
PUBLIC: A Decision Tree Classifier that Integrates
Building and Pruning

Rajeev Rastogi Kyuseok Shim

Bell Laboratories
Murray Hill, NJ 07974

rastogi@bell-labs.com shim@bell-labs.com

Abstract

Classification is an important problem in
data mining. Given a database of records,
each with a class label, a classifier gener-
ates a concise and meaningful description
for each class that can be used to classify
subsequent records. A number of popular
classifiers construct decision trees to gen-
erate class models. These classifiers first
build a decision tree and then prune sub-
trees from the decision tree in a subsequent
pruning phase to improve accuracy and pre-
vent “overfitting”.

In this paper, we propose PUBLIC, an im-
proved decision tree classifier that integrates
the second “pruning” phase with the initial
“building” phase. In PUBLIC, a node is
not expanded during the building phase, if
it is determined that it will be pruned dur-
ing the subsequent pruning phase. In or-
der to make this determination for a node,
before it is expanded, PUBLIC computes a
lower bound on the minimum cost subtree
rooted at the node. This estima.te is then
used by PUBLIC to identify the nodes that
are certain to be pruned, and for such nodes,
not expend effort on splitting them. Ex-
perimental results with real-life as well as
synthetic data sets demonstrate the effec-
tiveness of PUBLIC’s integrated approach
which has the ability to deliver substantial
performance improvements.

Permission to copy without fee all or part of this material is
gmnted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice is given that copying is by permission of the Very Large
Data Base Endowment. ‘To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

1 Introduction

Classification is an important problem in data min-
ing. It has been studied extensively by the machine
learning community as a possible solution to the
knowledge acquisition or knowledge extraction prob-
lem. The input to a classifier is a training set of
records, each of which is tagged with a class la-
bel. A set of attribute values defines each record.
Attributes with discrete domains are referred to as
categorical, while those with ordered domains are
referred to as nzlmetic. The goal is to induce a
model or description for each class in terms of the
attributes. The model is then used to classify future
records whose classes are unknown.

Figure l(a) shows an example training set for a
loan approval application. There is a single record
corresponding to each loan request, each of which
is tagged with one of two labels - accept if the loan
request is approved or reject if the loan request is de-
nied. Each record is characterized by two attributes,
salary and education, the former numeric and the
latter categorical with domain {high-school, under-
graduate, graduate}. The attributes denote the in-
come and the education level of the loan applicant.
The goal of the classifier is to deduce, from the train-
ing data, concise and meaningful conditions involv-
ing salary and education under which a loan request
is accepted or rejected.

Classification has been successfully applied to sev-
eral areas like medical diagnosis, weather predic-
tion, credit approval, customer segmentation and
fraud detection. Among the techniques developed
for classification, popular ones include bayesian
classification[CKS+@], neural networks[Rip96], ge-
netic algorithms[Gol89] and decision trees[BFOS84].
In this paper, however, we focus on decision trees.
There are several reasons for this. First, compared
to a neural network or a bayesian classifier, a de-
cision tree is easily interpreted/comprehended by

404

1 salaru I education I label 1

education in [graduate]

accept

Figure 1 Decision Trees

(b) (4

humans[BFOS84]. Second, while training neural
networks can take large amounts of time and thou-
sands of iterations, inducing decision trees is effi-
cient and is thus suitable for large training sets.
Also, decision tree generation algorithms do not re-
quire additional information besides that already
contained in the training data (e.g., domain knowl-
edge or prior knowledge of distributions on the data
or classes)[FaySl]. Finally, as shown in [MST94], de-
cision trees display good classification accuracy com-
pared to other techniques.

Figure l(b) is a decision tree for the training data
in Figure l(a). Each internal node of the decision
tree has a test involving an attribute, and an outgo-
ing branch for each possible outcome. Each leaf has
an associated class. In order to classify new records
using a decision tree, beginning with the root node,
successive internal nodes are visited until a leaf is
reached. At each internal node, the test for the node
is applied to the record. The outcome of the test at
an internal node determines the branch traversed,
and the next node visited. The class for the record is
simply the class of the final leaf node. Thus, the con-
junction of all the conditions for the branches from
the root to a leaf constitute one of the conditions for
the class associated with the leaf. For instance, the
decision tree in Figure l(b) approves a loan request
only if salary > 20,000 or education E {graduate};
otherwise, it rejects the loan application.

A number of algorithms for inducing decision
trees have been proposed over the years (e.g.,
CLS [HMS66], ID3 [Qui86], C4.5 [Qui93], CART
[BFOS84], SLIQ [MAR96], SPRINT [SAM96]).
Most of the algorithms have two distinct phases,
a building or growing phase followed by a pruning
phase. In the building phase, the training data set
is recursively partitioned until all the records in a
partition have the same class. For every partition, a
new node is added to the decision tree; initially, the
tree has a single root node for the entire data set.
For a set of records in a partition P, a test criterion
T for further partitioning the set into PI,. . . , Pm
is first determined. New nodes for PI,. . . , Pm are
created and these are added to the decision tree as

children of the node for P. Also, the node for P is
labeled with test T, and partitions PI, . . . , P,,, are
then recursively partitioned. A partition in which
all the records have identical class labels is not par-
titioned further, and the leaf corresponding to it is
labeled with the class.

The building phase constructs a perfect tree that
accurately classifies every record from the training
set. However, one often achieves greater accuracy
in the classification of new objects by using an im-
perfect, smaller decision tree rather than one which
perfectly classifies all known records [QR89]. The
reason is that a decision tree which is perfect for the
known records may be overly sensitive to statistical
irregularities and idiosyncrasies of the training set.
Thus, most algorithms perform a pruning phase af-
ter the building phase in which nodes are iteratively
pruned to prevent “overfitting” and to obtain a tree
with higher accuracy.

An important class of pruning algorithms are
those based on the Minimum Description Length
(MDL) principle [QR89, F193, MRA95]. Consider
the problem of communicating the classes for a set of
records. Since a decision tree partitions the records
with a goal of separating those with similar class la-
bels, it can serve as an efficient means for encoding
the classes of records. Thus, the “best” decision tree
can then be considered to be the one that can com-
municate the classes of the records with the “fewest”
number of bits. The cost (in bits) of communicat-
ing classes using a decision tree comprises of (1) the
bits to encode the structure of the tree itself, and (2)
the number of bits needed to encode the classes of
records in each leaf of the tree. We thus need to find
the tree for which the above cost is minimized. This
can be achieved as follows. A subtree S is pruned
if the cost of directly encoding the records in S is
no more than the cost of encoding the subtree plus
the cost of the records in each leaf of the subtree. In
[MRA95], it is shown that MDL pruning (1) leads
to accurate trees for a wide range of data sets, (2)
produces trees that are significantly smaller in size,
and (3) is computationally efficient and does not use
a separate data set for pruning. For the above rea-

405 ,

sons, the pruning algorithms developed in this paper
employ MDL pruning.

Generating the decision tree in two distinct
phases could result in a substantial amount of
wasted effort since an entire subtree constructed in
the first phase may later be pruned in the next phase.
During the building phase, before splitting a node,
if it can be concluded that the node will be pruned
from the tree during the subsequent pruning phase,
then we could avoid building the subtree rooted at
the node. Consequently, since building a subtree
usually requires repeated scans to be performed over
the data, significant reductions in I/O and improve-
ments in performance can be realized. In this pa-
per, we present PUBLIC (Pruning and BuiLding
Integrated in Classification), a decision tree classi-
fier that during the growing phase, first determines
if a node will be pruned during the following prun-
ing phase, and subsequently stops expanding such
nodes. Thus, PUBLIC integrates the pruning phase
into the building phase instead of performing them
one after the other. Furthermore, by only pruning
nodes that we know will definitely be pruned in the
pruning phase, we guarantee that the tree gener-
ated by PUBLIC’s integrated approach is exactly
the same as the tree that would be generated as a
result of executing the two phases separately, one
after another.

Determining, during the building phase, whether
a node will be pruned during the pruning phase is
problematic since the tree is only partially gener-
ated. Specifically, this requires us to estimate at
each leaf of the partial tree, based on the records con-
tained in the leaf, a lower bound on the cost of the
subtree rooted at the leaf. Furthermore, the better
(higher) this estimate, the more we can prune dur-
ing the building phase and consequently, the more
we can improve performance. We present several
algorithms for estimating the subtree cost - the al-
gorithms illustrate the trade-off between accuracy
of the estimate and the computation involved. Our
experimental results on real-life as well as synthetic
data sets demonstrate that PUBLIC’s integrated ap-
proach can result in substantial performance im-
provements compared to traditional classifiers.

The remainder of the paper is organized as fol-
lows. In Section 2, we survey existing work on de-
cision tree classifiers. Details of the building and
pruning phases of a traditional decision tree classifier
along the lines of SPRINT [SAM961 are presented in
Section 3. The PUBLIC algorithm as well as tech-
niques for estimating lower bounds on subtree costs
are described in sections 4 and 5. In Section 6, we
compare PUBLIC’s performance with that of a tra-
ditional decision tree classifier. Finally, in Section 7,
we offer concluding remarks.

2 Related Work

In this section, we provide a brief survey of re-
lated work on decision tree classifiers. The grow-
ing phase for the various decision tree generation
systems differ in the algorithm employed for select-
ing the test criterion T for partitioning a set of
records. CLS [HMS66], one of the earliest systems,
examines the solution space of all possible decision
trees to some fixed depth. It then chooses a test
that minimizes the cost of classifying a record. The
cost is made up of the cost of determining the fea-
ture values for testing as well as the cost of mis-
classification. ID3 [QuiSS] and C4.5 [Qui93] replace
the computationally expensive look-ahead scheme of
CLS with a simple information theory driven scheme
that selects a test that minimizes the information
entropy of the partitions (we discuss entropy fur-
ther in Section 3), while CART [BFOS84], SLIQ
[MAR961 and SPRINT [SAM961 select the test with
the lowest GIN1 index. Classifiers like C4.5 and
CART assume that the training data fits in mem-
ory. SLIQ and SPRINT, however, can handle large
training sets with several million records. SLIQ and
SPRINT achieve this by maintaining separate lists
for each attribute and pre-sorting the lists for nu-
meric attributes. We present a detailed description
of SPRINT, a state of the art classifier for large
databases, in Section 3.

In addition to MDL pruning described earlier,
there are two other broad classes of pruning al-
gorithms. The first includes algorithms like cost-
complexity pruning [Qui87] that first generate a se-
quence of trees obtained by successively pruning
non-leaf subtrees for whom the ratio of the reduc-
tion in misclassified objects due to the subtree and
the number of leaves in the subtree is minimum. A
second phase is then carried out in which separate
pruning data (distinct from the training data used to
grow the tree) is used to select the tree with the min-
imum error. In the absence of separate pruning data,
cross-validation can be used at the expense of a sub-
stantial increase in computation. The second class
of pruning algorithms, pessimistic pruning [Qui87],
do not require separate pruning data, and are com-
putationally inexpensive. Experiments have shown
that this pruning leads to trees that are “too” large
with high error rates.

The above-mentioned decision tree classifiers only
consider “guillotine-cut” type tests for numeric at-
tributes. Since these may result in very large
decision trees when attributes are correlated, in
[FMM96], the authors propose schemes that em-
ploy tests involving two (instead of one) numeric
attributes and consider partitions corresponding to
grid regions in the two-dimensional space. Re-
cently, in [GRG98], the authors propose Rainforest,

406

procedure buildTree(
split is binary.

1. Initialize root node using data set S
2. Initialize queue Q to contain root node Data Structures. Each node of the decision tree

3. while Q is not empty do { maintains a separate list for every attribute. Each

4. dequeue the first node N in Q attribute list contains a single entry for every record

5. if N is not pure { in the partition for the node. The attribute list entry

6. for each attribute A for a record contains three fields - the value for the

7. Evaluate splits on attribute A attribute in the record, the class label for the record

8. Use best split to split node N into Ni and Nz and the record identifier. Attribute lists for the root
node are constructed at the start using the input 9. Append Ni and Ns to Q

10. }
11. }

Figure 2: Building Algorithm

a framework for developing fast and scalable algo-
rithms for constructing decision trees that grace-
fully adapt to the amount of main memory avail-
able. In [FI93], the authors use the entropy mini-
mization heuristic and MDL principle for discretiz-
ing the range of a continuous-valued attribute into
multiple intervals.

data, while for other nodes, they are derived from
their parent’s attribute lists when the parent nodes
are split. Attribute lists for numeric attributes at
the root node are sorted initially and this sort order
is preserved for other nodes by the splitting proce-
dure. Also, at each node, a histogram is maintained
that captures the class distribution of the records at
the node. Thus, the initialization of the root node in
Step 1 of the build algorithm involves (1) construct-
ing the attribute lists, (2) sorting the attribute lists
for numeric attributes, and (3) constructing the his-
togram for the class distribution.

Note that PUBLIC’s integrated approach is dif-
ferent from that in [AGI+92] where a dynamic prun-
ing criterion based on pessimistic pruning is used
to stop expanding nodes during the growing phase.
The dynamic pruning scheme proposed in [AGI+92]
is ad-hoc and it does not guarantee that the result-
ing tree is the same as the tree that would be ob-
tained as a result of performing the pruning phase
after the completion of the building phase. This is
a major drawback and could adversely impact the
accuracy of the tree. For instance, in [AGI+92], if
successive expansions of a node and its children do
not result in acceptable error reduction, then further
expansions of its children are terminated.

Selecting Splitting Attribute. For a set of
records S, the entropy E(S) = - Cj pj logpj, where
pj is the relative frequency of class J in S. Thus, the
more homogeneous a set is with respect to the classes
of records in the set, the lower is its entropy. The
entropy of a split that divides S with n records into
sets Si with nl records and S’s with n2 records is
Jwl, S2) = BE(&) + %ZE(Sz). Consequently, the
split with the” least entropy best separates classes,
and is thus chosen as the best split for a node’.

3 Preliminaries

In this section, we present a more detailed descrip-
tion of the building and pruning phases of a deci-
sion tree classifier. The tree building phase is based
on SPRINT [SAM96], while the MDL pruning al-
gorithm employed for pruning the tree is along the
lines described in [QR89, MRA95].

To compute the best split point for a numeric at-
tribute, the (sorted) attribute list is scanned from
the beginning and for each split point, the class dis-
tribution in the two partitions is determined using
the class histogram for the node. The entropy for
each split point can thus be efficiently computed
since the lists are stored in a sorted order. For cat-
egorical attributes, the attribute list is scanned to
first construct a histogram containing the class dis-
tribution for each value of the attribute. This his-
togram is then utilized to compute the entropy for
each split point.

3.1 Tree building Phase

The overall algorithm for building a decision tree is
as shown in Figure 2. The tree is built breadth-first
by recursively partitioning the data until each parti-
tion is pure, that is, each partition contains records
belonging to the same class. The splitting condition
for partitioning the data is either of the form A < v
if A is a numeric attribute (v is a value in the do-
main of A) or A E V if A is a categorical attribute
(V is a set of values from A’s domain). Thus, each

Splitting Attribute Lists. Once the best split
for a node has been found, it is used to split the
attribute list for the splitting attribute amongst the
two child nodes. Each record identifier along with
information about the child node that it is assigned
to (left or right) is then inserted into a hash table.
The remaining attribute lists are then split using
the record identifier stored with each attribute list

‘In SPRINT, the GIN1 index is used instead of entropy to
compute the best split.

407

entry and the information in the hash table. Class
distribution histograms for the two child nodes are
also computed during this step.

3.2 Tree Pruning Phase

To prevent overfitting, the MDL principle [I&78,
Ris89] is applied to prune the tree built in the grow-
ing phase and make it more general. The MDL prin-
ciple states that the “best” tree is the one that can
be encoded using the fewest number of bits. Thus,
the challenge for the pruning phase is to find the sub-
tree of the tree that can be encoded with the least
number of bits.

In the following, we first present a scheme for
encoding decision trees. We then present a prun-
ing algorithm that, in the context of our encoding
scheme, finds the minimum cost subtree of the tree
constructed in the growing phase. In the remain-
der of the paper, we assume that a is the number of
attributes.

Cost of Encoding Data Records. Let a set S
contain n records each belonging to one of k classes,
ni being the number of records with class i. The
cost of encoding the classes for the n records [QR89]
is given by2

1% (n:k; ‘) +logn,!.?,,!
In the above equation, the first term is the number
of bits to specify the class distribution, that is, the
number of records with classes 1,. . . , k. The sec-
ond term is the number of bits required to encode
the class for each record once it is known that there
are ni records with class label i. In [MRA95], it is
pointed out that the above equation is not very ac-
curate when some of the ni are either close to zero or
close to n. Instead, they suggest using the following
equation from [KT81], which is what we adopt in
this paper for the cost C(S) of encoding the classes
for the records in set S.

C(S) = Cnilog~+~log~+log& (1)
i t

In Equation (l), the first term is simply n * E(S),
where E(S) is the entropy of the set S of records.
Also, since k < n, the sum of the last two terms in
Equation (1) is always non-negative. We utilize this
property later in the paper when computing a lower
bound on the cost of encoding the records in a leaf.

In SPRINT, the cost of encoding a set of data
records is assumed to be simply the number of
records that do not belong to the majority class for

2All logarithms in the paper are to the base 2.

the set. However, our experience with most real-life
data sets has been that using Equation (1) instead
results in more accurate trees. In PUBLIC, even
though we use Equation (1) as the cost for encod-
ing a set of records, PUBLIC’s pruning techniques
are also applicable if we were to use the approach
adopted in SPRINT.

Cost of Encoding Tree. The cost of encoding
the tree comprises of three separate costs:

1. The cost of encoding the structure of the tree.

2. The cost of encoding for each split, the attribute
and the value for the split.

3. The cost of encoding the classes of data records
in each leaf of the tree.

The structure of the tree can be encoded by using
a single bit in order to specify whether a node of the
tree is an internal node (1) or leaf (0). Thus, the bit
string 11000 encodes the tree in Figure l(b). Since
we are considering only binary decision trees, the
proposed encoding technique for representing trees
is nearly optimal [QR89].

The cost of encoding each split involves specify-
ing the attribute that is used to split the node and
the value for the attribute. The splitting attribute
can be encoded using log a bits (since there are a
attributes), while specifying the value depends on
whether the attribute is categorical or numeric. Let
v be the number of distinct values for the splitting
attribute in records at the node. If the splitting at-
tribute is numeric, then since there are v- 1 different
points at which the node can be split, log(v - 1) bits
are needed to encode the split point. On the other
hand, for a categorical attribute, there are 2” differ-
ent subsets of values of which the empty set and the
set containing all the values are not candidates for
splitting. Thus, the cost of the split is log(2” - 2).
For an internal node N, we denote the cost of de-
scribing the split by C,,rit(N).

Finally, the cost of encoding the data records in
each leaf is as described in Equation (1).

Pruning Algorithm. Now that we have a formu-
lation for the cost of a tree, we next turn our atten-
tion to computing the minimum cost subtree of the
tree constructed in the building phase. The simple
recursive algorithm in Figure 3 computes the min-
imum cost subtree rooted at an arbitrary node N
and returns its cost. Let S be the set of records as-
sociated with N. If N is a leaf, then the minimum
cost subtree rooted at N is simply N itself. Further-
more, the cost of the cheapest subtree rooted at N
is C(S) + 1 (we require 1 bit in order to specify that
the node is a leaf).

408

procedure computeCost&Prune(Node N):

1.

2.
3.
4.

5.
6.
7.

/* S is the set of data records for N “/
if N is a leaf return (C(S) + 1)
/* Ni and Nz are N’s children */
minCost i := computeCost&Prune(Ni);
minCost2 := computeCost&Prune(Nz);
minCostN := min{C(S) + 1,

Cs,lit(N) + 1 + mincosti + minCostz};
if minCostN = C(S) + 1

prune child nodes Ni and N2 from tree
return mincostjv

Figure 3: Pruning Algorithm

On the other hand, if N is an internal node in
the tree with children Ni and Nz, then there are the
following two choices for the minimum cost subtree
- (1) the node N itself with no children (this cor-
responds to pruning its two children from the tree,
thus making node N a leaf), or (2) node N along
with children Nr and NZ and the minimum cost sub-
trees rooted at Ni and N2. Of the two choices, the
one with the lower cost results in the minimum cost
subtree for N.

The cost for choice (1) is C(S) + 1. In or-
der to compute the cost for choice (2), in Steps 2
and 3, the procedure recursively invokes itself in
order to compute the minimum cost subtrees for
its two children. The cost for choice (2) is then
C,,lit(N) + 1 + mincosti + minCostz. Thus, the
cost of the cheapest subtree rooted at N is given
by minCostN as computed in Step 4. Note that if
choice (1) has a smaller cost, then the children of
node N must be pruned from the tree. Or stated
alternately, children of a node N are pruned if the
cost of directly encoding the data records at N does
not exceed the cost of encoding the minimum cost
subtree rooted at N.

The tree built in the “growing” phase is pruned
by invoking the pruning algorithm in Figure 3 on
the root node.

4 The PUBLIC Integrated Algo-
rithm

Most algorithms for inducing decision trees perform
the pruning phase only after the entire tree has been
generated in the initial building phase. Our typical
experience on real-life data sets has been that the
pruning phase prunes large portions of the original
tree - in some cases, this can be as high as 90% of the
nodes in the tree (see Section 6). These smaller trees
are more general and result in smaller classification
error for records whose classes are unknown [QR89,
FaySl].

It is clear that .in most decision tree algorithms, a

substantial effort is “wasted” in the building phase
on growing portions of the tree that are subsequently
pruned in the pruning phase. Consequently, if dur-
ing the building phase, it were possible to “know”
that a certain node is definitely going to be pruned,
then we can stop expanding the node further, and
thus avoid the computational and I/O overhead in-
volved in processing the node. As a result, by incor-
porating the pruning “knowledge” into the building
phase, it is possible to realize significant improve-
ments in performance. This is the approach followed
by the PUBLIC classification algorithm that com-
bines the pruning phase with the building phase.

The PUBLIC algorithm is similar to the build
procedure shown in Figure 2. The only difference is
that periodically or after a certain number of nodes
are split (this is a user-defined parameter), the par-
tially built tree is pruned. The pruning algorithm
in Figure 3, however, cannot be used to prune the
partial tree.

The problem with applying the pruning proce-
dure in Figure 3 before the tree has been completed
is that in the procedure, the cost of the cheapest
subtree rooted at a leaf N assumed to be C(S) + 1.
While this is true for a tree that has been completely
built, it is not true for a partially built tree since a
leaf in a partial tree may be split later, thus becom-
ing an internal node. Consequently, the cost of the
subtree rooted at N could be a lot less than C(S) + 1
as a result of the splitting. Thus, C(S) + 1 may
over-estimate the cost of the cheapest subtree rooted
at N and this could resulting in over-pruning, that
is, nodes may be pruned during the building phase
that would not have been pruned during the pruning
phase. This is undesirable since we would like the
decision tree induced by PUBLIC to be identical to
the one constructed by a traditional classifier.

In order to remedy the above problem, we make
use of the following observation - running the prun-
ing algorithm described in Figure 3, while under-
estimating the minimum cost of subtrees rooted at
leaf nodes that can still be expanded, is not harm-
ful. With an under-estimate of the minimum subtree
cost at nodes, the nodes pruned are a subset of those
that would have been pruned anyway during the
pruning phase. PUBLIC’s pruning algorithm, illus-
trated in Figure 4, is based on this under-estimation
strategy for the cost of the cheapest subtree rooted
at a “yet to be expanded” leaf node.

PUBLIC’s pruning distinguishes among three
kinds of leaf nodes. The first kind of leaves are
those that still need to be expanded. For such leaves,
as described in the following section, PUBLIC com-
putes a lower bound on the cost of subtrees at the
leaves. The two other kinds of leaf nodes consist
of those that are either a result of pruning or those
that cannot be expanded any further (because they

409

procedure comnuteCost&PrunePublic(Node N):

1.

2.

/* S is the set of data records for N‘ */ ’
if N is a “yet to be expanded” leaf

return lower bound on subtree cost at N
if N is a “pruned” or “not expandable” leaf

return (C(S) + 1)

3.
4.
5.

6.
7.
8.

/* Ni and N2 are N’s children */
mincosti := computeCost&PrunePublic(Ni);
minCost2 := computeCost&PrunePublic(Ns);
minCostjv := min{C(S) + 1,

C,,li,(N) + 1 + mincosti + mincosts};
if minCostN = C(S) + 1 {

Prune child nodes Ni and N2 from tree
Delete nodes Ni and Ns and all their
descendants from Q

9. Mark node N as pruned
10. }
11. return minCostN

Figure 4: PUBLIC’s Pruning Algorithm

are pure). For such leaves, we use the usual cost of
C(S) + 1. Thus, the pruning procedure is similar
to the earlier procedure in Figure 3 except that the
cost for the cheapest subtree at leaf nodes that have
not yet been expanded may not be C(S) + 1. Also,
when children of a node N are pruned, all its descen-
dants are removed from the queue Q maintained in
the build procedure - this ensures that they are not
expanded by the build procedure.

In PUBLIC, the modified pruning algorithm
shown in Figure 4 is invoked from the build pro-
cedure periodically on the root of the partially built
tree. Note that once the building phase ends, there
are no leaf nodes belonging to the “yet to be ex-
panded” category. As a result, applying the prun-
ing algorithm in Figure 4 at the end of the building
phase has the same effect as applying the original
pruning algorithm and results in the same pruned
tree as would have resulted due to the previous prun-
ing algorithm.

5 Computation of Lower Bound on
Subtree Cost

Any subtree rooted at a node N must have a cost
of at least 1, and thus 1 is a simple, but conserva-
tive estimate for the cost of the cheapest subtree at
leaf nodes that are “yet to be expanded”. In our
experiments, we found that even this simple esti-
mate enables PUBLIC to substantially reduce the
number of nodes generated. Since more accurate
estimates can enable PUBLIC to prune even more
nodes, in this section, we propose two algorithms
for computing better and higher estimates for the
minimum cost subtrees at leaf nodes. The first con-

siders split costs and the second incorporates even
the cost of describing the value for each split in the
computed estimates. An important point to note is
that the computed estimates represent more accu-
rate lower bounds on the cost of the cheapest subtree
at a leaf node. As mentioned before, it is essential
that we underestimate the costs at leaf nodes to pre-
vent over-pruning.

We refer to the version of the PUBLIC algorithm
based on a cost estimate of 1 as PUBLIC(l). The
other two versions (presented in the following two
subsections) that incorporate the cost of splits and
cost of values into the estimates are referred to as
PUBLIC(S) and PUBLIC(V), respectively. Note
that PUBLIC(l), PUBLIC(S) and PUBLIC(V) are
identical except for the value returned in Step 1 of
the pruning algorithm in Figure 4. Thus, PUB-
LIC(l), PUBLIC(S) and PUBLIC(V) use increas-
ingly accurate cost estimates for “yet to be ex-
panded” leaf nodes, and result in fewer nodes being
expanded during the building phase.

We must point out that our experimental results
in Section 6 indicate that a significant portion of
the performance benefits due to the integrated prun-
ing can be realized by simply using PUBLIC(l).
In our experiments, we found that fewer additional
nodes are pruned during building due to the “better”
cost estimates employed by PUBLIC(S) and PUB-
LIC(V). The reason for this is that the cost of en-
coding splits turns out be a fairly substantial part
of the cost of encoding the tree. Recall from Sec-
tion 3, that encoding a split involving a categori-
cal attribute requires log a + log(2” - 2) bits, while
for a split involving a numeric attribute, the cost is
log a + log(v - 1). During pruning, the cost for the
subtree rooted at an internal node N includes the
cost of encoding splits in the subtree, which is sig-
nificant. In addition, for leaves in the subtree that
have been pruned or cannot be expanded further,
an accurate cost estimate of C(S) + 1 is used. As
a result, even with a simple cost estimate of 1 for
“yet to be expanded” leaves, due to split costs and
accurate costs for other kinds of leaves, reasonable
cost estimates for subtree costs at an internal node
N can be computed, thus enabling a large number
of nodes to be pruned by PUBLIC(1).

Furthermore, generating highly accurate cost es-
timates for “yet to be expanded” leaf nodes is a diffi-
cult problem. As a result, even though the estimates
used by PUBLIC(S) and PUBLIC(V) are increas-
ingly better, they are not accurate enough to deliver
big gains in the number of pruned nodes compared
to PUBLIC(l). Specifically, the contribution of the
estimates to the subtree cost at an internal node N is
still small compared to split costs and cost of pruned
and unexpandable nodes in the subtree.

410

5.1 Estimating Split Costs

The PUBLIC(S) algorithm takes into account split
costs when computing a lower bound on the cost
of the cheapest subtree rooted at a “yet to be ex-
panded” leaf node N. Specifically, for values of
s >_ 0, it computes a lower bound on the cost of sub-
trees rooted at N and containing s splits (and conse-
quently, s internal nodes). The cost estimate for the
cheapest subtree at node N is then set to the mini-
mum of the lower bounds computed for the different
s values - this guarantees that PUBLIC(S) under-
estimates the cost of the cheapest subtree rooted at
N.

Let S be the set of records at node N and k be
the number of classes for the records in S. Also, let
ni be the number of records belonging to class i in S,
and ni 1 ni+r for 1 < i < k (that is, 121,. ..,nk are
sorted in the decreasing order of their values). As
before, a denotes the number of attributes. In case
node N is not split, that is, s = 0, then the minimum
cost for a subtree at N is C(S) + 1. For values
of s > 0, a lower bound on the cost of encoding a
subtree with s splits and rooted at node N is derived
in the following theorem.

Theorem 5.1: The cost of any subtree with s splits
and rooted at node N is at feast 2 * s + 1 + s * log a +
Cf=,+, 7%. I

Proof: The cost of encoding the structure of a sub-
tree with s splits is 2 * s + 1 since a subtree with
s splits has s internal nodes and s + 1 leaves, and
we require one bit to specify the type for each node.
Each split also has a cost of at least log a to specify
the splitting attribute. The final term is the cost of
encoding the data records in the s + 1 leaves of the
subtree.

Let nij denote the number of records belonging
to class i in leaf j of the subtree. A class i is referred
to as a majority class in leaf j if nii 2 ?Qj for every
other class 1 in leaf j (in case for two classes i and
1, nii = nlj, then one of them is arbitrarily chosen
as the majority class). Thus, each leaf has a single
majority class, and every other class in the leaf that
is not a majority class is referred to as a minority
class. Since there are s + 1 leaves, there can be at
most s + 1 majority classes, and at least k - s - 1
classes are a minority class in every leaf.

Consider a class i that is a minority class in leaf j.
Due to Equation (l), C(S,), the cost of encoding the
classes of records in the leaf is at least xi nij * E(Sj)
where Sj is the set of records in leaf j and xi nij
is the total number of records in leaf j. Since for

class i, E(Sj) contains the term
f-

xi Wj

n;;;j 1% nij)
the records of class i in leaf j contribute at least

procedure computeMinCostS(Node N):
/* n1,.*., nk are sorted in decreasing order */

1. if k = 1 return (C(S) + 1)
2. s:=l
3. tmpCost := 2 * S + 1 + S * log a + Cf=,+, ni
4. whiles+l<kandn,+s>2+logado{
5. tmpCost := tmpCost + 2 + log a - nS+2
6. s++

7.)
8. return min{C(S) + 1, tmpcost}

Figure 5: Algorithm for Computing Lower Bound
on Subtree Cost

(Ci w> * +* 1% ‘iinii) to C(Sj). Further-
-i -'

more, since class i is a minority in leaf j, we have
xi nij

nij
2 2 and so the records with class i in leaf j

contribute at least nij to C(Sj). Thus, if L is the set
containing the k - s - 1 classes that are a minority in
every leaf, then the minority classes i in L across all
the leaves contribute Cier, ni to the cost of encoding
the data records in the leaves of the subtree.

Since we are interested in a lower bound on the
cost of the subtree, we need to consider the set L
containing k - s - 1 classes for which CIeL ni is
minimum. Obviously, the above cost is minimum
for the k - s - 1 classes with the smallest number of
records in S, that is, classes s + 2,. . . , k. Thus, the
cost for encoding the records in the s + 1 leaves of
the subtree is at least Cf=,+, ni. I

Theorem 5.1 gives a lower bound on the cost of
any subtree with s splits and can be used to estimate
the cost for the minimum cost subtree rooted at a
node N. Thus, we simply need to compute, using
the result of Theorem 5.1, the minimum cost for
subtrees rooted at N with 0,. . . , k - 1 splits and set
our cost estimate to be the minimum of all these
costs. The reason for only considering upto k - 1
splits is that beyond k - 1 splits, the subtree cost
does not reduce any further. This is because the
last term in Theorem 5.1 (which is the sum of the
number of records of the k - s - 1 smallest classes.)
becomes 0 for k - 1 splits and cannot decrease any
further, while the other terms keep increasing with
the number of splits.

In addition, if for a certain number s of splits, it
is the case that n,+a 5 2 + log a, then we do not
need to consider subtrees with splits greater than
s. The reason for this is that when s increases and
becomes s + 1, the minimum subtree cost increases
by a fixed amount which is 2+log a while it decreases
by n,+s. Thus, since ni >_ ni+i, increasing s further
cannot cause the minimum subtree cost to decrease
any further.

411

The algorithm for computing the estimate for the
minimum cost subtree at a “yet to be expanded”
node N in PUBLIC(S) is as shown in Figure 5. In
the procedure, the variable tmpCost stores the min-
imum cost subtree with s 1 1 splits. For s = 0,
since the bound due to Theorem 5.1 may be loose,
the procedure uses C(S) + 1 instead. The maxi-
mum value considered for s is k - 1, and if for an s,
n,+z 5 2 + log a, then values larger than s are not
considered. The time complexity of the procedure is
dominated by the cost of sorting the ni’s in the de-
creasing order of their values, and is thus, O(lc log Ic).

5.2 Incorporating Costs of Split Values

In the PUBLIC(S) algorithm described in the pre-
vious section, when estimating the cost of a subtree
rooted at a “yet to be expanded” node N, we esti-
mate the cost of each split to be log a bits. However,
this only captures the cost of specifying the attribute
involved in the split. In order to completely describe
a split, a value or a set of values is also required for
the splitting attribute - this is to specify the distri-
bution of records amongst the children of the split
node.

Due to space constraints and the fact that the ad-
ditional performance gains due to PUBLIC(V) over
PUBLIC(l) and PUBLIC(S) are fairly modest, we
defer the description of the PUBLIC(V) algorithm to
[RS98]. PUBLIC(V) estimates the cost of each split
more accurately than PUBLIC(S) by also including
the cost of encoding the split value in the cost of
each split. Except for this, the PUBLIC(V) algo-
rithm follows a similar strategy as PUBLIC(S) for
estimating the cost of the cheapest subtree rooted
at a “yet to be expanded” node N. For values of
s 1 0, PUBLIC(V) first computes a lower bound on
the cost of subtrees containing s splits and rooted at
N. The minimum of these lower bounds for the var-
ious values of s is then chosen as the cost estimate
for the cheapest subtree at N. The time complexity
of the cost estimation procedure for PUBLIC(V) is
O(lc * (log k + a)). A detailed description of PUB-
LIC(V) algorithm can be found in [RS98].

6 Experimental Results

In order to investigate the performance gains that
can be realized due to PUBLIC’s integrated ap-
proach to classification, we conducted experiments
on real-life as well as synthetic data sets. We used
an implementation of SPRINT [SAM961 as described
in Section 3 as representative of traditional classi-
fiers that carry out building and pruning in sepa-
rate phases. We are thus primarily interested in the
speedup due to the integrated PUBLIC algorithms
as measured against SPRINT.

Since real-life data sets are generally small, we
also used synthetic data sets to study PUBLIC’s
performance on larger data sets. The purpose of
the synthetic data sets is primarily to examine the
PUBLIC’s sensitivity to parameters such as noise,
number of classes and number of attributes. Syn-
thetic data sets allow us to vary the above parame-
ters in a controlled fashion. Since PUBLIC is based
on SPRINT except for the integration of the building
and pruning phases, and SPRINT was shown to scale
well for large databases in [SAM96], our goal is not
to demonstrate the scalability of PUBLIC. Instead,
as we mentioned before, we are more interested in
measuring the improvements in execution time due
to combining the building and pruning phases com-
pared to performing the two phases separately.

All of our experiments were performed using a
Sun Ultra-2/200 machine with 512 MB of RAM and
running Solaris 2.5. Our experimental results with
both real-life as well as synthetic data sets demon-
strate the effectiveness of PUBLIC’s integrated al-
gorithm compared to traditional classification algo-
rithms.

6.1 Algorithms

In our experiments, we compared the execution
times for four algorithms, whose characteristics we
summarize below.

SPRINT: This is the algorithm that we use
as representative of traditional algorithms with
separate building and pruning phases. We
use the variant of SPRINT described in Sec-
tion 3. Note that, unlike [SAM96], our variant
of SPRINT uses entropy instead of the GIN1
index.

PUBLIC(l): This is the simplest of the PUB-
LIC algorithms. It performs building and prun-
ing together, and uses the very conservative es-
timate of 1 as the cost of the cheapest subtree
rooted at a “yet to be expanded” leaf node.

PUBLIC(S): Unlike PUBLIC(l), for the mini-
mum cost subtree at a “yet to be expanded” leaf
node, PUBLIC(S) considers subtrees with splits
and includes the cost of specifying the splitting
attribute for splits.

PUBLIC(V): Among the PUBLIC algo-
rithms, PUBLIC(V) computes the most accu-
rate lower bound on the cost for a subtree at
a “yet to be expanded” leaf node. In addition
to the cost of specifying the splitting attribute
for splits, it also considers the cost of specify-
ing split values. A detailed description of PUB-
LIC(V) can be found in [RS98].

412

Table 1: Real-life Data Sets

Table 2: Real-life Data Sets: Execution Time (sets)

The integrated PUBLIC algorithms are imple-
mented using the same code base as SPRINT except
that they perform pruning while the tree is being
built. Furthermore, in PUBLIC, the pruning pro-
cedure is invoked repeatedly for each level, after all
the nodes at the level have been split.

6.2 Real-life Data Sets

We experimented with eight real-life datasets whose
characteristics are illustrated in Table 1. These
datasets were obtained from the UC1 Machine
Learning Repository3. Data sets in the UC1 Ma-
chine Learning Repository often do not have both
training and test data sets. For these data sets, we
randomly choose 213 of the data and used it as the
training data set. The rest of the data is used as the
test data set. Table 1 shows the number of records
for both the training and the test data set.

6.3 Results on Real-life Data Sets

For each of the real-life data sets, we present the ex-
ecution times for each algorithm (see Table 2). The
final row of Table 2 (labeled “Max Ratio”) indicates
how much worse SPRINT is compared to the best
PUBLIC algorithm. In general, we have found the
max ratio number to be similar to the percentage of
additional nodes generated by SPRINT compared
to PUBLIC(V), the best PUBLIC algorithm. From
the table, it follows that for certain data sets (e.g.,
yeast), SPRINT may take as much as 83% more ex-
ecution time than PUBLIC(V). This confirms our
conjecture that by pruning early, PUBLIC can re-
sult in a significant reduction in the number of re-
dundant nodes generated, and consequently, in the
execution times.

3Available
http://www.ics.uci.edu/- mlearn/MLRepository.html.

at

6.4 Synthetic Data Set

In order to study the sensitivity of PUBLIC to pa-
rameters such as noise in a controlled environments,
we generated synthetic data sets using the data gen-
erator used in [AIS93, MAR96, SAM961 and avail-
able from the IBM Quest home page4. Every record
in the data sets has nine attributes and a class la-
bel which takes one of two values. A description of
the attributes for the records is as shown in Table 3.
Among the attributes, elevel, car and zipcode are cat-
egorical, while all others are numeric. Different data
distributions are generated by using one of ten dis-
tinct classification functions to assign class labels to
records. Function 1 involves a predicate with ranges
on a single attribute value. Functions 2 and 3 use
predicates over two attributes, while functions 4, 5,
6 have predicates with ranges on three attributes.
Functions 7 through 9 are linear functions and func-
tion 10 is a non-linear function [AIS93]. Further de-
tails on these ten predicates can be found in [AIS93].
To model fuzzy boundaries between the classes, a
perturbation factor for numeric attributes can be
supplied to the data generator [AIS93]. In our ex-
periments, we used a perturbation factor of 5%. We
also varied the noise factor from 2 to 10% to control
the percentage of noise in the data set. The number
of records for each data set is set to 10000.

6.5 Results on Synthetic Data Sets

In Table 4, we present the execution times for the
data sets generated by functions 1 through 10. For
each data set, the noise factor was set to 10%. From
the tables, we can easily see that PUBLIC outper-
forms SPRINT by a significant amount. For exam-
ple, SPRINT is 279% slower than PUBLIC(V) for
Function 8, and more than 200% slower than PUB-
LIC!(V) for every other function. It is interesting to

4The URL for the page
http://www.almaden.ibm.com/cs/quest/demos.html.

is

413

Attribute Description Value I

salary SZLllUY uniformly distributed from 20000 to 150000
commission commission if salary > 75000 then commission is zero

else uniformly distributed from 10000 to 75000
age
elevel

age uniformly distributed from 20 to 80
education level uniformlv chosen from 0 to 4

I

car make of the car uniformly chosen from 1 to 20
zipcode zip code of the town uniformly chosen from 9 to available zipcodes
hvalue value of the house uniformlv distributed from 0.5klOOOOO to 1.5klOOOOO

hears
loan

where k “E (0,. . . ,9} depends on zipcode
years house owned uniformly distributed from 1 to 30
total loan amount uniformly distributed from 0 to 500000

Table 3: Description of Attributes in Synthetic Data Sets

Table 4: Synthetic Data Sets: Execution Time (sets)

observe that PUBLIC(l), the simplest of the PUB-
LIC algorithms, results in most of the realized gains
in performance. The subsequent reductions in exe-
cution time due to PUBLIC(S) and PUBLIC(V) are
not as high.

We also performed experiments to study the ef-
fects of noise on the performance of PUBLIC. We
varied noise from 2% to 10% for every function, and
found that the execution of the algorithms on all
the data sets were very similar. As a result, in Fig-
ure 6, we only plot the execution times for functions
5 and 6. From the graphs, it follows that as execu-
tion times increase as the noise is increased. This is
because as the noise is increased, the size of the tree
and thus the number of nodes generated increases.
Furthermore, the execution times for SPRINT in-
crease at a faster rate than those for PUBLIC, as
the noise factor is increased. Thus, PUBLIC results
in better performance improvements at higher noise
values. We also conducted experiments in which we
varied the number of classes as well as the number of
attributes in the data sets. However, we found that
the performance of PUBLIC relative to SPRINT did
not vary much for the different parameter settings.

7 Concluding Remarks

In this paper, we proposed a new classifier, PUBLIC,
that integrates the pruning phase into the build-
ing phase. Specifically, nodes that are certain to be
pruned are not expanded during the building phase
- as a result, fewer nodes are expanded during the
building phase, and thus the amount of work (e.g.,
disk I/O) required to construct the decision tree is.

reduced. In order to determine, during the build-
ing phase, nodes that are certain to be pruned, we
need to know the cost of encoding the subtrees at
the node. To estimate the cost, we developed three
techniques for computing a lower bound on the cost
of a subtree at a “yet to be expanded” leaf node.
By performing additional computation, each succes-
sive technique is able to generate more accurate esti-
mates for the minimum cost subtree. Experimental
results with real-life as well as synthetic data sets
show that PUBLIC can result in significant perfor-
mance improvements compared to traditional classi-
fiers such as SPRINT. We also observed that PUB-
LIC(l), the simplest of the PUBLIC algorithms, re-
sults in most of the realized gains in performance.
The subsequent reductions in execution time due to
PUBLIC(S) and PUBLIC(V) are not as high.

Acknowledgments: We would like to thank
Narain Gehani, Hank Korth and Avi Silberschatz
for their encouragement, Raghu Ramakrishnan for
providing an initial implementation of SPRINT, and
Johannes Gehrke and Alex Malamud for improving
the SPRINT algorithm for our experiments. With-
out the support of Yesook Shim, it would have been
impossible to complete this work.

References

[AGI+92] Rakesh Agrawal, Sakti Ghosh, Tomasz
Imielinski, Bala Iyer, and Arun Swami. An
interval classifier for database mining appli-
cations. In Proc. of the VLDB Conference,
pages 560-573, Vancouver, British Columbia,
Canada, August 1992.

414

PUBLIC(v) ---

0.04 0.08 0.08 0.1 0.02 0.04 0.08 0.08 0.1
Noise Factor Noise Factor

(a) Predicate 5 (b) Predicate 6

Figure 6: Synthetic Data Sets: Execution Time (sets)

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and
Arun Swami. Database mining: A perfor-
mance perspective. IEEE nansactions on
Knowledge and Data Engineering, 5(6):914-
925, December 1993.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen,
and C. J. Stone. Classification and Regression
Z+ees. Wadsworth, Belmont, 1984.

[CKS+88] P. Cheeseman, James Kelly, Matthew Self,

Fv911

[FI93]

[FMM96]

[Go1891

(GRG98]

[HMS66]

[KT81]

et al. AutoClass: A Bayesian classification
system. In 5th Int’l Conj. on Machine Learn-
ing. Morgan Kaufman, June 1988.

U. Fayyad. On the Induction of Decision
‘Ikees for Multiple Concept Learning. PhD
thesis, The University of Michigan, Ann ar-
bor, 1991.
Usama Fayyad and Keki B. Irani. Multi-
interval discretization of continuous-valued
attributes for classification learning. In Proc.
of the 13th Int’l Joint Conference on Artiji-
cial Intelligence, pages 1022-1027, 1993.

Takeshi Fukuda, Yasuhiko Morimoto, and
Shinichi Morishita. Constructing efficient de-
cision trees by using optimized numeric as-
sociation rules. In Proc. of the Int’l Conj. on
Very Large Data Bases, Bombay, India, 1996.

D. E. Goldberg. Genetic Algorithms in
Search, Optimization and Machine Learning.
Morgan Kaufmann, 1989.

Johannes Gehrke, Raghu Ramakrishnan, and
Venkatesh Ganti. Rainforest - a framework
for fast decision tree classification of large
datasets. In Proc. of the VLDB Conference,
New York City, NY, August 1998.

E. B. Hunt, J. Marin, andP. J. Stone, editors.
Experiments in Induction. Academic Press,
New York, 1966.
R. Krichevsky and V. Trofimov. The perfor-
mance of universal encoding. IEEE Transac-
tions on Information Theory, 27(2):199-207,
1981.

[MAR961

[MRA95]

[MST941

[QR@‘l

[QuiSS]

[Qui87]

[Qui93]

PWI

[F&78]

[Ris89]

[RS98]

[SAM961

Manish Mehta, Rakesh Agrawal, and Jorma
Rissanen. SLIQ: A fast scalable classifier for
data mining. In EDBT 96, Avignon, France,
March 1996.

Manish Mehta, Jorma Rissanen, and Rakesh
Agrawal. MDL-based decision tree pruning.
In Int’l Conference on Knowledge Discovery
in Databases and Data Mining (KDD-95),
Montreal, Canada, August 1995.

D. Mitchie, D. J. Spiegelhalter, and C. C.
Taylor. Machine Learning, Neural and Sta-
tistical Classification. Ellis Horwood, 1994.

J. R. Quinlan and R. L. Rivest. Infer-
ring decision trees using minimum description
length principle. Information and Computa-
tion, 1989.

J. R. Quinlan. Induction of decision trees.
Machine Leaning, 1:81-106, 1986.

J. R. Quinlan. Simplifying decision trees.
Journal of Man-Machine Studies, 27:221-
234, 1987.

J. Ross Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufman, 1993.

B. D. Ripley. Pattern Recognition and Neural
Networks. Cambridge University Press, Cam-
bridge, 1996.

J. Rissanen. Modeling by shortest data de-
scription. Automatica, 14:465-471, 1978.

J. Rissanen. Stochastic Complexity in Sta-
tistical Inquiry. World Scientific Publ. Co.,
1989.

R. Rastogi and K. Shim. PUBLIC: A de-
cision tree classifier that integrates building
and pruning. Technical report, Bell Labora-
tories, Murray Hill, 1998.

John Shafer, Rakesh Agrawal, and Manish
Mehta. SPRINT: A scalable parallel classi-
fier for data mining. In Proc. of the VLDB
Conference, Bombay, India, September 1996.

415

