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Abstract 

Numerous applications such as stock market or medical informa- 
tion systems require that both historical and current data be logical- 
ly integrated into a temporal database. The underlying access 
method must support different forms of “time-travel” queries, the 
migration of old record versions onto inexpensive archive media, 
and high insert and update rates. This paper introduces a new ac- 
cess method for transaction-time temporal data, called the Log- 
structured History Data Access Method (LHAM) that meets these 
demands. The basic principle of LHAM is to partition the data into 
successive components based on the timestamps of the record ver- 
sions. Components are assigned to different levels of a storage hier- 
archy, and incoming data is continuously migrated through the 
hierarchy. The paper discusses the LHAM concepts, including 
concurrency control and recovery, our full-fledged LHAM imple- 
mentation, and experimental performance results based on this im- 
plementation. A detailed comparison with the TSB-tree, both ana- 
lytically and based on experiments with real implementations, 
shows that LHAM is highly superior in terms of insert performance 
while query performance is in almost all cases at least as good as for 
the TSB-tree; in many cases it is much better, 

I Introduction 
For many applications maintaining only current information is not 
sufficient; rather, historical data must be kept to answer all relevant 
queries. Such applications include, for example, stock market in- 
formation systems, risk assessment in banking, medical informa- 
tion systems, and scientific database applications. Temporal data- 
base systems [Sno90, Tan931 aim to support this kind of applica- 
tions. In this paper, we consider a special type of temporal data- 
bases, namely, transnction-time databases, where multiple ver- 
sions of a record are kept. Updating a record is implemented by in- 
serting a new record version. Each record version is timestamped 
with the commit-time of the transaction that updated the record. 
The timestamp is considered to be the start time for a record ver- 
sion. The end time is implicitly given by the start time of the next 
version of the same record, if one exists. Records are never physi- 
cally deleted; a logical deletion is implemented by creating a spe- 
cial record version that marks the end of the record’s lifetime. 

Indexing temporal databases is an important and challenging 
problem, mainly because of the huge amount of data to be indexed 
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and the various “time-travel” types of queries that have to be sup- 
ported. An equally important requirement is an access method’s 
ability to sustain high insert/update rates. This requirement arises, 
for example, in data warehouses, in scientific databases that are fed 
by automatic instruments, or in workflow management systems 
for keeping workflow histories. Also, many banking and stock 
market applications exhibit such characteristics. For example, con- 
sider the management of stock portfolios in a large bank. For each 
portfolio, all buy and sell orders must be tracked. Based on this 
data, in addition to querying the current contents of a portfolio, 
queries asking for the history of a specific portfolio in a given time 
interval as well as queries asking for statistical data over certain 
portfolios can be supported. The results of these queries are impor- 
tant for future decisions on buying or selling stocks. 

To keep the further explanation simple, assume that placing a sell 
or buy order is tracked by inserting a record version in a portfolio- 
history table. Assuming 1000 orders per second, we have 1000 in- 
serts into the history table per second. Further assume, we want to 
index the history table by using a B+-tree on the customer ID, and 
we want to keep the history of the last 7 days online. Given 24 busi- 
ness hours for worldwide orders per day and records of 48 Bytes, 
we have about 28 GB of index data. This translates into 3.5 million 
blocks, 8KB each, at the leaf level of the B+-tree. Assuming, for 
simplicity, that orders are uniformly distributed among portfolios, 
repeated references to the same block are on average 3,500 seconds 
= 1 hour apart. According to the five-minute rule [GPS7], this does 
not justify main memory residence. As a consequence, it is highly 
unlikely that an insert operation finds the leaf node that it accesses 
in the buffer. Instead, inserting a new record causes two I/OS on the 
leaf level of the B+-tree, one for writing some leaf node back to the 
database in order to free buffer space, and one for bringing the leaf 
node where the new record version is to be inserted into the buffer. 
Given 1000 inserts per second, we have 2000 I/OS per second, dis- 
regarding splits and the higher levels of the tree. Optimistically as- 
suming that a single disk can serve 100 I/OS per second, we need 20 
disks to sustain the insert rate of the application, but the data fits on 
two disks. 

The above arguments hold for all index structures that place in- 
coming data immediately at a final position on disk. The log-struc- 
tured history access method LHAM, introduced in this paper, ad- 
dresses this problem by initially storing all incoming data in a main 
memory component. When the main memory component becomes 
full, the data is merged with data already on disk and migrated to 
disk in a bulk fashion, similar to the log-structured file system ap- 
proach [RO92] - hence the name of our method. At the same time, a 
new index structure on disk, containing both the new and the old 
records, is created. All I/O operations use fast multi-block I/O. In 
general, components may exist on different levels of a storage hier- 
archy. If a component becomes full, data is migrated to the compo- 
nent on the next lower level. This basic approach has been adopted 
from the LSM-tree method [OCG096], a conventional (i.e., non- 
temporal) single-key access method. An analysis of LHAM as well 
as experimental results gained from our implementation show that 
LHAM saves a substantial amount of I/OS on inserts and updates. 
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For the above example, an LHAM structure with a main memory 
component of 144MB and two disk components with a total size of 
30GB is sufficient. This translates into two disks for LHAM, in 
contrast to 20 disks if a B+-tree-like access method were used. 

The basic idea of an earlier form of LHAM has been sketched in 
[OW93]. The current paper presents the comprehensive design of a 
full-fledged access method and its implementation. The contribu- 
tion of this paper is threefold: 

. We give a detailed presentation of the LHAM concepts, in- 
cluding a discussion of synchronization issues between con- 
current migration processes, called rolling merges, and 
transactional concurrency control and recovery. The 
performance of inserts in terms of required block accesses is 
mathematically analyzed. 

. We present a full-fledged LHAM implementation for 
shared-memory multiprocessors using the Solaris thread li- 
brary. The entire prototype comprises 24,000 lines of C code 
(including monitoring tools) and has been stress-tested over 
several months. 

. To validate the analytic results on insert performance and to 
evaluate the query performance of LHAM, we have mea- 
sured LHAM’s performance against the TSB-tree, which is 
among the currently best known access methods for tempo- 
ral data. We present detailed experimental results in terms of 
required block accesses and throughput for different insert/ 
update loads, different query types, and different LHAM 
configurations. Our results provide valuable insight into the 
typical performance of both access structures for real life ap- 
plications, as opposed to asymptotic worst-case efficiency. 

The paper is organized as follows. Section 2 discusses related 
work. Section 3 presents the principles of LHAM in terms of time 
partitioning the data, data migration, and query processing. In Sec- 
tion 4, we discuss the implementation of LHAM, its internal archi- 
tecture, rolling merge processes for data migration, and the syn- 
chronization of these processes. Concurrency control and recovery 
are discussed in Section 5. Section 6 contains the results of our ex- 
perimental performance evaluation. We compare the experimental 
results for our implementations of LHAM and the TSB-tree in de- 
tail. Section 7 concludes the paper. Appendix A briefly introduces 
the TSB-tree. 

2 Related Work 

As for “time-travel” queries, LHAM supports exact match queries 
as well as range queries on key, time, and the combination of key 
and time. Temporal index structures with this scope include the 
TSB-tree [LS89, LS90], the MVBT [Bec96], the Two-Level Time 
Index [EWK93], the R-tree [Gut84], and the Segment- 
R-tree[Kol93], a variant of the R-tree specifically suited for tempo- 
ral databases. Temporal index structures like the Snapshot Index 
[TK95], the Time Index [EWK93, EKW91] and the TP-Index 
[SOL941 aim only at supporting specific query types efficiently. 
Comparing them with other index structures is only meaningful 
based on a specific kind of application. Among the index structures 
with a general aim, the TSB-tree has demonstrated very good query 
performance [ST94]. Therefore, we have chosen the TSB-tree as 
the yardstick against which LHAM is compared. In terms of 
asymptotic worst-case query performance, the TSB-tree guaran- 
tees logarithmic efficiency for all query types whereas LHAM is 
susceptible to degradation under specifically constructed “adver- 
sary scenarios”. However, such degradation is extremely unlikely 
under realistic scenarios as our systematic performance study 
shows. For almost all query types, the realistic performance of 
LHAM is at least as good as for the TSB-tree, for many cases even 

substantially better because of better data clustering and potential 
for multi-block I/O. 

Most proposals for index structures on temporal data are not spe- 
cifically targeted at a good insert performance, exceptions being 
[Jag971 and [BSW97]. [Jag971 discusses an approach for efficient 
insertion of non-temporal, single-dimensional data into B+-trees. 
Similar to LHAM, a continuous reorganization of data is proposed. 
The approach can be characterized as a generalization of an N-way 
merge sort. Like in LHAM, incoming data is stored in a main 
memory buffer first. When this buffer gets full, it is written to disk, 
organized as a B+-tree (a hash-based scheme is also discussed). Af- 
ter K such trees are created, they are merged by a K-way merge into 
a new B+-tree. N-l levels, each consisting of K B+-trees, are con- 
sidered. Each K-way merge propagates the data to the next level. 
The final level N contains the target B+-tree, denoted root B+-tree. 
After K B+-trees have been accumulated at level N- 1, these K trees 
together with the root tree are merged in a K+ 1 -way merge into a 
new root tree. This approach supports the efficient insertion of data, 
but penalizes queries significantly, as a query has too look up all 
N*K component trees. 

In terms of this approach, LHAM can be considered to perform a 
2-way merge sort whenever data is migrated to the next of Ii compo- 
nents in the LHAM storage hierarchy. At each level of this hierar- 
chy, only a single B+-tree exists (unless a merge is currently per- 
formed, which creates temporary trees). In contrast to [Jag97], 
LHAM components implement a partitioning of the time dimen- 
sion. In [Jag97], all N*K B+-trees may have overlapping key 
ranges, whereas components in LHAM cover disjoint areas in key- 
time space (with a single exception to make archiving more effi- 
cient, an issue which is not addressed at all in [Jag97]). Depending 
on its time range, a query in LHAM needs to access only a subset of 
the n LHAM components, so that query execution in LHAM is 
more efficient. 

[BSW97] presents an approach for bulk-loading multi-dimen- 
sional index structures, e.g., R-trees. Their approach can be consid- 
ered as the “opposite” of an N-way merge sort. The idea is to create 
unsorted sequences of records, where each sequence covers a sub- 
set of the dataspace that is disjoint to the subsets covered by the oth- 
er sequences. A number of sets of record sequences form a bal- 
anced tree, called the h&r tree, with each set of sequences detin- 
ing a level of the tree. Incoming records are migrated through this 
tree until they reach the leaf level, which is structurally equivalent 
to the leaf level of the target index structure. Similarly to LHAM 
and [Jag97], the migration of records can be implemented very effi- 
ciently. After all data has been migrated to the leaf level of the buff- 
er tree, its higher levels are discarded, and a new buffer tree for 
building the next higher index level of the target index structure is 
created. This process is repeated until the root of the target index 
structure is built. As the approach of [BSW97] is intended for bulk 
loading only, it disregards query performance until the target index 
structure is completely built. The problem is to search the potential- 
ly large unordered sequences of records at the index levels of the 
buffer tree. While a query can easily navigate through the buffer 
tree, the sequential search inside a record sequence is expensive. 
LHAM provides a substantially better query performance. 

3 Principles of LHAM 

LHAM is an index structure for transaction-time databases. It in- 
dexes record versions in two dimensions; one dimension is given 
by the conventional record key, the other by the timestamp of the 
record version. A record version gets its timestamp at the time of 
insertion as the transaction time of the inserting transaction. The 
timestamp cannot be changed afterwards. Updating a record is cast 
into inserting a new version. Deleting a record is performed by in- 
serting a new record version indicating the deletion. As a conse- 
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Fig. I : LHAM Component Organization And B+-tree Inside Component 
quence, all insert, update, and delete operations are performed by 
inserting record versions. 

Unlike virtually all previously proposed index structures, 
LHAM aims to support extremely high insert rates that lead to a 
large number of newly created record versions per time unit. Fur- 
thermore, while many other temporal index structures emphasize 
the efftciency of exact-match queries and range queries for either 
key or time, LHAM aims to support exact-match queries as well as 
all types of range queries on key, on time, and on the combination of 
both. Note that there is actually a tradeoff in the performance of 
time range queries versus key range queries, as the first query type 
benefits from clustering by time whereas the latter benefits from 
clustering by key. LHAM strives for a flexible compromise with 
respect to this tradeoff. 

3.1 Partitioning the Time Dimension 

The basic idea of LHAM is to divide the entire time domain into 
successive intervals and to assign each interval to a separate stor- 
age coinponent. The series of components, denoted as Co, Cl, . . . . 
C,, constitutes a partitioning of the history data based on the time- 
stamp attribute of the record versions. A component Ci contains all 
record versions with timestamps that fall between a low-time 
boundary, /oWi, and a high-time boundary, highi, where highi is 
more recent than lowi. For successive components Ci, and Ci+,, 
components with lower subscripts contain more recent data, so 
low; is equal to highi+/. Component Co is stored in main memory 
and contains the most recent record versions from the current mo- 
ment (which we take to be highn), back to time 10~0. Components 
Cl through Ck reside on disk, and the rest of the components Ck+/, 
. . . . C,, are stable archive components that can be stored on write- 
once or slow media (e.g., optical disks). Typically, the number k of 
disk components will be relatively small (between I and 3), where- 
as the number n-k of archive components may be large, but archive 
components will probably consist of a month worth of record 
change archives. 

The overall organization of LHAM is depicted in the left part of 
Fig. 1. In the example, the history of two records is shown. The re- 
cord with key a has been inserted at time t2, and was updated at 
times tl0 and 40. Its original version as of time t2 has migrated to 
archive component C3, the other record versions are currently 
stored in disk component C2. The record with key p has been in- 
serted at time t203, which now falls into the time interval covered by 
component Cl. Record p has a recent update at time tqo9, the corre- 
sponding record version is still in main memory component Co. 

Inside each component, record versions are organized by a con- 
ventional index structure for query efficiency. In principle, every 
index structure that supports the required query types and efftcient- 
ly allows the insertion of record versions in batches can be used. 
Different index structures can be used for different components. 
For the sake of simplicity, we have chosen B+-trees for all compo- 
nents. An example B+-tree is shown in the right part of Fig. I, con- 
taining the record versions of record a at times tlo and tqg . The key 

of the B+-tree is formed by concatenating the conventional record 
key and the timestamp of a record version. Therefore, the record 
versions are ordered according to their conventional key first, fol- 
lowed by their timestamp. Using this ordering is a drawback for 
time range queries, as record versions are clustered primarily by 
key. However, this drawback is typically compensated by parti- 
tioning data by time according to the component time intervals. We 
will consider other index structures inside of LHAM components 
in the future. A key requirement is their ability to support bulk load- 
ing of data. 

The purpose of the more recent disk components, and especially 
the main memory component, is to support high insert rates. Insert- 
ing a new record version into the main memory component does 
not take any I/O (other than logging for recovery purposes, which is 
necessary anyway, see Section 5 for details). I/O is needed when a 
component becomes full. In this case, data is migrated to the next 
component. Providing a highly efftcient migration by moving data 
in batches is the key to LHAM’s good performance. 

In the “standard” variant of LHAM, there is no redundancy 
among components. A record version is stored in the component 
whose low and high time boundaries include the version’s time- 
stamp. However, some versions are valid beyond the high time 
boundary of the component, namely, when the next more recent 
version for the same record key is created after the component’s 
high time boundary. Especially for long-lived versions, it can be 
beneficial for query performance to keep such a version redundant- 
ly in more than one component. Redundancy is especially attrac- 
tive for the usually much slower archive components. LHAM sup- 
ports both redundancy-free and redundant partitioning. 

3.2 Inserts and Migration of Data 

Newly created record versions are always inserted into the main 
memory component Co, consisting of a 2-3- tree or similar memory 
based key-lookup structure. They eventually migrate through disk 
components Cl . . . ck, consisting of B+-tree-like structures, and 
eventually arrive on archive media. There is no migration among 
archive components, as these are often write-once or too slow for 
data reorganizations. However, record versions reaching an age 
where they are no longer of interest may occasionally be purged 
from the on-line archive storage. This can be achieved easily with 
LHAM, because of the time boundaries between components, and 
the natural placement of components one after another on archive 
media such as optical disk platters. 

The data migration from more recent to older components is ac- 
complished by a process denoted rolling merge, following the idea 
of the LSM-tree [OCG096], a log-structured access method for 
conventional, one-dimensional key access. For each pair of succes- 
sive components Ci and Ci+ 1, i< k, a rolling merge process, denoted 
RMih+l, is invoked each time component Ci becomes full. Its in- 
vocation frequency depends on how often the amount of data in Ci 
reaches a maximum triggering size. When the rolling merge pro- 
cess starts, a migration boundary mi is chosen, that will become the 
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new time boundary between C; and Ci+, after the rolling merge is 
finished. The appropriate value for m;, relative to lowi and hi&, 
depends on the growth rate of Ci and, thus, (by recursion) ultimate- 
ly on the insert rate of the database. The rolling merge process 
RI&i+ 1 scans the leaf nodes of the tree in component c in order of 
key and timestamp, and migrates all record versions of Ci that have 
a timestamp smaller than mi into component Ci+ 1, building a new 
tree there. It terminates when Ci is completely scanned, and at this 
point, lowi and hi&+ 1 are both set to mi. 

The rolling merge from the oldest disk component Ck does not 
really merge data into component Ck+ 1. Rather, this migration pro- 
cess builds up a complete, new archive component. This new ar- 
chive component is then called Ck+l, and the previous archive 
components Ck+, through C, are renumbered into Ck+2 through 
C n+~. As access to archive components is typically very slow, we 
choose to use the partitioning scheme with redundancy when de- 
ciding which versions are moved into the component. So an archive 
component contains all record versions whose validity interval 
overlaps with the component’s time interval given by its low and 
high time boundaries. Note that in this case a new archive compo- 
nent C,+/ may contain versions that already exist in Ck+2 and pos- 
sibly older archive components, if these versions are still valid after 
the low-time boundary lowk+I of the new archive component 
(which is equal to the old lowk value). This scheme makes the ar- 
chive components “self-contained” in that all queries with time- 
stamps between the component’s low and high boundary can be 
performed solely on a single component. Also, when an archive 
component is taken off-line, the redundancy ensures that all ver- 
sions that remain valid beyond the high time boundary of the off- 
line component are still available in the appropriate on-line compo- 
nent(s). As archive components are built by the rolling merge from 
component Ck to component Ck+, , Ck has to store all redundant re- 
cord versions needed for creating the next archive component. Re- 
dundant record versions in Ck need not be accessed by mk-l,k, as 
redundant versions are only created and accessed by mk,k+, when 
a new archive component is built. Hence, only for mk,k+/ addi- 
tional 110 is required to read and write the redundant versions in Ck. 
In the analysis of insert costs in the next section, we will see that the 
overhead of redundancy in terms of additional space and I/O is typ- 
ically low. 

Rolling merges avoid random disk accesses that would arise 
with moving record versions one-at-a-time. Rather, to achieve 
good I/O efficiency in maintaining the internal component index 
structure (i.e., B+-trees in our case), a rolling merge reads both the 
source and the destination component sequentially in large multi- 
block I/OS, and the data from both components is merged to build a 
new index structure in the destination component again written se- 
quentially in large multi-block I/OS. With multi-block I/O, instead 
of reading and writing single blocks, multiple contiguous blocks on 
disk are read and written in a single I/O operation, which is signifi- 
cantly faster than performing single random I/OS (see Section 6). 
The total number of block accesses required for a merge process is 
the same as for scanning both components two times. Contrast this 
with the much higher number of much slower random disk I/OS for 
migrating record versions one-at-a-time. In addition, our algorithm 
allows us to keep the data perfectly clustered all the time, with al- 
most 100% node utilization, which in turn benefits range queries 
and index scans. 

3.3 Analysis of Insert Costs 

We derive a formula for the cost of inserting new record versions 
into LHAM in terms of the number of block accesses required. The 
formula implies that for minimizing the block accesses required, 
the space-capacity ratios should be the same for all pairs of succes- 
sive components. This leads to a geometric progression between 

the smallest component Co and the largest disk component Ck. All 
archive components are assumed to have the capacity of Ck, which 
allows the migration of all record versions stored in Ck to an archive 
component in a single rolling merge. When record versions are 
stored redundantly (see Section 3.1), the capacity of Ck must be 
larger than defined by the geometric progression. In the worst case, 
one version of each record stored in LHAM has to be kept in Ck. 
However, with an average of s record versions per record residing 
in all non-archive components together, the space overhead for 
storing one redundant version per record in Ck is I/s times the total 
size of the non-archive components. As a typical temporal database 
is expected to store more than a few versions per record, this is a 
small space overhead. 

We derive the number of block accesses required to insert a given 
amount of data into LHAM by counting the block accesses needed 
to migrate the data through the components of LHAM. This ap- 
proach is similar to the one presented for the LSM-tree [OCG096]. 
However, in [OCG096], the authors idealistically assumed a per- 
fect steady-state balance in that the insertion rate in bytes per sec- 
ond matches the migration rate between all LSM components at 
any time. As a consequence, the actual tilling degree of each com- 
ponent is constant and close to 100 percent all the time. 

This assumption is unrealistic in practice because of fluctuations 
in the rate of incoming data. Also it is hard to keep the migration 
rate of the rolling merges truly constant, as the disk(s) typically 
have to serve additional, often bursty load like concurrent queries. 
So in a realistic environment, a rolling merge cannot be assumed to 
start again immediately after it finishes its previous invocation. 
Instead, rolling merges should be considered as reorganization 
events with a varying frequency of occurrence. This leads to actual 
component sizes (i.e., tilling degrees) that vary over time. Immedi- 
ately after a rolling merge has migrated data from a component Ci 
to component Ci+/, Ci will be almost empty. After sufftciently 
many rolling merges from Ci-l to C;, component C; will then be- 
come (close to) full again before the next rolling merge from Ci to 
Ci+, is initiated. So, if we merely assume that the time points of ini- 
tiating the filling rolling merges from Ci-/ to Ci are uniformly dis- 
tributed over time, then Ci is on average half full. Thus, a “random- 
ly arriving” rolling merge from Cf./ to Ci needs to merge the C;.] 
data with a 50 percent full Ci component on average. This consider- 
ation is fully confirmed by our experimental findings in Section 6. 

As all data is inserted into main memory component Co first, and 
as all rolling merges access data in terms of complete disk blocks 
instead of single record versions, the total number of block ac- 
cesses depends only on the number of blocks required to store the 
data, not on the number of records stored in the database. As usual, 
we disregard the non-leaf levels of the B+-trees here. Assume all 
record versions tit on bloc&,, leaf nodes, including space-frag- 
mentation overhead. We assume a LHAM structure with k compo- 
nents on disk, a component size ratio of ri between components Ci-/ 
and Ci, rn being the size of component Co in blocks. Let /i denote 
the number of rolling merges taking place between components 
Ci-/ and C; until all data is inserted and finally migrated to archive 
component Ck+ 1, and let I/s be the space overhead for redundancy 
in component Ck with respect to the total size of all non archive 
components Cn .., Ck. We obtain for the total number of accessed 
blocks hloc&cess : 

b~ockrw~,~ = I&” + ‘.“Y,) + 4(2rol., + ror,rz) + . . . 

_- 
i=O ,:=iJ I=0 ,=Oi=O 

Note that for emptying component Co, no I/O is required, which 
leads to the term (ro + r-or/) rather than (2ro + roq). For the final 
migration to archive media, the data is only read from component 
Ck and written to the archive component. The last term represents 

455 



the block accesses needed to read and write the redundant record 
versions in Ck. As discussed in section 3.2, redundant records of Ck 
are not accessed by RMk.1.k. The number /i of rolling merges taking 
place between components Ci-/ and Ci is given by: 

hlock,o, 
Ii = 7 

Ilri 
j=O 

By substituting (2) into (I), we obtain: 

hlock,,.,,ws = hlock,,,(2k + I + i ri) + I,+ I($ i fI ri) (3) 
i=l j=ot=o 

In order to tune the component capacity ratios ri, we adopt the 
procedure of [OCG096]. For the sake of simplicity, we assume the 
redundancy overhead to be constant instead of depending on the 
component size ratios, and assume that the main memory available 
for component Co and the size of the last disk component Ck are al- 
ready fixed. [OCG096] shows that under these assumptions, the 
number of blocks accessed is minimized if all component size ra- 
tios p/ are equal to a constant value r. Substituting all ri of equation 
(3) by r, we obtain: 

h~~ck,c,~,,,, = hlock,,,(k(2+r)+l) + lk+,($~ri+,) (4) 
j=o 

For a component size ratio Y of at least two, the number of block 
accesses is bounded by: 

hlock,,.C,,,, s hlock,&k (2 + r) + I + ;) (5) 

As an example, consider again the stock portfolio scenario pre- 
sented in the introduction. We assume the insertion of 604800,000 
record versions of 48 Bytes each into LHAM, representing a 
constant insertion rate of 1000 record versions per second over a 7 
day period, and a total size of 28GB of data. Assume that we use 
two disk components. Main memory component Co has a size of 
144MB, Cl has 2GB and C2 has 28GB. This translates into a com- 
ponent size ratio of 14. Assuming the placement of two orders for 
each portfolio per day on average, we obtain an overhead ratio for 

storing redundant data in component Ck of A. As we have about 
3 I GB of data online, this leads to an additional space requirement 
of 2.2GB for redundant data on disk. With about 3500,000 blocks 
of 8KB size to insert, according to equation (S), we need less than 
I 15,900,OOO block accesses for data migration, including 
I ,OOO,OOO block accesses for redundant data, which is obviously 
negligible. Note that these numbers represent the number of block 
accesses needed to insert record versions into an already fully pop- 
ulated database, i.e., containing the data of the past days. Inserts 
into an empty database would cause even less block accesses. With 
a TSB-tree, on the other hand, we estimate I ,209,600,000 block ac- 
cesses for inserting 604,800,OOO record versions, 2 block accesses 
per insert. So the cost of the TSB-tree is more than ten times higher 
than the cost of LHAM, not even considering the additional gain 
from LHAM’s multi-block I/O. 

3.4 Query Processing 

In general, query processing may require searching multiple com- 
ponents. LHAM maintains a (small) global directory of the low- 
time and high-time boundaries of all components, and keeps track 
of the number n of the last archive component. The directory is 
used to determine the relevant components that must be searched 
for queries. 

For “time-travel” queries with a specified timepoint or time 
range, LHAM needs to retrieve all record versions that are valid at 
this point or within this time range, respectively. A record version 
resides in the component whose time-range covers its creation 
timestamp, but the version may also be valid in more recent compo- 

nents. Thus, LHAM must possibly search components later in time 
than the query specifies. Because of the size progression of compo- 
nents and their placement in the storage hierarchy, the search starts 
with the most recent component that could possibly hold a query 
match and proceeds along the older components until no more 
matches are possible (in a “time-travel” query for a specified key 
value) or all components have been searched (if none of the compo- 
nents uses redundancy) . For example, with the data of Fig. I, the 
query “Select . . . Where KEY = ‘a’ As Of ~03” has to search the 
disk components Cl and C2. Similar considerations hold for range 
queries. The redundant partitioning option (see Section 3.1) allows 
us to bound the set of components that must be searched. In the con- 
crete LHAM configuration considered here with the redundancy 
option used for the last disk component Ck, queries with a time 
range not overlapping the time interval of archive components 
need not access archive components. 

Having to search multiple components may appear as a heavy 
penalty from a superficial viewpoint. In practice, however, we 
would have only a small number of non-archive components, say 
three or four, one of which is the main memory component. Our ex- 
periments show that the absolute query performance of LHAM is 
very competitive even when multiple components need to be 
searched (see Section 6.1.2). 

For searching within a component, the component’s internal in- 
dex structure is used. When using a B+-tree on the concatenation of 
record key and version timestamp, exact-match queries can be an- 
swered with logarithmic performance. Time range queries for a 
given key are also efficiently supported, as all versions of a record 
are clustered by time. On the other hand, key-range queries with a 
given timepoint or a small time range are penalized with the chosen 
B+-tree organization. However, even this query type does not per- 
form too badly, since our approach of building the B+-trees only by 
rolling merges provides relatively good clustering by key also. If 
there are only a few record versions per key, we may still be able to 
process the query with a few block accesses or even less than a 
single block access per key. In addition, the clustering again allows 
us to use multi-block I/O, which is not possible in most other index- 
ing methods for temporal data as they do not cluster the data ac- 
cordingly. 

4 Implementation of LHAM 

4.1 System Architecture 
LHAM has been fully implemented in C on SUN Solaris. As the 
rolling merges between different components can be executed in 
parallel, but need careful synchronization to guarantee consistency 
of data, we have decided to implement them as Solaris threads. 
Threads communicate by shared variables and are synchronized by 
semaphores of the thread library. Fig. 2 shows the overall LHAM 
architecture. Each rolling merge is implemented by four threads as 
indicated by the small shaded boxes in Fig. 2 and explained in detail 
in the next subsection. Queries are implemented by separate 
threads for each component that is accessed. An additional thread 
performs the insertion of new data into component Co. 

Data read from disk is cached by LHAM in two kinds of buffers. 
Single-block buffers cache index nodes of Bf-trees and leaf nodes 
if read by single-block I/OS, i.e., by queries. For leaf nodes of 
Bf-trees accessed by rolling merges or by range queries, multi- 
block buffers are read and written by multi-block I/OS. The buffer 
replacement strategy for both buffers is LRU. 

4.2 Inserts and Rolling Merges 
Figure 3 shows two components Ci and Ci+/, with a rolling merge 
currently migrating data from Ci to Ci+, During an ongoing rolling 
merge, both the source and the destination component consist of 
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Fig. 2: LHAM Architecture 
two B+-trees, an emptying tree and aJIling tree. The emptying trees 
of both components are the B+-trees that exist at the time when the 
rolling merge starts. The filling trees are created at that time. A sep- 
arate thread is assigned to each tree, responsible for emptying or 
tilling the tree. To perform the migration, a cursor is circulating in 
key followed by timestamp order through the leaf level of the emp- 
tying and tilling trees of components C; and Ci+/, as depicted in 
Fig. 3. In each step of the rolling merge, the record versions coming 
from the emptying trees are inspected. If a record version of the 
emptying tree is younger than the migration time m/, it is moved to 
the tilling tree of C/. The cursor of the emptying tree of C/ is ad- 
vanced to the next record version. If it is decided to migrate the re- 
cord version, the version is compared, based on its key and time- 
stamp, with the next record version of the emptying tree of C/+/ 
The smallest of both record versions is moved to the filling tree of 
C/+/ and the corresponding cursor is advanced. 

Each time the cursor advances past the last record version of a 
multi-block, the next multi-block is read from disk by performing a 
multi-block I/O. The emptied multi-block is returned to free-space 
management. When a multi-block buffer of a tilling tree becomes 
full, a multi-block I/O is issued to write it to disk. A new multi- 
block is requested from free-space management. So free blocks are 
dynamically transferred within and, if possible, also among com- 
ponents. The entire roiling merge process terminates when both 
emptying trees become empty. 

Using multi-block I/O significantly reduces operating system 
overhead, as less I/O operations are issued, and also reduces disk 
overhead in terms of seeks and rotational delays. Even with modem 
disks using track read-ahead and caches for both reads and writes, 
the benefit of multi-block I/O is significant. We have measured a 
speedup of 2 for LHAM when using multi-block I/OS of four 
blocks per I/O operation in our system (see Section 6). 

Rolling merges have to be synchronized when they operate on 
the same component in parallel. This is the most complex situation 
in LHAM but very common, as emptying a component usually 
takes a long time and it must be possible to migrate data into it in 
parallel. Instead of creating different sets of emptying and filling 
trees, two rolling merges share a tree in the jointly accessed compo- 

nent. The tree chosen depends on which of the rolling merges was 
first in accessing the shared component. Figure 4 shows both pos- 
sible situations. In Fig. 4a, the rolling merge RMi.//i was first, in 
Fig. 4b, R/&+/ was first and has later been joined by RMi-//i. The 
shared trees are indicated in the figure by the larger boxes. They are 
used as both filling and emptying trees. 

A problem arises if the cursors of both rolling merges point to the 
same record version. This means that the shared tree became 
empty. In this case, the rolling merge that empties the shared tree 
has to wait for the other rolling merge to till the tree with some re- 
cord versions again. Assume, hY4///+/ waits for RMi.//i, On aver- 
age, R/V&/+/ has to go through r records in C/+ / before it consumes 
a record in Ci. R/V/-//i is much faster in producing new records for 
C/, as C/-/ is smaller than Ci again by a factor of r. Hence, the as- 
sumed blocking of R/V///+/ by RM/-/// rarely occurs. However, the 
opposite situation, i.e. RMi-/// waits for RMi/i+/, is highly likely to 
occur. It is depicted in Fig. 4b. Assume that the shared tree becomes 
empty. In order not to block R/V.//i until l&V//i+/ produces new re- 
cords, we allow RMi-/// to puss RMi/i+/ . The goal of passing is to 
change trees between RMi.//i and RMi//+/ until we have a situation 
as shown in Fig. 4a, allowing both rolling merges to continue. 
Without passing, both rolling merges would continue at the same 
speed, which is not acceptable for RM/-///. 

Passing is implemented by logically exchanging the trees be- 
tween rolling merges as shown in Fig. 5. All trees in components 
C/-/ and C/+/ remain unaffected by passing. In the following, we 
discuss the passing process on a conceptual level. We start in the 
upper left part of Fig. 5 with the shared tree being empty, as this trig- 
gers passing. We then virtually delete the empty shared tree and 
consider the roles of the remaining two ones. The emptying tree 
now serves as an emptying tree for both rolling merges. The same is 
true for the filling tree. This is depicted in the upper right part of Fig. 
5. Our goal was to let RM/-/// continue without waiting for new re- 
cords from RMi//+/. This is possible now as the emptying tree of 
h%I.//i is non-empty. But records moved between the emptying 
and the filling tree in C/ by RM/. /// have to be accessed by RMi/+ / 
for possible migration later. Hence, we have to introduce a new fill- 
ing tree for RMi_///, which is used as an emptying tree by RMi/i+/ 

Filling trees (written to disk) Emptying trees (read from disk) 

Write cursor Read cursor 

Fig. 3: Rolling Merge in LHAM 
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filling i-l/i emptyingi.lji 

Fig. 4a: RMi/i+l Joining RMi.l/i Fig. 4b: RMi.l/i Joining RMi/i+I 

RMi/i+/ keeps its old filling tree. This is shown in the lower part of 
Fig. 5. We now have exactly the same situation as shown in Fig. 4a. 
RMi.//i can continue without waiting for new records from RMi/i+/ 

in terms of the records they store and in terms of their time bound- 
aries. For them, concurrency control and recovery are not required. 

4.3 Execution of Queries 

All queries are first split into subqueries according to the compo- 
nents that need to be accessed. Each subquery is implemented by a 
separate thread (see again Fig. 2). In principle, all subqueries can be 
executed in parallel. This scheme would have the best response 
time, but may execute some subqueries unnecessarily. Consider for 
example a query which retrieves the most recent version of a record 
with a given key. It is possible that this version has already been mi- 
grated to the last (disk) component. In this case, all (disk) compo- 
nents have to be accessed to find the most recent version of the re- 
cord. However, recent record versions will most likely be found in 
recent components. So accessing only the main memory compo- 
nent C, could be sufficient in many cases. Hence, for overall 
throughput it is best to execute the subqueries sequentially and stop 
further execution of subqueries as soon as the query result is com- 
plete. The performance results presented in section 6 are obtained 
based on this execution strategy. 

A concurrent execution of inserts and queries may cause rolling 
merges and queries to access a component at the same time. Our 
approach to ensure good query performance is to prioritize disk ac- 
cesses of queries over disk accesses by rolling merges. Rolling 
merges can be suspended whenever they finish the processing of a 
multi-block of the emptying tree of the destination component, 
providing a line disk-scheduling granule. 

5 Concurrency Control and Recovery 
Concurrency control and recovery issues in LHAM depend on the 
type of component involved. The main memory component Co, the 
disk components Cl to Ck, and the archive components Ck+/ to C,, 
have different requirements. For component Co, inserts have to be 
made atomic and durable, and inserts have to be synchronized with 
queries. For the other components, we do not have to deal with in- 
sertions of new data, but only with the migration of existing data, 
which makes concurrency control and recovery easier. Except for 
the first archive component Ck+, , all archive components are static 

5.1 Concurrency Control 
We assume transactional predicate locking on key ranges and time 
ranges on top of LHAM, possibly using advanced low-overhead 
implementation tricks [GR93, Moh96, Lom93, KMH97]. Hence, 
concurrency control inside LHAM only has to guarantee consistent 
access to records (i.e., short-duration locking or “latching”). This 
includes records under migration between components. We discuss 
concurrency control issues for each type of component separately. 
(I) Main memory component CO: Because no I/O is taking 

place when accessing Co, there is little need for sophisticated 
concurrency control protocols. So standard locking proto- 
cols for the index structure used in Co can be employed, e.g. 
tree-locking protocols when Co is organized as a tree [GR93, 
Moh96, Lom93]. 

(2) Disk components Cl to Ck: Synchronization issues among 
different rolling merges that access a common disk compo- 
nent have already been discussed in Section 4.2. The only 
problem left is to synchronize queries with concurrent roll- 
ing merges. Interleaved executions of rolling merges and 
queries are mandatory for achieving short query response 
times. A query may have to access between one and three 
index structures (B+-trees in our case) inside a single compo- 
nent. As discussed in Section 4.2, these index structures are 
emptied and filled in a given order according to the records’ 
keys and timestamps. This dictates an order for accessing the 
index structures by queries. Queries have to look up empty- 
ing trees before filling trees. Records under migration are not 
deleted from emptying trees before they have been migrated 
into the corresponding filling tree. This guarantees that no 
records are missed by the query. Short term latches are suff% 
cient to protect multi-blocks that are currently filled by a roll- 
ing merge from access by queries. Queries do not have to 
wait for these multi-blocks to become available, they can 
safely skip them as they have already read the records stored 
there while looking up the corresponding emptying tree. The 
only drawback of this highly concurrent scheme is that a re- 
cord may be read twice by the same query, namely in both the 

c flllingi.l/i emptylngi.i,i c tillingi.l/i x emptyingi.l/i G-l 

Fig. 5: RMi.l/i Passing RMi/i+l 
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emptying and the tilling tree. However, this should occur 
very infrequently, and such duplicates can easily be elimi- 
nated from the query result. 

As discussed in Section 4.3, queries start with the most re- 
cent component that could possibly hold a query match and 
then continue accessing older components. During query ex- 
ecution, time boundaries of components may change as re- 
cords migrate to older components. We have to make sure 
that no query matches are missed because of a concurrent 
change of boundaries (i.e., all components containing pos- 
sible matches are indeed looked up). A change of the bound- 
aries of the most recent component accessed by a query may 
cause this component to not intersect the query timerange 
anymore. This will not affect the correctness of the query re- 
suit, however. On the other hand, a change of the boundaries 
of the oldest component to be looked up (as determined at 
query start time) may cause more components to intersect 
with the query time range. Hence, the oldest component that 
the query needs to access must be determined dynamically 
during query execution. Short-term latches on the corre- 
sponding data structure in the global LHAM directory are 
sufficient to correctly cope with these issues. 

(3) Archive components Ck+l to C,,: Records are not migrated 
between archive components. Instead, the archive grows by 
creating a new archive component. In terms of concurrency 
control, an archive component under creation is treated like a 
disk component. All other archive components are static in 
terms of their records as well as their time boundaries; so no 
concurrency control is necessary here. Dropping an archive 
component causes a change in the global LHAM directory, 
again protected by a short-term latch. 

5.2 Recovery 

Similar to the discussion of concurrency control above, we distin- 
guish between the main memory component, the disk components, 
and the archive components. We restrict ourselves to crash recov- 
ery (i.e., system failures); media recovery is orthogonal to LHAM. 
In general, we need to log all changes to the global LHAM directo- 
ry that are made whenever a component’s time boundaries are 
changed after finishing a rolling merge. In addition, as we discuss 
below, logging is necessary only for inserts into the main memory 
component Co. 

(I) Main memory component Co: All newly inserted records 
are subject to conventional logging, as employed by virtual- 
ly all database systems. As records in Co are never written to 
disk before they are migrated to the first disk component, Co 
has to be completely reconstructed during recovery. As Co 
only consists of the most recent records, they will be found in 
successive order on the log file, resulting in small recon- 
struction times. If necessary (e.g., when CO is exceptionally 
large), the reconstruction time could be further reduced by 
keeping a disk-resident backup file for Co, and lazily writing 
CO blocks to that file whenever the disk is idle (i.e., using a 
standard “write-behind” demon). Then standard bookkeep- 
ing techniques (based on LSNs and a “dirty page list”) 
[GR93] can be used to truncate the log and minimize the Co 
recovery time. 

After a record has been migrated to component C/, it must 
no longer be considered for Co recovery. This is achieved by 
looking up the most recent record in component Cl before 
the Co recovery is started. Only younger records have to be 
considered for reconstructing Co. Even if the system crashed 
while a rolling merge from Co to C’/ was performed, this ap- 
proach can be used. In this case, the most recent record in the 
filling tree of Cl is used to determine the oldest record that 

has to be reinserted into Co during recovery. During normal 
operation, the Co log file can be periodically truncated using 
the same approach. 

(2) Disk components C/ to Ck: No logging is necessary for mi- 
grating records during a rolling merge. Only the creation of 
emptying and filling trees, the passing of rolling merges as 
discussed in Section 4.2, the deletion of trees, and changes to 
time boundaries of components have to be logged. 

In order to not lose records that were being migrated at the 
time of a crash, records are not physically deleted from emp- 
tying trees (i.e., their underlying blocks are not released back 
to the free space management) before they have been mi- 
grated into the corresponding filling tree and their newly al- 
located blocks are successfully written to disk. So we use a 
careful replacement technique here [GR93] that allows us to 
correctly recover without having to make a migration step an 
atomic event. As a consequence, reconstructing the filling 
and emptying trees during warmstart may create redundant 
records that will then be present in an emptying and in a fill- 
ing tree. The number of such redundant records is limited by 
the size of a multi-block and thus negligible, as only records 
of a single multi-block per tree and rolling merge have to be 
reconstructed. Hence, the duplicates can easily be deleted af- 
ter the trees have been recovered. At the same time, looking 
up the oldest records of the filling trees and the youngest re- 
cords of the emptying trees allows reconstructing the rolling 
merge cursors as shown in Fig. 3, and restarting the rolling 
merges after the component structures have been reestab- 
lished. 

(3) Archive components Ck+l to C,,: Except for the first ar- 
chive component Ck+/, archive components are not subject 
to recovery. Analogously to concurrency control, the first ar- 
chive component is treated like a disk component. 

In summary, concurrency control and recovery in LHAM are rela- 
tively straightforward and very efficient. We either use convention- 
al algorithms, e.g., for logging incoming data, or very simple 
schemes, e.g. for synchronizing queries and rolling merges. In par- 
ticular, migrating data by rolling merges does not require migrated 
data to be logged. Only changes to the LHAM directory require 
additional logging. This causes negligible overhead. 

6 Performance Measurements 
In this section, we present experimental performance results from 
our implementation of LHAM. The results are compared with the 
analytical expectations for the insert costs. In addition, we compare 
LHAM to an implementation of the TSB-tree (see Appendix A for a 
brief review of the TSB-tree), considering both insert and query per- 
formance. Note that all experimental results are obtained from 
complete and fully functional implementations of both LHAM and 
the TSB-tree, as opposed to simulation experiments. Therefore, we 
are able to compare actual throughput numbers based on real-time 
measurements. 

6.1 Experimental Results 

Our testbed consists of a load driver that generates synthetic data 
and queries, and the actual implementations of LHAM and the 
TSB-tree. All measurements were run on a Sun Enterprise Server 
4000 under Solaris 2.5 I. CPU utilization was generally very low, 
indicating a low CPU-overhead of LHAM. LHAM did not nearly 
utilize the full capacity of a single processor of the SMP machine. 
Thus, we restrict ourselves to reporting l/O and throughput figures. 
Our experiments consist of two parts. In the first part, we investi- 
gate the insert performance by creating and populating databases 
with different parameter settings. Migrations to archive compo- 



nents were not considered. As discussed in the analysis of LHAM’s throughput of LHAM was always more than 6 times higher than the 
insert costs, the effect of archive components on the insert throughput of the TSB-tree. The benefits of using even larger mul- 
performance in terms of redundancy is expected to be negligible. In ti-blocks were small. Additional experiments showed that this is 
the second part of our experiments, we measure the performance of due to limitations in the operating system, which probably splits 
queries against the databases created in the first part. larger I/OS into multiple requests. 

6.1.1 Performance of Inserts 

In all experiments, we have inserted 400,000 record versions. The 
size of record versions was uniformly distributed between 100 By- 
tes and 500 Bytes. This results in I20MB of raw data. The size of a 
disk block was 8KB in all experiments, for LHAM and the TSB- 
tree. We used an LHAM structure of 3 components with a capacity 
ratio of 4; component capacities were 8MB for Co, 32MB for Cl, 
and l28MB for C,. Both disk components resided on the same 
physical disk. We used a buffer of IMB for blocks read in a multi- 
block I/O and a buffer of I MB for single blocks. This results in a 
total of I OMB main memory for LHAM. For fair comparison, the 
TSB-tree measurements were performed with the same total 
amount of main memory as a node buffer. For LHAM, we have var- 
ied the number of disk blocks written per multi-block I/O, in order 
to measure the impact of multi-block I/O on the insert performance. 

The block accesses required by LHAM and the TSB-tree match 
our analytical expectations very well. To store I20 MB of data, we 
need at least 15,000 blocks of 8KB. Using formula (5) and disre- 
garding the terms for the migration to archive media, we expect 
LHAM to need 180,000 block accesses for inserting the data. In 
reality, LHAM needs 185,905 block accesses. To further confirm 
this behavior, we have run additional experiments with a larger 
number of smaller components, leading to more rolling merges. 
These experiments have reconfirmed our findings and are omitted 
for lack of space. The TSB-tree was expected to need about 
800,000 block accesses for inserting 400,000 record versions if no 
node buffer were used. In reality, the experiments show that with IO 
MB of buffer for l20MB of data, we need about 600.000 block ac- 
cesses, depending on the ratio between logical inserts and updates. 

We are fully aware of the fact that this data volume merely 
constitutes a “toy database”. Given the limitations of an academic 
research lab, we wanted to ensure that all experiments were run 
with dedicated resources in a controlled, essentially reproducible 
manner. However, our experiments allow us to draw conclusions 
on the average-case behavior of both index structures investigated. 
From a practical point of view, these results are more important 
than an analytic worst-case analysis, which is independent of the 
parameters and limitations of actual experiments, but provides 
only limited insights into the performance of real-life applications. 

The structure of the TSB-tree depends on the ratio between log- 
ical insert and update operations. All experiments start with 50,000 
record versions and a logical insert/update ratio of 90% to initialize 
the database. For the remaining 350,000 record versions, the log- 
ical insert/update ratio is varied from 10% inserts up to 90% in- 
serts. Keys were uniformly distributed over a given interval. Log- 
ical deletions were not considered. The load driver generated re- 
cord versions for insertion as fast as possible; so the measured 
throughput was indeed limited only by the performance of the in- 
dex structure. The most important performance metrics reported 
below are the throughput in terms of inserted record versions per 
second, and the average number of block accesses per inserted re- 
cord version. 

LHAM consumed significantly less space than the TSB-tree. 
The total capacity of the three LHAM components was 168MB, but 
only 122MB were actually used. This is the benefit of the almost 
perfect space utilization by LHAM, based on building the B+-trees 
inside the components in a bulk manner without the need for split- 
ting leaf nodes. The TSB-tree, on the other hand, consumed be- 
tween 275 MB and 3 I3 MB, again depending on the logical insert/ 
update ratio. The space overhead of the TSB-tree is caused by re- 
dundant record versions and by a lower node utilization due to node 
splits, similar to conventional B+-trees. Note however that keeping 
redundant record versions is an inherent property of the TSB-tree, 
which is necessary for its good query performance, particularly its 
logarithmic worst case eficiency. 

6.1.2 Queries 

Table I lists these values for both LHAM and the TSB-tree, plus 
other detailed results. The table shows that LHAM outperforms the 
TSB-tree in every respect. As the structure of LHAM is indepen- 
dent of the logical insert/update ratio, we do not distinguish differ- 
ent ratios for LHAM. Using 8 blocks per multi-block I/O, the 

We have investigated the performance of four different types of 
queries: 
(1) <key, timepoint>, 

(2) <key range, timepoint>, 

(3) <key, time range>. and 
(4) <key range, time range>. 
For <key, timepoint> queries we have further distinguished be- 
tween queries with timepoint = now (i.e., the current time) and 
queries with a randomly chosen timepoint. We used the databases 
as described in the previous sections, i.e., 400,000 record versions 
with different logical insert/update ratios. In contrast to the insert 
performance, the query performance of LHAM is affected by the 
logical insert/update ratio. We give results for the number of block 
accesses required per query and the (single-user) throughput in 
queries per second. 

LHAM 

Throughput (Inserts/see) I i/4/8 block(s) per I/O: 
146.8 / 304.9 / 348.4 

Total number of I/OS l/4/8 block(s) per I/O: 
185905146983123663 

#Blocks Read/Written 84920 / I00985 

#Blocks Accessed oer Insert 1 0.46 

Total Database Size (MB) 

Component Sizes (MB) 

122 

Co/CI/C$ 1/21/101 

Table I: II 
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Queries of Type <key, timepoint> 

Fig. 6a shows the average number of block accesses for a query 
that searches the current version of a given key, plotted against the 
ratio of logical inserts vs. updates during the creation of the data- 
base. Because the TSB-tree can access a given version by reading a 
single leaf node only, it requires one block access for a query of this 
type. With the given buffer, index nodes can almost always be 
found in the buffer. LHAM needs more block accesses here, as no 
redundancy is used. If the current record version is found in compo- 
nent Co, no I/O is required. If it is found in Cl, a single block access 
is sufftcient. If a record has not been updated for a long time, it will 
be stored in component CJ. This requires a lookup of Co, Cl, and C2 
and requires two block accesses. For a high logical insert/update ra- 
tio, this will often be the case. Note, however, that we expect a typi- 
cal temporal database application to have a rather low logical in- 
sert/update ratio, say 10 to 20 percent, resulting in relatively many 
versions per record. Also note that the absolute performance is 
good anyway; so this query type is not a major performance con- 
cern. Fig. 6b shows the (single-user) throughput achieved by 
LHAM and the TSB-tree for this type of query. The curve in Fig. 6b 
is similar to the curve in Fig. 6a, as LHAM cannot benefit from 
multi-block I/O for this type of query. 
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The situation changes when we consider arbitrary timepoints 
instead of solely the current time. Fig. 7a and Fig. 7b show again the 
block accesses required, and the throughput for <key timepoint> 
queries, but the timepoint is now uniformly distributed over the in- 
terval from the oldest record version in the database to now. LHAM 
now performs almost as good as the TSB-tree, because for older 
data, LHAM often needs to access only component CJ. 
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Queries of Type <key range, timepoint> 

The performance of <key range, timepoint> queries with a key 
range of 10% of all keys and a timepoint of now is shown in Fig. 8a 
and Fig. 8b. Varying the width of the key range has shown similar 
results, and choosing a random timepoint rather than now has 
yielded even better results for LHAM. For lack of space, we limit 
the presentation to one special setting. The results of LHAM are in- 
dependent of the logical insert/update ratio. This is the case be- 
cause LHAM has to access all blocks with keys in the given range 
in all (non-archive) components. Note that the required block ac- 
cesses by LHAM do not depend on the number of components, but 
only on the total size of the (non-archive part of the) database. 
LHAM benefits from multi-block I/O, as shown by the different 
throughput rates for different numbers of blocks per multi-block 
I/O in Fig 8b. The performance of the TSB-tree highly depends on 
the database chosen. When the logical insert/update ratio is low, the 
current database is small and the number of required block accesses 
is low. The higher the logical insert/update ratio, the larger the cur- 
rent database and the more block accesses are needed. Fig. 8b 
shows that even with a small current database, the throughput of the 
TSB-tree is lower than the throughput of LHAM if multi-block I/O 
with 8 blocks per I/O is used. Note again that the TSB-tree is inher- 
ently unable to exploit multi-block I/O in the same manner due to 
the absence of clustering. When the current database is large, 
LHAM outperforms the TSB-tree even without multi-block I/O. 
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Queries of 5pe <key, time range> 

Fig. 9a and Fig. 9b show the performance of <key, time range> 
queries with a time range of 50%. Varying the width of the time 
range has led to similar results, which are omitted here for lack of 
space. LHAM outperforms the TSB-tree in terms of block accesses 
per query as well as throughput for all database settings. As LHAM 
stores all record versions with the same key in physical proximity, 
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only one or two block accesses are need for each query. In general, 
LHAM benefits from multi-block I/O for this type of query. How- 
ever, with only one or two blocks read per query for the databases in 
our experiments, using multi-block I/O would waste some disk 
bandwidth. Keeping statistics about the data would enable us to 
make appropriate run-time decisions on single-block vs. multi- 
block I/OS. 
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Queries of Type <key range, time range> 

Finally, we consider the performance of <key range, time 
range> queries. Fig. 1 Oa and Fig. 1 Ob show the results for a key 
range of 10% and a time range of 10%. The results are similar to 
<ke,y range, timestamp> queries as shown in Fig. 8a and Fig. 8a. 
Agam, similar results have been obtained for other settings of the 
range widths. 
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6.1.3 Multi-User Performance 

We have also performed experiments with queries and inserts 
(and rolling merges), running concurrently. By prioritizing queries 
over rolling merges, query performance remained almost unaf- 
fected by concurrent rolling merges. The insert throughput, on the 
other hand, is adversely affected only when the system becomes 
overloaded. An overload occurs if the data rate of incoming data 

becomes higher than the data rate that can be sustained by the roll- 
ing merges in the presence of concurrent queries. Thus, the ex- 
pected query load must be taken into account when configuring the 
system. Insert costs as analyzed in Section 3.3 determine the I/O 
bandwidth, i.e., the number of disks, necessary to sustain the insert 
load. Additional disks are required for the the query load. 

In our current implementation, rolling merges are initiated when 
the amount of data stored in a component reaches a fixed threshold. 
In a multi-user environment, it would be beneficial to invoke roll- 
ing merge multi-block I/OS whenever the disk would be idle, even 
if the threshold is not yet reached. 

7 Conclusions 
Our experimental results based on a full-fledged implementation 

have demonstrated that LHAM is a highly efficient index structure 
for transaction-time temporal data. LHAM specifically aims to 
support high insertion rates beyond what a B+-tree-like structure 
such as the TSB-tree can sustain, while also being competitive in 
terms of query performance. In contrast to the TSB-tree, LHAM 
does not have good worst-case efftciency bounds. However, our 
experiments have shown that this is not an issue under realistic, 
“typical-case” workloads. LHAM’s average-case performance is 
consistently good. A number of extensions of LHAM require fur- 
ther studies that we are working on: 

First, redundancy between disk components can be used to 
improve query performance for those queries which would 
otherwise have to search too many components. Depending 
on the expected query load for a given period of time, the re- 
dundancy option for a component can even be turned on and 
off dynamically each time a rolling merge migrates data out 
of it. The information about the resulting redundancy which 
can be exploited by queries can easily be kept in the global 
LHAM dictionary. 

Second, the current implementation of the global LHAM 
dictionary only keeps track of the time partitioning in terms 
of the components’ low and high time boundaries. This can 
be generalized to allow some form of key-partitioning also. 
Such a scheme requires a multi-dimensional global directory 
structure -which should still be very small- as well as rolling 
merge processes with more than two source trees and more 
than two destination trees. 

Finally, we have so far considered only Bf-trees as index 
structures for the data within an LHAM component. Using 
specific index structures for temporal data here (e.g., the 
TSB-tree) could further enhance query performance. How- 
ever, whatever index structure is chosen must provide a 
means for bottom-up bulk loading of record versions during 
a rolling merge, in order to achieve the “batch-processing” 
benefit and the gain from multi-block I/O in the merge pro- 
cess. 
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Appendix A: Brief Review of the TSB-tree 
The TSB-tree is a B+-tree-like index structure for transaction- 

time databases [LS89, LS90]. It indexes record versions in two di- 
mensions; one dimension is given by the conventional record key, 
the other by the timestamp of the record version. Its goal is to pro- 
vide good worst-case efftciency for exact match aueries as well as 
range queries in both time dimension and key dimension. 

Nodes and Node Splits 
Basically, each leaf node covers a two-dimensional interval, i.e., 

a “rectangle” in the data space, whose upper bounds are initially 
“open” (i.e., are interpreted as infinity) in both dimensions. A node 
is represented by a pair of key and timestamp, defining the lower 
left comer of the rectangle that it covers. The area covered by a rec- 
tangle becomes bounded if there exists another leaf node with a 
higher key or time value as its lower left comer. A leaf node con- 
tains all record versions that have a (key, timestamp) coordinate 
covered by its rectangle. Two types of nodes are distinguished: cur- 
rent nodes and historical nodes. Current nodes store current data, 
i.e., data that is valid at the current time. All other nodes are denoted 
historical. 

As all data is inserted into current nodes, only current nodes are 
subject to splits. Current nodes can be split either by key or by time. 
A record version is moved to the newly created node if its (key, 
timestamp) coordinates fall into the corresponding new rectangle. 
The split dimension, i.e., whether a split is performed by key or 
time, is determined by a split policy. We have used the time-&last- 
update (TLU) policy for all our experiments, which does a split by 
time unless there is no historical data in the node, and performs an 
additional split by key if a node contains two thirds or more of cur- 
rent data. The split time chosen for a split by time is the time of the 
last update among all record versions in the node. The TLU policy 
achieves a good tradeoff between space consumption, i.e. the de- 
gree of redundancy of the TSB-tree, and query performance. This 
is shown in [LS90] and has been confirmed by our own experi- 
ments. 

A non-leaf index node stores a set of index terms. An index term 
is a triple consisting of a key, a timestamp, and a pointer to another 
index node or a leaf node. Like the open rectangle defined for each 
leaf node, an index term also covers an open rectangle, defined by 
key and timestamp as the lower left comer. Other index terms with 
higher key or timestamp bound this area. Index node splitting is 
similar to leaf node splitting. We have again adopted the TLU split 
policy. For the subtle differences concerning restrictions on the 
split value for time splits, the reader is referred to [LS89]. 

Searching 
Searching in TSB-trees can be viewed as an extension to the 

search procedure for B+-trees. Assume we are searching for a re- 
cord version (k, t) with key k and timestamp t. At each level of the 
tree, the algorithm first discards all index terms with a timestamp 
greater than t. Within the remaining terms it follows the index term 
with the maximum key value being smaller than or equal to key k. 
This process recursively descends in the tree and terminates when a 
leaf node is found. A similar algorithm is used for range queries. 
Instead of following a single index term while descending the tree, 
a set of index terms to follow is determined. Because of the redun- 
dancy employed in the TSB-tree, the worst case performance of 
queries is logarithmic in the number of record versions stored (in- 
cluding the redundant ones). There is no guaranteed clustering, 
however, neither in key nor in time dimension. 
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