): 

1. The contents of a buffer slot are not “visible” to a trans- 
action if the existence of the page in the slot is a conse- 
quence of actions performed by higher clearance trans- 
actions. Such a slot will appear as a (pseudo)-empty 
slot to the requesting transaction. 

More specifically, for a transaction of a specific clear- 
ance level, all the buffer pages of all higher clearance 
levels are not visible whereas the Pinned and Active 
buffer pages of its own level and all lower clearance 
levels are visible (the visibility of Dormant pages is 
discussed below in Feature 3). This means that, for 
example, a low clearance transaction is not given im- 
mediate access to a page that has been earlier brought 
into the buffer pool by a high clearance transaction. In- 
stead, it is forced to wait for the same period that it 
would have taken to bring the page from disk had the 
page not been in the buffer pool (the determination of 
this period is discussed in Section 5.1.5). 

High clearance transactions can replace the Dormant 
slots of low clearance transactions. 

Dormant pages, of any level, are visible only to trans- 
actions of the highest clearance level - for no other 
transactions are they visible. That is, a low clearance 
transaction is not given immediate access to a Dormant 
page even at its own or lower clearance levels. Instead, 
it is forced to wait for the same period that it would 
have taken to bring the page from disk had the page 
not been in the buffer pool. 

Priority-based pin preemption is supported at all clear- 
ance levels.3 

When selecting from among the set of (really) Empty 
slots, the slot is randomly chosen and not in a pre- 
defined order. 

Feature 1 above is an obvious requirement to ensure the ab- 
sence of signaling between high clearance and low clear- 
ance transactions. Feature 2, which allows high clearance 
transactions to “steal” the Dormant slots of low clearance 
transactions, is included for the following reason: If high 

3Supporting pin preemption at the lowest clearance level is not essen- 
tial for security but is retained for performance rensons (see Section 5.1.3). 
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clearance transactions could not replace any pages of low 
clearance transactions, then the buffer pool would very 
quickly fill up with the Active and Dormant pages of the 
low clearance transactions and after this the high clearance 
transactions would not be able to proceed further. That is, 
starvation of high clearance transactions would occur. 

Note, however, that there is a price to pay for ensuring 
that covert channels do not result in spite of slot-stealing. 
This is expressed in Feature 3 wherein low clearance trans- 
actions are made to wait for access to Dormant pages at 
even their own and lower clearance levels, thereby par- 
tially losing the benefits that could be gained from inter- 
transaction locality. Feature 4 ensures that high clearance 
accesses can be unrestricted without causing covert chan- 
nels since borrowed slots can be returned immediately even 
if they are currently pinned. Finally, Feature 5 ensures that 
low clearance transactions cannot “guess” that they are be- 
ing given a pseudo-empty slot by virtue of the fact that the 
slot they receive is not the first in the list of slots that they 
perceive to be empty. 

5.1.3 Real-Time Features 

SABRE incorporates the following features to enhance its 
real-time performance: 

Transactions of a particular clearance level cannot re- 
place the Pinned or Active pages of higher priority 
transactions belonging to the same level. 

Within each clearance level, priority-based pin pre- 
emption is supported. 

An optimized “comb’ slot selection algorithm to de- 
cide the slot in which to host a new data page. 

Feature 1 helps to utilize the intra-transaction and inter- 
transaction locality of high priority transactions, while Fea- 
ture 2 ensures the absence of priority inversion. The op- 
timized slot selection algorithm mentioned in Feature 3 is 
described below in Section 5.1.4. 

5.1.4 Search and Slot Selection 

When a transaction requests a data page, the visible por- 
tion of the buffer pool (corresponding to the transaction’s 
clearance level) is searched for the page and if the search is 
successful, SABRE returns the address of the slot in which 
the page is present. If the page is already pinned in a con- 
flicting mode by a higher priority transaction, then the trans- 
action has to wait for it to be unpinned before accessing the 
contents. Otherwise, it can access the page immediately af- 
ter gaining a pin on the page. 

A search could be unsuccessful for one of two reasons: 
(a) Because the page is really not in the buffer pool, or (b) 
Because it is in the non-visible portion of the buffer pool. 
In the first case, if really empty buffer slots are available, 
SABRE brings the page into one of these slots and returns 
the address of the slot to the requesting transaction. Oth- 
erwise, an existing buffer page is chosen for replacement 

according to the selection algorithm described below. The 
victim page, after being flushed to disk if dirty, is replaced 
by the requested page and the associated slot address is re- 
turned to the transaction. In the second case, the requested 
page is made to appear to have been brought from disk into 
the buffer slot where it currently exists by “unveiling” the 
slot only after waiting for the equivalent disk access time. 

The slot selection algorithm used in SABRE is shown 
in Figure 2a. In this algorithm, starting from really Empty 
slots, the selection works its way up the security hierarchy 
looking for Dormant slots and then in a “comb-like” fash- 
ion works its way downwards from the top clearance level 
looking for Active and Pinned slots until it reaches the re- 
quester’s clearance level. This route is shown pictorially in 
Figure 2b. 

SABRE’s comb slot selection algorithm incorporates the 
security and real-time features described earlier. In addi- 
tion, it includes the following optimizations designed to im- 
prove the real-time performance: 

The search for replacement buffers is ordered based 
on slot category - the Dormant slots are considered 
first and only if that is unsuccessful, are the Active and 
Pinned slots considered. This ordering is chosen to 
maximize the utilization of intru-transaction locality. 

Given a set of candidate replacement slots (as deter- 
mined by the slot selection algorithm), these candidate 
slots are grouped into clean and dirty subsets - only if 
the clean group is empty is the dirty group considered. 
Within each group the classical LRU (Least Recently 
Used) policy [4] is used to choose the replacement slot. 
This “LRU (cleanldirty)” ordering is based on the ob- 
servation that (a) it is faster to replace a clean page than 
a dirty page since no disk writes are incurred, and (b) 
the cost of writing out a disk page is amortized over a 
larger number of updates to the page. 

5.1.5 Fairness Features 

As mentioned in the Introduction, due to the covert- 
channel-free requirements, high clearance transactions in 
secure RTDBS are discriminated against in that they usually 
form a disproportionately large fraction of the killed trans- 
actions. To partially address this issue, the following opti- 
mizations are incorporated in SABRE: 

(a) Proxy Disk Service: The delays prescribed in Security 
Features 1 and 3 (Section 5.1.2) can be easily imple- 
mented by actually retrieving the desired page from 
disk into the buffer slot where it already currently ex- 
ists. Obviously, this approach is wasteful. A more use- 
ful strategy would be to use the disk time intended for 
servicing this request to instead serve the pending re- 
quests, if any, of higher clearance transactions for the 
same disk. That is, the high clearance transaction clan- 
destinely acts as a “proxy” for the low clearance trans- 
action. 
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a: Slot Selection Algorithm 

if (Really Empty Slots exist) then 
slot = randomly chosen Empty Slot 

else if (Dormant Slots exist) then 
/* Slot Stealing from Lower Security Levels OR 

Slot Confiscating from Higher Security Levels */ 
find the lowest security level at which Dormant Slots exist 
slot = LRU (cleanldirty) among these Dormant Slots 

else if (Slots of Higher Security Levels exist) then 
/* Slot Confiscating from Higher Security Levels */ 
find the highest level above requester's level for which slots exist 
if (Active Slots exist) then 

find the lowest priority transaction with Active Slots 
slot = LRU (cleanldirty) among these slots 

else /* All Slots are Pinned */ 
abort lowest priority transaction and release its slots 
slot = LRU (cleanldirty) among these slots 

else if (Slots of Requester's Level exist) then 
if (Lower Priority Transactions with Active Slots exist) then 

find the Active Slots of lowest priority transaction 
slot = LRU (cleanldirty) among these slots 

else if (Lower Priority Transactions with Pinned Slots exist) then 
abort the lowest priority transaction and release its slots 
slot = LRU (cleanldirty) among these slots 

else /* All Slots belong to Higher Priority transactions */ 
insert request in the wait queue which is 
maintained in (LEVEL, DEADLINE) priority order 

else /* All Slots belong to Lower Security Level transactions */ 
insert request in the wait queue which is 
maintained in (LEVEL, DEADLINE) priority order 

b: COMB Slot Selection Route 

P Pinned 
A Active 
D Dormant 
E Empty 

m-mm Search Path 

Request- 

“--“--. 
I D ; 

El Di 
. 

2 
. 
. 

i 

Figure 2: The SABRE Slot Selection Policy 
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Initial condition: Admit[Public] = 1.0, KillPercent[Publicl = 0.0, 
KillPercent[Secret] = 0.0 

LOOP: if KillPercent[Secret] > 5.0 then 
FairFactor = KillPercent[Publicl / KillPercent[Secret] 
if [FairFactor < 0.951 then 

Admit[Publicl = Admit[Publicl * 0.95 
else if [FairFactor > 1.051 then 

Admit[Publicl = Admit[Publicl * 1.05 
else 

Admit[Public] = 1.0 
sleep T seconds 
measure KillPercent[Public] and KillPercent[Secret] 
got0 statement LOOP 

Figure 3: The FSABRE Admission Control Algorithm 

(b) Comb Route: In the Comb algorithm, the search for a 
replacement slot among the Dormant slots begins with 
the lowest clearance level. This approach maximizes 
the possibility of slot-stealing from lower clearance 
levels, resulting in increased fairness. 

5.2 The FSABRE Policy 

As discussed above, the SABRE policy has features in- 
tended to reduce the unfairness associated with providing 
security. However, providing complete fairness in a work- 
load adaptive manner without incurring covert channels ap- 
pears to be fundamentally impossible since the dynamic 
fairness-inducing mechanism can itselfbecome the medium 
of information compromise. Therefore, for full-secure ap- 
plications, unfairness can only be mitigated to an extent, but 
not eliminated. It would be attractive, however, if for appli- 
cations that do not insist on full security, complete fairness 
could be provided with bounded-bandwidth covert chan- 
nels. We present below, FSABRE, an adaptive admission- 
control-augmented version of SABRE, that attempts to pro- 
vide such fairness while guaranteeing “orange-security” 
(i.e. leakage bandwidth of less than one bit per second). 

For ease of exposition, we will assume that there are only 
two clearance levels: Secret and Public. For this environ- 
ment, the FSABRE admission control algorithm is shown in 
Figure 3. The basic idea in the algorithm is that based on the 
imbalance in the transaction kill percentages of the Secret 
and Public classes, the admission of Public transactions into 
the system is periodically controlled every T seconds (the 
setting of T is discussed below). The FairFactor variable, 
which is the ratio of the kill percentages for the Public and 
Secret classes, captures the degree of unfairness during the 
last observation period. Ideally the FairFactor should be 1 .O 
and so, if there is a significant imbalance (FairFactor < 
0.95 or FairFactor > 1.05), what is done is to decrease or 
increase the admit probability of the Public transactions ac- 
cordingly. The increase or decrease margin has been set to 
a nominal 5%. The hope is that this mechanism will even- 
tually result in the multiprogramming level of the Public 
transactions reaching a value that ensures that the Secret 
transactions are not unduly harmed. Finally, to ensure that 
the admission control becomes operative only when the Se- 

cret class is experiencing sustained missed deadlines, a 5% 
threshold Secret kill percentage is included. 

5.2.1 Guaranteeing Orange Security 

In the FSABREI policy, a corrupt Secret user can signal 
information to collaborating Public users by modulating 
the outcomes (increase, decrease, or constant) of the Ad- 
mit[Public] computation. Corresponding to each computa- 
tion, log,3 = 1.6 bits of information can be transmitted4 
and since the computation is made once every T seconds, 
the total channel bandwidth is 1.6/T bits per second. By 
setting this equal to 1 bit per second, the condition for be- 
ing orange-secure, we get Tmin = 1.6 seconds to be the 
minimum recomputation period. In our experimental eval- 
uations of FSABRE’s performance, T is set to this value. 

5.3 Unsecure Buffer Policies 

Since, to our knowledge, SABLE (and FSABRE) represent 
the first secure real-time buffer management policies, we 
have compared their performance with that of representa- 
tive unsecure buffer management policies - in particular, 
CONV and RT, policies for conventional DBMS and for 
RTDBS, respectively. 

For the CONV and RT policies, the entire buffer pool 
is always visible since they are not security-cognizant. In 
CONV, for a successful search, the requesting transaction 
can access the page immediately unless it has already been 
pinnedin a conflicting mode - in this case the transaction 
has to wait for the page to be unpinned before accessing its 
contents. RT also follows a similar policy for successful 
searches except that in the case of conflicting pins, if the pin 
holder is of lower priority than the requesting transaction, 
the pin is preempted by aborting the lower priority holder. 

For unsuccessful searches, CONV and RT follow the slot 
selection algorithms shown in Figures 4 and 5, respectively. 
CONV essentially implements the classical LRU approach, 
including also the (cleanldirty) and category-based search 
optimizations of SABRE, while RT implements a priori- 
tized version of the same approach. 

4Based on information-theoretic considemtions. 
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if (Empty Slots exist) then 
slot = any Empty Slot 

else if (Dormant Slots exist) then 
slot = LRU (cleanldirty) among these Dormant Slots 

else if (Active Slots exist) then 
slot = LRU (cleanldirty) among these Active Slots 

else /* all slots are pinned */ 
insert request in the wait queue which is 
maintained in FCFS order 

Figure 4: The CONV Slot Selection Algorithm 

if (Empty Slots exist) then 

else 

else 

else 

else 

slot = any empty slot 
if (Dormant Slots exist) then 
slot = LRU (cleanldirty) among the Dormant Slots 
if (Lower Priority Transactions with Active Slots exist) 
find the active slots of the lowest priority transaction 
slot = LRU (cleanldirty) among these slots 
if (Lower Priority Transactions exist) 
abort the lowest priority transaction and release its slots 
slot = LRU (cleanldirty) among these slots 

/* all slots are with higher priority transactions */ 
insert request in the wait queue which is 
maintained in DEADLINE priority order 

Figure 5: The RT Slot Selection Algorithm 

5.4 Baseline Policies 

To isolate and quantify the effects of buffer management 
on the system performance, we also evaluate two artificial 
baseline policies, ALLHIT and ALLMISS, in the simula- 
tions. ALLHIT models an ideal system where every page 
access results in a buffer pool “hit” , while ALLMISS mod- 
els the other extreme - a system where every page access 
results in a buffer pool “miss”. 

6 Simulation Model 
We used a detailed simulation model, similar to that of our 
previous study [6], of a firm-deadline RTDBS to evaluate 
the real-time performance of the buffer management poli- 
cies. Due to space constraints, we highlight only the main 
features of the model here - the complete details are avail- 
able in [5]. A summary of the key model parameters is 
given in Table 1. 

In our model, the system consists of a shared-memory 
multiprocessor DBMS operating on disk-resident data. The 
database is modeled as a collection of DBSize pages that 
are uniformly distributed across all the disks. The database 
is equally partitioned into ClassLevels classification lev- 
els. Transactions are generated in a Poisson stream with rate 
ArrivalRate and each transaction has an associated clear- 
ance level and a firm completion deadline. A transaction is 
equally likely to belong to any of the ClearLevels clear- 
ance levels. For simplicity, we assume in this study that the 
categories (e.g., Secret, Public) for data classification and 
transaction clearance are identical. 

Transaction deadlines are assigned using the formula 
DT = AT + SlackFactor * ET, where DT, AT and ET 
are the deadline, arrival time and execution time, respec- 
tively, of transaction T.5 The SlackFactor parameter con- 
trols the tightness/slackness of deadlines. 

A transaction consists of a sequence of page read and 
page write accesses, generated in accordance with the Bell- 
LaPadula restrictions. The number of pages accessed by 
a transaction varies uniformly between 0.5 and 1.5 times 
the value of TransSize. The WriteProb parameter deter- 
mines the probability that a transaction operation is a write. 
If a transaction has not completed by its deadline, it is im- 
mediately killed (aborted and discarded from the system). 

The physical resources consist of NumCPU proces- 
sors, NumDisk disks, and NumBuf buffers. There is a 
single common queue for the CPUs and the service disci- 
pline is Pre-emptive Resume, with preemptions based on 
transaction priorities. Each of the disks has its own queue 
and is scheduled according to a Head-Of-Line (HOL) pol- 
icy, with the request queue ordered by transaction prior- 
ity. The PageCPU and PageDisk parameters capture 
the CPU and disk processing times per data page, respec- 
tively. A single level buffer comprising of NumBuf iden- 
tical page-sized buffer slots is modeled and these slots as 
well as the associated wait queue are managed according to 
the specific buffer policy in use. A page that is brought into 
the buffer pool is pinned for a uniformly distributed dura- 
tion in the range [MinPin, MaxPin]. 

5Theexecutiontimeis thetimetakento complete the transaction when 
executed ak~ne in the system. 
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Table 1: Simulation Model Parameters 

Parameter Meaning 
DBSize No. of pages in the database 
ClassLevels No. of Classification Levels 
ArrivalRate Transaction arrival rate 
ClearLevels No. of Clearance Levels 
SlackFactor Slack Factor in Deadline 
Transsize Average transaction size 
WriteProb Page write probability 
NumCPU No. of processors 
NumDisk No. of disks 
NumBuf No. of buffers 
PageCPU Page processing time at CPU 
PageDisk Page processing time at Disk 
MinPin Minimum buffer pin time 
MaxPin Maximum buffer pin time 
NumGPS No. of GPS (Global Page Sets) 
SizeGPS Size of each GPS 
GRef Cnt References from current GPS 
InterLoc Inter-transaction locality Factor 
IntraLoc Intra-transaction locality Factor 
LocalProb Local pageset probability 

Value 
1000 

2 
- 
2 

4.0 
16pages 

0.5 
10 
20 
50 

1Oms 
20ms 
OmS 

1OOms 
100 
200 
500 
0.02 
0.8 
0.8 

6.1 Access Locality 

The generation of inter-transaction and intra-transaction 
locality is handled in a manner similar to that used in 1161. 
In this scheme, two types of pagesets are created, global 
pagesets and local pagesets. The inter-transaction local- 
ity is associated with the global pagesets while the intra- 
transaction locality is associated with the local pagesets. 

Global pagesets are generated by sampling (with re- 
placement) from the database using identical (truncated) 
normal distributions with variance l/lnterloc2 - only the 
page location of the center-point of the distribution is a 
function of the individual global pageset. The NumGPS 
parameter specifies the number of global pagesets gener- 
ated and the size of each pageset is given by the SizeGPS 
parameter. At the outset, one of the global pagesets is desig- 
nated as the current global pageset and subsequent page ref- 
erences are generated from this pageset. After GRef Cnt 
number of references have been generated from this page- 
set, another pageset is uniformly randomly chosen from the 
remaining pagesets to become the current pageset. 

The pageset for a transaction T is created in the follow- 
ing manner: A local pageset is first created by uniformly 
randomly choosing pages from the current global pageset 
and the number of pages chosen is given by the formula 
LocalPageSetSizeT = (1 - IntraLoc) * TransSizeT. 
After this, the transaction’s pageset is created by succes- 
sively choosing pages randomly from within the local page- 
set or from within the current global pageset. The probabil- 
ity that a given page access is chosen from the local pageset 
is specified by the Local Prob parameter. 

Finally, restart locality is modeled by ensuring that a 
restarted transaction has the same clearance level and the 
same sequence of data accesses as its original incarnation. 

6.2 Priority Assignment and Concurrency Control 

As mentioned earlier, we wish to evaluate the performance 
of the buffer managers in an environment where the rest of 
the RTDBS is completely secure. Accordingly, the transac- 
tion priority assignment used at all the other RTDBS com- 
ponents is P = (LEVEL, DEADLINE). Among the buffer 
managers, the priority assignment in RT is P = DEAD- 
LINE andinSABREitis P=(LEVEL,DEADLINE), whereas 
CONV is priority-indifferent. 

The secure version [6] of the 2PL-HighPriority real-time 
protocol [l] is used for concurrency control and, for sim- 
plicity, only page-level locking is modeled. 

6.3 Performance Metrics 

The primary performance metric of our experiments is 
KillPercent, which is the percentage of input transactions 
that the system is unable to complete before their dead- 
lines. We compute this percentage also on a per-clearance- 
level basis. An additional performance metric is ClassFair- 
ness which captures how evenly the killed transactions are 
spread across the various clearance levels. This is com- 
puted, for each class i, as the ratio ‘. With 
this formulation, a protocol is ideally fair if the fairness 
value is 1 .O for all classes. 

7 Experiments and Results 

Using the above simulation model, we evaluated the per- 
formance of the various buffer managers for a variety of 
security-classified transaction workloads and system con- 
figurations. Due to space constraints, we present results 
for only two representative experiments here - the others 
are available in [5]. The settings of the workload and sys- 
tem parameters for these experiments are listed in Table 1. 
These settings were chosen to ensure significant locality in 
the reference patterns and significant buffer contention, thus 
helping to bring out the performance differences between 
the various buffer management policies. 

7.1 Experiment 1: Cost of Complete Security 

In this experiment, we evaluate the cost of providing 
covert-channel-free security in the real-time environment 
for a system with two security levels: Secret and Public. 
For this configuration, Figure 6a shows the overall KillPer- 
cent behavior as a function of the (per-second) transac- 
tion arrival rate for the SABRE, CONY RT, ALLHIT and 
ALLMISS buffer policies. We observe here that, as ex- 
pected, the ALLHIT and ALLMISS baseline policies ex- 
hibit the best and worst performance, respectively. What is 
more interesting is the vast gap between the performance 
of ALLHIT and that of ALLMISS indicating the extent to 
which intelligent buffer management can play a role in im- 
proving system performance and highlighting the need for 
well-designed buffer policies. 

Among the practical protocols, we observe that the real- 
time performance of SABRE and RT is similar, with RT 
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Figure 6: Cost of Complete Security 

holding the edge, whereas CONV is significantly worse, es- 
pecially under heavy loads. RT shows better performance 
than CONV because it gives preferential treatment to ur- 
gent transactions in the following ways: (1) They derive 
more intru-transaction and restart locality since their Ac- 
tive pages cannot be replaced by low priority transactions; 
and (2) They get “first pick” of the available slots due to the 
prioritized queueing for buffer slots. 

The reason that SABRE performs slightly worse than RT 
is that since priorities are decided primarily based on clear- 
ance levels, it is still possible for a slack-deadline Public 
transaction to restart a tight-deadline Secret transaction, re- 
sulting in the Secret transaction missing its deadline. This 
effect is highlighted in Figure 6b, which shows the Zevel- 
wise kill percentages - with SABRE, Secret transactions 
(dashed lines) form a much larger proportion of the killed 

transactions. This is further quantified in Figure 6c, which 
captures the ClassFairness metric, and clearly demonstrates 
that SABRE is extremely unfair to Secret transactions, es- 
pecially under heavy loads. 

It may appear surprising in Figures 6b and 6c that RT 
and CONY although not security-cognizant, are still some- 
what unfair to Secret transactions. This behavior is not due 
to the buffer policies themselves, but is a side-effect of the 
rest of the system being secure and therefore discriminating 
against Secret transactions, resulting in more Public page 
requests being received at the buffer pool. 

In Figure 6d, we show the bujfer hit ratio, that is the av- 
erage probability of finding a requested page in the visible 
portion of the buffer pool, for the various protocols on a 
level-wise basis. The first point to note is that in all the pro- 
tocols there is a crossover between the Secret and Public hit 
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ratios - at low loads Secret is better whereas at high loads 
Public is better. This is explained as follows: In CONV and 
in RT, the low load hit ratios should have been similar since 
they are not security cognizant, but again there is a side- 
effect arising out of the rest of the system being secure - 
more Secret transactions are restarted for concurrency con- 
trol reasons than Public transactions and therefore there is 
more restart locality derived for Secret transactions. Under 
heavy loads, however, this effect is overtaken by the Pub- 
lic transactions hogging most of the buffer slots and thereby 
making the Secret transactions hot spot mostly absent from 
the buffer pool. 

In SABRH, the Secret transactions do better at low loads, 
not only because of the restart locality mentioned above, 
but also due to two additional factors: (1) the whole buffer 
pool is visible to Secret transactions; and (2) the “slot steal- 
ing” feature. Under heavy loads, however, even more of 
the buffer slots are occupied by Public transactions as com- 
pared to CONV and RT since Secret transactions cannot re- 
place the Active pages of Public transactions, and therefore 
the Secret hit ratio is markedly worse. Another interesting 
observation with respect to SABRE is that although its de- 
sign prevented the use of much of the Dormant page locality 
(as described in Section 5), yet its hit ratio is not materially 
worse than that of CONV or RT. This is because, except un- 
der very light loads, most of the pages in the buffer pool will 
be Active since they represent the hot spot and therefore Ac- 
tive page locality predominates. 

Finally, Figure 6e shows the bufSer utilization, that is, 
the overall average number of Pinned buffer slots, and it 
is clear here that CONV utilizes the buffers more than RT 
and SABRE. However, this does not result in better real- 
time performance because CONV is deadline-indifferent 
whereas RT and SABRE selectively give the Pinned slots 
to tight-deadline transactions. 

In summary, the results of this experiment highlight the 
benefits of using deadline-cognizant buffer management 
policies. Further, it shows that SABRE provides security 
with only a modest drop in real-time performance. The non- 
interference requirement, however, causes SABREl to be 
rather unfair to high clearance transactions, especially un- 
der heavy loads. 

7.2 Experiment 2: Class Fairness 

In this experiment, we evaluate whether an orange- 
secure version of the FSABRE protocol could address 
SABRE’s fairness shortcoming. The results of this ex- 
periment are shown in Figures 7a-c which capture the 
overall KillPercent, the level-wise KillPercent, and the 
Class Fairness, respectively. In these figures we see that 
FSABRE achieves close to ideal fairness. Further, at low 
loads, FSABRE causes only a small increase of the overall 
kill percentage with respect to SABRE, whereas at heavy 
loads, FSABRH actually does slightly better. At low loads, 
due to the inherent lag involved in the feedback process, 
FSABRE tends to be over-conservative, unnecessarily pre- 
venting Public transactions from entering, and thereby in- 

creases the Public kill percentage. In contrast, under heavy 
loads, being conservative does less harm than being too 
liberal (since the system is essentially in a “thrashing” re- 
gion), and therefore FSABRE’s performance shows some 
improvement over that of SABRE. 

In summary, the results of this experiment show that 
FSABRE achieves close to ideal fairness without really 
affecting the overall real-time performance. That is, the 
FSABRE policy evenly redistributes the “pain” but does 
not really increase its magnitude. 

7.3 Other Experiments 

Our other experiments, described in [5], explored the sen- 
sitivity of the above results to various workload and sys- 
tem parameters including the number of security levels, the 
buffer pool size, the locality factors, etc. The relative per- 
formance behaviors of the policies in these other experi- 
ments remained qualitatively similar to those seen here, but 
it should be noted that for applications with large number of 
security levels, the priority assignment in SABRE becomes 
much more level-based than deadline-based, resulting in 
an increased degradation of its real-time performance, as 
should be expected. 

8 Conclusions 

In this paper, we have quantitatively investigated, for the 
first time, the performance implications of the choice of 
buffer manager in both full-secure and orange-secure firm- 
deadline RTDBS. This is a followup to our earlier work on 
secure real-time concurrency control [6]. 

Making real-time buffer managers secure is compli- 
cated due to the multiplicity of covert-channel mediums and 
buffer components, and due to the inherent difficulties of si- 
multaneously achieving the goals of full security, minimal 
KillPercent and complete ClassFairness. Our new SABRE 
policy addresses these challenges by (1) making buffer pool 
visibility a function of the clearance level, (2) not preallo- 
eating buffer slots to security levels, (3) sacrificing Dormant 
page locality to permit unrestricted slot stealing by higher 
clearance transactions, (4) supporting pin-preemption, (5) 
implementing a novel Comb slot selection policy, and (6) 
incorporating optimizations such as Proxy Disk Service. 

Using a detailed simulation model of a firm-deadline RT- 
DBS, the real-time performance of SABLE was evaluated 
against the CONV and RT unsecure conventional and real- 
time buffer managers. Our experiments showed that (a) 
it is essential to include deadline-cognizance in the buffer 
manager for good real-time performance, thereby support- 
ing the conclusions of [ 111, (b) SABRE efficiently provides 
security in that its real-time performance is not significantly 
worse than that of RT, especially for applications that have 
only a small number of security levels, and (c) SABRE’s 
sacrifice of Dormant page locality has little impact since 
Active page locality is predominant. 

SABRE’s main drawback of bias against higher clear- 
ance transactions was addressed by the FSABRE policy, 
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which implemented a simple feedback-based transaction 
admission control mechanism. The bandwidth of the covert 
channel introduced by this mechanism was bounded by ap- 
propriately setting the feedback period. An orange-secure 
version (bandwidth less than 1 bit per second) of FSABRE! 
was found to provide close to ideal fairness at little cost to 
the overall real-time performance. 
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