
Design, Implementation, and Performance of the LHAM
Log-Structured History Data Access Method

Peter Muth Patrick O’Neil Achim Pick, Gerhard Weikum,
Dept. of Comp. SC., Univ. of the Saarland Dept. of Math. and Comp. SC., Dept. of Comp. SC., Univ. of the Saarland

D-6604 1 Saarbruecken, Germany, UMASS-Boston, Boston MA, 02125-3393 D-6604 1 Saarbruecken, Germany,
muth@cs.uni-sb.de poneil@cs.umb.edu {pick, weikum}@cs.uni-sb.de

Abstract

Numerous applications such as stock market or medical informa-
tion systems require that both historical and current data be logical-
ly integrated into a temporal database. The underlying access
method must support different forms of “time-travel” queries, the
migration of old record versions onto inexpensive archive media,
and high insert and update rates. This paper introduces a new ac-
cess method for transaction-time temporal data, called the Log-
structured History Data Access Method (LHAM) that meets these
demands. The basic principle of LHAM is to partition the data into
successive components based on the timestamps of the record ver-
sions. Components are assigned to different levels of a storage hier-
archy, and incoming data is continuously migrated through the
hierarchy. The paper discusses the LHAM concepts, including
concurrency control and recovery, our full-fledged LHAM imple-
mentation, and experimental performance results based on this im-
plementation. A detailed comparison with the TSB-tree, both ana-
lytically and based on experiments with real implementations,
shows that LHAM is highly superior in terms of insert performance
while query performance is in almost all cases at least as good as for
the TSB-tree; in many cases it is much better,

I Introduction
For many applications maintaining only current information is not
sufficient; rather, historical data must be kept to answer all relevant
queries. Such applications include, for example, stock market in-
formation systems, risk assessment in banking, medical informa-
tion systems, and scientific database applications. Temporal data-
base systems [Sno90, Tan931 aim to support this kind of applica-
tions. In this paper, we consider a special type of temporal data-
bases, namely, transnction-time databases, where multiple ver-
sions of a record are kept. Updating a record is implemented by in-
serting a new record version. Each record version is timestamped
with the commit-time of the transaction that updated the record.
The timestamp is considered to be the start time for a record ver-
sion. The end time is implicitly given by the start time of the next
version of the same record, if one exists. Records are never physi-
cally deleted; a logical deletion is implemented by creating a spe-
cial record version that marks the end of the record’s lifetime.

Indexing temporal databases is an important and challenging
problem, mainly because of the huge amount of data to be indexed

Permission to copy withoutftie all or part of this material is
grantedprovided that the copies are not made or distributed
,for direct commercial advantage, the VLDB copyright notice
and the title qf the publication and its date appeal; and notice
is given that copying is by permission qf the Very Large Data
Base Endowment. To copy otherwise, or to republish, re-
quires a,fee and/or special permission,from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

and the various “time-travel” types of queries that have to be sup-
ported. An equally important requirement is an access method’s
ability to sustain high insert/update rates. This requirement arises,
for example, in data warehouses, in scientific databases that are fed
by automatic instruments, or in workflow management systems
for keeping workflow histories. Also, many banking and stock
market applications exhibit such characteristics. For example, con-
sider the management of stock portfolios in a large bank. For each
portfolio, all buy and sell orders must be tracked. Based on this
data, in addition to querying the current contents of a portfolio,
queries asking for the history of a specific portfolio in a given time
interval as well as queries asking for statistical data over certain
portfolios can be supported. The results of these queries are impor-
tant for future decisions on buying or selling stocks.

To keep the further explanation simple, assume that placing a sell
or buy order is tracked by inserting a record version in a portfolio-
history table. Assuming 1000 orders per second, we have 1000 in-
serts into the history table per second. Further assume, we want to
index the history table by using a B+-tree on the customer ID, and
we want to keep the history of the last 7 days online. Given 24 busi-
ness hours for worldwide orders per day and records of 48 Bytes,
we have about 28 GB of index data. This translates into 3.5 million
blocks, 8KB each, at the leaf level of the B+-tree. Assuming, for
simplicity, that orders are uniformly distributed among portfolios,
repeated references to the same block are on average 3,500 seconds
= 1 hour apart. According to the five-minute rule [GPS7], this does
not justify main memory residence. As a consequence, it is highly
unlikely that an insert operation finds the leaf node that it accesses
in the buffer. Instead, inserting a new record causes two I/OS on the
leaf level of the B+-tree, one for writing some leaf node back to the
database in order to free buffer space, and one for bringing the leaf
node where the new record version is to be inserted into the buffer.
Given 1000 inserts per second, we have 2000 I/OS per second, dis-
regarding splits and the higher levels of the tree. Optimistically as-
suming that a single disk can serve 100 I/OS per second, we need 20
disks to sustain the insert rate of the application, but the data fits on
two disks.

The above arguments hold for all index structures that place in-
coming data immediately at a final position on disk. The log-struc-
tured history access method LHAM, introduced in this paper, ad-
dresses this problem by initially storing all incoming data in a main
memory component. When the main memory component becomes
full, the data is merged with data already on disk and migrated to
disk in a bulk fashion, similar to the log-structured file system ap-
proach [RO92] - hence the name of our method. At the same time, a
new index structure on disk, containing both the new and the old
records, is created. All I/O operations use fast multi-block I/O. In
general, components may exist on different levels of a storage hier-
archy. If a component becomes full, data is migrated to the compo-
nent on the next lower level. This basic approach has been adopted
from the LSM-tree method [OCG096], a conventional (i.e., non-
temporal) single-key access method. An analysis of LHAM as well
as experimental results gained from our implementation show that
LHAM saves a substantial amount of I/OS on inserts and updates.

452

For the above example, an LHAM structure with a main memory
component of 144MB and two disk components with a total size of
30GB is sufficient. This translates into two disks for LHAM, in
contrast to 20 disks if a B+-tree-like access method were used.

The basic idea of an earlier form of LHAM has been sketched in
[OW93]. The current paper presents the comprehensive design of a
full-fledged access method and its implementation. The contribu-
tion of this paper is threefold:

. We give a detailed presentation of the LHAM concepts, in-
cluding a discussion of synchronization issues between con-
current migration processes, called rolling merges, and
transactional concurrency control and recovery. The
performance of inserts in terms of required block accesses is
mathematically analyzed.

. We present a full-fledged LHAM implementation for
shared-memory multiprocessors using the Solaris thread li-
brary. The entire prototype comprises 24,000 lines of C code
(including monitoring tools) and has been stress-tested over
several months.

. To validate the analytic results on insert performance and to
evaluate the query performance of LHAM, we have mea-
sured LHAM’s performance against the TSB-tree, which is
among the currently best known access methods for tempo-
ral data. We present detailed experimental results in terms of
required block accesses and throughput for different insert/
update loads, different query types, and different LHAM
configurations. Our results provide valuable insight into the
typical performance of both access structures for real life ap-
plications, as opposed to asymptotic worst-case efficiency.

The paper is organized as follows. Section 2 discusses related
work. Section 3 presents the principles of LHAM in terms of time
partitioning the data, data migration, and query processing. In Sec-
tion 4, we discuss the implementation of LHAM, its internal archi-
tecture, rolling merge processes for data migration, and the syn-
chronization of these processes. Concurrency control and recovery
are discussed in Section 5. Section 6 contains the results of our ex-
perimental performance evaluation. We compare the experimental
results for our implementations of LHAM and the TSB-tree in de-
tail. Section 7 concludes the paper. Appendix A briefly introduces
the TSB-tree.

2 Related Work

As for “time-travel” queries, LHAM supports exact match queries
as well as range queries on key, time, and the combination of key
and time. Temporal index structures with this scope include the
TSB-tree [LS89, LS90], the MVBT [Bec96], the Two-Level Time
Index [EWK93], the R-tree [Gut84], and the Segment-
R-tree[Kol93], a variant of the R-tree specifically suited for tempo-
ral databases. Temporal index structures like the Snapshot Index
[TK95], the Time Index [EWK93, EKW91] and the TP-Index
[SOL941 aim only at supporting specific query types efficiently.
Comparing them with other index structures is only meaningful
based on a specific kind of application. Among the index structures
with a general aim, the TSB-tree has demonstrated very good query
performance [ST94]. Therefore, we have chosen the TSB-tree as
the yardstick against which LHAM is compared. In terms of
asymptotic worst-case query performance, the TSB-tree guaran-
tees logarithmic efficiency for all query types whereas LHAM is
susceptible to degradation under specifically constructed “adver-
sary scenarios”. However, such degradation is extremely unlikely
under realistic scenarios as our systematic performance study
shows. For almost all query types, the realistic performance of
LHAM is at least as good as for the TSB-tree, for many cases even

substantially better because of better data clustering and potential
for multi-block I/O.

Most proposals for index structures on temporal data are not spe-
cifically targeted at a good insert performance, exceptions being
[Jag971 and [BSW97]. [Jag971 discusses an approach for efficient
insertion of non-temporal, single-dimensional data into B+-trees.
Similar to LHAM, a continuous reorganization of data is proposed.
The approach can be characterized as a generalization of an N-way
merge sort. Like in LHAM, incoming data is stored in a main
memory buffer first. When this buffer gets full, it is written to disk,
organized as a B+-tree (a hash-based scheme is also discussed). Af-
ter K such trees are created, they are merged by a K-way merge into
a new B+-tree. N-l levels, each consisting of K B+-trees, are con-
sidered. Each K-way merge propagates the data to the next level.
The final level N contains the target B+-tree, denoted root B+-tree.
After K B+-trees have been accumulated at level N- 1, these K trees
together with the root tree are merged in a K+ 1 -way merge into a
new root tree. This approach supports the efficient insertion of data,
but penalizes queries significantly, as a query has too look up all
N*K component trees.

In terms of this approach, LHAM can be considered to perform a
2-way merge sort whenever data is migrated to the next of Ii compo-
nents in the LHAM storage hierarchy. At each level of this hierar-
chy, only a single B+-tree exists (unless a merge is currently per-
formed, which creates temporary trees). In contrast to [Jag97],
LHAM components implement a partitioning of the time dimen-
sion. In [Jag97], all N*K B+-trees may have overlapping key
ranges, whereas components in LHAM cover disjoint areas in key-
time space (with a single exception to make archiving more effi-
cient, an issue which is not addressed at all in [Jag97]). Depending
on its time range, a query in LHAM needs to access only a subset of
the n LHAM components, so that query execution in LHAM is
more efficient.

[BSW97] presents an approach for bulk-loading multi-dimen-
sional index structures, e.g., R-trees. Their approach can be consid-
ered as the “opposite” of an N-way merge sort. The idea is to create
unsorted sequences of records, where each sequence covers a sub-
set of the dataspace that is disjoint to the subsets covered by the oth-
er sequences. A number of sets of record sequences form a bal-
anced tree, called the h&r tree, with each set of sequences detin-
ing a level of the tree. Incoming records are migrated through this
tree until they reach the leaf level, which is structurally equivalent
to the leaf level of the target index structure. Similarly to LHAM
and [Jag97], the migration of records can be implemented very effi-
ciently. After all data has been migrated to the leaf level of the buff-
er tree, its higher levels are discarded, and a new buffer tree for
building the next higher index level of the target index structure is
created. This process is repeated until the root of the target index
structure is built. As the approach of [BSW97] is intended for bulk
loading only, it disregards query performance until the target index
structure is completely built. The problem is to search the potential-
ly large unordered sequences of records at the index levels of the
buffer tree. While a query can easily navigate through the buffer
tree, the sequential search inside a record sequence is expensive.
LHAM provides a substantially better query performance.

3 Principles of LHAM

LHAM is an index structure for transaction-time databases. It in-
dexes record versions in two dimensions; one dimension is given
by the conventional record key, the other by the timestamp of the
record version. A record version gets its timestamp at the time of
insertion as the transaction time of the inserting transaction. The
timestamp cannot be changed afterwards. Updating a record is cast
into inserting a new version. Deleting a record is performed by in-
serting a new record version indicating the deletion. As a conse-

453

I \

/\ /\

a, t40 . . . b,t12 ... e, hI e, t48 . . . f, t32

I

Fig. I : LHAM Component Organization And B+-tree Inside Component
quence, all insert, update, and delete operations are performed by
inserting record versions.

Unlike virtually all previously proposed index structures,
LHAM aims to support extremely high insert rates that lead to a
large number of newly created record versions per time unit. Fur-
thermore, while many other temporal index structures emphasize
the efftciency of exact-match queries and range queries for either
key or time, LHAM aims to support exact-match queries as well as
all types of range queries on key, on time, and on the combination of
both. Note that there is actually a tradeoff in the performance of
time range queries versus key range queries, as the first query type
benefits from clustering by time whereas the latter benefits from
clustering by key. LHAM strives for a flexible compromise with
respect to this tradeoff.

3.1 Partitioning the Time Dimension

The basic idea of LHAM is to divide the entire time domain into
successive intervals and to assign each interval to a separate stor-
age coinponent. The series of components, denoted as Co, Cl,
C,, constitutes a partitioning of the history data based on the time-
stamp attribute of the record versions. A component Ci contains all
record versions with timestamps that fall between a low-time
boundary, /oWi, and a high-time boundary, highi, where highi is
more recent than lowi. For successive components Ci, and Ci+,,
components with lower subscripts contain more recent data, so
low; is equal to highi+/. Component Co is stored in main memory
and contains the most recent record versions from the current mo-
ment (which we take to be highn), back to time 10~0. Components
Cl through Ck reside on disk, and the rest of the components Ck+/,
. . . . C,, are stable archive components that can be stored on write-
once or slow media (e.g., optical disks). Typically, the number k of
disk components will be relatively small (between I and 3), where-
as the number n-k of archive components may be large, but archive
components will probably consist of a month worth of record
change archives.

The overall organization of LHAM is depicted in the left part of
Fig. 1. In the example, the history of two records is shown. The re-
cord with key a has been inserted at time t2, and was updated at
times tl0 and 40. Its original version as of time t2 has migrated to
archive component C3, the other record versions are currently
stored in disk component C2. The record with key p has been in-
serted at time t203, which now falls into the time interval covered by
component Cl. Record p has a recent update at time tqo9, the corre-
sponding record version is still in main memory component Co.

Inside each component, record versions are organized by a con-
ventional index structure for query efficiency. In principle, every
index structure that supports the required query types and efftcient-
ly allows the insertion of record versions in batches can be used.
Different index structures can be used for different components.
For the sake of simplicity, we have chosen B+-trees for all compo-
nents. An example B+-tree is shown in the right part of Fig. I, con-
taining the record versions of record a at times tlo and tqg . The key

of the B+-tree is formed by concatenating the conventional record
key and the timestamp of a record version. Therefore, the record
versions are ordered according to their conventional key first, fol-
lowed by their timestamp. Using this ordering is a drawback for
time range queries, as record versions are clustered primarily by
key. However, this drawback is typically compensated by parti-
tioning data by time according to the component time intervals. We
will consider other index structures inside of LHAM components
in the future. A key requirement is their ability to support bulk load-
ing of data.

The purpose of the more recent disk components, and especially
the main memory component, is to support high insert rates. Insert-
ing a new record version into the main memory component does
not take any I/O (other than logging for recovery purposes, which is
necessary anyway, see Section 5 for details). I/O is needed when a
component becomes full. In this case, data is migrated to the next
component. Providing a highly efftcient migration by moving data
in batches is the key to LHAM’s good performance.

In the “standard” variant of LHAM, there is no redundancy
among components. A record version is stored in the component
whose low and high time boundaries include the version’s time-
stamp. However, some versions are valid beyond the high time
boundary of the component, namely, when the next more recent
version for the same record key is created after the component’s
high time boundary. Especially for long-lived versions, it can be
beneficial for query performance to keep such a version redundant-
ly in more than one component. Redundancy is especially attrac-
tive for the usually much slower archive components. LHAM sup-
ports both redundancy-free and redundant partitioning.

3.2 Inserts and Migration of Data

Newly created record versions are always inserted into the main
memory component Co, consisting of a 2-3- tree or similar memory
based key-lookup structure. They eventually migrate through disk
components Cl . . . ck, consisting of B+-tree-like structures, and
eventually arrive on archive media. There is no migration among
archive components, as these are often write-once or too slow for
data reorganizations. However, record versions reaching an age
where they are no longer of interest may occasionally be purged
from the on-line archive storage. This can be achieved easily with
LHAM, because of the time boundaries between components, and
the natural placement of components one after another on archive
media such as optical disk platters.

The data migration from more recent to older components is ac-
complished by a process denoted rolling merge, following the idea
of the LSM-tree [OCG096], a log-structured access method for
conventional, one-dimensional key access. For each pair of succes-
sive components Ci and Ci+ 1, i< k, a rolling merge process, denoted
RMih+l, is invoked each time component Ci becomes full. Its in-
vocation frequency depends on how often the amount of data in Ci
reaches a maximum triggering size. When the rolling merge pro-
cess starts, a migration boundary mi is chosen, that will become the

454

new time boundary between C; and Ci+, after the rolling merge is
finished. The appropriate value for m;, relative to lowi and hi&,
depends on the growth rate of Ci and, thus, (by recursion) ultimate-
ly on the insert rate of the database. The rolling merge process
RI&i+ 1 scans the leaf nodes of the tree in component c in order of
key and timestamp, and migrates all record versions of Ci that have
a timestamp smaller than mi into component Ci+ 1, building a new
tree there. It terminates when Ci is completely scanned, and at this
point, lowi and hi&+ 1 are both set to mi.

The rolling merge from the oldest disk component Ck does not
really merge data into component Ck+ 1. Rather, this migration pro-
cess builds up a complete, new archive component. This new ar-
chive component is then called Ck+l, and the previous archive
components Ck+, through C, are renumbered into Ck+2 through
C n+~. As access to archive components is typically very slow, we
choose to use the partitioning scheme with redundancy when de-
ciding which versions are moved into the component. So an archive
component contains all record versions whose validity interval
overlaps with the component’s time interval given by its low and
high time boundaries. Note that in this case a new archive compo-
nent C,+/ may contain versions that already exist in Ck+2 and pos-
sibly older archive components, if these versions are still valid after
the low-time boundary lowk+I of the new archive component
(which is equal to the old lowk value). This scheme makes the ar-
chive components “self-contained” in that all queries with time-
stamps between the component’s low and high boundary can be
performed solely on a single component. Also, when an archive
component is taken off-line, the redundancy ensures that all ver-
sions that remain valid beyond the high time boundary of the off-
line component are still available in the appropriate on-line compo-
nent(s). As archive components are built by the rolling merge from
component Ck to component Ck+, , Ck has to store all redundant re-
cord versions needed for creating the next archive component. Re-
dundant record versions in Ck need not be accessed by mk-l,k, as
redundant versions are only created and accessed by mk,k+, when
a new archive component is built. Hence, only for mk,k+/ addi-
tional 110 is required to read and write the redundant versions in Ck.
In the analysis of insert costs in the next section, we will see that the
overhead of redundancy in terms of additional space and I/O is typ-
ically low.

Rolling merges avoid random disk accesses that would arise
with moving record versions one-at-a-time. Rather, to achieve
good I/O efficiency in maintaining the internal component index
structure (i.e., B+-trees in our case), a rolling merge reads both the
source and the destination component sequentially in large multi-
block I/OS, and the data from both components is merged to build a
new index structure in the destination component again written se-
quentially in large multi-block I/OS. With multi-block I/O, instead
of reading and writing single blocks, multiple contiguous blocks on
disk are read and written in a single I/O operation, which is signifi-
cantly faster than performing single random I/OS (see Section 6).
The total number of block accesses required for a merge process is
the same as for scanning both components two times. Contrast this
with the much higher number of much slower random disk I/OS for
migrating record versions one-at-a-time. In addition, our algorithm
allows us to keep the data perfectly clustered all the time, with al-
most 100% node utilization, which in turn benefits range queries
and index scans.

3.3 Analysis of Insert Costs

We derive a formula for the cost of inserting new record versions
into LHAM in terms of the number of block accesses required. The
formula implies that for minimizing the block accesses required,
the space-capacity ratios should be the same for all pairs of succes-
sive components. This leads to a geometric progression between

the smallest component Co and the largest disk component Ck. All
archive components are assumed to have the capacity of Ck, which
allows the migration of all record versions stored in Ck to an archive
component in a single rolling merge. When record versions are
stored redundantly (see Section 3.1), the capacity of Ck must be
larger than defined by the geometric progression. In the worst case,
one version of each record stored in LHAM has to be kept in Ck.
However, with an average of s record versions per record residing
in all non-archive components together, the space overhead for
storing one redundant version per record in Ck is I/s times the total
size of the non-archive components. As a typical temporal database
is expected to store more than a few versions per record, this is a
small space overhead.

We derive the number of block accesses required to insert a given
amount of data into LHAM by counting the block accesses needed
to migrate the data through the components of LHAM. This ap-
proach is similar to the one presented for the LSM-tree [OCG096].
However, in [OCG096], the authors idealistically assumed a per-
fect steady-state balance in that the insertion rate in bytes per sec-
ond matches the migration rate between all LSM components at
any time. As a consequence, the actual tilling degree of each com-
ponent is constant and close to 100 percent all the time.

This assumption is unrealistic in practice because of fluctuations
in the rate of incoming data. Also it is hard to keep the migration
rate of the rolling merges truly constant, as the disk(s) typically
have to serve additional, often bursty load like concurrent queries.
So in a realistic environment, a rolling merge cannot be assumed to
start again immediately after it finishes its previous invocation.
Instead, rolling merges should be considered as reorganization
events with a varying frequency of occurrence. This leads to actual
component sizes (i.e., tilling degrees) that vary over time. Immedi-
ately after a rolling merge has migrated data from a component Ci
to component Ci+/, Ci will be almost empty. After sufftciently
many rolling merges from Ci-l to C;, component C; will then be-
come (close to) full again before the next rolling merge from Ci to
Ci+, is initiated. So, if we merely assume that the time points of ini-
tiating the filling rolling merges from Ci-/ to Ci are uniformly dis-
tributed over time, then Ci is on average half full. Thus, a “random-
ly arriving” rolling merge from Cf./ to Ci needs to merge the C;.]
data with a 50 percent full Ci component on average. This consider-
ation is fully confirmed by our experimental findings in Section 6.

As all data is inserted into main memory component Co first, and
as all rolling merges access data in terms of complete disk blocks
instead of single record versions, the total number of block ac-
cesses depends only on the number of blocks required to store the
data, not on the number of records stored in the database. As usual,
we disregard the non-leaf levels of the B+-trees here. Assume all
record versions tit on bloc&,, leaf nodes, including space-frag-
mentation overhead. We assume a LHAM structure with k compo-
nents on disk, a component size ratio of ri between components Ci-/
and Ci, rn being the size of component Co in blocks. Let /i denote
the number of rolling merges taking place between components
Ci-/ and C; until all data is inserted and finally migrated to archive
component Ck+ 1, and let I/s be the space overhead for redundancy
in component Ck with respect to the total size of all non archive
components Cn .., Ck. We obtain for the total number of accessed
blocks hloc&cess :

b~ockrw~,~ = I&” + ‘.“Y,) + 4(2rol., + ror,rz) + . . .

_-
i=O ,:=iJ I=0 ,=Oi=O

Note that for emptying component Co, no I/O is required, which
leads to the term (ro + r-or/) rather than (2ro + roq). For the final
migration to archive media, the data is only read from component
Ck and written to the archive component. The last term represents

455

the block accesses needed to read and write the redundant record
versions in Ck. As discussed in section 3.2, redundant records of Ck
are not accessed by RMk.1.k. The number /i of rolling merges taking
place between components Ci-/ and Ci is given by:

hlock,o,
Ii = 7

Ilri
j=O

By substituting (2) into (I), we obtain:

hlock,,.,,ws = hlock,,,(2k + I + i ri) + I,+ I($ i fI ri) (3)
i=l j=ot=o

In order to tune the component capacity ratios ri, we adopt the
procedure of [OCG096]. For the sake of simplicity, we assume the
redundancy overhead to be constant instead of depending on the
component size ratios, and assume that the main memory available
for component Co and the size of the last disk component Ck are al-
ready fixed. [OCG096] shows that under these assumptions, the
number of blocks accessed is minimized if all component size ra-
tios p/ are equal to a constant value r. Substituting all ri of equation
(3) by r, we obtain:

h~~ck,c,~,,,, = hlock,,,(k(2+r)+l) + lk+,($~ri+,) (4)
j=o

For a component size ratio Y of at least two, the number of block
accesses is bounded by:

hlock,,.C,,,, s hlock,&k (2 + r) + I + ;) (5)

As an example, consider again the stock portfolio scenario pre-
sented in the introduction. We assume the insertion of 604800,000
record versions of 48 Bytes each into LHAM, representing a
constant insertion rate of 1000 record versions per second over a 7
day period, and a total size of 28GB of data. Assume that we use
two disk components. Main memory component Co has a size of
144MB, Cl has 2GB and C2 has 28GB. This translates into a com-
ponent size ratio of 14. Assuming the placement of two orders for
each portfolio per day on average, we obtain an overhead ratio for

storing redundant data in component Ck of A. As we have about
3 I GB of data online, this leads to an additional space requirement
of 2.2GB for redundant data on disk. With about 3500,000 blocks
of 8KB size to insert, according to equation (S), we need less than
I 15,900,OOO block accesses for data migration, including
I ,OOO,OOO block accesses for redundant data, which is obviously
negligible. Note that these numbers represent the number of block
accesses needed to insert record versions into an already fully pop-
ulated database, i.e., containing the data of the past days. Inserts
into an empty database would cause even less block accesses. With
a TSB-tree, on the other hand, we estimate I ,209,600,000 block ac-
cesses for inserting 604,800,OOO record versions, 2 block accesses
per insert. So the cost of the TSB-tree is more than ten times higher
than the cost of LHAM, not even considering the additional gain
from LHAM’s multi-block I/O.

3.4 Query Processing

In general, query processing may require searching multiple com-
ponents. LHAM maintains a (small) global directory of the low-
time and high-time boundaries of all components, and keeps track
of the number n of the last archive component. The directory is
used to determine the relevant components that must be searched
for queries.

For “time-travel” queries with a specified timepoint or time
range, LHAM needs to retrieve all record versions that are valid at
this point or within this time range, respectively. A record version
resides in the component whose time-range covers its creation
timestamp, but the version may also be valid in more recent compo-

nents. Thus, LHAM must possibly search components later in time
than the query specifies. Because of the size progression of compo-
nents and their placement in the storage hierarchy, the search starts
with the most recent component that could possibly hold a query
match and proceeds along the older components until no more
matches are possible (in a “time-travel” query for a specified key
value) or all components have been searched (if none of the compo-
nents uses redundancy) . For example, with the data of Fig. I, the
query “Select . . . Where KEY = ‘a’ As Of ~03” has to search the
disk components Cl and C2. Similar considerations hold for range
queries. The redundant partitioning option (see Section 3.1) allows
us to bound the set of components that must be searched. In the con-
crete LHAM configuration considered here with the redundancy
option used for the last disk component Ck, queries with a time
range not overlapping the time interval of archive components
need not access archive components.

Having to search multiple components may appear as a heavy
penalty from a superficial viewpoint. In practice, however, we
would have only a small number of non-archive components, say
three or four, one of which is the main memory component. Our ex-
periments show that the absolute query performance of LHAM is
very competitive even when multiple components need to be
searched (see Section 6.1.2).

For searching within a component, the component’s internal in-
dex structure is used. When using a B+-tree on the concatenation of
record key and version timestamp, exact-match queries can be an-
swered with logarithmic performance. Time range queries for a
given key are also efficiently supported, as all versions of a record
are clustered by time. On the other hand, key-range queries with a
given timepoint or a small time range are penalized with the chosen
B+-tree organization. However, even this query type does not per-
form too badly, since our approach of building the B+-trees only by
rolling merges provides relatively good clustering by key also. If
there are only a few record versions per key, we may still be able to
process the query with a few block accesses or even less than a
single block access per key. In addition, the clustering again allows
us to use multi-block I/O, which is not possible in most other index-
ing methods for temporal data as they do not cluster the data ac-
cordingly.

4 Implementation of LHAM

4.1 System Architecture
LHAM has been fully implemented in C on SUN Solaris. As the
rolling merges between different components can be executed in
parallel, but need careful synchronization to guarantee consistency
of data, we have decided to implement them as Solaris threads.
Threads communicate by shared variables and are synchronized by
semaphores of the thread library. Fig. 2 shows the overall LHAM
architecture. Each rolling merge is implemented by four threads as
indicated by the small shaded boxes in Fig. 2 and explained in detail
in the next subsection. Queries are implemented by separate
threads for each component that is accessed. An additional thread
performs the insertion of new data into component Co.

Data read from disk is cached by LHAM in two kinds of buffers.
Single-block buffers cache index nodes of Bf-trees and leaf nodes
if read by single-block I/OS, i.e., by queries. For leaf nodes of
Bf-trees accessed by rolling merges or by range queries, multi-
block buffers are read and written by multi-block I/OS. The buffer
replacement strategy for both buffers is LRU.

4.2 Inserts and Rolling Merges
Figure 3 shows two components Ci and Ci+/, with a rolling merge
currently migrating data from Ci to Ci+, During an ongoing rolling
merge, both the source and the destination component consist of

456

Query threads Rolling merge threads Insert thread

Components Cktl . . . c, Ck . Cl co

Fig. 2: LHAM Architecture
two B+-trees, an emptying tree and aJIling tree. The emptying trees
of both components are the B+-trees that exist at the time when the
rolling merge starts. The filling trees are created at that time. A sep-
arate thread is assigned to each tree, responsible for emptying or
tilling the tree. To perform the migration, a cursor is circulating in
key followed by timestamp order through the leaf level of the emp-
tying and tilling trees of components C; and Ci+/, as depicted in
Fig. 3. In each step of the rolling merge, the record versions coming
from the emptying trees are inspected. If a record version of the
emptying tree is younger than the migration time m/, it is moved to
the tilling tree of C/. The cursor of the emptying tree of C/ is ad-
vanced to the next record version. If it is decided to migrate the re-
cord version, the version is compared, based on its key and time-
stamp, with the next record version of the emptying tree of C/+/
The smallest of both record versions is moved to the filling tree of
C/+/ and the corresponding cursor is advanced.

Each time the cursor advances past the last record version of a
multi-block, the next multi-block is read from disk by performing a
multi-block I/O. The emptied multi-block is returned to free-space
management. When a multi-block buffer of a tilling tree becomes
full, a multi-block I/O is issued to write it to disk. A new multi-
block is requested from free-space management. So free blocks are
dynamically transferred within and, if possible, also among com-
ponents. The entire roiling merge process terminates when both
emptying trees become empty.

Using multi-block I/O significantly reduces operating system
overhead, as less I/O operations are issued, and also reduces disk
overhead in terms of seeks and rotational delays. Even with modem
disks using track read-ahead and caches for both reads and writes,
the benefit of multi-block I/O is significant. We have measured a
speedup of 2 for LHAM when using multi-block I/OS of four
blocks per I/O operation in our system (see Section 6).

Rolling merges have to be synchronized when they operate on
the same component in parallel. This is the most complex situation
in LHAM but very common, as emptying a component usually
takes a long time and it must be possible to migrate data into it in
parallel. Instead of creating different sets of emptying and filling
trees, two rolling merges share a tree in the jointly accessed compo-

nent. The tree chosen depends on which of the rolling merges was
first in accessing the shared component. Figure 4 shows both pos-
sible situations. In Fig. 4a, the rolling merge RMi.//i was first, in
Fig. 4b, R/&+/ was first and has later been joined by RMi-//i. The
shared trees are indicated in the figure by the larger boxes. They are
used as both filling and emptying trees.

A problem arises if the cursors of both rolling merges point to the
same record version. This means that the shared tree became
empty. In this case, the rolling merge that empties the shared tree
has to wait for the other rolling merge to till the tree with some re-
cord versions again. Assume, hY4///+/ waits for RMi.//i, On aver-
age, R/V&/+/ has to go through r records in C/+ / before it consumes
a record in Ci. R/V/-//i is much faster in producing new records for
C/, as C/-/ is smaller than Ci again by a factor of r. Hence, the as-
sumed blocking of R/V///+/ by RM/-/// rarely occurs. However, the
opposite situation, i.e. RMi-/// waits for RMi/i+/, is highly likely to
occur. It is depicted in Fig. 4b. Assume that the shared tree becomes
empty. In order not to block R/V.//i until l&V//i+/ produces new re-
cords, we allow RMi-/// to puss RMi/i+/ . The goal of passing is to
change trees between RMi.//i and RMi//+/ until we have a situation
as shown in Fig. 4a, allowing both rolling merges to continue.
Without passing, both rolling merges would continue at the same
speed, which is not acceptable for RM/-///.

Passing is implemented by logically exchanging the trees be-
tween rolling merges as shown in Fig. 5. All trees in components
C/-/ and C/+/ remain unaffected by passing. In the following, we
discuss the passing process on a conceptual level. We start in the
upper left part of Fig. 5 with the shared tree being empty, as this trig-
gers passing. We then virtually delete the empty shared tree and
consider the roles of the remaining two ones. The emptying tree
now serves as an emptying tree for both rolling merges. The same is
true for the filling tree. This is depicted in the upper right part of Fig.
5. Our goal was to let RM/-/// continue without waiting for new re-
cords from RMi//+/. This is possible now as the emptying tree of
h%I.//i is non-empty. But records moved between the emptying
and the filling tree in C/ by RM/. /// have to be accessed by RMi/+ /
for possible migration later. Hence, we have to introduce a new fill-
ing tree for RMi_///, which is used as an emptying tree by RMi/i+/

Filling trees (written to disk) Emptying trees (read from disk)

Write cursor Read cursor

Fig. 3: Rolling Merge in LHAM

457

filling i-l/i emptyingi.lji

Fig. 4a: RMi/i+l Joining RMi.l/i Fig. 4b: RMi.l/i Joining RMi/i+I

RMi/i+/ keeps its old filling tree. This is shown in the lower part of
Fig. 5. We now have exactly the same situation as shown in Fig. 4a.
RMi.//i can continue without waiting for new records from RMi/i+/

in terms of the records they store and in terms of their time bound-
aries. For them, concurrency control and recovery are not required.

4.3 Execution of Queries

All queries are first split into subqueries according to the compo-
nents that need to be accessed. Each subquery is implemented by a
separate thread (see again Fig. 2). In principle, all subqueries can be
executed in parallel. This scheme would have the best response
time, but may execute some subqueries unnecessarily. Consider for
example a query which retrieves the most recent version of a record
with a given key. It is possible that this version has already been mi-
grated to the last (disk) component. In this case, all (disk) compo-
nents have to be accessed to find the most recent version of the re-
cord. However, recent record versions will most likely be found in
recent components. So accessing only the main memory compo-
nent C, could be sufficient in many cases. Hence, for overall
throughput it is best to execute the subqueries sequentially and stop
further execution of subqueries as soon as the query result is com-
plete. The performance results presented in section 6 are obtained
based on this execution strategy.

A concurrent execution of inserts and queries may cause rolling
merges and queries to access a component at the same time. Our
approach to ensure good query performance is to prioritize disk ac-
cesses of queries over disk accesses by rolling merges. Rolling
merges can be suspended whenever they finish the processing of a
multi-block of the emptying tree of the destination component,
providing a line disk-scheduling granule.

5 Concurrency Control and Recovery
Concurrency control and recovery issues in LHAM depend on the
type of component involved. The main memory component Co, the
disk components Cl to Ck, and the archive components Ck+/ to C,,
have different requirements. For component Co, inserts have to be
made atomic and durable, and inserts have to be synchronized with
queries. For the other components, we do not have to deal with in-
sertions of new data, but only with the migration of existing data,
which makes concurrency control and recovery easier. Except for
the first archive component Ck+, , all archive components are static

5.1 Concurrency Control
We assume transactional predicate locking on key ranges and time
ranges on top of LHAM, possibly using advanced low-overhead
implementation tricks [GR93, Moh96, Lom93, KMH97]. Hence,
concurrency control inside LHAM only has to guarantee consistent
access to records (i.e., short-duration locking or “latching”). This
includes records under migration between components. We discuss
concurrency control issues for each type of component separately.
(I) Main memory component CO: Because no I/O is taking

place when accessing Co, there is little need for sophisticated
concurrency control protocols. So standard locking proto-
cols for the index structure used in Co can be employed, e.g.
tree-locking protocols when Co is organized as a tree [GR93,
Moh96, Lom93].

(2) Disk components Cl to Ck: Synchronization issues among
different rolling merges that access a common disk compo-
nent have already been discussed in Section 4.2. The only
problem left is to synchronize queries with concurrent roll-
ing merges. Interleaved executions of rolling merges and
queries are mandatory for achieving short query response
times. A query may have to access between one and three
index structures (B+-trees in our case) inside a single compo-
nent. As discussed in Section 4.2, these index structures are
emptied and filled in a given order according to the records’
keys and timestamps. This dictates an order for accessing the
index structures by queries. Queries have to look up empty-
ing trees before filling trees. Records under migration are not
deleted from emptying trees before they have been migrated
into the corresponding filling tree. This guarantees that no
records are missed by the query. Short term latches are suff%
cient to protect multi-blocks that are currently filled by a roll-
ing merge from access by queries. Queries do not have to
wait for these multi-blocks to become available, they can
safely skip them as they have already read the records stored
there while looking up the corresponding emptying tree. The
only drawback of this highly concurrent scheme is that a re-
cord may be read twice by the same query, namely in both the

c flllingi.l/i emptylngi.i,i c tillingi.l/i x emptyingi.l/i G-l

Fig. 5: RMi.l/i Passing RMi/i+l

458

emptying and the tilling tree. However, this should occur
very infrequently, and such duplicates can easily be elimi-
nated from the query result.

As discussed in Section 4.3, queries start with the most re-
cent component that could possibly hold a query match and
then continue accessing older components. During query ex-
ecution, time boundaries of components may change as re-
cords migrate to older components. We have to make sure
that no query matches are missed because of a concurrent
change of boundaries (i.e., all components containing pos-
sible matches are indeed looked up). A change of the bound-
aries of the most recent component accessed by a query may
cause this component to not intersect the query timerange
anymore. This will not affect the correctness of the query re-
suit, however. On the other hand, a change of the boundaries
of the oldest component to be looked up (as determined at
query start time) may cause more components to intersect
with the query time range. Hence, the oldest component that
the query needs to access must be determined dynamically
during query execution. Short-term latches on the corre-
sponding data structure in the global LHAM directory are
sufficient to correctly cope with these issues.

(3) Archive components Ck+l to C,,: Records are not migrated
between archive components. Instead, the archive grows by
creating a new archive component. In terms of concurrency
control, an archive component under creation is treated like a
disk component. All other archive components are static in
terms of their records as well as their time boundaries; so no
concurrency control is necessary here. Dropping an archive
component causes a change in the global LHAM directory,
again protected by a short-term latch.

5.2 Recovery

Similar to the discussion of concurrency control above, we distin-
guish between the main memory component, the disk components,
and the archive components. We restrict ourselves to crash recov-
ery (i.e., system failures); media recovery is orthogonal to LHAM.
In general, we need to log all changes to the global LHAM directo-
ry that are made whenever a component’s time boundaries are
changed after finishing a rolling merge. In addition, as we discuss
below, logging is necessary only for inserts into the main memory
component Co.

(I) Main memory component Co: All newly inserted records
are subject to conventional logging, as employed by virtual-
ly all database systems. As records in Co are never written to
disk before they are migrated to the first disk component, Co
has to be completely reconstructed during recovery. As Co
only consists of the most recent records, they will be found in
successive order on the log file, resulting in small recon-
struction times. If necessary (e.g., when CO is exceptionally
large), the reconstruction time could be further reduced by
keeping a disk-resident backup file for Co, and lazily writing
CO blocks to that file whenever the disk is idle (i.e., using a
standard “write-behind” demon). Then standard bookkeep-
ing techniques (based on LSNs and a “dirty page list”)
[GR93] can be used to truncate the log and minimize the Co
recovery time.

After a record has been migrated to component C/, it must
no longer be considered for Co recovery. This is achieved by
looking up the most recent record in component Cl before
the Co recovery is started. Only younger records have to be
considered for reconstructing Co. Even if the system crashed
while a rolling merge from Co to C’/ was performed, this ap-
proach can be used. In this case, the most recent record in the
filling tree of Cl is used to determine the oldest record that

has to be reinserted into Co during recovery. During normal
operation, the Co log file can be periodically truncated using
the same approach.

(2) Disk components C/ to Ck: No logging is necessary for mi-
grating records during a rolling merge. Only the creation of
emptying and filling trees, the passing of rolling merges as
discussed in Section 4.2, the deletion of trees, and changes to
time boundaries of components have to be logged.

In order to not lose records that were being migrated at the
time of a crash, records are not physically deleted from emp-
tying trees (i.e., their underlying blocks are not released back
to the free space management) before they have been mi-
grated into the corresponding filling tree and their newly al-
located blocks are successfully written to disk. So we use a
careful replacement technique here [GR93] that allows us to
correctly recover without having to make a migration step an
atomic event. As a consequence, reconstructing the filling
and emptying trees during warmstart may create redundant
records that will then be present in an emptying and in a fill-
ing tree. The number of such redundant records is limited by
the size of a multi-block and thus negligible, as only records
of a single multi-block per tree and rolling merge have to be
reconstructed. Hence, the duplicates can easily be deleted af-
ter the trees have been recovered. At the same time, looking
up the oldest records of the filling trees and the youngest re-
cords of the emptying trees allows reconstructing the rolling
merge cursors as shown in Fig. 3, and restarting the rolling
merges after the component structures have been reestab-
lished.

(3) Archive components Ck+l to C,,: Except for the first ar-
chive component Ck+/, archive components are not subject
to recovery. Analogously to concurrency control, the first ar-
chive component is treated like a disk component.

In summary, concurrency control and recovery in LHAM are rela-
tively straightforward and very efficient. We either use convention-
al algorithms, e.g., for logging incoming data, or very simple
schemes, e.g. for synchronizing queries and rolling merges. In par-
ticular, migrating data by rolling merges does not require migrated
data to be logged. Only changes to the LHAM directory require
additional logging. This causes negligible overhead.

6 Performance Measurements
In this section, we present experimental performance results from
our implementation of LHAM. The results are compared with the
analytical expectations for the insert costs. In addition, we compare
LHAM to an implementation of the TSB-tree (see Appendix A for a
brief review of the TSB-tree), considering both insert and query per-
formance. Note that all experimental results are obtained from
complete and fully functional implementations of both LHAM and
the TSB-tree, as opposed to simulation experiments. Therefore, we
are able to compare actual throughput numbers based on real-time
measurements.

6.1 Experimental Results

Our testbed consists of a load driver that generates synthetic data
and queries, and the actual implementations of LHAM and the
TSB-tree. All measurements were run on a Sun Enterprise Server
4000 under Solaris 2.5 I. CPU utilization was generally very low,
indicating a low CPU-overhead of LHAM. LHAM did not nearly
utilize the full capacity of a single processor of the SMP machine.
Thus, we restrict ourselves to reporting l/O and throughput figures.
Our experiments consist of two parts. In the first part, we investi-
gate the insert performance by creating and populating databases
with different parameter settings. Migrations to archive compo-

nents were not considered. As discussed in the analysis of LHAM’s throughput of LHAM was always more than 6 times higher than the
insert costs, the effect of archive components on the insert throughput of the TSB-tree. The benefits of using even larger mul-
performance in terms of redundancy is expected to be negligible. In ti-blocks were small. Additional experiments showed that this is
the second part of our experiments, we measure the performance of due to limitations in the operating system, which probably splits
queries against the databases created in the first part. larger I/OS into multiple requests.

6.1.1 Performance of Inserts

In all experiments, we have inserted 400,000 record versions. The
size of record versions was uniformly distributed between 100 By-
tes and 500 Bytes. This results in I20MB of raw data. The size of a
disk block was 8KB in all experiments, for LHAM and the TSB-
tree. We used an LHAM structure of 3 components with a capacity
ratio of 4; component capacities were 8MB for Co, 32MB for Cl,
and l28MB for C,. Both disk components resided on the same
physical disk. We used a buffer of IMB for blocks read in a multi-
block I/O and a buffer of I MB for single blocks. This results in a
total of I OMB main memory for LHAM. For fair comparison, the
TSB-tree measurements were performed with the same total
amount of main memory as a node buffer. For LHAM, we have var-
ied the number of disk blocks written per multi-block I/O, in order
to measure the impact of multi-block I/O on the insert performance.

The block accesses required by LHAM and the TSB-tree match
our analytical expectations very well. To store I20 MB of data, we
need at least 15,000 blocks of 8KB. Using formula (5) and disre-
garding the terms for the migration to archive media, we expect
LHAM to need 180,000 block accesses for inserting the data. In
reality, LHAM needs 185,905 block accesses. To further confirm
this behavior, we have run additional experiments with a larger
number of smaller components, leading to more rolling merges.
These experiments have reconfirmed our findings and are omitted
for lack of space. The TSB-tree was expected to need about
800,000 block accesses for inserting 400,000 record versions if no
node buffer were used. In reality, the experiments show that with IO
MB of buffer for l20MB of data, we need about 600.000 block ac-
cesses, depending on the ratio between logical inserts and updates.

We are fully aware of the fact that this data volume merely
constitutes a “toy database”. Given the limitations of an academic
research lab, we wanted to ensure that all experiments were run
with dedicated resources in a controlled, essentially reproducible
manner. However, our experiments allow us to draw conclusions
on the average-case behavior of both index structures investigated.
From a practical point of view, these results are more important
than an analytic worst-case analysis, which is independent of the
parameters and limitations of actual experiments, but provides
only limited insights into the performance of real-life applications.

The structure of the TSB-tree depends on the ratio between log-
ical insert and update operations. All experiments start with 50,000
record versions and a logical insert/update ratio of 90% to initialize
the database. For the remaining 350,000 record versions, the log-
ical insert/update ratio is varied from 10% inserts up to 90% in-
serts. Keys were uniformly distributed over a given interval. Log-
ical deletions were not considered. The load driver generated re-
cord versions for insertion as fast as possible; so the measured
throughput was indeed limited only by the performance of the in-
dex structure. The most important performance metrics reported
below are the throughput in terms of inserted record versions per
second, and the average number of block accesses per inserted re-
cord version.

LHAM consumed significantly less space than the TSB-tree.
The total capacity of the three LHAM components was 168MB, but
only 122MB were actually used. This is the benefit of the almost
perfect space utilization by LHAM, based on building the B+-trees
inside the components in a bulk manner without the need for split-
ting leaf nodes. The TSB-tree, on the other hand, consumed be-
tween 275 MB and 3 I3 MB, again depending on the logical insert/
update ratio. The space overhead of the TSB-tree is caused by re-
dundant record versions and by a lower node utilization due to node
splits, similar to conventional B+-trees. Note however that keeping
redundant record versions is an inherent property of the TSB-tree,
which is necessary for its good query performance, particularly its
logarithmic worst case eficiency.

6.1.2 Queries

Table I lists these values for both LHAM and the TSB-tree, plus
other detailed results. The table shows that LHAM outperforms the
TSB-tree in every respect. As the structure of LHAM is indepen-
dent of the logical insert/update ratio, we do not distinguish differ-
ent ratios for LHAM. Using 8 blocks per multi-block I/O, the

We have investigated the performance of four different types of
queries:
(1) <key, timepoint>,

(2) <key range, timepoint>,

(3) <key, time range>. and
(4) <key range, time range>.
For <key, timepoint> queries we have further distinguished be-
tween queries with timepoint = now (i.e., the current time) and
queries with a randomly chosen timepoint. We used the databases
as described in the previous sections, i.e., 400,000 record versions
with different logical insert/update ratios. In contrast to the insert
performance, the query performance of LHAM is affected by the
logical insert/update ratio. We give results for the number of block
accesses required per query and the (single-user) throughput in
queries per second.

LHAM

Throughput (Inserts/see) I i/4/8 block(s) per I/O:
146.8 / 304.9 / 348.4

Total number of I/OS l/4/8 block(s) per I/O:
185905146983123663

#Blocks Read/Written 84920 / I00985

#Blocks Accessed oer Insert 1 0.46

Total Database Size (MB)

Component Sizes (MB)

122

Co/CI/C$ 1/21/101

Table I: II

460

TSB-tree I

10% Inserts I 50% Inserts I 90% Inserts I
54.4 I 49. I 145.3 I

597802
I

632587
I

623770
I

282 100 / 325702 29655 I I 336036 292705 / 33 1065

I .49 1.58 I .56

275 323 313

CurdHist. DB: 64/2ll hrr./Hist. DB: 148/175 I Curr./Hist. DB: 192/121 I
;ert Performance

Queries of Type <key, timepoint>

Fig. 6a shows the average number of block accesses for a query
that searches the current version of a given key, plotted against the
ratio of logical inserts vs. updates during the creation of the data-
base. Because the TSB-tree can access a given version by reading a
single leaf node only, it requires one block access for a query of this
type. With the given buffer, index nodes can almost always be
found in the buffer. LHAM needs more block accesses here, as no
redundancy is used. If the current record version is found in compo-
nent Co, no I/O is required. If it is found in Cl, a single block access
is sufftcient. If a record has not been updated for a long time, it will
be stored in component CJ. This requires a lookup of Co, Cl, and C2
and requires two block accesses. For a high logical insert/update ra-
tio, this will often be the case. Note, however, that we expect a typi-
cal temporal database application to have a rather low logical in-
sert/update ratio, say 10 to 20 percent, resulting in relatively many
versions per record. Also note that the absolute performance is
good anyway; so this query type is not a major performance con-
cern. Fig. 6b shows the (single-user) throughput achieved by
LHAM and the TSB-tree for this type of query. The curve in Fig. 6b
is similar to the curve in Fig. 6a, as LHAM cannot benefit from
multi-block I/O for this type of query.

5 LHAM o-

j 1, ---l,.e~tl,..~i[-I”:t~‘------~

2 m 0 IO 20 30 40 50 60 70 80 90
St Fig. 6a: <key, timepoint = now>

* 100

$ 80

2
i%

60

g 40
‘C
9 20

0
0

- - - - - _ ----_ -----___
- - - - TSB-tree

/ -.----I
Percentage of inserts

0 IO 20 30 40 50 60 70 80 90
Fig. 6b: <key, timepoint = now>

The situation changes when we consider arbitrary timepoints
instead of solely the current time. Fig. 7a and Fig. 7b show again the
block accesses required, and the throughput for <key timepoint>
queries, but the timepoint is now uniformly distributed over the in-
terval from the oldest record version in the database to now. LHAM
now performs almost as good as the TSB-tree, because for older
data, LHAM often needs to access only component CJ.

-5
9 O

Percentage of inserts

m 0 IO 20 30 40 50 60 70 80 90
Tt

Fig. 7a: <key, timepoint = random>

LHAM
---_____-----_-----------

TSB-tree

90 o 8. _________-_______________
TSB-tree

LHAM

Percentage of inserts

0 IO 20 30 40 50 60 70 80 90

Fig. 7b: <key, timepoint = random>

Queries of Type <key range, timepoint>

The performance of <key range, timepoint> queries with a key
range of 10% of all keys and a timepoint of now is shown in Fig. 8a
and Fig. 8b. Varying the width of the key range has shown similar
results, and choosing a random timepoint rather than now has
yielded even better results for LHAM. For lack of space, we limit
the presentation to one special setting. The results of LHAM are in-
dependent of the logical insert/update ratio. This is the case be-
cause LHAM has to access all blocks with keys in the given range
in all (non-archive) components. Note that the required block ac-
cesses by LHAM do not depend on the number of components, but
only on the total size of the (non-archive part of the) database.
LHAM benefits from multi-block I/O, as shown by the different
throughput rates for different numbers of blocks per multi-block
I/O in Fig 8b. The performance of the TSB-tree highly depends on
the database chosen. When the logical insert/update ratio is low, the
current database is small and the number of required block accesses
is low. The higher the logical insert/update ratio, the larger the cur-
rent database and the more block accesses are needed. Fig. 8b
shows that even with a small current database, the throughput of the
TSB-tree is lower than the throughput of LHAM if multi-block I/O
with 8 blocks per I/O is used. Note again that the TSB-tree is inher-
ently unable to exploit multi-block I/O in the same manner due to
the absence of clustering. When the current database is large,
LHAM outperforms the TSB-tree even without multi-block I/O.

G 2100
g 1800

_ _ - -
_ _ - -

_ _
$ 1500
fj 1200
D

:
900
600

_ -
. *

se
,’ LHAM

_ _ ” TSB-tree m
’ -5 300 2 0 Percentage of inserts

m a 0 IO 20 30 40 50 60 70 80 90

-o 0.240
s 0.210
8 0.180
& 0.150
; 0.120

‘c 0.090
2 0.060

0 0.030
0

Fig. 8a: <key range IO%, timepoint = now>

’ \ LHAM I block per I/O
- _

- - - _ _

Percentage of inserts TSB-tree- - - - - -

0 IO 20 30 40 50 60 70 80 90

Fig. 8b: <key range IO%, timepoint = now>

Queries of 5pe <key, time range>

Fig. 9a and Fig. 9b show the performance of <key, time range>
queries with a time range of 50%. Varying the width of the time
range has led to similar results, which are omitted here for lack of
space. LHAM outperforms the TSB-tree in terms of block accesses
per query as well as throughput for all database settings. As LHAM
stores all record versions with the same key in physical proximity,

461

only one or two block accesses are need for each query. In general,
LHAM benefits from multi-block I/O for this type of query. How-
ever, with only one or two blocks read per query for the databases in
our experiments, using multi-block I/O would waste some disk
bandwidth. Keeping statistics about the data would enable us to
make appropriate run-time decisions on single-block vs. multi-
block I/OS.

g; --
Fi

- - _ - -____--_
& 5

g 4
TSB-tree - - - - _

-.
z 3 -.

Pi 2 P
LHAM ..-

3 ’
-0 Percentage of inserts
m 0
0 IO 20 30 40 50 60 70 80 90

Fig. 9a: <key, time range 50%>

60 -cl
[50

m 40

i5 30

.g 20

LHAM

TSB-tree

d ‘O
0

- - - - - - -P-ti ,;f;“,,

0 IO 20 30 40 50 60 70 80 90
Fig. 9b: <key, time range SO%>

Queries of Type <key range, time range>

Finally, we consider the performance of <key range, time
range> queries. Fig. 1 Oa and Fig. 1 Ob show the results for a key
range of 10% and a time range of 10%. The results are similar to
<ke,y range, timestamp> queries as shown in Fig. 8a and Fig. 8a.
Agam, similar results have been obtained for other settings of the
range widths.

iC 1600
$ 1400 _*-
!g 1200 LHAM _-*
M 1000

_ - - -
_ -

w 800 - - - -
8 600 _ - ’ TSB-tree
3 400 - * *

d 200
2

Percentage of inserts
m 0
a 0 IO 20 30 40 50 60 70 80 90

Fig. IOa: <key range 10%. time range IO%>

n 120 I I

ij --I ----___
& 0.040

Percentaee of inserts TSB-tree‘ - rs
“’

.--..-_. _. ..-_..- ,

0 IO 20 30 40 50 60 70 80 90
Fig. I Ob: <key range IO%, time range IO%>

6.1.3 Multi-User Performance

We have also performed experiments with queries and inserts
(and rolling merges), running concurrently. By prioritizing queries
over rolling merges, query performance remained almost unaf-
fected by concurrent rolling merges. The insert throughput, on the
other hand, is adversely affected only when the system becomes
overloaded. An overload occurs if the data rate of incoming data

becomes higher than the data rate that can be sustained by the roll-
ing merges in the presence of concurrent queries. Thus, the ex-
pected query load must be taken into account when configuring the
system. Insert costs as analyzed in Section 3.3 determine the I/O
bandwidth, i.e., the number of disks, necessary to sustain the insert
load. Additional disks are required for the the query load.

In our current implementation, rolling merges are initiated when
the amount of data stored in a component reaches a fixed threshold.
In a multi-user environment, it would be beneficial to invoke roll-
ing merge multi-block I/OS whenever the disk would be idle, even
if the threshold is not yet reached.

7 Conclusions
Our experimental results based on a full-fledged implementation

have demonstrated that LHAM is a highly efficient index structure
for transaction-time temporal data. LHAM specifically aims to
support high insertion rates beyond what a B+-tree-like structure
such as the TSB-tree can sustain, while also being competitive in
terms of query performance. In contrast to the TSB-tree, LHAM
does not have good worst-case efftciency bounds. However, our
experiments have shown that this is not an issue under realistic,
“typical-case” workloads. LHAM’s average-case performance is
consistently good. A number of extensions of LHAM require fur-
ther studies that we are working on:

First, redundancy between disk components can be used to
improve query performance for those queries which would
otherwise have to search too many components. Depending
on the expected query load for a given period of time, the re-
dundancy option for a component can even be turned on and
off dynamically each time a rolling merge migrates data out
of it. The information about the resulting redundancy which
can be exploited by queries can easily be kept in the global
LHAM dictionary.

Second, the current implementation of the global LHAM
dictionary only keeps track of the time partitioning in terms
of the components’ low and high time boundaries. This can
be generalized to allow some form of key-partitioning also.
Such a scheme requires a multi-dimensional global directory
structure -which should still be very small- as well as rolling
merge processes with more than two source trees and more
than two destination trees.

Finally, we have so far considered only Bf-trees as index
structures for the data within an LHAM component. Using
specific index structures for temporal data here (e.g., the
TSB-tree) could further enhance query performance. How-
ever, whatever index structure is chosen must provide a
means for bottom-up bulk loading of record versions during
a rolling merge, in order to achieve the “batch-processing”
benefit and the gain from multi-block I/O in the merge pro-
cess.

References

[Bec96]

[BSW97]

[EKW91]

[EWK93]

B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Wid-
mayer, “An Asymptotically Optimal Multiversion B-
tree”, VLDB Journal, Vol.5, No. 4, 1996

J. v. d. Bercken, B. Seeger, P. Widmayer, “A Generic
Approach to Bulk Loading Multidimensional Index
Structures”, Proc. VLDB Conference, 1997
R. Elmasri, V. Kim, G. T. J. Wuu, “Efficient Imple-
mentation for the Time Index”, hoc. Data Engineer-
ing, 1991.
R. Elmasri, G. T. J. Wuu, V. Kim, “The Time Index and
the Monotonic B+-tree”, in [Tan931

462

[GP87] J. Gray, F. Putzolu, “The Five Minute Rule for Trading
Memory for Disc Accesses and the 10 Byte Rule for
Trading Memory for CPU Time”, Proc. SIGMOD,
1987

[GR93] J. Gray, A. Reuter, Transaction Processing: Concepts
and Techniques, Morgan Kaufmann, 1993

[Gut841 A. Gutman, “R-trees: A Dynamic Index Structure for
Spatial Searching”, Proc. SIGMOD, 1984

[Jag971 H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudar-
shan, R. Kanneganti, “Incremental Organization for
Data Recording and Warehousing”, Proc. VLDB Con-
ference, 1997

[Ko193] C. P. Kolovson, “Indexing Techniques for Historical
Databases”, in [Tan931

[KMH97] M. Kornacker, C. Mohan, J.M. Hellerstein, “Concur-
rency and Recovery in Generalized Search Trees”,
Proc. SIGMOD, 1997

[Lom93] D. Lomet, “Key Range Locking Strategies for Im-
proved Concurrency“, Proc. VLDB, 1993

[LS89] D. Lomet, B. Salzberg, “Access Methods for Multiver-
sion Data”, Proc. SIGMOD, 1989

[LS90] D. Lomet, B. Salzberg, “The Performance of a Multi-
version Access Method”, Proc. SIGMOD, 1990

[Moh96] C. Mohan, “Concurrency Control and Recovery Meth-
ods for B+-Tree Indexes: ARIESKVL and ARIES/
IM, in: V. Kumar (Editor), Performance of Concurren-
cy Control Mechanisms in Centralized Database Sys-
tems, Prentice-Hall, 1996

[OCG096] P. O’Neil, E. Cheng, D. Gawlick, E. O’Neil, “The Log-
Structured Merge-Tree (LSM-tree)“, Acta Informati-
ca, Vol 33, No. 4, 1996.

[OW93]

[R092]

[Sno90]

ST941

[Tan931

[TK95]

P. O’Neil, G.Weikum, “A Log-Structured History Data
Access Method”, 5th International Workshop on High
Performance Transaction Systems (HPTS), Asilomar,
California, 1993

M. Rosenblum, J. K. Ousterhout, “The Design and Im-
plementation of a Log Structured File System”, ACM
Transactions on Computer Svstems, Vol. 10, No. 1,
1992
R. Snodgrass, “Temporal Databases: Status and Re-
search Directions”, SIGMOD Record, Vol. 19, No. 4,
1990
H. Shen, B. C. Ooi, H. Lu, “The TP-Index: A Dynamic
and Efficient Indexing Mechanism for Temporal Data-
bases”, Proc. Data Engineering, 1994

B. Salzberg, V. J. Tsotras, “A Comparision of Access
Methods for Time Evolving Data”, Technical Report
NU-CCS-94-2 1, Northeastern University, Boston,
1994
A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
R. Snodgrass (Editors), “Temporal Databases:
Theory, Design, and Implementation,” Benjamin/
Cummings Publishing Company, 1993

V. J. Tsotras, N. Kangelaris, “The Snapshot Index: An
l/O-Optimal Access Method for Timeslice Queries”,
Information Sy.stems, Vol. 20, NO. 3, 1995

Appendix A: Brief Review of the TSB-tree
The TSB-tree is a B+-tree-like index structure for transaction-

time databases [LS89, LS90]. It indexes record versions in two di-
mensions; one dimension is given by the conventional record key,
the other by the timestamp of the record version. Its goal is to pro-
vide good worst-case efftciency for exact match aueries as well as
range queries in both time dimension and key dimension.

Nodes and Node Splits
Basically, each leaf node covers a two-dimensional interval, i.e.,

a “rectangle” in the data space, whose upper bounds are initially
“open” (i.e., are interpreted as infinity) in both dimensions. A node
is represented by a pair of key and timestamp, defining the lower
left comer of the rectangle that it covers. The area covered by a rec-
tangle becomes bounded if there exists another leaf node with a
higher key or time value as its lower left comer. A leaf node con-
tains all record versions that have a (key, timestamp) coordinate
covered by its rectangle. Two types of nodes are distinguished: cur-
rent nodes and historical nodes. Current nodes store current data,
i.e., data that is valid at the current time. All other nodes are denoted
historical.

As all data is inserted into current nodes, only current nodes are
subject to splits. Current nodes can be split either by key or by time.
A record version is moved to the newly created node if its (key,
timestamp) coordinates fall into the corresponding new rectangle.
The split dimension, i.e., whether a split is performed by key or
time, is determined by a split policy. We have used the time-&last-
update (TLU) policy for all our experiments, which does a split by
time unless there is no historical data in the node, and performs an
additional split by key if a node contains two thirds or more of cur-
rent data. The split time chosen for a split by time is the time of the
last update among all record versions in the node. The TLU policy
achieves a good tradeoff between space consumption, i.e. the de-
gree of redundancy of the TSB-tree, and query performance. This
is shown in [LS90] and has been confirmed by our own experi-
ments.

A non-leaf index node stores a set of index terms. An index term
is a triple consisting of a key, a timestamp, and a pointer to another
index node or a leaf node. Like the open rectangle defined for each
leaf node, an index term also covers an open rectangle, defined by
key and timestamp as the lower left comer. Other index terms with
higher key or timestamp bound this area. Index node splitting is
similar to leaf node splitting. We have again adopted the TLU split
policy. For the subtle differences concerning restrictions on the
split value for time splits, the reader is referred to [LS89].

Searching
Searching in TSB-trees can be viewed as an extension to the

search procedure for B+-trees. Assume we are searching for a re-
cord version (k, t) with key k and timestamp t. At each level of the
tree, the algorithm first discards all index terms with a timestamp
greater than t. Within the remaining terms it follows the index term
with the maximum key value being smaller than or equal to key k.
This process recursively descends in the tree and terminates when a
leaf node is found. A similar algorithm is used for range queries.
Instead of following a single index term while descending the tree,
a set of index terms to follow is determined. Because of the redun-
dancy employed in the TSB-tree, the worst case performance of
queries is logarithmic in the number of record versions stored (in-
cluding the redundant ones). There is no guaranteed clustering,
however, neither in key nor in time dimension.

463

