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Abstract 

Many decision support systems, which utilize associ- 
ation rules for discovering interesting patterns, require 
the discovery of association rules that vary over time. 
Such rules describe complicated temporal patterns such 
as events that occur on the “first working day of every 
month.” In this paper, we study the problem of discov- 
ering how association rules vary over time. In particu- 
lar, we introduce the idea of using a calendar algebra 
to describe complicated temporal phenomena of interest 
to the user. We then present algorithms for discovering 
culendric association rules, which are association rules 
that follow the patterns set forth in the user supplied cal- 
endar expressions. We devise various optimizations that 
speed up the discovery of calendric association rules. 
We show, through an extensive series of experiments, 
that these optimization techniques provide performance 
benefits ranging from 5% to 250% over a less sophisti- 
cated algorithm. 

1 Introduction 
Recent advances in data collection and storage technology 
have made it possible for many companies to keep vast 
amounts of data relating to their business online. At the 
same time, the availability of cheap computing power has 
also made some automatic analysis of this data feasible. 
This activity is commonly referred to as data mining. 

One major application domain of data mining is in 
the analysis of transactional data. It is assumed that the 
database system keeps information about user transactions, 
where each transaction is a collection of data items (e.g., 
milk, break, eggs, etc.). In this setting, association rules 
capture inter-relationships between various data items. An 
association rule captures the notion of a set of data items 
occurring together in transactions. For example, in a 
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database maintained by a supermarket, an association rule 
might be of the form: 

“beer -+ chips (support: 3%, confidence: 87%),” 

which means that 3% of all database transactions contain 
the data items beer and chips, and 87% of the transactions 
that have the item “beer” also have the item “chips” in 
them. The two percentage parameters above are commonly 
referred to as “support” and “confidence” respectively. 

Typically, the data mining process is controlled by a user 
who sets minimum thresholds for the support and confi- 
dence parameters. The user might also impose other re- 
strictions, like restricting the search space of items, in order 
to guide the data mining process. 

Following the pioneering work of [AIS93], discovery of 
association rules has been extensively studied in [AS94, 
SA95, HF95, SON95, PCY95, SA96, FMMT96, Toi96]. 
However, all the above work treat all the data as one large 
segment, with no attention paid to segmenting the data over 
different time intervals. To illustrate, let us return to our 
previous example. It may be the case that beer and chips 
are sold together primarily between 6PM and 9PM on week 
days. Therefore, if we segment the data over the two inter- 
vals 7AM-6PM and 6PM-9PM and consider only the data 
from weekdays, we may find that the support for the beer 
and chips rule in the segment 6PM-9PM jumps to 50%. 

From the above example we can conclude that although 
an association rule may have the user specified minimum 
confidence and support within the entire time spectrum, 
analysis of the data in finer time granularity may reveal that 
the association rule exists only in certain time intervals, 
and does not occur in the remaining time intervals. Even 
casual observation of many association rules over monthly 
data may disclose interesting patterns in their behavior over 
time. Detecting these patterns would reveal interesting in- 
formation that in turn can be used for analysis, prediction 
and decision making. 

In [ORS98], we examined this problem in the context 
of detecting when association rules occur periodically over 
time. In particular, we introduced the problem of mining 
for “cyclic association rules” and presented algorithms for 
efficiently detecting such rules. However, periodicity has 
limited power in describing real-life variations. On a day- 
to-day basis, humans deal with complicated patterns that 
cannot be described by simple periodicities. For example, 
a concept as simple as the first working day of every month 
cannot be described by cycles. Further, the model used 



in [GRS98] was fairly rigid, failing to capture a rule that 
would exhibit a pattern “most” of the time but not all the 
time. Finally, the model did not deal with multiple units of 
time, like days, weeks, etc. that occur naturally. 

In this paper, we generalize the work in [GRS98] in sev- 
eral important directions: 

l We introduce the problem of mining user-defined tem- 
poral patterns in association rules. We introduce the 
notion of using a calendar algebra to describe phe- 
nomena of interest in association rules. This calen- 
dar algebra is used to define and manipulate groups of 
time intervals. This is an important and novel con- 
tribution because real-life patterns can be described 
succinctly using simple algebraic expressions. (See 
below and Section 3 for examples.) 

l We introduce the notion of finding fuzzy patterns in as- 
sociation rules. This notion allows us to find patterns 
in the data that approximately match the user-defined 
patterns. 

l Our techniques extend in a natural way to handle mul- 
tiple units of time. 

The usage of a calendar algebra to specify patterns is of 
vital importance because the number of possible patterns 
over a time-interval is exponential in the size of the time 
interval. In order to simplify the process of writing cal- 
endars for an end-user, we also let the user choose from 
a set of pre-defined calendars. In addition, the users can 
supply their own calendar expressions. Each such calendar 
expression corresponds to a calendar, which is a collection 
of time intervals describing some real-life phenomenon. 

In order to illustrate the power of calendric expressions, 
let us consider a stock trading example, where the transac- 
tions consist of sets of trades made by people over time. By 
integrating calendars and association rules, we can discover 
patterns such as: 

l Over the last two years, people have been buying the 
technology stock QuickRich Software and selling util- 
ity stock PowerIsGood Inc. on the days that national 
employment figures were announced by the govern- 
ment. The US government releases national employ- 
ment figures on the last day of every month in the year. 
If the day is a holiday, it is announced the previous 
business day. 

l Selling of technology stock MagicWidget implies 
buying of MaBell Communications on the days that 
options expire. (People who bought put options to 
lock their profits in MagicWidget decide to move their 
investments to a safer stock when their options ex- 
pire.) Options expire on the third Friday of certain 
months. If the day is a holiday, the expiration date is 
the preceding business day. 

Obviously, over the entire set of transactions, neither of 
these rules might have enough support! 

In this paper, we address the problem of describing com- 
plicated real-life phenomena as the ones above and finding 
the association rules and the patterns they follow. 

We assume that the transactional data to be analyzed is 
time-stamped and that time intervals are specified by the 
user to divide the data into disjoint segments. We believe 
that users will typically opt for “natural” segmentations of 
the data based on months, weeks, days, etc., and that users 
are best qualified to make this decision based on their un- 
derstanding of the underlying data. Though we primarily 
concentrate on the case where the user specifies a segmen- 
tation based on a single time unit, we believe that our tech- 
niques can naturally be extended to the case of hierarchical 
segmentations. Further, we assume that the user will sup- 
ply a set of calendar algebra expressions, the calendars cor- 
responding to which are to be detected in the association 
rules. As mentioned above, the user can also choose from 
a number of predefined calendar expressions that make the 
job of supplying the calendars simple. We parse the calen- 
dar expressions into calendars, each of which is simply a 
set of intervals. 

We refer to an association rule as calendric if the rule 
has the minimum confidence and support during every time 
unit contained in a calendar, modulo a mismatch threshold, 
which allows for a certain amount of error in the matching. 
This mismatch threshold models the fact that, in real life, 
the association rule will hold for most but not all the time 
units of the calendar. The calendar is then said to belong 
to the rule. The ruIe need not hold for the entire transac- 
tional database, but rather only for transactional data dur- 
ing the time units specified by the calendar (modulo the 
mismatch threshold). We define the problem of mining cal- 
endric association rules as the generation of all association 
rules along with their calendars. Given a large database 
consisting of transactional information, where each trans- 
action consists of a transaction-id, a set of items and a time- 
stamp, and a set of “interesting” calendar expressions, our 
goal is to provide efficient algorithms to discover calendric 
association rules. 

Our treatment of calendars is based on the framework 
developed in [All85, LMF86] and the implementation re- 
ported in [CSS94]. We parse algebra expressions using an 
LALR parser and evaluate calendars as sets of intervals. 

For the,rule mining, many of the techniques we devel- 
oped in [ORS98] apply in the context of calendric rules, 
though the actual details are quite different. We first con- 
sider a relatively straightforward extension of existing as- 
sociation rule mining techniques for solving this problem. 
This extension treats association rules and calendars inde- 
pendently. It applies one of the existing methods for dis- 
covering association rules to each segment of data and then 
applies simple pattern matching algorithms to detect calen- 
dars in association rules. The pruning and skipping tech- 
niques we developed for cyclic association rules can be ap- 
plied to calendric association rules also. This allows us to 
significantly reduce the amount of wasted work performed 
during the data mining process. We demonstrate the effec- 
tiveness of these techniques by presenting the results of a 
series of experiments. 

The remainder of this paper is organized as follows. In 
Section 2, we define the problem of discovering calendric 
association rules formally. In Section 3, we describe our 
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algebra for calendars and provide details of our evaluation 
techniques. In Section 4, we discuss the shortcomings of 
the existing techniques to discover calendric association 
rules and present two new techniques to solve this prob- 
lem. Implementation details of our prototype are described 
in Section 5. The experimental evaluation of the two tech- 
niques is presented in Section 6. Finally, we present our 
conclusions in Section 7 and identify directions for future 
research. 

2 Problem Definition 
Let Z = {il,iz,. . . , iN> denote a set of data items. A 
transaction is defined to be a subset of 1. An itemset 
is also defined to be a subset of Z. We use the letters 
X, Y, X1, Yl, . . . to denote itemsets. If X and Y are item- 
sets, then XY represents the set union of X and Y. 

Given a set of items Z and a set of transactions 7, 
the problem of discovering association rules is defined as 
finding relationships between the occurrences of itemsets 
within transactions. An association rule of the form X+Y 
is a relationship between the two disjoint itemsets X and 
Y. An association rule is described in terms of support and 
confidence. The support of an itemset X over the set of 
transactions 7 is the fraction of transactions that contain 
the itemset. An itemset is called large, if its supports ex- 
ceeds a given threshold supmin.. The confidence of a rule 
X+Y over a set of transactions 7 is the fraction of trans- 
actions containing X that also contain Y. The association 
rule X--+Y holds, if XY is large and the confidence of the 
rule exceeds a given threshold con,i,. 

In order to deal with calendric association rules, we en- 
hance the transaction model by a time attribute that de- 
scribes the time when the transaction was executed. In this 
paper, we primarily focus on the case where a single unit 
of time is given (e.g., by the user) since we believe that our 
techniques extend in a natural way to handle more compli- 
cated treatments of time, like a time hierarchy. We denote 
the jth time unit, j 2 0, by tj. It corresponds to the time 
interval [j . t, (j + 1) . t), where t is the unit of time. We 
denote the set of transactions executed in time unit tj by 
m .I 

The support of an itemset X in 7[j] is the fraction of 
transactions in 7[j] that contain the itemset, whereas the 
confidence of a rule X+Y in 7[j] is the fraction of trans- 
actions in 7[j] containing X that also contain Y. An asso- 
ciation rule X+Y holds in time unit tj, if the support of 
XY in 7[j] exceeds sup,i, and the confidence of X -+ Y 
exceeds con,i,. 

At a low-level, a calendar C is set of (possibly in- 
terleaved) time intervals {(sl,el), (sz,ez),... ,(sk,ek)}. 
(See Section 3 for a detailed discussion of calendar descrip- 
tion and evaluation.) C is said to contain time unit t if it 
contains an interval (sj, ej) such that sj < t 5 ej. We 
denote the mis-match threshold by m. m is an integer that 
limits the number of mis-matches that can occur. We say a 
calendar belongs to an association rule X + Y, if the rule 

l We will refer to Tb] specifically as “time segment j” or generically 
as a “time segment.” 

has enough confidence and support for the time units con- 
tained in the calendar with at most m mis-matches. In other 
words, if the calendar contains w time units, the association 
rule has to hold for at least w - m of them. Similarly, the 
calendar is said to belong to an itemset X if the support of 
X exceeds SUp,i, in at least w - m time units. 

Example 2.1 Let the unit of time be day. Consider 
the calendar consisting of the days that national unem- 
ployment figures were announced by the US government 
in 1996. The calendar corresponding to those days is 
C = {(31,31), (60,60), (89,89), (121,121), (152,152), 
(180,180), (213,213), (243,243), (274,274), (305,305), 
(334,334), (366,366)). (We assume in this example that 
days are numbered consecutively starting with January 1, 
1996 as day 1.) 

Let us assume that the mismatch threshold is 0. If we 
have a transactional database of trades made by people, 
we will say that calendar C belongs to the rule “Buying 
of QuickRich Software + Selling of PowerIsGood Inc.“, 
if the rule has enough support and conjidence on days 
31,60,89,121,152,180,213,243,274,305,334,366 of 
year 1996. 

If; on the other hand, the mis-match threshold is 4, then 
the rule “Buying of QuickRich Software + Selling of Pow- 
erIsGood Inc.” has to holdfor at least 12 - 4 = 8 of the 12 
days in 31, 60, 89, 121, 152, 180, 213, 243, 274, 305, 334, 
366. 0 

Given a set of transactions and a set of template calen- 
dars, we define the problem of discovering calendric asso- 
ciation rules as discovering relationships between the pres- 
ence of items in the transactions that follow the patterns set 
forth in the calendars. 

An association rule can be represented as a binary se- 
quence where the l’s correspond to the time units in 
which the rule holds and the O’s correspond to the time 
units in which the rule does not have the minimum con- 
fidence or support. For instance, if the binary sequence 
001100010101 represents the association rule X-+Y, then 
X+Y holds in 7[3], 7[4], 7[8], T[lO], and 7[12]. The 
calendar { (4,4), (8,8), (12,12)}, which corresponds to the 
a cycle of length 4, belongs to the association rule since 
the association rule is valid on the 4th, 8th and 12th time 
units. (Unlike variables in programming languages, cal- 
endars start from unit one!) Similar to association rules, 
itemsets can also be represented as binary sequences where 
l’s correspond to time units in which the corresponding 
itemset is large and O’s correspond to time units in which 
the corresponding itemset does not have the minimum sup- 
port. These binary sequence representations will be useful 
to prove the correctness of the algorithms that we will de- 
velop for discovering calendric association rules. 

In the next section, we introduce a simple and powerful 
calendar algebra for defining and manipulating calendars. 

3 Calendar Algebra 
Our framework for calendar algebras is based on the work 
reported in [All85, LMF86] and the implementation re- 
ported in [CSS94]. 
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There are two main components to our framework. One 
is the definition and use of calendar algebras to define and 
manipulate sets of time intervals. The other is the use of 
a calendric system to define a basic calendric framework 
like the Gregorian or the Jewish calendar. To the best of 
our knowledge, the work reported in [CSS94], which it- 
self is based quite closely on the framework developed in 
[AllU, LMF86], is the only one that deals with calendar 
algebras. The work of Snodgrass and his colleagues, for 
example [SSD+92], has concentrated primarily on the lat- 
ter problem of developing a calendric framework and on the 
problem of integrating time into database models and SQL. 
Hence, this work is not relevant to the first issue of calendar 
algebras. However, it is very relevant to the second issue of 
defining the basic calendric framework. We chose to follow 
the model developed in [All85, LMF86J for this problem 
because it is more convenient to implement. However, the 
work on calendar algebras in this section can be applied to 
any system that defines and implements basic calendars. 

Following [All85, LMF86], we define a calen- 
dar to be a structured collection of intervals. Let 
Sl,S2,...,sk,el,e2,..., ek be integers. We define a col- 
lection S = {(sl,ei), (sa,es), . . . , (sk,ek)}, to be a cal- 
endar of order 1. A calendar of order 2 is a collection of 
calendars of order I and so on. 

In order to capture relationships between two inter- 
vals, [Al1851 defines the following interval operators that 
operate on two intervals (denoted by intl = (si, el) and 
ints = (sp, es)) and return a boolean value: 

0 inti overlaps int;? E ((~1 < s2 5 et) V (~2 < s1 5 

e2)) 
l intr during int2 z ((si 2 ss) A (ei 5 ea)) 
0 intr meets ints z (ei = ~2) 
0 intt < inta G (er 5 sa) 
0 intt 2 inta f ((si 5 ss) A (el 5 es)) 

We are now in a position to define the operators of the cal- 
endar algebra. 

Dicing Operations: For each interval operator, [LMF86] 
defines two dicing operators. These operators work in two 
modes: (1) they can take an order 1 calendar as their left 
argument, an interval as their right argument and produce 
an order 1 calendar as their output; (2) they can take an 
order 1 calendar as their left argument, an order 1 calendar 
as their right argument and produce an order 2 calendar as 
their output. (They produce an order 1 calendar for each 
interval in their right argument.) 

For each interval operator R, [LMF86] defines two dic- 
ing operators: strict, denoted by : R:, and relaxed, denoted 
by .R. If C is an order 1 calendar and c’ is an interval, then 
the two operators are defined as: 

C:R:c’ E {cnc’~~~c~~Rd}/{~} 
C.R.c’ 3 {c]cECA~R~‘}/{E} 

The intersection (n) between two intervals (si > el) and 
(ss, es) is defined as (max(sl, sg), min(ei, es)) and e de- 
notes the interval (-co, 00) that is to be excluded from the 

result. The definitions for operators that take a calendar as 
their right hand argument is similar (C’ is an order 1 calen- 
dar.): 

C.R.C’ z {{c]cECA~RC’}/{E}(C’EC’} 

Example 3.1 Let WeeksInJan96 denote the calendar 
{ (-3,4), (5, ll), (12, lg), (19,X$ (26,X2)}. Let 
JanInl996 denote the calendar { (1,31)}. The expres- 
sion WeeksInJan96 : overlaps : JanIn1996, which 
uses the strict operator returns a single order 2 calen- 
dar {{(1,4), (5,11), (12,18), (19,25), (26,31)}}. Be- 
cause of the intersection with the interval from the right 
hand side, the result consists of only the portion of 
the weeks that fall in the interval (1,31). The expres- 
sion WeeksInJan96.averlaps.ManthsInl996, which 
uses the relaxed operator; returns the calendar { { (-3,4), 
(5, ll), (12,18), (19,25), (26,32)}}. In this case, every 
week that overlaps with (1,31) is returned in its entirety. q 

Slicing Operations: Let C be a calendar and p an integer. 
Two slicing operators denoted by (p)/C and M/C operate 
on C and replace each of the order 1 collections contained 
in C with the result of the slicing operation. The opera- 
tor (p)/C replaces each order 1 calendar in C with its pth 
element and returns the result. For example, while operat- 
ing on an order 1 calendar, (p)/C simply returns the pth 
interval in C. The operator [PI/C replaces every order 1 
calendar with a calendar consisting of the pth element. For 
example, while operating on an order 1 calendar, W/C re- 
turns a calendar consisting of the pth element. If p is neg- 
ative, indexing is done from the end of the calendar. For 
example, (-1)/C returns the last element of C. Finally, 
instead of a single integer p, one is allowed to specify a 
list of integers for the slicing operation. [PI, ~2, . . . , pk]/C 
replaces each order 1 calendar with a calendar consisting 
of the pih, pih, etc. elements while (~1, pz, . . ,pk)/C re- 
places each order 1 calendar with the pih, p$, etc. ele- 
ments. 

Additional Operations: In addition to the operations de- 
fined above, we define and use the minus (-) and the plus 
(+) with their usual set-theoretic meanings on calendars. 
We also use aflatten operator which takes an order k calen- 
dar and produces an order k - 1 calendar which is a single 
calendar made of the all elements of the constituent order 
(k - 1) calendars. 

Example 3.2 Let Week&Jan96 denote the calendar 
{(-3,4), (5,11), (12?18), (19,25), (26,32)}. The 
expression [3]/WeeksInJan96 returns the calendar 
{(12,18)}. Th e expression [-2lJWeeksInJan96 re- 
turns the calendar {(19,25)}, while the expression 
[3,4]/WeeksIn Jan96 returns the calendar {(12,18), 

(19,25)). 
The expression flatten{{(-3,4), (5, ll), (12,18), 

(1% 25)> (26,32)11 returns {(-3,4), (5, ll), (12, la), 
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(19,25), (26,32)}, while the expression fZatten{{(l, l)}, 
{(5,5)}) returns {(l,l), (5,5)). 0 

The operators we have introduced thus far simply oper- 
ate on calendars. In fact, one can see that they are quite 
reminiscent of nested relational algebra [RKS88]. In or- 
der to be able to define real-life calendar expressions, one 
needs a calendric system like the Gregorian calendar sys- 
tem. Following [CSS94], we introduce the Gregorian cal- 
endar by defining what are called basic calendars. They 
are SECONDS, MINUTES, HOURS, DAYS, WEEKS, 
MONTHS, YEARS, DECADES, and CENTURY, and re- 
fer to the corresponding familiar temporal concepts. In ad- 
dition, we use a reference point in time called the origin of 
the calendric system. Our origin is the UNIX system start 
data, Jan 1, 1970 and this is taken to be the starting point 
for all the basic calendars. 

Relationships between basic calendars are kept in a ta- 
ble with the following structure: 

CALTABLE(cal1: string, cal2: string, 
repList : array of integers, offset : integer) 

In CALTABLE, call and cal2 are one of the basic cal- 
endars. For example, an entry {YEARS, MONTHS, 12,0} 
expresses the relationship that each year is made up of 12 
months. To express something more complicated like the 
relationship between years and days, an entry of the form 
{YEARS, DAYS, (365, 365, 366, 365) , 0 } is used. This 
means that the first year from the origin (1970)2 has 365 
days, and that the second year from the origin also has 365 
days. The third year, being a leap year, has 366 days. The 
fourth year has 365 days. After this, the pattern repeats 
over. (Obviously, this doesn’t handle leap centuries. To 
handle this, a more complicated expression is needed). The 
“offset” is used to take care of the basic calendars whose 
boundaries do not match with the chosen origin. Thus an 
entry of the form {WEEKS, DAYS, 7, 4) is used to take 
into consideration the fact that January 1, 1970 lies on a 
Thursday (assuming that a week begins on a Monday). 

Once the relationships between the basic calendars are 
defined, we can easily define fairly complicated temporal 
expressions. We show an example below. Additional ex- 
amples can be found in [RMS98]. 

Example 3.3 Mondays that overlap the first day of a 
month are expressed by the calendar algebra expression: 

flatten (((I) / (DAYS :during: WEEKS)) 
:during: 

((I) /(DAYS :during: MONTHS))) 

The (DAYS :during: WEEKS) expression expresses weeks 
in terms of its constituent days. The (I)/(DAYS :during: 
WEEKS) then selects theJirst day of every week, producing 
a calendar consisting of the first day of every week. Simi- 
larly, the expression (l}/(DAYS :during: MONTHS) returns 

2,4s alluded to before, all calendric systems are indexed from 1, rather 
than 0. Also, an interval over time is assumed to never contain 0. For 
example, the interval (-3, 1) contains the time units -3, -2, -1, and 1, but 
not 0. 

a calendar consisting of the first day of every month. The 
“during” between these calendars returns an order two 
calendar consisting of the Mondays that occur during the 
$rst days of the months. TheJlatten reduces this to an order 
1 calendar containing the result. q 

Handling Multiple Time Granularities: The techniques 
introduced in this section are general enough to handle mul- 
tiple granularities; they only rely on being able to express 
higher granularities in terms of lower granularities-for ex- 
ample, months in terms of days. When dealing with mul- 
tiple calendar algebra expressions, it becomes necessary to 
express them in terms of a common time granularity. For 
example, if dealing with calendars that talk about weeks 
and months, it is simpler to express them in terms of days. 
Such a time unit is always guaranteed to exist in any calen- 
dric system and corresponds to the notion of a chronon in 
temporal database literature [SSDf92]. 

We have implemented a parser and an evaluator to parse 
and evaluate the calendar algebra efficiently. Our imple- 
mentation loosely follows the implementation described 
in [CSS94]. The parser is an LALR parser. Starting and 
ending points and the granularity for the output calendar 
are supplied by the user or when possible, deduced from 
the algebra expressions. The result of the evaluation is an 
order 1 calendar (a collection of intervals), which is then 
passed to the data mining routines. Due to lack to space, 
we omit a detailed description here. 

4 Discovering Calendric Association Rules 
As discussed in [GRS98], existing algorithms for discover- 
ing association rules cannot be applied directly to discover 
cyclic association rules. It follows then that these algo- 
rithms cannot be applied to solve the problem of calendric 
association rules, which offer far more expressive power 
than cyclic association rules. 

For example, extending the attributes of an association 
rule in order to capture rules like (day = Monday) UX -+ 
Y is clearly infeasible because there are an exponential 
number of calendars, 2t, that are possible in a time period 
of length t. 

4.1 The Sequential Algorithm 

As with cyclic rules, the straight-forward approach to dis- 
covering calendric association rules is to treat the prob- 
lem of calendar detection and association rule mining sepa- 
rately. That is, we generate the rules in each time unit with 
one of the existing methods [AS94, SON951 and then apply 
a pattern matching algorithm (See Section 4.4) to discover 
calendars. We refer to this approach as the sequential algo- 
rithm. 

Existing algorithms discover association rules in two 
steps. In the first step, large itemsets are generated. In the 
second step, association rules are generated from the large 
itemsets. The running time for generating large itemsets 
can be substantial, since calculating the supports of item- 
sets and detecting all the large itemsets for each time unit 
grows exponentially in the size of the large itemsets. To 
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reduce the search space for the large itemsets, the existing 
algorithms exploit the following property: 

“Any superset of a small itemset must also be small.” 

The existing algorithms calculate support for itemsets iter- 
atively and they prune all the supersets of a small itemset 
during the consecutive iterations. Let us refer to this prun- 
ing technique as support-pruning. In general, these algo- 
rithms execute a variant of the following steps in the kth 
iteration: 

1. The set of candidate k-itemsets is generated by ex- 
tending the large (k - 1)-itemsets discovered in the 
previous iteration (support-pruning). 

2. Supports for the candidate k-itemsets are determined 
by scanning the database. 

3. The candidate k-itemsets that do not have minimum 
support are discarded and the remaining ones consti- 
tute the large k-itemsets. 

The idea is to discard most of the small k-itemsets during 
the support-pruning step so that the database is searched 
only for a small set of candidates for large k-itemsets. 

In the second step, the rules that exceed the confidence 
threshold cmmin are constructed from the large itemsets 
generated in the first step with one of the existing algo- 
rithms. For our experimental evaluation of the sequential 
algorithm, we implemented the apriori and the ap-genrules 
algorithms from [AS94]. Once the rules of all the time 
units have been discovered, calendars that belong to the 
rules need to be detected. Let T be the number of rules 
detected and k be the number of time units a calendar con- 
tains. Checking to see whether the calendar belongs to the 
rules can be done in time O(r x k). 

However, in practice, it turns out that the number of as- 
sociation rules is substantially more than the number of 
large itemsets discovered. This typically cause the se- 
quential algorithm to run out of real memory causing it to 
perform many I/O’s to bring relevant portions of the data 
into memory. In particular, as the average itemset size in- 
creases, this becomes a severe problem for the sequential 
algorithm. 

A better approach is to discover the large itemsets over 
all the time units and then to use these to discover the asso- 
ciation rules and their associated calendars. This speeds up 
the sequential algorithm substantially. The details of this 
optimization are given in Section 6. Of course, the disad- 
vantage of this optimization is that one can no longer treat 
the association rule mining module as a “black box.” 

4.2 Pruning, Skipping and Elimination 

The major portion of the running time of the sequential al- 
gorithm is spent to calculate the support for itemsets. The 
three techniques we used in the cyclic association rules pa- 
per to reduce the number of itemsets for which support 
must be calculated -pruning, skipping, and elimination- 
can be applied in the case of calendric rules, though the de- 
tails of the application are quite different. These techniques 
rely on the following fact: 

“A calendar that belongs to the rule X -+ Y 
also belongs to the itemset XY.” 

Therefore, eliminating calendars as early as possible can 
substantially reduce the running time of calendric associa- 
tion rule detection. 

Skipping is a technique for avoiding counting the sup- 
port of an itemset in time units which are guaranteed to be 
contained in any calendar that can belong to the itemset. 
Skipping is based on the following property: 

“If time unit tj is not contained in any calendar that 
belongs to an itemset X, then there is no need to calculate 

the support for X in time segment 7[j] .” 

However, this technique can be applied only if we have in- 
formation about the calendars of an itemset X. But the cal- 
endars of an itemset X can be computed exactly only after 
we compute the support of X in all the time segments! In 
order to avoid this self-dependency, we try to approximate 
the calendars of itemsets. To do this, we use a technique 
we call pruning, which is based on the following Lemma, 
whose proof can be found in [RMS98]: 

Lemma 4.1 If a calendar C belongs to an itemset X then 
it must also belong to all of X’s subsets. 

Therefore, one can arrive at an upper bound on the calen- 
dars that belong to an itemset X by looking at the calendars 
that belong to X’s subsets. By doing so, we can reduce the 
number of potential calendars that belong to X, which, in 
turn (due to skipping), reduces the number of time units in 
which we need to calculate support for X. Thus, pruning 
is a technique for computing the potential calendars of an 
itemset by merging the calendars of the itemset’s subsets. 

However, it is possible in some cases that we cannot 
compute the potential calendars of an itemset. For exam- 
ple, when we are dealing with singleton itemsets. In these 
cases, we need to assume that an itemset X has every pos- 
sible calendar and therefore, calculate the support for X in 
each time segment 7[j] (except the time units eliminated 
via support-pruning). This is, in fact, what the sequential 
algorithm does. 

Example 4.2 rfwe know that the calendar ((4,4), (8,8), 
(12,12)} is the only calendar that belongs to items A and 
B, then pruning implies that the only calendar that can 
belong to AB is also {(4,4), (8,8), (12,12)}. 

In turn, skipping implies that we have to calculate the 
support of AB only in 7[4], 7[8], and 7[12] rather than 
all the time segments. 0 

We now introduce one more optimization technique, 
which we refer to as elimination, that can be used to fur- 
ther reduce the number of potential calendars of an itemset 
X. Elimination is used to eliminate certain calendars from 
further consideration once we have determined they cannot 
exist. Elimination relies on the following Lemma, whose 
proof follows immediately from the definition of how a cal- 
endar belongs to an itemset: 
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Lemma 4.3 If the support for an itemset X is below the 
minimum support threshold sUp,i, in m time units con- 
tained in a calendar C, where m is the mis-match thresh- 
old, then C cannot belong to X. 

Elimination enables us to discard calendars that an itemset 
X cannot have as soon as possible as demonstrated in the 
following example. 

Example 4.4 If the mis-match threshold is 0, and we dis- 
cover that itemset X does not have enough support in ‘T[4], 
we know that the calendar {(4,4), (8, S), (12,12)} cannot 
belong to X. cl 

4.3 The Interleaved Algorithm 

The pruning, skipping and elimination techniques lead us 
to the interleaved algorithm for discovering calendric as- 
sociation rules. The intuition behind the interleaved algo- 
rithm is that we will use the calendars associated with item- 
sets to minimize the number of candidates whose support 
we need to count. We will also try to minimize the num- 
ber of potential calendars that need to be associated with 
itemsets. 

The interleaved algorithm consists of two phases. In the 
first phase, the calendars belonging to large itemsets are 
discovered. In the second phase, calendric association rules 
are generated. 

In the first phase of the interleaved algorithm, the search 
space for the large itemsets is reduced using pruning, skip- 
ping and elimination. Figure 1 outlines this phase. Note 
that at the end of Step 2, we know the set of calendars that 
actually belong to itemsets of size k. 

Phase One terminates when the list of potential calen- 
dars for each k-itemset is empty. Pruning, skipping and 
elimination can reduce the candidate k-itemsets for which 
support will be counted in the database substantially, and 
therefore can reduce the time needed to calculate large 
itemsets. This is demonstrated by the following example. 

Example 4.5 Suppose that the only calendar we are inter- 
ested in is C = {(4,4), (88) (12,12)} and sequences 
lIlOOOOOOOIIlllllll and llllOIOlllllllllllI rep- 
resent items A and B, respectively, (Recall from Section 2 
that a 1 in such a sequence indicates that the item has 
enough support and that a 0 indicates that it doesn’t.) As- 
sume also that the mis-match threshold is 0. 

If the sequential algorithm is used, then support for A 
and B will be calculated in all the time segments, and sup- 
port for AB will be calculated in time segments 1-3, and 
11-19. In the interleaved algorithm, support for A will be 
calculated only in time unit 4, at which point C is eiimi- 
nated from consideration for A. Support for B is calcu- 
lated in time segments 4,8, and 12 and C is found to belong 
to B. The itemset AB has no potential calendars because 
A has none and hence supportfor AB is never calculated! 
cl 

In the second phase of the interleaved algorithm, cal- 
endric association rules can be calculated using the calen- 
dars and the supports of the itemsets without scanning the 

For each k, k 2 1 : 

1. If k = 1, then all possible calendars are initially 
assumed to exist for each single itemset. Other- 
wise (if k > 11, pruning is applied to generate the 
potential calendars for k-itemsets using the calen- 
dars for (k - l)-itemsets. If the list of potential 
calendars for each k-itemset is empty, Phase One 
terminates. 

2. Time segments are processed sequentially. For 
each time unit tj : 

2.1 Skipping determines, from the set of can- 
didate calendars for k-itemsets, the set of 
k-itemsets for which support will be calcu- 
lated in time segment 7[j]. 

2.2 If a k-itemset X chosen in Step 2.1 does 
not have the minimum support in time seg- 
ment 7[j], then the mis-match count is incre- 
mented by 1 for each potential calendar asso- 
ciated with X that contains tj. If this mis- 
match count exceeds the mis-match threshold 
for a particular calendar, that calendar is elim- 
inated from the list of potential calendars for 
X. 

Figure 1: Phase One of the interleaved algorithm 

database. Interleaving calendar detection with large item- 
set detection also reduces the overhead of rule generation 
phase. This is because a calendar of the rule X + Y must 
belong to the itemset XY, and at the end of the first phase 
of the interleaved algorithm we already know the calendars 
of large itemsets. Thus, the set of candidate calendars for 
a rule X -+ Y initially consists of the set of calendars of 
the itemset XY. As a result, we need to calculate the con- 
fidence of a rule X -+ Y only for time units that are con- 
tained in the calendars belonging to XY. Moreover, we can 
apply elimination here also. If C is a calendar belonging to 
XY, and we encounter m time units in which X 4 Y does 
not have minimum confidence or XY doesn’t have enough 
support, we can eliminate C from the list of potential cal- 
endars for X + Y. 

4.4 Calendar Detection 

In order to detect whether a calendar C belongs to an asso- 
ciation rule, we need to examine the support and confidence 
of the rule for every time unit contained in the calendar. If 
the calendar contains k time units, this can be done in O(k) 
steps. And in general, this is the best we can do since a cal- 
endar can contain arbitrary time units. 

The situation is less clear if we have a set of calendars 
that we have to check against a given rule or itemset. In 
this case, it should be possible to examine the structures of 
the calendars to eliminate duplicate work. However, we do 
not address this issue in this paper. The problem is similar 

374 



to the problem of detecting all cycles that belong to a given 
binary-sequence [GRS98]: . 

- I 

The following lemma shows that the skipping technique 
in Section 4.2 cannot affect calendar detection. 

Lemma 4.6 In the course of determining whether a calen- 
dar C belongs to an association rule (itemset), suppose that 
C does not contain time unit t. Whether C belongs to the 
rule (itemset) or not is unaffected by the support and con- 
fidence (support) of the association rule (itemset) in time 
unit t. 

Proof: This follows from the definition of belongs that 
states that a calendar belongs to a rule (itemset) if the rule 
has enough support and confidence (support) for every time 
unit that is contained in the calendar (modulo the mis- 
match threshold). The support and confidence (support) of 
a rule (itemset) in a time unit t not belonging to the calen- 
dar, then clearly does not affect the determination process. 

0 

4.5 Proof of Correctness 

We tie everything together in this section by formally show- 
ing that the interleaved and sequential algorithm are equiv- 
alent in that they discover the same calendric association 
rules. We do this in two steps: First, we prove that every 
calendar belonging to every large itemset in the input data 
is discovered correctly by the interleaved algorithm. We 
then prove that the calendric association rules discovered 
by the interleaved algorithm are the same as those discov- 
ered by the sequential algorithm and vice-versa. Due to 
lack to space, we omit the proofs of the Lemma and the 
Theorem. They can be found in [RMS98]. 

Lemma 4.7 Phase One of the interleaved algorithm cor- 
rectly computes every calendar belonging to every itemset. 

Theorem 4.8 A calendric association rule is detected by 
the interleaved algorithm iff it is detected by the sequential 
algorithm. 

The Lemma above is an induction on the size of the 
itemsets. Proof of the Theorem proceeds in two parts: To 
show that the interleaved algorithm computes every calen- 
dric association rule that the sequential algorithm does and 
vice-versa. 

4.6 Multiple Granularities and Further Optimiza- 
tions 

We point out that all the results in this section apply directly 
even when we are handling multiple time granularities. As 
long as the different granularities are expressed in terms 
of a common time unit, one only has to modify the defini- 
tion of the technical terms “contains” and “belongs” for the 
proofs to apply for multiple granularities. 

Multiple granularities also introduce the possibility of 
further optimizations when some calendars strictly sub- 
sume other calendars. For example, it might be the case 

Table 1: Parameters for data generation from[AS94, 
AMS+96] 

that every time unit tj that belongs to a calendar Ci also 
belongs to another calendar Cs. In such cases one can cut 
down on the number of calendars searched for by organiz- 
ing the calendars into a calendar hierarchy based on the 
subsumption relationship. However, experimental results 
indicate two factors that make such optimizations less than 
useful in practice: (a) Since calendars are arbitrary user- 
defined expressions, it is not very likely that users will de- 
fine and look for two calendars that subsume each other; 
(b) The running time of calendric association rule discov- 
ery is completely dominated (by a factor of over 100) by the 
time to count support for large itemsets. Improvements in 
optimizing the search for calendars that take advantage of 
inter-relationships between calendars are unlikely to yield 
much gains in the overall running time. 

5 Implementation Details 
In this section, we present the implementation details of 
the prototype that we built for discovering calendric asso- 
ciation rules. We first describe the synthetic data generator 
used to generate our data. 

5.1 Data Generation 

Our data generator is based on the synthetic data generator 
used in [AS94, AMS+96]. We augmented it to generate 
data for calendric association rules. In addition to the pa- 
rameters used by [AS94, AMS+96] shown in Table 1, we 
used additional parameters shown in Table 2. (The param- 
eters are described in the following paragraphs.) 

The generation of the large itemsets and their weights 
closely follows the procedure in [AS94, AMS+96]. We 
generate L itemsets of average size 1. Each itemset is asso- 
ciated with a weight, which is an exponentially distributed 
random variable. Each itemset has, on the average, Cttem 
calendars that belong to it which means that the itemset is 
used for data generation during any time unit contained in 
any of its calendars. 

In order to model the fact that real world data will con- 
sist of a mixture of calendric rules and non-calendric rules. 

21 ] Number of time units of data generated 
Citem Avg. number of calendars associated with each 

I 

large itemset 
v Avg. level of “noise” in the data generated 

Table 2: New parameters for calendric association rule gen- 
eration 
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Number of transactions/time segment, D 
Number of items, N 

Avg. size of large itemsets, I 
Number of large itemsets, L 

Avg. transaction size, T 
Number of time units, ‘u. 

Avg. number of calendars per itemset, Citem 
Avg. level of “noise” in the data generated, v 

Table 3: Default settings for parameters in data generation. 

we use the “noise” parameter u, which is a real number 
between 0 and 1. In a particular time unit, a large itemset 
is “active” (in the sense that transactions in that time unit 
will contain that itemset) independent of the calendars that 
belong to it with a probability Y. 

The calendars themselves are supplied as files contain- 
ing the algebra expressions. The data generation program 
reads these files and parses the expressions into calendars 
which are then used for data generation. 

At the beginning of each time unit, the data generation 
algorithm first determines which large itemsets should be 
used for data generation in that time unit. This is done by 
checking to see if the current time t is contained in any of 
the calendars that belong to it. Following this, a determina- 
tion is made as to whether the noise parameter dictates that 
the itemset be used. Once this is done, the weights associ- 
ated with the large itemsets determine their occurrences in 
the transactions for the time unit. 

The default values we used for the parameters in our 
experiments are shown in Table 3. We conducted individ- 
ual sets of experiments that varied these parameters. We 
describe the variations when we describe the individual ex- 
periments. 

When the parameters are set to the above default values, 
the size of the data generated is about 150 megabytes (MB) 
for all the time units combined. 

5.2 Prototype Implementation Details 

We use the apriori algorithm from [AS94, AMS+96] as 
our basic data mining algorithm. The sequential algorithm 
is based directly on apriori, with optimizations to speed up 
the counting of support of itemsets of size 2. We use an 
array for this instead of a hash-tree when memory permits: 
We found the array to be a much faster technique for dis- 
covering 2-itemsets. 

The interleaved algorithm uses a hash-tree, described 
in [AS94, AMSf96], to store the large itemsets, their pat- 
terns and support counts. In addition, during the processing 
of an individual time segment, the interleaved algorithm 
uses a temporary hash-tree as well. Candidate generation 
(generation of itemsets of size k+ 1 and their candidate cal- 
endars from itemsets of size k) is based on pruning. Fig- 
ure 2 outlines the first phase of the interleaved algorithm 
(detection of calendars belonging to itemsets) in pseudo- 
code. 

As referred to before in Section 4.1, the number of as- 
sociation rules with calendars is typically much larger than 

the number of itemsets with calendars. If the sequential 
algorithm is applied naively to discover all the rules and 
their calendars, it consumes enormous amounts of mem- 
ory to store the status of all the association rules for all 
the time units. We found out that the sequential algorithm 
performs significantly better if it is used to only find large 
itemsets. After this, calendars belonging to the large item- 
sets can be discovered. At this point, the same procedure 
used to generate rules for the interleaved algorithm can be 
applied to the sequential algorithm as well. Accordingly, in 
our experimental comparison, we only compared the times 
needed by the two algorithms to generate the calendars be- 
longing to the large itemsets. For rule generation, ?,simple 
variant of the procedure Level-GenRuleCycles in [ORS98] 
can be used. 

I* This algorithm uses two hash-trees. itemset-hash-tree 
contains candidates of size Ic, their potential calendars, 
and space to store support counts for the relevant time 
units. If a calendar contains time unit t and belongs (or 
potentially can belong) to an itemset, that itemset is said 
to be “active” at time unit t. tmp-hash-tree, during the 
processing of time segment t, contains all the itemsets 
that are active in t. */ initially, itemset-hash-tree con- 
tains singleton itemsets and all possible calendars 

k=l 
while (there are still candidates in itemset-hash-tree 

with potential calendars) 
for t = 1 to u 

insert “active” itemsets from itemset-hash-tree 
into tmp-hash-tree II skipping 

measure support in current time segment for 
each itemset in tmp-hash-tree 

forall 1 E tmp-hash-tree 
if (SW < sup,in) 
then 

increment mis-match count for every calendar 
(potentially) belonging to 1 that contained t. 

if mis-match count exceeds threshold for a 
particular calendar C, delete it from l’s list 
of potential calendars // elimination 

else insert (1, supl, t) into itemset-hash-tree 
N this just inserts a (szlpl, time) entry in one of 

itemset Z’s fields 
end forall 
empty tmp-hash-tree 

endfor 
generate new candidates of size k + 1 using pruning 
k=k+l 
empty itemset-hash-tree after copying it 
insert new candidates into itemset-hash-tree 

endwhile 

Figure 2: The interleaved algorithm for detection of calen- 
dars belonging to itemsets. 

We conducted our experiments on a lightly loaded Sun 
Spare 20 machine with 64 MB of memory running Solaris 
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2.5.1. A Seagate 9 GB SCSI disk was used for our ex- 
periments. The hard disk had a streaming read throughput 
of about 5 megabytes/set (MBps) and a streaming write 
throughput of about 4 MBps. Since our experiments were 
CPU bound most of the time, we only report wall clock 
times for the various experiments. 

Due to space limitations, we refer the reader to [RMS98] 
for a detailed discussion of memory management issues for 
the interleaved and sequential algorithms. 

5.3 Handling Multiple Granularities 

Multiple time units can be seamlessly integrated in our ap- 
proach. As discussed before, calendars over multiple time 
units can be expressed in terms of a common time unit that 
is guaranteed to exist. For example, calendars over months 
and weeks in terms of days. Once this is done, the sequen- 
tial algorithm can run a copy of itself for each granularity 
simultaneously (to avoid multiple scans of data). The inter- 
leaved algorithm can keep track of itemsets and their calen- 
dars of different granularities easily. A detailed algorithm 
is given in [RMS98]. 

6 Experimental Results 
We now present the results of an extensive set of exper- 
iments conducted to analyze the behavior of the sequen- 
tial and interleaved algorithms. We only present results for 
the behavior of the algorithms while handling a single time 
granularity. We believe that the results will not be seriously 
affected by the presence of multiple time granularities. 

6.1 Dependence on Minimum Support 

In these experiments, it should be kept in mind that the se- 
quential algorithm had an inherent advantage in consider- 
ing the time segments of the data one by one. All but the 
largest time segments that we used fit entirely in the main 
memory of the machine that we used. The interleaved al- 
gorithm, which sweeps repeatedly through the entire data, 
incurs more I/O’s, It should also be kept in mind that the 
sequential algorithm used in the experiments uses the opti- 
mization mentioned in Section 4.1 and only computes large 
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Figure 3: Execution time plotted against support for the 
sequential and interleaved algorithms. 
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Figure 4: Execution time at various levels of support for se- 
quential and interleaved algorithms with and without mis- 
matches. 

itemsets and their calendars. Using the sequential algo- 
rithm to compute the rules and their calendars seriously 
undermines the performance of the sequential algorithm. 
Hence, that is not done in the experiments. 

Unless other wise indicated, the default value for sup- 
port used is 0.75%. 

Figure 3 plots the execution time for the interleaved and 
sequential algorithms as support is varied from 1.5% to 
0.25%. In these experiments, the mis-match threshold is 
set to 0 (which implies exact calendar matching). With 
support set to 1.5%, the executions times of the two al- 
gorithms are practically identical. This is because both the 
interleaved and sequential algorithms do not have much to 
discover by way of calendric rules because the support is 
too high. (Since we generate 1000 large itemsets, the av- 
erage support per itemset is only O.l%.) As support de- 
creases, the amount of wasted work done by the sequential 
algorithm increases significantly as the number of itemsets 
found to be large by the sequential algorithm increases. The 
interleaved algorithm benefits from its pruning techniques, 
especially elimination, and this dramatically reduces the 
number of candidate itemsets for which support must be 
counted. At support set to 0.25%, the sequential algorithm 
takes close to 250% the time taken by the interleaved algo- 
rithm. 

6.2 Calendar Detection with Mis-Matches 

Figure 4 shows the running times of the two algorithms 
with the mis-match threshold set to 2. Neither the sequen- 
tial or the interleaved algorithm is affected by the presence 
of mis-matches. To illustrate this, we have superimposed 
the graph from Figure 3 on Figure 4. The two algorithms 
are not affected much by mis-matches because counting the 
support of candidate itemsets dominates the overall run- 
ning time of both the algorithms. While the presence of 
mis-matches does undermine the ability of the interleaved 
algorithm to perform elimination quickly, it is not serious 
enough to significantly affect the running time. 
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Figure 5: Execution time vs. noise level for the two algo- 
rithms at varying levels of support. In the experiments for 
this graph, support was set to 0.25%. 

6.3 Varying Noise Levels 

Figure 5 shows the dependence of the two algorithms on 
noise. When there is no noise, the set of candidates con- 
sidered by the two algorithms are exactly the same. This is 
because only largesets with calendars occur in the database 
and both the algorithms have to count support for all of 
them. As the amount of noise increases, two effects come 
into play: (1) The amount of wasted work performed by 
the sequential algorithm increases dramatically since it be- 
gins counting support for many itemsets for whom no cal- 
endars belong. (2) Noise increases the maximum size of 
large itemsets in the database. This is because it ran- 
domly activates large itemsets, and the size of some of these 
large itemsets is bigger than that of itemsets with calendars. 
As expected, the interleaved algorithm is completely unaf- 
fected by noise. The combination of pruning and elimina- 
tion obliterates the effects of noise. 

6.4 Varying Itemset Size 

Figure 6 compares the running time of the two algorithms 
when the average size of the large itemsets is varied from 
3 to 7. Both algorithms are fairly dependent on the muxi- 
mum size of the large itemsets. (This increases the number 

Figure 6: Execution time vs. large itemset size for the two 
algorithms 

Figure 7: Execution time vs. avg. number of calendars 
associated with large itemsets. 

of passes that they have to make.) Since we control only 
the average size of the large itemsets in our experiments, 
both algorithms exhibit some non-monotonic behavior as 
the average large itemset size is increased. The sequen- 
tial algorithm is slower than the interleaved algorithm by 
nearly by 75% even at an average itemset size of 3. The 
gap continues to grow and exceeds 100% as the average 
size is increased. 

6.5 Varying the number of Calendars Associated with 
a Large Itemset 

Figure 7 compares the two algorithms as the average num- 
ber of calendars associated with large itemsets is varied 
from 3 to 11. Both the algorithms are only marginally af- 
fected by this variation. This indicates that calendar de- 
tection is not a significant bottleneck in either of the algo- 
rithms. 

6.6 Data Size Scaleup 

Figure 8 shows the running time of the two algorithms as 
the time segment size is increased from 10k transactions 

Ok 
I 

Num r of transactions%+ time segment 75k 

Figure 8: Execution time for the interleaved algorithm as 
the data size for a single time segment increases from 1Ok 
transactions to 707~ transactions. (This corresponds to in- 
creasing the total database size from 155 megabytes to 1.1 
gigabytes.) 
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to 7OIc transactions. (The database size increased from 
155 megabytes to 1.1 gigabytes.) Both the algorithms can 
handle large amounts of data fairly well and exhibit good 
scaleup. The interleaved algorithm continues to exhibit a 
clear performance superiority throughout. 

6.7 Experimental Conclusions 

Through a series of experiments, we have demonstrated 
that detecting calendric association rules can be done effi- 
ciently and quickly. The interleaved algorithm outperforms 
the sequential algorithm convincingly in all the dimensions 
of the problem. The performance of the interleaved algo- 
rithm is sometimes 2 or 3 times faster than that of the se- 
quential algorithm. Hence, we can definitely say that cal- 
endric association rule detection benefits significantly from 
the optimization techniques that we have presented in this 
paper. 

7 Conclusions and Future Directions [oRS98] 

In this paper, we have studied the problem of discovering 
interesting patterns in the variation of association rules over 
time. Information about such variations will allow analysts 
to better identify trends in association rules and help bet- 
ter forecasting. By studying the interaction between large 
itemset detection and calendars, we devised a series of op- 
timization techniques that significantly speed up the dis- 
covery of calendric association rules. These optimization 
techniques allow us to obtain performance benefits ranging 
from 5% to 250% over a less sophisticated approach. 

In future work, we would like to handle the issue of time 
in other data mining problems like classification where they 
seem to fit naturally. It would also be interesting to devise 
online and incremental algorithms for these problems. 
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