
Secure Buffering in Firm Real-Time Database Systems

Binto George Jayant R. Haritsa*

Database Systems Lab
Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore 560012, India
{binto,haritsa}@?dsl.serc.iisc.ernet.in

Abstract

The design of secure buffer managers for
database systems supporting real-time applica-
tions with firm deadlines is studied here. We first
identify the design challenges and then present
SABRE, a new buffer manager that aims to ad-
dress these challenges. SABRE guarantees covert
channel-free security, employs a fully dynamic
one-copy allocation policy for efficient usage of
buffer resources, and incorporates several opti-
mizations for reducing the number of killed trans-
actions and for decreasing the unfairness in the
distribution of killed transactions across secu-
rity levels. Using a detailed simulation model,
the real-time performance of SABRE is evalu-
ated against unsecure conventional and real-time
buffer management policies. Our experiments
show that SABER provides security with only a
modest drop in real-time performance. Finally, we
present FSABRE, an adaptive admission control-
augmented version of SABRE, which efficiently
ensures close to ideal fairness across transaction
security levels while remaining within the infor-
mation leakage bandwidth limits specified in mil-
itary standards.

1 Introduction
Many applications of real-time database systems (RTDBS)
arise in safety-critical installations and military systems

*Supported in part by a research grant from the Department of
Science and Technology, Government of India.

Permission to copy without,fee all or part of this muterial is grunted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the public&m and its
date appear, and notice is given thut copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
u,fee and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

where enforcing security is crucial to the success of the en-
terprise. Security violations in an RTDBS can occur if, for
example, information from the “secret” database is trans-
ferred by corrupt high security transactions to the “pub-
lic” database where they are read by conspiring low se-
curity transactions. Such direct violations can be elimi-
nated by implementing the classical Bell-LaPadula security
model [131 which imposes restrictions on the data opera-
tions permitted to transactions, based on their security lev-
els. The Bell-LaPadula model is not sufficient, however, to
protect from “covert channels”. A covert channel is an indi-
rect means by which a high security transaction can transfer
information to a low security transaction [121. For example,
if a low security transaction requests access to an exclusive
resource, it will be delayed if the resource is already held
by a high security transaction, otherwise it will be granted
the resource immediately. The presence or absence of the
delay can be used as a “signaling” or encoding mechanism
by a high security transaction passing secret information to
the low security transaction. Note that, from the system per-
spective, nothing “obviously illegal” has been done in this
process by the conspiring transactions.

Covert channels can be prevented by ensuring that low
security transactions do not “see” high security transactions
-this notion is formalized in [7] as non-interference, that is,
low security transactions should not be able to distinguish
between the presence or absence of high security transac-
tions. This can be implemented, for example, by providing
higherpriority to low security transactions whenever a con-
flict occurs between a low security transaction and a high
security transaction. From a system perspective, it trans-
lates to developing database managers that support the non-
interference feature.

In a recent study [6], we made a detailed investigation of
the performance implications of providing covert-channel-
free security in the context of real-time applications with
“firm-deadlines” [9]. For such applications, completing a
transaction after its deadline has expired is of no utility and
may even be harmful. Therefore, transactions that miss
their deadlines are “killed”, that is, immediately aborted and
discarded from the system without being executed to com-

464

pletion. Accordingly, the performance metric is the per-
centage of killed transactions.’

The focus in our earlier study was on the design of high-
performance secure concurrency control managers. We
move on, in this paper, to considering the equally important
and related issue of designing buffer managers that can both
guarantee security and provide good real-time performance.

Design Challenges

Buffer managers take advantage of the temporal locality
typically exhibited in database reference patterns to en-
hance system performance by minimizing disk activity. In
doing so, however, they open up possibilities for covert
channels - in fact, many more than those associated with
concurrency control. For example, the presence or absence
of a delay in acquiring a free buffer slot, or the presence or
absence of a specific data page in the buffer pool, or the allo-
cation of a particular (physical) buffer slot, could all be used
as channel mediums, whereas in concurrency control, data
access time is the primary medium. Apart from this “multi-
tude of channel mediums” problem, there are several addi-
tional problems that arise while integrating security into the
RTDBS framework in general, and into the buffer manager
in particular:

First, a secure RTDBS has to simultaneously satisfy two
requirements, namely, provide security and minimize the
number of killed transactions. Unfortunately, the mech-
anisms for achieving the individual goals often work at
cross-purposes. In an RTDBS, high priority is usually given
to transactions with earlier deadlines in order to help their
timely completion. On the other hand, in secure DBMS,
low security transactions are given high priority in order
to avoid covert channels (as described earlier). Now con-
sider the situation wherein a high security process submits a
transaction with a tight deadline in a secure RTDBS. In this
case, it becomes difficult to assign a priority since assign-
ing a high priority may cause a security violation whereas
assigning a low priority may result in a missed deadline.

Second, a major problem arising out of the preferential
treatment of low security transactions is that of “fairness” -
high security transactions usually form a disproportionately
large fraction of the killed transactions. Note that this is an
especially problematic issue because it is the “VIPs”, that is,
the high security transactions, that are being discriminated
against in favor of the “common-folk”, that is, the low se-
curity transactions.

Unfortunately, achieving fairness without permitting
covert channels appears to be funa!amentally impossible
for dynamically changing workloads. The issue then is
whether it is possible to design fair systems while still guar-
anteeing that the covert channel information leakage band-
width is within acceptable levels.

w, it is straightforward to eliminate covert channels
by using “static” resource allocation policies wherein each
transaction security class has a pre-assigned buffer space,
or by using “replication’‘-based policies wherein multiple

copies of data pages are maintained. However, such poli-
cies may result in very poor resource utilization. The chal-
lenge therefore is to design “dynamic” and “one-copy” poli-
cies that are demonstrably secure.

Finally, unlike concurrency control, which essentially
deals only with regulating data access, a buffer manager
has multiple components- buffer allocation, buffer replace-
ment and pin synchronization [8], all of which have to be
made secure.

In summary, for all of the above reasons, making a real-
time buffer manager implementation secure involves sig-
nificant design complexity. We have conducted a detailed
study of this issue and report on the results here. To the best
of our knowledge, these results represent the jrst work in
the area of secure real-time buffer management.

2 Related Work
The only prior research we are aware of on secure buffer
management is the recent study by Warner et al [161 in the
context of conventional (i.e. non-real-time) DBMS. A num-
ber of design alternatives for secure buffer allocation, re-
placement and synchronization were explored in this study.
In particular, they statically divided the buffer pool among
the various security levels,2 but also presented a dynamic
scheme called “slot stealing” wherein buffers, currently un-
derutilized at the low security level, could be borrowed by
high security transactions. Later, if needed, these borrowed
slots could be reclaimed by the low security transactions.
They also considered replication-based schemes wherein
multiple copies of the same disk page could be present in the
buffer pools of various security levels. Finally, the perfor-
mance of these policies was evaluated on a simulated model
of a buffer manager.

While their dynamic allocation scheme is an interesting
approach, it suffers from two problems: First, it is onlypar-
tially dynamic, since low security transactions are not al-
lowed to utilize the currently unused buffer slots of high
security transactions. Therefore, resource wastage could
still result. Second, it must be ensured that the number of
unpinned clean buffer slots in the high security buffer pool
must at all times be as large as the number of slots borrowed
from the low security pool. This is necessary to support
the immediate return of slots reclaimed by the low security
transactions and thereby to prevent covert channels. The
utility of the slot stealing is diminished by this constraint
since it places restrictions on the high security accesses.

Our work differs from the above in that, apart from ad-
dressing real-time applications, we consider (a) fully dy-
namic and unconstrained one-copy allocation policies, (b)
the buffer manager’s performance role in the context of an
entire system where all remaining components are secure,
and (c) the issue of fairness across security levels.

Just as there has been little prior research on secure
buffer management, there has been a similar paucity with
regard to (unsecure) real-time buffer management. The

2A scheme where the static buffer allocation is periodically reviewed
and altered is also presented, but this scheme can result in covert channels. 1 Or equivalently, the percentage of missed deadlines.

465

only work that we are aware of are [10, 1 l] in which real-
time versions of the popular LRU [4] and DBMIN [2] poli-
cies were developed and evaluated. The results of these
studies were inconclusive, however, since they arrived at
differing conclusions regarding the utility of adding real-
time information to buffer management.

3 Security Model

Most secure database systems have access control mecha-
nisms based on the Bell-LaPadula model [131. This model
is specified in terms of subjects and objects. An object is a
data item, whereas a subject is a process that requests ac-
cess to an object. Each object in the system has a clussij-
cation level (e.g., Secret, Classified, Public, etc.) based on
the security requirement. Similarly, each subject has a cor-
responding clearance level based on the degree to which it
is trusted by the system.

The Bell-LaPadula model imposes two restrictions on
all data accesses:

1. A subject is allowed read access to an object only if
the former’s clearance is higher than or identical to the
latter’s classification

2. A subject is allowed write access to an object only if
the former’s clearance is identical to or lower than the
latter’s classification.

TRANSACTION DATA
CLEARANCE CLASSIFICATION

SECRET

PUBLIC

R/W

Figure 1: Bell-LaPadula access restrictions

The Bell-LaPadula conditions effectively enforce a “read
below, write above” constraint on transaction data accesses
(an example is shown in Figure l), and thereby prevent di-
rect unauthorized access to secure data. They are not suf-
ficient, however, to protect from “covert channels”, as de-
scribed in the Introduction.

One approach to tackling covert channels is by introduc-
ing “noise” in the form of dummy transactions. The prob-
lem with this solution, however, is its inefficiency stem-
ming from the considerable waste of system resources by
the dummy transactions. An alternative approach is the
non-interference formalism described in the Introduction -
we exclusively use this approach here.

3.1 Orange Security

For many real-time applications, security is an “all-or-
nothing” issue, that is, it is a correctness criterion. In such
“full-secure” applications, metrics such as the number of
killed transactions or the fairness across transaction clear-
ance levels are secondary performunce issues. However,
there are also applications for whom it is acceptable to
have well-defined bounded-bandwidth covert channels in
exchange for performance improvement. For example, the
US military’s security standards, which are defined in the
so-called “Orange Book” [3], specify that covert channels
with bandwidth of less than one bit per second are typically
acceptable-we will hereafter use the term “orange-secure”
to refer to such applications.

In this study, we consider the design of buffer managers
for both full-secure and orange-secure real-time applica-
tions.

4 Buffer Model

Buffer managers attempt to utilize the temporal locality
typically exhibited in database reference patterns to maxi-
mize the number of buffer hits and thereby reduce disk ac-
tivity. Three kinds of reference localities are usually ob-
served: inter-transaction locality (i.e. “hot spots”), intru-
transaction locality (transaction’s internal reference local-
ity), and restart locality (restarted transactions make the
same sequence of accesses as their original incarnation).

At any given time, the slots in the buffer pool can be
grouped into the following four categories: Pinned -
Buffer slots containing valid pages that are currently be-
ing accessed (in read or write mode) by executing trans-
actions; Active - Buffer slots containing valid pages that
have been earlier accessed by currently executing transac-
tions; Dormant - Buffer slots containing valid pages that
have not been accessed by any currently executing transac-
tion (these pages were brought in by previously completed
transactions); Empty-Buffer slots that are empty. Further,
the first three categories (Pinned, Active, and Dormant) can
be further subdivided into clean and dirty groups, which
contain the set of clean and dirty (i.e. modified) pages, re-
spectively, of that category.

In addition to the traditional buffer management com-
ponents [8] of allocution, replacement and pin synchro-
nization, an additional component that arises specifically in
the secure real-time domain is pin preemption. Consider
the case, for example, where a low clearance transaction
requests buffer space but the slots currently held by high
clearance transactions which would normally be candidates
for replacement cannot be forced out because they are all
pinned. In this case, one option is for the low clearance
transaction to wait for slots to become unpinned but this
would immediately result in covert channel possibilities.
Therefore, there appears to be no choice but to “break the
pin”, that is, permit the replacement with the proviso that
the high clearance transaction holding the original pin is im-
mediately notified that the page it had assumed to be stable

had actually been replaced - the high clearance transaction
can then either abort or, preferably, redo the corrupted op-
eration at a later time.

Security considerations are not the only reason for sup-
porting pin preemption. Consider, for example, the case
where a tight-deadline transaction wishes to utilize the slot
currently pinned by a slack-deadline transaction. If the ur-
gent transaction is blocked, this would mean that high pri-
ority transactions are being blocked by low priority trans-
actions, a phenomenon known as priority inversion in the
real-time literature [151. Priority inversion can cause the af-
fected high-priority transactions to miss their deadlines and
is clearly undesirable. Therefore, pin preemption is useful
from real-time considerations also.

5 Buffer Management Policies

In this section, we present the set of buffer management
policies evaluated in our study, which cover the spectrum
from unsecure non-real-time policies to fully secure real-
time policies.

5.1 The SABRE Policy

Our new SABRE (Secure Algorithm for Buffering in
Real-time Environments) policy provides complete covert-
channel-free security. It is fully dynamic since there is no
preallocation of buffer slots to security levels, and uncon-
strained in that no restrictions are placed on high clearance
transaction accesses. Further, only one copy of a data page
is maintained in the buffer pool. These features ensure effi-
cient use of buffer resources. Finally, it incorporates several
optimizations both for reducing the overall number of killed
transactions and for decreasing the unfairness in the distri-
bution of killed transactions across clearance levels. We de-
scribe its design in more detail below.

51.1 Priority Assignment

As mentioned in the Introduction, assigning priorities in a
secure RTDBS is rendered difficult due to having to satisfy
multiple functionality requirements. Given the paramount
importance of security, the database system is forced to as-
sign transaction priorities based primarily on clearance lev-
els and only secondarily on deadlines. In particular, prior-
ities are assigned as a vector P = (LEVEL, INTRA), where
LEVEL is the transaction clearance level and INTRA is the
value assigned by the priority mechanism used within the
level. Clearance levels are numbered from zero upwards,
with zero corresponding to the lowest security level. Fur-
ther, priority comparisons are made in lexicographic order
with lower priority values implying higher priority.

With the above scheme, transactions at a lower clear-
ance have higher priority than all transactions at a higher
clearance, a necessary condition for non-interference. For
the intra-level priority mechanism, any priority assignment
that results in good real-time performance can be used. For
example, the classical Earliest Deadline assignment [14]

wherein transactions with earlier deadlines have higher pri-
ority than transactions with later deadlines. In this case, the
priority vector would be P = (LEVEL, DEADLINE) -this pri-
ority assignment is used in SABRE.

51.2 Security Features

Merely assigning priorities in the manner described above
is not sufJicient, however, to make the buffer manager se-
cure in terms of the non-interference requirement. We de-
scribe below the main additional features incorporated in
SABRE to ensure covert-channel-free security (the com-
plete set of features is available in [5]):

1. The contents of a buffer slot are not “visible” to a trans-
action if the existence of the page in the slot is a conse-
quence of actions performed by higher clearance trans-
actions. Such a slot will appear as a (pseudo)-empty
slot to the requesting transaction.

More specifically, for a transaction of a specific clear-
ance level, all the buffer pages of all higher clearance
levels are not visible whereas the Pinned and Active
buffer pages of its own level and all lower clearance
levels are visible (the visibility of Dormant pages is
discussed below in Feature 3). This means that, for
example, a low clearance transaction is not given im-
mediate access to a page that has been earlier brought
into the buffer pool by a high clearance transaction. In-
stead, it is forced to wait for the same period that it
would have taken to bring the page from disk had the
page not been in the buffer pool (the determination of
this period is discussed in Section 5.1.5).

High clearance transactions can replace the Dormant
slots of low clearance transactions.

Dormant pages, of any level, are visible only to trans-
actions of the highest clearance level - for no other
transactions are they visible. That is, a low clearance
transaction is not given immediate access to a Dormant
page even at its own or lower clearance levels. Instead,
it is forced to wait for the same period that it would
have taken to bring the page from disk had the page
not been in the buffer pool.

Priority-based pin preemption is supported at all clear-
ance levels.3

When selecting from among the set of (really) Empty
slots, the slot is randomly chosen and not in a pre-
defined order.

Feature 1 above is an obvious requirement to ensure the ab-
sence of signaling between high clearance and low clear-
ance transactions. Feature 2, which allows high clearance
transactions to “steal” the Dormant slots of low clearance
transactions, is included for the following reason: If high

3Supporting pin preemption at the lowest clearance level is not essen-
tial for security but is retained for performance rensons (see Section 5.1.3).

467

clearance transactions could not replace any pages of low
clearance transactions, then the buffer pool would very
quickly fill up with the Active and Dormant pages of the
low clearance transactions and after this the high clearance
transactions would not be able to proceed further. That is,
starvation of high clearance transactions would occur.

Note, however, that there is a price to pay for ensuring
that covert channels do not result in spite of slot-stealing.
This is expressed in Feature 3 wherein low clearance trans-
actions are made to wait for access to Dormant pages at
even their own and lower clearance levels, thereby par-
tially losing the benefits that could be gained from inter-
transaction locality. Feature 4 ensures that high clearance
accesses can be unrestricted without causing covert chan-
nels since borrowed slots can be returned immediately even
if they are currently pinned. Finally, Feature 5 ensures that
low clearance transactions cannot “guess” that they are be-
ing given a pseudo-empty slot by virtue of the fact that the
slot they receive is not the first in the list of slots that they
perceive to be empty.

5.1.3 Real-Time Features

SABRE incorporates the following features to enhance its
real-time performance:

Transactions of a particular clearance level cannot re-
place the Pinned or Active pages of higher priority
transactions belonging to the same level.

Within each clearance level, priority-based pin pre-
emption is supported.

An optimized “comb’ slot selection algorithm to de-
cide the slot in which to host a new data page.

Feature 1 helps to utilize the intra-transaction and inter-
transaction locality of high priority transactions, while Fea-
ture 2 ensures the absence of priority inversion. The op-
timized slot selection algorithm mentioned in Feature 3 is
described below in Section 5.1.4.

5.1.4 Search and Slot Selection

When a transaction requests a data page, the visible por-
tion of the buffer pool (corresponding to the transaction’s
clearance level) is searched for the page and if the search is
successful, SABRE returns the address of the slot in which
the page is present. If the page is already pinned in a con-
flicting mode by a higher priority transaction, then the trans-
action has to wait for it to be unpinned before accessing the
contents. Otherwise, it can access the page immediately af-
ter gaining a pin on the page.

A search could be unsuccessful for one of two reasons:
(a) Because the page is really not in the buffer pool, or (b)
Because it is in the non-visible portion of the buffer pool.
In the first case, if really empty buffer slots are available,
SABRE brings the page into one of these slots and returns
the address of the slot to the requesting transaction. Oth-
erwise, an existing buffer page is chosen for replacement

according to the selection algorithm described below. The
victim page, after being flushed to disk if dirty, is replaced
by the requested page and the associated slot address is re-
turned to the transaction. In the second case, the requested
page is made to appear to have been brought from disk into
the buffer slot where it currently exists by “unveiling” the
slot only after waiting for the equivalent disk access time.

The slot selection algorithm used in SABRE is shown
in Figure 2a. In this algorithm, starting from really Empty
slots, the selection works its way up the security hierarchy
looking for Dormant slots and then in a “comb-like” fash-
ion works its way downwards from the top clearance level
looking for Active and Pinned slots until it reaches the re-
quester’s clearance level. This route is shown pictorially in
Figure 2b.

SABRE’s comb slot selection algorithm incorporates the
security and real-time features described earlier. In addi-
tion, it includes the following optimizations designed to im-
prove the real-time performance:

The search for replacement buffers is ordered based
on slot category - the Dormant slots are considered
first and only if that is unsuccessful, are the Active and
Pinned slots considered. This ordering is chosen to
maximize the utilization of intru-transaction locality.

Given a set of candidate replacement slots (as deter-
mined by the slot selection algorithm), these candidate
slots are grouped into clean and dirty subsets - only if
the clean group is empty is the dirty group considered.
Within each group the classical LRU (Least Recently
Used) policy [4] is used to choose the replacement slot.
This “LRU (cleanldirty)” ordering is based on the ob-
servation that (a) it is faster to replace a clean page than
a dirty page since no disk writes are incurred, and (b)
the cost of writing out a disk page is amortized over a
larger number of updates to the page.

5.1.5 Fairness Features

As mentioned in the Introduction, due to the covert-
channel-free requirements, high clearance transactions in
secure RTDBS are discriminated against in that they usually
form a disproportionately large fraction of the killed trans-
actions. To partially address this issue, the following opti-
mizations are incorporated in SABRE:

(a) Proxy Disk Service: The delays prescribed in Security
Features 1 and 3 (Section 5.1.2) can be easily imple-
mented by actually retrieving the desired page from
disk into the buffer slot where it already currently ex-
ists. Obviously, this approach is wasteful. A more use-
ful strategy would be to use the disk time intended for
servicing this request to instead serve the pending re-
quests, if any, of higher clearance transactions for the
same disk. That is, the high clearance transaction clan-
destinely acts as a “proxy” for the low clearance trans-
action.

466

a: Slot Selection Algorithm

if (Really Empty Slots exist) then
slot = randomly chosen Empty Slot

else if (Dormant Slots exist) then
/* Slot Stealing from Lower Security Levels OR

Slot Confiscating from Higher Security Levels */
find the lowest security level at which Dormant Slots exist
slot = LRU (cleanldirty) among these Dormant Slots

else if (Slots of Higher Security Levels exist) then
/* Slot Confiscating from Higher Security Levels */
find the highest level above requester's level for which slots exist
if (Active Slots exist) then

find the lowest priority transaction with Active Slots
slot = LRU (cleanldirty) among these slots

else /* All Slots are Pinned */
abort lowest priority transaction and release its slots
slot = LRU (cleanldirty) among these slots

else if (Slots of Requester's Level exist) then
if (Lower Priority Transactions with Active Slots exist) then

find the Active Slots of lowest priority transaction
slot = LRU (cleanldirty) among these slots

else if (Lower Priority Transactions with Pinned Slots exist) then
abort the lowest priority transaction and release its slots
slot = LRU (cleanldirty) among these slots

else /* All Slots belong to Higher Priority transactions */
insert request in the wait queue which is
maintained in (LEVEL, DEADLINE) priority order

else /* All Slots belong to Lower Security Level transactions */
insert request in the wait queue which is
maintained in (LEVEL, DEADLINE) priority order

b: COMB Slot Selection Route

P Pinned
A Active
D Dormant
E Empty

m-mm Search Path

Request-

“--“--.
I D ;

El Di
.

2
.
.

i

Figure 2: The SABRE Slot Selection Policy

469

Initial condition: Admit[Public] = 1.0, KillPercent[Publicl = 0.0,
KillPercent[Secret] = 0.0

LOOP: if KillPercent[Secret] > 5.0 then
FairFactor = KillPercent[Publicl / KillPercent[Secret]
if [FairFactor < 0.951 then

Admit[Publicl = Admit[Publicl * 0.95
else if [FairFactor > 1.051 then

Admit[Publicl = Admit[Publicl * 1.05
else

Admit[Public] = 1.0
sleep T seconds
measure KillPercent[Public] and KillPercent[Secret]
got0 statement LOOP

Figure 3: The FSABRE Admission Control Algorithm

(b) Comb Route: In the Comb algorithm, the search for a
replacement slot among the Dormant slots begins with
the lowest clearance level. This approach maximizes
the possibility of slot-stealing from lower clearance
levels, resulting in increased fairness.

5.2 The FSABRE Policy

As discussed above, the SABRE policy has features in-
tended to reduce the unfairness associated with providing
security. However, providing complete fairness in a work-
load adaptive manner without incurring covert channels ap-
pears to be fundamentally impossible since the dynamic
fairness-inducing mechanism can itselfbecome the medium
of information compromise. Therefore, for full-secure ap-
plications, unfairness can only be mitigated to an extent, but
not eliminated. It would be attractive, however, if for appli-
cations that do not insist on full security, complete fairness
could be provided with bounded-bandwidth covert chan-
nels. We present below, FSABRE, an adaptive admission-
control-augmented version of SABRE, that attempts to pro-
vide such fairness while guaranteeing “orange-security”
(i.e. leakage bandwidth of less than one bit per second).

For ease of exposition, we will assume that there are only
two clearance levels: Secret and Public. For this environ-
ment, the FSABRE admission control algorithm is shown in
Figure 3. The basic idea in the algorithm is that based on the
imbalance in the transaction kill percentages of the Secret
and Public classes, the admission of Public transactions into
the system is periodically controlled every T seconds (the
setting of T is discussed below). The FairFactor variable,
which is the ratio of the kill percentages for the Public and
Secret classes, captures the degree of unfairness during the
last observation period. Ideally the FairFactor should be 1 .O
and so, if there is a significant imbalance (FairFactor <
0.95 or FairFactor > 1.05), what is done is to decrease or
increase the admit probability of the Public transactions ac-
cordingly. The increase or decrease margin has been set to
a nominal 5%. The hope is that this mechanism will even-
tually result in the multiprogramming level of the Public
transactions reaching a value that ensures that the Secret
transactions are not unduly harmed. Finally, to ensure that
the admission control becomes operative only when the Se-

cret class is experiencing sustained missed deadlines, a 5%
threshold Secret kill percentage is included.

5.2.1 Guaranteeing Orange Security

In the FSABREI policy, a corrupt Secret user can signal
information to collaborating Public users by modulating
the outcomes (increase, decrease, or constant) of the Ad-
mit[Public] computation. Corresponding to each computa-
tion, log,3 = 1.6 bits of information can be transmitted4
and since the computation is made once every T seconds,
the total channel bandwidth is 1.6/T bits per second. By
setting this equal to 1 bit per second, the condition for be-
ing orange-secure, we get Tmin = 1.6 seconds to be the
minimum recomputation period. In our experimental eval-
uations of FSABRE’s performance, T is set to this value.

5.3 Unsecure Buffer Policies

Since, to our knowledge, SABLE (and FSABRE) represent
the first secure real-time buffer management policies, we
have compared their performance with that of representa-
tive unsecure buffer management policies - in particular,
CONV and RT, policies for conventional DBMS and for
RTDBS, respectively.

For the CONV and RT policies, the entire buffer pool
is always visible since they are not security-cognizant. In
CONV, for a successful search, the requesting transaction
can access the page immediately unless it has already been
pinnedin a conflicting mode - in this case the transaction
has to wait for the page to be unpinned before accessing its
contents. RT also follows a similar policy for successful
searches except that in the case of conflicting pins, if the pin
holder is of lower priority than the requesting transaction,
the pin is preempted by aborting the lower priority holder.

For unsuccessful searches, CONV and RT follow the slot
selection algorithms shown in Figures 4 and 5, respectively.
CONV essentially implements the classical LRU approach,
including also the (cleanldirty) and category-based search
optimizations of SABRE, while RT implements a priori-
tized version of the same approach.

4Based on information-theoretic considemtions.

470

if (Empty Slots exist) then
slot = any Empty Slot

else if (Dormant Slots exist) then
slot = LRU (cleanldirty) among these Dormant Slots

else if (Active Slots exist) then
slot = LRU (cleanldirty) among these Active Slots

else /* all slots are pinned */
insert request in the wait queue which is
maintained in FCFS order

Figure 4: The CONV Slot Selection Algorithm

if (Empty Slots exist) then

else

else

else

else

slot = any empty slot
if (Dormant Slots exist) then
slot = LRU (cleanldirty) among the Dormant Slots
if (Lower Priority Transactions with Active Slots exist)
find the active slots of the lowest priority transaction
slot = LRU (cleanldirty) among these slots
if (Lower Priority Transactions exist)
abort the lowest priority transaction and release its slots
slot = LRU (cleanldirty) among these slots

/* all slots are with higher priority transactions */
insert request in the wait queue which is
maintained in DEADLINE priority order

Figure 5: The RT Slot Selection Algorithm

5.4 Baseline Policies

To isolate and quantify the effects of buffer management
on the system performance, we also evaluate two artificial
baseline policies, ALLHIT and ALLMISS, in the simula-
tions. ALLHIT models an ideal system where every page
access results in a buffer pool “hit” , while ALLMISS mod-
els the other extreme - a system where every page access
results in a buffer pool “miss”.

6 Simulation Model
We used a detailed simulation model, similar to that of our
previous study [6], of a firm-deadline RTDBS to evaluate
the real-time performance of the buffer management poli-
cies. Due to space constraints, we highlight only the main
features of the model here - the complete details are avail-
able in [5]. A summary of the key model parameters is
given in Table 1.

In our model, the system consists of a shared-memory
multiprocessor DBMS operating on disk-resident data. The
database is modeled as a collection of DBSize pages that
are uniformly distributed across all the disks. The database
is equally partitioned into ClassLevels classification lev-
els. Transactions are generated in a Poisson stream with rate
ArrivalRate and each transaction has an associated clear-
ance level and a firm completion deadline. A transaction is
equally likely to belong to any of the ClearLevels clear-
ance levels. For simplicity, we assume in this study that the
categories (e.g., Secret, Public) for data classification and
transaction clearance are identical.

Transaction deadlines are assigned using the formula
DT = AT + SlackFactor * ET, where DT, AT and ET
are the deadline, arrival time and execution time, respec-
tively, of transaction T.5 The SlackFactor parameter con-
trols the tightness/slackness of deadlines.

A transaction consists of a sequence of page read and
page write accesses, generated in accordance with the Bell-
LaPadula restrictions. The number of pages accessed by
a transaction varies uniformly between 0.5 and 1.5 times
the value of TransSize. The WriteProb parameter deter-
mines the probability that a transaction operation is a write.
If a transaction has not completed by its deadline, it is im-
mediately killed (aborted and discarded from the system).

The physical resources consist of NumCPU proces-
sors, NumDisk disks, and NumBuf buffers. There is a
single common queue for the CPUs and the service disci-
pline is Pre-emptive Resume, with preemptions based on
transaction priorities. Each of the disks has its own queue
and is scheduled according to a Head-Of-Line (HOL) pol-
icy, with the request queue ordered by transaction prior-
ity. The PageCPU and PageDisk parameters capture
the CPU and disk processing times per data page, respec-
tively. A single level buffer comprising of NumBuf iden-
tical page-sized buffer slots is modeled and these slots as
well as the associated wait queue are managed according to
the specific buffer policy in use. A page that is brought into
the buffer pool is pinned for a uniformly distributed dura-
tion in the range [MinPin, MaxPin].

5Theexecutiontimeis thetimetakento complete the transaction when
executed ak~ne in the system.

471

Table 1: Simulation Model Parameters

Parameter Meaning
DBSize No. of pages in the database
ClassLevels No. of Classification Levels
ArrivalRate Transaction arrival rate
ClearLevels No. of Clearance Levels
SlackFactor Slack Factor in Deadline
Transsize Average transaction size
WriteProb Page write probability
NumCPU No. of processors
NumDisk No. of disks
NumBuf No. of buffers
PageCPU Page processing time at CPU
PageDisk Page processing time at Disk
MinPin Minimum buffer pin time
MaxPin Maximum buffer pin time
NumGPS No. of GPS (Global Page Sets)
SizeGPS Size of each GPS
GRef Cnt References from current GPS
InterLoc Inter-transaction locality Factor
IntraLoc Intra-transaction locality Factor
LocalProb Local pageset probability

Value
1000

2
-
2

4.0
16pages

0.5
10
20
50

1Oms
20ms
OmS

1OOms
100
200
500
0.02
0.8
0.8

6.1 Access Locality

The generation of inter-transaction and intra-transaction
locality is handled in a manner similar to that used in 1161.
In this scheme, two types of pagesets are created, global
pagesets and local pagesets. The inter-transaction local-
ity is associated with the global pagesets while the intra-
transaction locality is associated with the local pagesets.

Global pagesets are generated by sampling (with re-
placement) from the database using identical (truncated)
normal distributions with variance l/lnterloc2 - only the
page location of the center-point of the distribution is a
function of the individual global pageset. The NumGPS
parameter specifies the number of global pagesets gener-
ated and the size of each pageset is given by the SizeGPS
parameter. At the outset, one of the global pagesets is desig-
nated as the current global pageset and subsequent page ref-
erences are generated from this pageset. After GRef Cnt
number of references have been generated from this page-
set, another pageset is uniformly randomly chosen from the
remaining pagesets to become the current pageset.

The pageset for a transaction T is created in the follow-
ing manner: A local pageset is first created by uniformly
randomly choosing pages from the current global pageset
and the number of pages chosen is given by the formula
LocalPageSetSizeT = (1 - IntraLoc) * TransSizeT.
After this, the transaction’s pageset is created by succes-
sively choosing pages randomly from within the local page-
set or from within the current global pageset. The probabil-
ity that a given page access is chosen from the local pageset
is specified by the Local Prob parameter.

Finally, restart locality is modeled by ensuring that a
restarted transaction has the same clearance level and the
same sequence of data accesses as its original incarnation.

6.2 Priority Assignment and Concurrency Control

As mentioned earlier, we wish to evaluate the performance
of the buffer managers in an environment where the rest of
the RTDBS is completely secure. Accordingly, the transac-
tion priority assignment used at all the other RTDBS com-
ponents is P = (LEVEL, DEADLINE). Among the buffer
managers, the priority assignment in RT is P = DEAD-
LINE andinSABREitis P=(LEVEL,DEADLINE), whereas
CONV is priority-indifferent.

The secure version [6] of the 2PL-HighPriority real-time
protocol [l] is used for concurrency control and, for sim-
plicity, only page-level locking is modeled.

6.3 Performance Metrics

The primary performance metric of our experiments is
KillPercent, which is the percentage of input transactions
that the system is unable to complete before their dead-
lines. We compute this percentage also on a per-clearance-
level basis. An additional performance metric is ClassFair-
ness which captures how evenly the killed transactions are
spread across the various clearance levels. This is com-
puted, for each class i, as the ratio ‘. With
this formulation, a protocol is ideally fair if the fairness
value is 1 .O for all classes.

7 Experiments and Results

Using the above simulation model, we evaluated the per-
formance of the various buffer managers for a variety of
security-classified transaction workloads and system con-
figurations. Due to space constraints, we present results
for only two representative experiments here - the others
are available in [5]. The settings of the workload and sys-
tem parameters for these experiments are listed in Table 1.
These settings were chosen to ensure significant locality in
the reference patterns and significant buffer contention, thus
helping to bring out the performance differences between
the various buffer management policies.

7.1 Experiment 1: Cost of Complete Security

In this experiment, we evaluate the cost of providing
covert-channel-free security in the real-time environment
for a system with two security levels: Secret and Public.
For this configuration, Figure 6a shows the overall KillPer-
cent behavior as a function of the (per-second) transac-
tion arrival rate for the SABRE, CONY RT, ALLHIT and
ALLMISS buffer policies. We observe here that, as ex-
pected, the ALLHIT and ALLMISS baseline policies ex-
hibit the best and worst performance, respectively. What is
more interesting is the vast gap between the performance
of ALLHIT and that of ALLMISS indicating the extent to
which intelligent buffer management can play a role in im-
proving system performance and highlighting the need for
well-designed buffer policies.

Among the practical protocols, we observe that the real-
time performance of SABRE and RT is similar, with RT

472

1OOr
a: Overall KillPercent

40 60
Arrival Rate

80 100

c: Fairness

IDEAL
1

0.8

3

--DC--*
-Y----4-

E 0.6 a
z

\

0.4 ,
‘Q

0.2
-.

0

0
20 40 60 80 100

1

0.0

.s 0.6

3

9 0.4

0.2

a

Arrival Rate

8: Buffer Utilization

40 60
Arrival Rate

80 100

b: Level-wise KillPercent

0
20 40 60 80 100

Arrival Rate

d: Buffer Hit Ratio

0.3

-0

20 40 60 80 100
Arrival Rate

EGEND

Line type

- - Secret

Public

Symbols

l ALLMISS

+ CONV

x RT

0 SABRE

* ALLHIT

Figure 6: Cost of Complete Security

holding the edge, whereas CONV is significantly worse, es-
pecially under heavy loads. RT shows better performance
than CONV because it gives preferential treatment to ur-
gent transactions in the following ways: (1) They derive
more intru-transaction and restart locality since their Ac-
tive pages cannot be replaced by low priority transactions;
and (2) They get “first pick” of the available slots due to the
prioritized queueing for buffer slots.

The reason that SABRE performs slightly worse than RT
is that since priorities are decided primarily based on clear-
ance levels, it is still possible for a slack-deadline Public
transaction to restart a tight-deadline Secret transaction, re-
sulting in the Secret transaction missing its deadline. This
effect is highlighted in Figure 6b, which shows the Zevel-
wise kill percentages - with SABRE, Secret transactions
(dashed lines) form a much larger proportion of the killed

transactions. This is further quantified in Figure 6c, which
captures the ClassFairness metric, and clearly demonstrates
that SABRE is extremely unfair to Secret transactions, es-
pecially under heavy loads.

It may appear surprising in Figures 6b and 6c that RT
and CONY although not security-cognizant, are still some-
what unfair to Secret transactions. This behavior is not due
to the buffer policies themselves, but is a side-effect of the
rest of the system being secure and therefore discriminating
against Secret transactions, resulting in more Public page
requests being received at the buffer pool.

In Figure 6d, we show the bujfer hit ratio, that is the av-
erage probability of finding a requested page in the visible
portion of the buffer pool, for the various protocols on a
level-wise basis. The first point to note is that in all the pro-
tocols there is a crossover between the Secret and Public hit

473

ratios - at low loads Secret is better whereas at high loads
Public is better. This is explained as follows: In CONV and
in RT, the low load hit ratios should have been similar since
they are not security cognizant, but again there is a side-
effect arising out of the rest of the system being secure -
more Secret transactions are restarted for concurrency con-
trol reasons than Public transactions and therefore there is
more restart locality derived for Secret transactions. Under
heavy loads, however, this effect is overtaken by the Pub-
lic transactions hogging most of the buffer slots and thereby
making the Secret transactions hot spot mostly absent from
the buffer pool.

In SABRH, the Secret transactions do better at low loads,
not only because of the restart locality mentioned above,
but also due to two additional factors: (1) the whole buffer
pool is visible to Secret transactions; and (2) the “slot steal-
ing” feature. Under heavy loads, however, even more of
the buffer slots are occupied by Public transactions as com-
pared to CONV and RT since Secret transactions cannot re-
place the Active pages of Public transactions, and therefore
the Secret hit ratio is markedly worse. Another interesting
observation with respect to SABRE is that although its de-
sign prevented the use of much of the Dormant page locality
(as described in Section 5), yet its hit ratio is not materially
worse than that of CONV or RT. This is because, except un-
der very light loads, most of the pages in the buffer pool will
be Active since they represent the hot spot and therefore Ac-
tive page locality predominates.

Finally, Figure 6e shows the bufSer utilization, that is,
the overall average number of Pinned buffer slots, and it
is clear here that CONV utilizes the buffers more than RT
and SABRE. However, this does not result in better real-
time performance because CONV is deadline-indifferent
whereas RT and SABRE selectively give the Pinned slots
to tight-deadline transactions.

In summary, the results of this experiment highlight the
benefits of using deadline-cognizant buffer management
policies. Further, it shows that SABRE provides security
with only a modest drop in real-time performance. The non-
interference requirement, however, causes SABREl to be
rather unfair to high clearance transactions, especially un-
der heavy loads.

7.2 Experiment 2: Class Fairness

In this experiment, we evaluate whether an orange-
secure version of the FSABRE protocol could address
SABRE’s fairness shortcoming. The results of this ex-
periment are shown in Figures 7a-c which capture the
overall KillPercent, the level-wise KillPercent, and the
Class Fairness, respectively. In these figures we see that
FSABRE achieves close to ideal fairness. Further, at low
loads, FSABRE causes only a small increase of the overall
kill percentage with respect to SABRE, whereas at heavy
loads, FSABRH actually does slightly better. At low loads,
due to the inherent lag involved in the feedback process,
FSABRE tends to be over-conservative, unnecessarily pre-
venting Public transactions from entering, and thereby in-

creases the Public kill percentage. In contrast, under heavy
loads, being conservative does less harm than being too
liberal (since the system is essentially in a “thrashing” re-
gion), and therefore FSABRE’s performance shows some
improvement over that of SABRE.

In summary, the results of this experiment show that
FSABRE achieves close to ideal fairness without really
affecting the overall real-time performance. That is, the
FSABRE policy evenly redistributes the “pain” but does
not really increase its magnitude.

7.3 Other Experiments

Our other experiments, described in [5], explored the sen-
sitivity of the above results to various workload and sys-
tem parameters including the number of security levels, the
buffer pool size, the locality factors, etc. The relative per-
formance behaviors of the policies in these other experi-
ments remained qualitatively similar to those seen here, but
it should be noted that for applications with large number of
security levels, the priority assignment in SABRE becomes
much more level-based than deadline-based, resulting in
an increased degradation of its real-time performance, as
should be expected.

8 Conclusions

In this paper, we have quantitatively investigated, for the
first time, the performance implications of the choice of
buffer manager in both full-secure and orange-secure firm-
deadline RTDBS. This is a followup to our earlier work on
secure real-time concurrency control [6].

Making real-time buffer managers secure is compli-
cated due to the multiplicity of covert-channel mediums and
buffer components, and due to the inherent difficulties of si-
multaneously achieving the goals of full security, minimal
KillPercent and complete ClassFairness. Our new SABRE
policy addresses these challenges by (1) making buffer pool
visibility a function of the clearance level, (2) not preallo-
eating buffer slots to security levels, (3) sacrificing Dormant
page locality to permit unrestricted slot stealing by higher
clearance transactions, (4) supporting pin-preemption, (5)
implementing a novel Comb slot selection policy, and (6)
incorporating optimizations such as Proxy Disk Service.

Using a detailed simulation model of a firm-deadline RT-
DBS, the real-time performance of SABLE was evaluated
against the CONV and RT unsecure conventional and real-
time buffer managers. Our experiments showed that (a)
it is essential to include deadline-cognizance in the buffer
manager for good real-time performance, thereby support-
ing the conclusions of [111, (b) SABRE efficiently provides
security in that its real-time performance is not significantly
worse than that of RT, especially for applications that have
only a small number of security levels, and (c) SABRE’s
sacrifice of Dormant page locality has little impact since
Active page locality is predominant.

SABRE’s main drawback of bias against higher clear-
ance transactions was addressed by the FSABRE policy,

474

ioor
a: Overall KillPercent

= 8 60

$
$ 40

20

0
20 40 60 80 100

Arrival Rate

c: ClassFairness

IDEAL
.---=-eg--*------_,

20 40 60 80 100
Arrival Rate

b: Level-wise KillPercent
100

1 P-
- -0

80

I I A ..

20 . ’ /. : :

od= P .a .

0. :

20 40 60 60 100
Arrival Rate

LEGEND

Line type Symbols

- - Secret 0 SABRE
Public x FSABRE

Figure 7: Class Fairness

which implemented a simple feedback-based transaction
admission control mechanism. The bandwidth of the covert
channel introduced by this mechanism was bounded by ap-
propriately setting the feedback period. An orange-secure
version (bandwidth less than 1 bit per second) of FSABRE!
was found to provide close to ideal fairness at little cost to
the overall real-time performance.

References

[l] R. Abbott and H. Garcia-Molina, “Scheduling Real-time
Transactions: A Performance Evaluation”, ACM Trans. on
Database Systems, September 1992.

[2] H. Chou and D. Dewitt, “An Evaluation of Buffer Manage-
ment Strategies for Relational Database Systems”, Proc. of
11th VLDB Co@, August 1985.

[3] Department of Defense Computer Security Center, “Depart-
ment of Defense Trusted Computer Systems Evaluation Cri-
teria”, DOD 5200.28-STD, December 1985.

[4] W. Effelsberg and T. Haerder, “Principles of Database Buffer
Management”, ACM Trans. on Database Systems, Decem-
ber 1984.

[5] B. George, “Secure Real-Time Transaction Processing”,
Forthcoming Ph.D. Thesis, SERC, Indian Institute of Sci-
ence, 1998.

[6] B. George and J. Haritsa, “Secure Processing in Real-Time
Database Systems”, Proc. of ACM SIGMOD Co@, May
1997.

[7] J. Goguen and J. Meseguer, “Security Policy and Security
Models”, Proc. of IEEE Symp. on Security and Privacy,
1982.

[8] J. Gray and A. Reuter, Transaction Processing: Concepts
and Techniques, Morgan-Kaufmann, 1993.

[9] J. Haritsa, M. Carey and M. Livny, “Data Access Scheduling
in Firm Real-Time Database Systems”, Real-Time Systems
Journal, 4(3), 1992.

[lo] J. Huang and J. Stankovic, “Buffer Management in Real-
Time Databases”, Tech. Rep. COINS 90-65, Univ. of Mas-
sachusetts, July 1990.

[1 l] W. Kim and J. Srivastava, “Buffer Management and Disk
Scheduling for Real-Time Relational Database Systems”,
Proc. of 3rd COMAD Con&, December 199 1.

[12] W. Lampson, “A Note on the Confinement Problem”,
Comm. of ACM, October 1973.

[131 L. LaPadula and D. Bell, “Secure computer systems: Unified
Exposition and Multics Interpretation”, The Mitre Corp.,
March 1976.

[14] C. Liu and J. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” Journal
of the ACM, January 1973.

[15] L. Sha, R. Rajkumar and J. Lehoczky, “Priority inheri-
tance protocols: An approach to real-time synchronization”,
Tech. Rep. CMU-CS-87-181, Carnegie Mellon University,
1987.

[16] A. Warner, Q. Li, T. Keefe and S. Pal, “The Impact of Mul-
tilevel Security on Database Buffer Management”, Proc. of
European Symp. on Research in Computer Security, 1996.

475

