
On the Discovery of Interesting Patterns in Association Rules

Sridhar Ramaswamy Sameer Mahajan
Bell Labs Informix Corp.

sridharabell-labs.com sameer@informix.com

Avi Silberscha tz
Bell Labs

avi@bell-labs.com

Abstract

Many decision support systems, which utilize associ-
ation rules for discovering interesting patterns, require
the discovery of association rules that vary over time.
Such rules describe complicated temporal patterns such
as events that occur on the “first working day of every
month.” In this paper, we study the problem of discov-
ering how association rules vary over time. In particu-
lar, we introduce the idea of using a calendar algebra
to describe complicated temporal phenomena of interest
to the user. We then present algorithms for discovering
culendric association rules, which are association rules
that follow the patterns set forth in the user supplied cal-
endar expressions. We devise various optimizations that
speed up the discovery of calendric association rules.
We show, through an extensive series of experiments,
that these optimization techniques provide performance
benefits ranging from 5% to 250% over a less sophisti-
cated algorithm.

1 Introduction
Recent advances in data collection and storage technology
have made it possible for many companies to keep vast
amounts of data relating to their business online. At the
same time, the availability of cheap computing power has
also made some automatic analysis of this data feasible.
This activity is commonly referred to as data mining.

One major application domain of data mining is in
the analysis of transactional data. It is assumed that the
database system keeps information about user transactions,
where each transaction is a collection of data items (e.g.,
milk, break, eggs, etc.). In this setting, association rules
capture inter-relationships between various data items. An
association rule captures the notion of a set of data items
occurring together in transactions. For example, in a

Permission to copy without fee all or part oj’this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication end
its date appear; end notice is given that copying is by permission @the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires c,fke c&or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

368

database maintained by a supermarket, an association rule
might be of the form:

“beer -+ chips (support: 3%, confidence: 87%),”

which means that 3% of all database transactions contain
the data items beer and chips, and 87% of the transactions
that have the item “beer” also have the item “chips” in
them. The two percentage parameters above are commonly
referred to as “support” and “confidence” respectively.

Typically, the data mining process is controlled by a user
who sets minimum thresholds for the support and confi-
dence parameters. The user might also impose other re-
strictions, like restricting the search space of items, in order
to guide the data mining process.

Following the pioneering work of [AIS93], discovery of
association rules has been extensively studied in [AS94,
SA95, HF95, SON95, PCY95, SA96, FMMT96, Toi96].
However, all the above work treat all the data as one large
segment, with no attention paid to segmenting the data over
different time intervals. To illustrate, let us return to our
previous example. It may be the case that beer and chips
are sold together primarily between 6PM and 9PM on week
days. Therefore, if we segment the data over the two inter-
vals 7AM-6PM and 6PM-9PM and consider only the data
from weekdays, we may find that the support for the beer
and chips rule in the segment 6PM-9PM jumps to 50%.

From the above example we can conclude that although
an association rule may have the user specified minimum
confidence and support within the entire time spectrum,
analysis of the data in finer time granularity may reveal that
the association rule exists only in certain time intervals,
and does not occur in the remaining time intervals. Even
casual observation of many association rules over monthly
data may disclose interesting patterns in their behavior over
time. Detecting these patterns would reveal interesting in-
formation that in turn can be used for analysis, prediction
and decision making.

In [ORS98], we examined this problem in the context
of detecting when association rules occur periodically over
time. In particular, we introduced the problem of mining
for “cyclic association rules” and presented algorithms for
efficiently detecting such rules. However, periodicity has
limited power in describing real-life variations. On a day-
to-day basis, humans deal with complicated patterns that
cannot be described by simple periodicities. For example,
a concept as simple as the first working day of every month
cannot be described by cycles. Further, the model used

in [GRS98] was fairly rigid, failing to capture a rule that
would exhibit a pattern “most” of the time but not all the
time. Finally, the model did not deal with multiple units of
time, like days, weeks, etc. that occur naturally.

In this paper, we generalize the work in [GRS98] in sev-
eral important directions:

l We introduce the problem of mining user-defined tem-
poral patterns in association rules. We introduce the
notion of using a calendar algebra to describe phe-
nomena of interest in association rules. This calen-
dar algebra is used to define and manipulate groups of
time intervals. This is an important and novel con-
tribution because real-life patterns can be described
succinctly using simple algebraic expressions. (See
below and Section 3 for examples.)

l We introduce the notion of finding fuzzy patterns in as-
sociation rules. This notion allows us to find patterns
in the data that approximately match the user-defined
patterns.

l Our techniques extend in a natural way to handle mul-
tiple units of time.

The usage of a calendar algebra to specify patterns is of
vital importance because the number of possible patterns
over a time-interval is exponential in the size of the time
interval. In order to simplify the process of writing cal-
endars for an end-user, we also let the user choose from
a set of pre-defined calendars. In addition, the users can
supply their own calendar expressions. Each such calendar
expression corresponds to a calendar, which is a collection
of time intervals describing some real-life phenomenon.

In order to illustrate the power of calendric expressions,
let us consider a stock trading example, where the transac-
tions consist of sets of trades made by people over time. By
integrating calendars and association rules, we can discover
patterns such as:

l Over the last two years, people have been buying the
technology stock QuickRich Software and selling util-
ity stock PowerIsGood Inc. on the days that national
employment figures were announced by the govern-
ment. The US government releases national employ-
ment figures on the last day of every month in the year.
If the day is a holiday, it is announced the previous
business day.

l Selling of technology stock MagicWidget implies
buying of MaBell Communications on the days that
options expire. (People who bought put options to
lock their profits in MagicWidget decide to move their
investments to a safer stock when their options ex-
pire.) Options expire on the third Friday of certain
months. If the day is a holiday, the expiration date is
the preceding business day.

Obviously, over the entire set of transactions, neither of
these rules might have enough support!

In this paper, we address the problem of describing com-
plicated real-life phenomena as the ones above and finding
the association rules and the patterns they follow.

We assume that the transactional data to be analyzed is
time-stamped and that time intervals are specified by the
user to divide the data into disjoint segments. We believe
that users will typically opt for “natural” segmentations of
the data based on months, weeks, days, etc., and that users
are best qualified to make this decision based on their un-
derstanding of the underlying data. Though we primarily
concentrate on the case where the user specifies a segmen-
tation based on a single time unit, we believe that our tech-
niques can naturally be extended to the case of hierarchical
segmentations. Further, we assume that the user will sup-
ply a set of calendar algebra expressions, the calendars cor-
responding to which are to be detected in the association
rules. As mentioned above, the user can also choose from
a number of predefined calendar expressions that make the
job of supplying the calendars simple. We parse the calen-
dar expressions into calendars, each of which is simply a
set of intervals.

We refer to an association rule as calendric if the rule
has the minimum confidence and support during every time
unit contained in a calendar, modulo a mismatch threshold,
which allows for a certain amount of error in the matching.
This mismatch threshold models the fact that, in real life,
the association rule will hold for most but not all the time
units of the calendar. The calendar is then said to belong
to the rule. The ruIe need not hold for the entire transac-
tional database, but rather only for transactional data dur-
ing the time units specified by the calendar (modulo the
mismatch threshold). We define the problem of mining cal-
endric association rules as the generation of all association
rules along with their calendars. Given a large database
consisting of transactional information, where each trans-
action consists of a transaction-id, a set of items and a time-
stamp, and a set of “interesting” calendar expressions, our
goal is to provide efficient algorithms to discover calendric
association rules.

Our treatment of calendars is based on the framework
developed in [All85, LMF86] and the implementation re-
ported in [CSS94]. We parse algebra expressions using an
LALR parser and evaluate calendars as sets of intervals.

For the,rule mining, many of the techniques we devel-
oped in [ORS98] apply in the context of calendric rules,
though the actual details are quite different. We first con-
sider a relatively straightforward extension of existing as-
sociation rule mining techniques for solving this problem.
This extension treats association rules and calendars inde-
pendently. It applies one of the existing methods for dis-
covering association rules to each segment of data and then
applies simple pattern matching algorithms to detect calen-
dars in association rules. The pruning and skipping tech-
niques we developed for cyclic association rules can be ap-
plied to calendric association rules also. This allows us to
significantly reduce the amount of wasted work performed
during the data mining process. We demonstrate the effec-
tiveness of these techniques by presenting the results of a
series of experiments.

The remainder of this paper is organized as follows. In
Section 2, we define the problem of discovering calendric
association rules formally. In Section 3, we describe our

369

algebra for calendars and provide details of our evaluation
techniques. In Section 4, we discuss the shortcomings of
the existing techniques to discover calendric association
rules and present two new techniques to solve this prob-
lem. Implementation details of our prototype are described
in Section 5. The experimental evaluation of the two tech-
niques is presented in Section 6. Finally, we present our
conclusions in Section 7 and identify directions for future
research.

2 Problem Definition
Let Z = {il,iz,. . . , iN> denote a set of data items. A
transaction is defined to be a subset of 1. An itemset
is also defined to be a subset of Z. We use the letters
X, Y, X1, Yl, . . . to denote itemsets. If X and Y are item-
sets, then XY represents the set union of X and Y.

Given a set of items Z and a set of transactions 7,
the problem of discovering association rules is defined as
finding relationships between the occurrences of itemsets
within transactions. An association rule of the form X+Y
is a relationship between the two disjoint itemsets X and
Y. An association rule is described in terms of support and
confidence. The support of an itemset X over the set of
transactions 7 is the fraction of transactions that contain
the itemset. An itemset is called large, if its supports ex-
ceeds a given threshold supmin.. The confidence of a rule
X+Y over a set of transactions 7 is the fraction of trans-
actions containing X that also contain Y. The association
rule X--+Y holds, if XY is large and the confidence of the
rule exceeds a given threshold con,i,.

In order to deal with calendric association rules, we en-
hance the transaction model by a time attribute that de-
scribes the time when the transaction was executed. In this
paper, we primarily focus on the case where a single unit
of time is given (e.g., by the user) since we believe that our
techniques extend in a natural way to handle more compli-
cated treatments of time, like a time hierarchy. We denote
the jth time unit, j 2 0, by tj. It corresponds to the time
interval [j . t, (j + 1) . t), where t is the unit of time. We
denote the set of transactions executed in time unit tj by
m .I

The support of an itemset X in 7[j] is the fraction of
transactions in 7[j] that contain the itemset, whereas the
confidence of a rule X+Y in 7[j] is the fraction of trans-
actions in 7[j] containing X that also contain Y. An asso-
ciation rule X+Y holds in time unit tj, if the support of
XY in 7[j] exceeds sup,i, and the confidence of X -+ Y
exceeds con,i,.

At a low-level, a calendar C is set of (possibly in-
terleaved) time intervals {(sl,el), (sz,ez),... ,(sk,ek)}.
(See Section 3 for a detailed discussion of calendar descrip-
tion and evaluation.) C is said to contain time unit t if it
contains an interval (sj, ej) such that sj < t 5 ej. We
denote the mis-match threshold by m. m is an integer that
limits the number of mis-matches that can occur. We say a
calendar belongs to an association rule X + Y, if the rule

l We will refer to Tb] specifically as “time segment j” or generically
as a “time segment.”

has enough confidence and support for the time units con-
tained in the calendar with at most m mis-matches. In other
words, if the calendar contains w time units, the association
rule has to hold for at least w - m of them. Similarly, the
calendar is said to belong to an itemset X if the support of
X exceeds SUp,i, in at least w - m time units.

Example 2.1 Let the unit of time be day. Consider
the calendar consisting of the days that national unem-
ployment figures were announced by the US government
in 1996. The calendar corresponding to those days is
C = {(31,31), (60,60), (89,89), (121,121), (152,152),
(180,180), (213,213), (243,243), (274,274), (305,305),
(334,334), (366,366)). (We assume in this example that
days are numbered consecutively starting with January 1,
1996 as day 1.)

Let us assume that the mismatch threshold is 0. If we
have a transactional database of trades made by people,
we will say that calendar C belongs to the rule “Buying
of QuickRich Software + Selling of PowerIsGood Inc.“,
if the rule has enough support and conjidence on days
31,60,89,121,152,180,213,243,274,305,334,366 of
year 1996.

If; on the other hand, the mis-match threshold is 4, then
the rule “Buying of QuickRich Software + Selling of Pow-
erIsGood Inc.” has to holdfor at least 12 - 4 = 8 of the 12
days in 31, 60, 89, 121, 152, 180, 213, 243, 274, 305, 334,
366. 0

Given a set of transactions and a set of template calen-
dars, we define the problem of discovering calendric asso-
ciation rules as discovering relationships between the pres-
ence of items in the transactions that follow the patterns set
forth in the calendars.

An association rule can be represented as a binary se-
quence where the l’s correspond to the time units in
which the rule holds and the O’s correspond to the time
units in which the rule does not have the minimum con-
fidence or support. For instance, if the binary sequence
001100010101 represents the association rule X-+Y, then
X+Y holds in 7[3], 7[4], 7[8], T[lO], and 7[12]. The
calendar { (4,4), (8,8), (12,12)}, which corresponds to the
a cycle of length 4, belongs to the association rule since
the association rule is valid on the 4th, 8th and 12th time
units. (Unlike variables in programming languages, cal-
endars start from unit one!) Similar to association rules,
itemsets can also be represented as binary sequences where
l’s correspond to time units in which the corresponding
itemset is large and O’s correspond to time units in which
the corresponding itemset does not have the minimum sup-
port. These binary sequence representations will be useful
to prove the correctness of the algorithms that we will de-
velop for discovering calendric association rules.

In the next section, we introduce a simple and powerful
calendar algebra for defining and manipulating calendars.

3 Calendar Algebra
Our framework for calendar algebras is based on the work
reported in [All85, LMF86] and the implementation re-
ported in [CSS94].

370

There are two main components to our framework. One
is the definition and use of calendar algebras to define and
manipulate sets of time intervals. The other is the use of
a calendric system to define a basic calendric framework
like the Gregorian or the Jewish calendar. To the best of
our knowledge, the work reported in [CSS94], which it-
self is based quite closely on the framework developed in
[AllU, LMF86], is the only one that deals with calendar
algebras. The work of Snodgrass and his colleagues, for
example [SSD+92], has concentrated primarily on the lat-
ter problem of developing a calendric framework and on the
problem of integrating time into database models and SQL.
Hence, this work is not relevant to the first issue of calendar
algebras. However, it is very relevant to the second issue of
defining the basic calendric framework. We chose to follow
the model developed in [All85, LMF86J for this problem
because it is more convenient to implement. However, the
work on calendar algebras in this section can be applied to
any system that defines and implements basic calendars.

Following [All85, LMF86], we define a calen-
dar to be a structured collection of intervals. Let
Sl,S2,...,sk,el,e2,..., ek be integers. We define a col-
lection S = {(sl,ei), (sa,es), . . . , (sk,ek)}, to be a cal-
endar of order 1. A calendar of order 2 is a collection of
calendars of order I and so on.

In order to capture relationships between two inter-
vals, [Al1851 defines the following interval operators that
operate on two intervals (denoted by intl = (si, el) and
ints = (sp, es)) and return a boolean value:

0 inti overlaps int;? E ((~1 < s2 5 et) V (~2 < s1 5

e2))
l intr during int2 z ((si 2 ss) A (ei 5 ea))
0 intr meets ints z (ei = ~2)
0 intt < inta G (er 5 sa)
0 intt 2 inta f ((si 5 ss) A (el 5 es))

We are now in a position to define the operators of the cal-
endar algebra.

Dicing Operations: For each interval operator, [LMF86]
defines two dicing operators. These operators work in two
modes: (1) they can take an order 1 calendar as their left
argument, an interval as their right argument and produce
an order 1 calendar as their output; (2) they can take an
order 1 calendar as their left argument, an order 1 calendar
as their right argument and produce an order 2 calendar as
their output. (They produce an order 1 calendar for each
interval in their right argument.)

For each interval operator R, [LMF86] defines two dic-
ing operators: strict, denoted by : R:, and relaxed, denoted
by .R. If C is an order 1 calendar and c’ is an interval, then
the two operators are defined as:

C:R:c’ E {cnc’~~~c~~Rd}/{~}
C.R.c’ 3 {c]cECA~R~‘}/{E}

The intersection (n) between two intervals (si > el) and
(ss, es) is defined as (max(sl, sg), min(ei, es)) and e de-
notes the interval (-co, 00) that is to be excluded from the

result. The definitions for operators that take a calendar as
their right hand argument is similar (C’ is an order 1 calen-
dar.):

C.R.C’ z {{c]cECA~RC’}/{E}(C’EC’}

Example 3.1 Let WeeksInJan96 denote the calendar
{ (-3,4), (5, ll), (12, lg), (19,X$ (26,X2)}. Let
JanInl996 denote the calendar { (1,31)}. The expres-
sion WeeksInJan96 : overlaps : JanIn1996, which
uses the strict operator returns a single order 2 calen-
dar {{(1,4), (5,11), (12,18), (19,25), (26,31)}}. Be-
cause of the intersection with the interval from the right
hand side, the result consists of only the portion of
the weeks that fall in the interval (1,31). The expres-
sion WeeksInJan96.averlaps.ManthsInl996, which
uses the relaxed operator; returns the calendar { { (-3,4),
(5, ll), (12,18), (19,25), (26,32)}}. In this case, every
week that overlaps with (1,31) is returned in its entirety. q

Slicing Operations: Let C be a calendar and p an integer.
Two slicing operators denoted by (p)/C and M/C operate
on C and replace each of the order 1 collections contained
in C with the result of the slicing operation. The opera-
tor (p)/C replaces each order 1 calendar in C with its pth
element and returns the result. For example, while operat-
ing on an order 1 calendar, (p)/C simply returns the pth
interval in C. The operator [PI/C replaces every order 1
calendar with a calendar consisting of the pth element. For
example, while operating on an order 1 calendar, W/C re-
turns a calendar consisting of the pth element. If p is neg-
ative, indexing is done from the end of the calendar. For
example, (-1)/C returns the last element of C. Finally,
instead of a single integer p, one is allowed to specify a
list of integers for the slicing operation. [PI, ~2, . . . , pk]/C
replaces each order 1 calendar with a calendar consisting
of the pih, pih, etc. elements while (~1, pz, . . ,pk)/C re-
places each order 1 calendar with the pih, p$, etc. ele-
ments.

Additional Operations: In addition to the operations de-
fined above, we define and use the minus (-) and the plus
(+) with their usual set-theoretic meanings on calendars.
We also use aflatten operator which takes an order k calen-
dar and produces an order k - 1 calendar which is a single
calendar made of the all elements of the constituent order
(k - 1) calendars.

Example 3.2 Let Week&Jan96 denote the calendar
{(-3,4), (5,11), (12?18), (19,25), (26,32)}. The
expression [3]/WeeksInJan96 returns the calendar
{(12,18)}. Th e expression [-2lJWeeksInJan96 re-
turns the calendar {(19,25)}, while the expression
[3,4]/WeeksIn Jan96 returns the calendar {(12,18),

(19,25)).
The expression flatten{{(-3,4), (5, ll), (12,18),

(1% 25)> (26,32)11 returns {(-3,4), (5, ll), (12, la),

371

(19,25), (26,32)}, while the expression fZatten{{(l, l)},
{(5,5)}) returns {(l,l), (5,5)). 0

The operators we have introduced thus far simply oper-
ate on calendars. In fact, one can see that they are quite
reminiscent of nested relational algebra [RKS88]. In or-
der to be able to define real-life calendar expressions, one
needs a calendric system like the Gregorian calendar sys-
tem. Following [CSS94], we introduce the Gregorian cal-
endar by defining what are called basic calendars. They
are SECONDS, MINUTES, HOURS, DAYS, WEEKS,
MONTHS, YEARS, DECADES, and CENTURY, and re-
fer to the corresponding familiar temporal concepts. In ad-
dition, we use a reference point in time called the origin of
the calendric system. Our origin is the UNIX system start
data, Jan 1, 1970 and this is taken to be the starting point
for all the basic calendars.

Relationships between basic calendars are kept in a ta-
ble with the following structure:

CALTABLE(cal1: string, cal2: string,
repList : array of integers, offset : integer)

In CALTABLE, call and cal2 are one of the basic cal-
endars. For example, an entry {YEARS, MONTHS, 12,0}
expresses the relationship that each year is made up of 12
months. To express something more complicated like the
relationship between years and days, an entry of the form
{YEARS, DAYS, (365, 365, 366, 365) , 0 } is used. This
means that the first year from the origin (1970)2 has 365
days, and that the second year from the origin also has 365
days. The third year, being a leap year, has 366 days. The
fourth year has 365 days. After this, the pattern repeats
over. (Obviously, this doesn’t handle leap centuries. To
handle this, a more complicated expression is needed). The
“offset” is used to take care of the basic calendars whose
boundaries do not match with the chosen origin. Thus an
entry of the form {WEEKS, DAYS, 7, 4) is used to take
into consideration the fact that January 1, 1970 lies on a
Thursday (assuming that a week begins on a Monday).

Once the relationships between the basic calendars are
defined, we can easily define fairly complicated temporal
expressions. We show an example below. Additional ex-
amples can be found in [RMS98].

Example 3.3 Mondays that overlap the first day of a
month are expressed by the calendar algebra expression:

flatten (((I) / (DAYS :during: WEEKS))
:during:

((I) /(DAYS :during: MONTHS)))

The (DAYS :during: WEEKS) expression expresses weeks
in terms of its constituent days. The (I)/(DAYS :during:
WEEKS) then selects theJirst day of every week, producing
a calendar consisting of the first day of every week. Simi-
larly, the expression (l}/(DAYS :during: MONTHS) returns

2,4s alluded to before, all calendric systems are indexed from 1, rather
than 0. Also, an interval over time is assumed to never contain 0. For
example, the interval (-3, 1) contains the time units -3, -2, -1, and 1, but
not 0.

a calendar consisting of the first day of every month. The
“during” between these calendars returns an order two
calendar consisting of the Mondays that occur during the
$rst days of the months. TheJlatten reduces this to an order
1 calendar containing the result. q

Handling Multiple Time Granularities: The techniques
introduced in this section are general enough to handle mul-
tiple granularities; they only rely on being able to express
higher granularities in terms of lower granularities-for ex-
ample, months in terms of days. When dealing with mul-
tiple calendar algebra expressions, it becomes necessary to
express them in terms of a common time granularity. For
example, if dealing with calendars that talk about weeks
and months, it is simpler to express them in terms of days.
Such a time unit is always guaranteed to exist in any calen-
dric system and corresponds to the notion of a chronon in
temporal database literature [SSDf92].

We have implemented a parser and an evaluator to parse
and evaluate the calendar algebra efficiently. Our imple-
mentation loosely follows the implementation described
in [CSS94]. The parser is an LALR parser. Starting and
ending points and the granularity for the output calendar
are supplied by the user or when possible, deduced from
the algebra expressions. The result of the evaluation is an
order 1 calendar (a collection of intervals), which is then
passed to the data mining routines. Due to lack to space,
we omit a detailed description here.

4 Discovering Calendric Association Rules
As discussed in [GRS98], existing algorithms for discover-
ing association rules cannot be applied directly to discover
cyclic association rules. It follows then that these algo-
rithms cannot be applied to solve the problem of calendric
association rules, which offer far more expressive power
than cyclic association rules.

For example, extending the attributes of an association
rule in order to capture rules like (day = Monday) UX -+
Y is clearly infeasible because there are an exponential
number of calendars, 2t, that are possible in a time period
of length t.

4.1 The Sequential Algorithm

As with cyclic rules, the straight-forward approach to dis-
covering calendric association rules is to treat the prob-
lem of calendar detection and association rule mining sepa-
rately. That is, we generate the rules in each time unit with
one of the existing methods [AS94, SON951 and then apply
a pattern matching algorithm (See Section 4.4) to discover
calendars. We refer to this approach as the sequential algo-
rithm.

Existing algorithms discover association rules in two
steps. In the first step, large itemsets are generated. In the
second step, association rules are generated from the large
itemsets. The running time for generating large itemsets
can be substantial, since calculating the supports of item-
sets and detecting all the large itemsets for each time unit
grows exponentially in the size of the large itemsets. To

372

reduce the search space for the large itemsets, the existing
algorithms exploit the following property:

“Any superset of a small itemset must also be small.”

The existing algorithms calculate support for itemsets iter-
atively and they prune all the supersets of a small itemset
during the consecutive iterations. Let us refer to this prun-
ing technique as support-pruning. In general, these algo-
rithms execute a variant of the following steps in the kth
iteration:

1. The set of candidate k-itemsets is generated by ex-
tending the large (k - 1)-itemsets discovered in the
previous iteration (support-pruning).

2. Supports for the candidate k-itemsets are determined
by scanning the database.

3. The candidate k-itemsets that do not have minimum
support are discarded and the remaining ones consti-
tute the large k-itemsets.

The idea is to discard most of the small k-itemsets during
the support-pruning step so that the database is searched
only for a small set of candidates for large k-itemsets.

In the second step, the rules that exceed the confidence
threshold cmmin are constructed from the large itemsets
generated in the first step with one of the existing algo-
rithms. For our experimental evaluation of the sequential
algorithm, we implemented the apriori and the ap-genrules
algorithms from [AS94]. Once the rules of all the time
units have been discovered, calendars that belong to the
rules need to be detected. Let T be the number of rules
detected and k be the number of time units a calendar con-
tains. Checking to see whether the calendar belongs to the
rules can be done in time O(r x k).

However, in practice, it turns out that the number of as-
sociation rules is substantially more than the number of
large itemsets discovered. This typically cause the se-
quential algorithm to run out of real memory causing it to
perform many I/O’s to bring relevant portions of the data
into memory. In particular, as the average itemset size in-
creases, this becomes a severe problem for the sequential
algorithm.

A better approach is to discover the large itemsets over
all the time units and then to use these to discover the asso-
ciation rules and their associated calendars. This speeds up
the sequential algorithm substantially. The details of this
optimization are given in Section 6. Of course, the disad-
vantage of this optimization is that one can no longer treat
the association rule mining module as a “black box.”

4.2 Pruning, Skipping and Elimination

The major portion of the running time of the sequential al-
gorithm is spent to calculate the support for itemsets. The
three techniques we used in the cyclic association rules pa-
per to reduce the number of itemsets for which support
must be calculated -pruning, skipping, and elimination-
can be applied in the case of calendric rules, though the de-
tails of the application are quite different. These techniques
rely on the following fact:

“A calendar that belongs to the rule X -+ Y
also belongs to the itemset XY.”

Therefore, eliminating calendars as early as possible can
substantially reduce the running time of calendric associa-
tion rule detection.

Skipping is a technique for avoiding counting the sup-
port of an itemset in time units which are guaranteed to be
contained in any calendar that can belong to the itemset.
Skipping is based on the following property:

“If time unit tj is not contained in any calendar that
belongs to an itemset X, then there is no need to calculate

the support for X in time segment 7[j] .”

However, this technique can be applied only if we have in-
formation about the calendars of an itemset X. But the cal-
endars of an itemset X can be computed exactly only after
we compute the support of X in all the time segments! In
order to avoid this self-dependency, we try to approximate
the calendars of itemsets. To do this, we use a technique
we call pruning, which is based on the following Lemma,
whose proof can be found in [RMS98]:

Lemma 4.1 If a calendar C belongs to an itemset X then
it must also belong to all of X’s subsets.

Therefore, one can arrive at an upper bound on the calen-
dars that belong to an itemset X by looking at the calendars
that belong to X’s subsets. By doing so, we can reduce the
number of potential calendars that belong to X, which, in
turn (due to skipping), reduces the number of time units in
which we need to calculate support for X. Thus, pruning
is a technique for computing the potential calendars of an
itemset by merging the calendars of the itemset’s subsets.

However, it is possible in some cases that we cannot
compute the potential calendars of an itemset. For exam-
ple, when we are dealing with singleton itemsets. In these
cases, we need to assume that an itemset X has every pos-
sible calendar and therefore, calculate the support for X in
each time segment 7[j] (except the time units eliminated
via support-pruning). This is, in fact, what the sequential
algorithm does.

Example 4.2 rfwe know that the calendar ((4,4), (8,8),
(12,12)} is the only calendar that belongs to items A and
B, then pruning implies that the only calendar that can
belong to AB is also {(4,4), (8,8), (12,12)}.

In turn, skipping implies that we have to calculate the
support of AB only in 7[4], 7[8], and 7[12] rather than
all the time segments. 0

We now introduce one more optimization technique,
which we refer to as elimination, that can be used to fur-
ther reduce the number of potential calendars of an itemset
X. Elimination is used to eliminate certain calendars from
further consideration once we have determined they cannot
exist. Elimination relies on the following Lemma, whose
proof follows immediately from the definition of how a cal-
endar belongs to an itemset:

373

Lemma 4.3 If the support for an itemset X is below the
minimum support threshold sUp,i, in m time units con-
tained in a calendar C, where m is the mis-match thresh-
old, then C cannot belong to X.

Elimination enables us to discard calendars that an itemset
X cannot have as soon as possible as demonstrated in the
following example.

Example 4.4 If the mis-match threshold is 0, and we dis-
cover that itemset X does not have enough support in ‘T[4],
we know that the calendar {(4,4), (8, S), (12,12)} cannot
belong to X. cl

4.3 The Interleaved Algorithm

The pruning, skipping and elimination techniques lead us
to the interleaved algorithm for discovering calendric as-
sociation rules. The intuition behind the interleaved algo-
rithm is that we will use the calendars associated with item-
sets to minimize the number of candidates whose support
we need to count. We will also try to minimize the num-
ber of potential calendars that need to be associated with
itemsets.

The interleaved algorithm consists of two phases. In the
first phase, the calendars belonging to large itemsets are
discovered. In the second phase, calendric association rules
are generated.

In the first phase of the interleaved algorithm, the search
space for the large itemsets is reduced using pruning, skip-
ping and elimination. Figure 1 outlines this phase. Note
that at the end of Step 2, we know the set of calendars that
actually belong to itemsets of size k.

Phase One terminates when the list of potential calen-
dars for each k-itemset is empty. Pruning, skipping and
elimination can reduce the candidate k-itemsets for which
support will be counted in the database substantially, and
therefore can reduce the time needed to calculate large
itemsets. This is demonstrated by the following example.

Example 4.5 Suppose that the only calendar we are inter-
ested in is C = {(4,4), (88) (12,12)} and sequences
lIlOOOOOOOIIlllllll and llllOIOlllllllllllI rep-
resent items A and B, respectively, (Recall from Section 2
that a 1 in such a sequence indicates that the item has
enough support and that a 0 indicates that it doesn’t.) As-
sume also that the mis-match threshold is 0.

If the sequential algorithm is used, then support for A
and B will be calculated in all the time segments, and sup-
port for AB will be calculated in time segments 1-3, and
11-19. In the interleaved algorithm, support for A will be
calculated only in time unit 4, at which point C is eiimi-
nated from consideration for A. Support for B is calcu-
lated in time segments 4,8, and 12 and C is found to belong
to B. The itemset AB has no potential calendars because
A has none and hence supportfor AB is never calculated!
cl

In the second phase of the interleaved algorithm, cal-
endric association rules can be calculated using the calen-
dars and the supports of the itemsets without scanning the

For each k, k 2 1 :

1. If k = 1, then all possible calendars are initially
assumed to exist for each single itemset. Other-
wise (if k > 11, pruning is applied to generate the
potential calendars for k-itemsets using the calen-
dars for (k - l)-itemsets. If the list of potential
calendars for each k-itemset is empty, Phase One
terminates.

2. Time segments are processed sequentially. For
each time unit tj :

2.1 Skipping determines, from the set of can-
didate calendars for k-itemsets, the set of
k-itemsets for which support will be calcu-
lated in time segment 7[j].

2.2 If a k-itemset X chosen in Step 2.1 does
not have the minimum support in time seg-
ment 7[j], then the mis-match count is incre-
mented by 1 for each potential calendar asso-
ciated with X that contains tj. If this mis-
match count exceeds the mis-match threshold
for a particular calendar, that calendar is elim-
inated from the list of potential calendars for
X.

Figure 1: Phase One of the interleaved algorithm

database. Interleaving calendar detection with large item-
set detection also reduces the overhead of rule generation
phase. This is because a calendar of the rule X + Y must
belong to the itemset XY, and at the end of the first phase
of the interleaved algorithm we already know the calendars
of large itemsets. Thus, the set of candidate calendars for
a rule X -+ Y initially consists of the set of calendars of
the itemset XY. As a result, we need to calculate the con-
fidence of a rule X -+ Y only for time units that are con-
tained in the calendars belonging to XY. Moreover, we can
apply elimination here also. If C is a calendar belonging to
XY, and we encounter m time units in which X 4 Y does
not have minimum confidence or XY doesn’t have enough
support, we can eliminate C from the list of potential cal-
endars for X + Y.

4.4 Calendar Detection

In order to detect whether a calendar C belongs to an asso-
ciation rule, we need to examine the support and confidence
of the rule for every time unit contained in the calendar. If
the calendar contains k time units, this can be done in O(k)
steps. And in general, this is the best we can do since a cal-
endar can contain arbitrary time units.

The situation is less clear if we have a set of calendars
that we have to check against a given rule or itemset. In
this case, it should be possible to examine the structures of
the calendars to eliminate duplicate work. However, we do
not address this issue in this paper. The problem is similar

374

to the problem of detecting all cycles that belong to a given
binary-sequence [GRS98]: .

- I

The following lemma shows that the skipping technique
in Section 4.2 cannot affect calendar detection.

Lemma 4.6 In the course of determining whether a calen-
dar C belongs to an association rule (itemset), suppose that
C does not contain time unit t. Whether C belongs to the
rule (itemset) or not is unaffected by the support and con-
fidence (support) of the association rule (itemset) in time
unit t.

Proof: This follows from the definition of belongs that
states that a calendar belongs to a rule (itemset) if the rule
has enough support and confidence (support) for every time
unit that is contained in the calendar (modulo the mis-
match threshold). The support and confidence (support) of
a rule (itemset) in a time unit t not belonging to the calen-
dar, then clearly does not affect the determination process.

0

4.5 Proof of Correctness

We tie everything together in this section by formally show-
ing that the interleaved and sequential algorithm are equiv-
alent in that they discover the same calendric association
rules. We do this in two steps: First, we prove that every
calendar belonging to every large itemset in the input data
is discovered correctly by the interleaved algorithm. We
then prove that the calendric association rules discovered
by the interleaved algorithm are the same as those discov-
ered by the sequential algorithm and vice-versa. Due to
lack to space, we omit the proofs of the Lemma and the
Theorem. They can be found in [RMS98].

Lemma 4.7 Phase One of the interleaved algorithm cor-
rectly computes every calendar belonging to every itemset.

Theorem 4.8 A calendric association rule is detected by
the interleaved algorithm iff it is detected by the sequential
algorithm.

The Lemma above is an induction on the size of the
itemsets. Proof of the Theorem proceeds in two parts: To
show that the interleaved algorithm computes every calen-
dric association rule that the sequential algorithm does and
vice-versa.

4.6 Multiple Granularities and Further Optimiza-
tions

We point out that all the results in this section apply directly
even when we are handling multiple time granularities. As
long as the different granularities are expressed in terms
of a common time unit, one only has to modify the defini-
tion of the technical terms “contains” and “belongs” for the
proofs to apply for multiple granularities.

Multiple granularities also introduce the possibility of
further optimizations when some calendars strictly sub-
sume other calendars. For example, it might be the case

Table 1: Parameters for data generation from[AS94,
AMS+96]

that every time unit tj that belongs to a calendar Ci also
belongs to another calendar Cs. In such cases one can cut
down on the number of calendars searched for by organiz-
ing the calendars into a calendar hierarchy based on the
subsumption relationship. However, experimental results
indicate two factors that make such optimizations less than
useful in practice: (a) Since calendars are arbitrary user-
defined expressions, it is not very likely that users will de-
fine and look for two calendars that subsume each other;
(b) The running time of calendric association rule discov-
ery is completely dominated (by a factor of over 100) by the
time to count support for large itemsets. Improvements in
optimizing the search for calendars that take advantage of
inter-relationships between calendars are unlikely to yield
much gains in the overall running time.

5 Implementation Details
In this section, we present the implementation details of
the prototype that we built for discovering calendric asso-
ciation rules. We first describe the synthetic data generator
used to generate our data.

5.1 Data Generation

Our data generator is based on the synthetic data generator
used in [AS94, AMS+96]. We augmented it to generate
data for calendric association rules. In addition to the pa-
rameters used by [AS94, AMS+96] shown in Table 1, we
used additional parameters shown in Table 2. (The param-
eters are described in the following paragraphs.)

The generation of the large itemsets and their weights
closely follows the procedure in [AS94, AMS+96]. We
generate L itemsets of average size 1. Each itemset is asso-
ciated with a weight, which is an exponentially distributed
random variable. Each itemset has, on the average, Cttem
calendars that belong to it which means that the itemset is
used for data generation during any time unit contained in
any of its calendars.

In order to model the fact that real world data will con-
sist of a mixture of calendric rules and non-calendric rules.

21] Number of time units of data generated
Citem Avg. number of calendars associated with each

I

large itemset
v Avg. level of “noise” in the data generated

Table 2: New parameters for calendric association rule gen-
eration

375

Number of transactions/time segment, D
Number of items, N

Avg. size of large itemsets, I
Number of large itemsets, L

Avg. transaction size, T
Number of time units, ‘u.

Avg. number of calendars per itemset, Citem
Avg. level of “noise” in the data generated, v

Table 3: Default settings for parameters in data generation.

we use the “noise” parameter u, which is a real number
between 0 and 1. In a particular time unit, a large itemset
is “active” (in the sense that transactions in that time unit
will contain that itemset) independent of the calendars that
belong to it with a probability Y.

The calendars themselves are supplied as files contain-
ing the algebra expressions. The data generation program
reads these files and parses the expressions into calendars
which are then used for data generation.

At the beginning of each time unit, the data generation
algorithm first determines which large itemsets should be
used for data generation in that time unit. This is done by
checking to see if the current time t is contained in any of
the calendars that belong to it. Following this, a determina-
tion is made as to whether the noise parameter dictates that
the itemset be used. Once this is done, the weights associ-
ated with the large itemsets determine their occurrences in
the transactions for the time unit.

The default values we used for the parameters in our
experiments are shown in Table 3. We conducted individ-
ual sets of experiments that varied these parameters. We
describe the variations when we describe the individual ex-
periments.

When the parameters are set to the above default values,
the size of the data generated is about 150 megabytes (MB)
for all the time units combined.

5.2 Prototype Implementation Details

We use the apriori algorithm from [AS94, AMS+96] as
our basic data mining algorithm. The sequential algorithm
is based directly on apriori, with optimizations to speed up
the counting of support of itemsets of size 2. We use an
array for this instead of a hash-tree when memory permits:
We found the array to be a much faster technique for dis-
covering 2-itemsets.

The interleaved algorithm uses a hash-tree, described
in [AS94, AMSf96], to store the large itemsets, their pat-
terns and support counts. In addition, during the processing
of an individual time segment, the interleaved algorithm
uses a temporary hash-tree as well. Candidate generation
(generation of itemsets of size k+ 1 and their candidate cal-
endars from itemsets of size k) is based on pruning. Fig-
ure 2 outlines the first phase of the interleaved algorithm
(detection of calendars belonging to itemsets) in pseudo-
code.

As referred to before in Section 4.1, the number of as-
sociation rules with calendars is typically much larger than

the number of itemsets with calendars. If the sequential
algorithm is applied naively to discover all the rules and
their calendars, it consumes enormous amounts of mem-
ory to store the status of all the association rules for all
the time units. We found out that the sequential algorithm
performs significantly better if it is used to only find large
itemsets. After this, calendars belonging to the large item-
sets can be discovered. At this point, the same procedure
used to generate rules for the interleaved algorithm can be
applied to the sequential algorithm as well. Accordingly, in
our experimental comparison, we only compared the times
needed by the two algorithms to generate the calendars be-
longing to the large itemsets. For rule generation, ?,simple
variant of the procedure Level-GenRuleCycles in [ORS98]
can be used.

I* This algorithm uses two hash-trees. itemset-hash-tree
contains candidates of size Ic, their potential calendars,
and space to store support counts for the relevant time
units. If a calendar contains time unit t and belongs (or
potentially can belong) to an itemset, that itemset is said
to be “active” at time unit t. tmp-hash-tree, during the
processing of time segment t, contains all the itemsets
that are active in t. */ initially, itemset-hash-tree con-
tains singleton itemsets and all possible calendars

k=l
while (there are still candidates in itemset-hash-tree

with potential calendars)
for t = 1 to u

insert “active” itemsets from itemset-hash-tree
into tmp-hash-tree II skipping

measure support in current time segment for
each itemset in tmp-hash-tree

forall 1 E tmp-hash-tree
if (SW < sup,in)
then

increment mis-match count for every calendar
(potentially) belonging to 1 that contained t.

if mis-match count exceeds threshold for a
particular calendar C, delete it from l’s list
of potential calendars // elimination

else insert (1, supl, t) into itemset-hash-tree
N this just inserts a (szlpl, time) entry in one of

itemset Z’s fields
end forall
empty tmp-hash-tree

endfor
generate new candidates of size k + 1 using pruning
k=k+l
empty itemset-hash-tree after copying it
insert new candidates into itemset-hash-tree

endwhile

Figure 2: The interleaved algorithm for detection of calen-
dars belonging to itemsets.

We conducted our experiments on a lightly loaded Sun
Spare 20 machine with 64 MB of memory running Solaris

376

2.5.1. A Seagate 9 GB SCSI disk was used for our ex-
periments. The hard disk had a streaming read throughput
of about 5 megabytes/set (MBps) and a streaming write
throughput of about 4 MBps. Since our experiments were
CPU bound most of the time, we only report wall clock
times for the various experiments.

Due to space limitations, we refer the reader to [RMS98]
for a detailed discussion of memory management issues for
the interleaved and sequential algorithms.

5.3 Handling Multiple Granularities

Multiple time units can be seamlessly integrated in our ap-
proach. As discussed before, calendars over multiple time
units can be expressed in terms of a common time unit that
is guaranteed to exist. For example, calendars over months
and weeks in terms of days. Once this is done, the sequen-
tial algorithm can run a copy of itself for each granularity
simultaneously (to avoid multiple scans of data). The inter-
leaved algorithm can keep track of itemsets and their calen-
dars of different granularities easily. A detailed algorithm
is given in [RMS98].

6 Experimental Results
We now present the results of an extensive set of exper-
iments conducted to analyze the behavior of the sequen-
tial and interleaved algorithms. We only present results for
the behavior of the algorithms while handling a single time
granularity. We believe that the results will not be seriously
affected by the presence of multiple time granularities.

6.1 Dependence on Minimum Support

In these experiments, it should be kept in mind that the se-
quential algorithm had an inherent advantage in consider-
ing the time segments of the data one by one. All but the
largest time segments that we used fit entirely in the main
memory of the machine that we used. The interleaved al-
gorithm, which sweeps repeatedly through the entire data,
incurs more I/O’s, It should also be kept in mind that the
sequential algorithm used in the experiments uses the opti-
mization mentioned in Section 4.1 and only computes large

5cm

4500. i%3%%4 $,

4000, P

0 15 05 033025 ’
upport Peicentage

Figure 3: Execution time plotted against support for the
sequential and interleaved algorithms.

5cm

4500

4000

1000

500

4

sequential w/n&match +
interleaved wlmis-match +
sequential, no mis-match o-
interleaved, no mismatch

1.25 0 15 05 033 025 uppott Peicentage

Figure 4: Execution time at various levels of support for se-
quential and interleaved algorithms with and without mis-
matches.

itemsets and their calendars. Using the sequential algo-
rithm to compute the rules and their calendars seriously
undermines the performance of the sequential algorithm.
Hence, that is not done in the experiments.

Unless other wise indicated, the default value for sup-
port used is 0.75%.

Figure 3 plots the execution time for the interleaved and
sequential algorithms as support is varied from 1.5% to
0.25%. In these experiments, the mis-match threshold is
set to 0 (which implies exact calendar matching). With
support set to 1.5%, the executions times of the two al-
gorithms are practically identical. This is because both the
interleaved and sequential algorithms do not have much to
discover by way of calendric rules because the support is
too high. (Since we generate 1000 large itemsets, the av-
erage support per itemset is only O.l%.) As support de-
creases, the amount of wasted work done by the sequential
algorithm increases significantly as the number of itemsets
found to be large by the sequential algorithm increases. The
interleaved algorithm benefits from its pruning techniques,
especially elimination, and this dramatically reduces the
number of candidate itemsets for which support must be
counted. At support set to 0.25%, the sequential algorithm
takes close to 250% the time taken by the interleaved algo-
rithm.

6.2 Calendar Detection with Mis-Matches

Figure 4 shows the running times of the two algorithms
with the mis-match threshold set to 2. Neither the sequen-
tial or the interleaved algorithm is affected by the presence
of mis-matches. To illustrate this, we have superimposed
the graph from Figure 3 on Figure 4. The two algorithms
are not affected much by mis-matches because counting the
support of candidate itemsets dominates the overall run-
ning time of both the algorithms. While the presence of
mis-matches does undermine the ability of the interleaved
algorithm to perform elimination quickly, it is not serious
enough to significantly affect the running time.

377

lam.

iZX?% ‘$

0
0 0.1 02 0.3 0.4

Noise Level. n

Figure 5: Execution time vs. noise level for the two algo-
rithms at varying levels of support. In the experiments for
this graph, support was set to 0.25%.

6.3 Varying Noise Levels

Figure 5 shows the dependence of the two algorithms on
noise. When there is no noise, the set of candidates con-
sidered by the two algorithms are exactly the same. This is
because only largesets with calendars occur in the database
and both the algorithms have to count support for all of
them. As the amount of noise increases, two effects come
into play: (1) The amount of wasted work performed by
the sequential algorithm increases dramatically since it be-
gins counting support for many itemsets for whom no cal-
endars belong. (2) Noise increases the maximum size of
large itemsets in the database. This is because it ran-
domly activates large itemsets, and the size of some of these
large itemsets is bigger than that of itemsets with calendars.
As expected, the interleaved algorithm is completely unaf-
fected by noise. The combination of pruning and elimina-
tion obliterates the effects of noise.

6.4 Varying Itemset Size

Figure 6 compares the running time of the two algorithms
when the average size of the large itemsets is varied from
3 to 7. Both algorithms are fairly dependent on the muxi-
mum size of the large itemsets. (This increases the number

Figure 6: Execution time vs. large itemset size for the two
algorithms

Figure 7: Execution time vs. avg. number of calendars
associated with large itemsets.

of passes that they have to make.) Since we control only
the average size of the large itemsets in our experiments,
both algorithms exhibit some non-monotonic behavior as
the average large itemset size is increased. The sequen-
tial algorithm is slower than the interleaved algorithm by
nearly by 75% even at an average itemset size of 3. The
gap continues to grow and exceeds 100% as the average
size is increased.

6.5 Varying the number of Calendars Associated with
a Large Itemset

Figure 7 compares the two algorithms as the average num-
ber of calendars associated with large itemsets is varied
from 3 to 11. Both the algorithms are only marginally af-
fected by this variation. This indicates that calendar de-
tection is not a significant bottleneck in either of the algo-
rithms.

6.6 Data Size Scaleup

Figure 8 shows the running time of the two algorithms as
the time segment size is increased from 10k transactions

Ok
I

Num r of transactions%+ time segment 75k

Figure 8: Execution time for the interleaved algorithm as
the data size for a single time segment increases from 1Ok
transactions to 707~ transactions. (This corresponds to in-
creasing the total database size from 155 megabytes to 1.1
gigabytes.)

378

to 7OIc transactions. (The database size increased from
155 megabytes to 1.1 gigabytes.) Both the algorithms can
handle large amounts of data fairly well and exhibit good
scaleup. The interleaved algorithm continues to exhibit a
clear performance superiority throughout.

6.7 Experimental Conclusions

Through a series of experiments, we have demonstrated
that detecting calendric association rules can be done effi-
ciently and quickly. The interleaved algorithm outperforms
the sequential algorithm convincingly in all the dimensions
of the problem. The performance of the interleaved algo-
rithm is sometimes 2 or 3 times faster than that of the se-
quential algorithm. Hence, we can definitely say that cal-
endric association rule detection benefits significantly from
the optimization techniques that we have presented in this
paper.

7 Conclusions and Future Directions [oRS98]

In this paper, we have studied the problem of discovering
interesting patterns in the variation of association rules over
time. Information about such variations will allow analysts
to better identify trends in association rules and help bet-
ter forecasting. By studying the interaction between large
itemset detection and calendars, we devised a series of op-
timization techniques that significantly speed up the dis-
covery of calendric association rules. These optimization
techniques allow us to obtain performance benefits ranging
from 5% to 250% over a less sophisticated approach.

In future work, we would like to handle the issue of time
in other data mining problems like classification where they
seem to fit naturally. It would also be interesting to devise
online and incremental algorithms for these problems.

Acknowledgments: The authors would like to thank Banu
Ozden for helpful discussions.

References
[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun

Swami. “Mining Association Rules between Sets
of Items in Large Databases”. In Proceedings of
the 1993 ACM SIGMOD International Conference
on Management of Data, pages 207-216, iashing-
ton,DC, May 1993.

J. F. Allen. “Maintaining Knowledge about Tempo-
ral Intervals”. In “Readings in Knowledge Represen-
tation”, pages 509-521. Morgan-Kaufman Publish-
ers, Inc., 1985.

[A11851

[AMSf96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,
and A. I. Verkamo. “Fast Discovery of Association
Rules”. In “Advances in Knowledge Discovery and
Data Minine”. U. M. Favvad G. Piatetskv-Shaoiro.
P. Smyth an; k. Uthurus&y (Eds.), pages 307-328:
AAAI Press I The MIT Press, 1996.

[AS941 R. Agrawal and R. Srikant. “Fast Algorithms for
Mining Association Rules in Large Databases”. In
Proceedings of the 20th International Conference on
Very Large Data Bases, pages 487-499, Santiago,
Chile, September 1994.

[CSS94]

[FMMT96]

[HF95]

[LMF86]

[PCY95]

IRKS881

[RMS98]

[SA95]

[SA96]

[SON951

[SSD+92]

[Toi96]

Rakesh Chandra, Arie Segev, and Michael Stone-
braker. “Implementing Calendars and Temporal
Rules in Next Generation Databases”. In Pro-
ceedings of the Tenth International Conference on
Data Engineering, pages 264-273, Houston, Texas,
February 1994.

T. Fukuda. Y. Morimoto. S. Morishita. and
T. Tokuyama. “Data .Mining Using Two-
Dimensional Ootimized Association Rules”. In Pro-
ceedings of thk 1996 ACM SIGMOD International
Conference on Management of Data, pages 13-23,
Montreal, Canada, June 1996.
J. Han and Y. Fu. “Discovery of Multi-level Asso-
ciation Rules From Large Databases”. In Proceed-
ings of the 21st International Conference on Very
Large Data Bases, pages 420-43 1, Zurich, Switzer-
land, September 1995.

B. Leban, D. McDonald, and D. Forster. “A Repre-
sentation for Collections of Temporal Intervals”. In
Proceedings of the AAAI-1986 5th Int. Con5 on Ar-
tijcial Intelligence, pages 367-37 1, 1986.

Banu azden, Sridhar Ramaswamy, and Abraham
Silberschtaz. “Cvclic Association Rules”. In Pro- ,
ceedings of the Fourteenth International Conference
on Data Engineering, February 1998. To appear.

J. S. Park, M. Chen, and P. Yu. ‘An Effective Hash-
based Algorithm for Mining Association Rules”. In
Proceedings of the 1995 ACM SIGMOD Interna-
tional Conference on Management of Data, pages
175-186, May 1995.

Mark A. Roth, Henry F. Korth, and Abraham Silber-
schatz. Extended algebra and calculus for nested re-
lational databases. ACM Transactions on Database
Systems, 13(4):389-417, December 1988.
S. Ramaswamy, S. Mahajan, and A. Silberschatz. On
the discovery -of interesting patterns in association
rules. Technical reoort. Bell Labs, 1998. Available
upon request. I
R. Srikant and R. Agrawal. “Mining Generalized As-
sociation Rules”. In Proceedings of the 21st Intema-
tional Conference on Very Large Data Bases, pages
407-419, Zurich, Swizerland, September 1995.

R. Srikant and R. Agrawal. “Mining Quantitative
Association Rules”. In Proceedinps of the 1996
ACM SIGMOD International Confeyenie on Man-
agement of Data, pages 1-12, Montreal, Canada,
June 1996.
A. Savasere, E. Omiecinski, and S. Navathe. “An
Efficient Algorithm for Mining Association Rules in
Large Databases”. In Proceedings of the 21st In-
ternational Conference on Very Large Data Bases,
pages 432-444, Zurich, Swizerland, September
1995.

M. D. Soo, R. Snodgrass, C. Dyreson, C. S. Jensen,
and N. Kline. ‘Architecural Extensions to SUDDO~~
Multiple Calendars. Technical Report TempIS’ ?R-
32, Computer Science Department, University of
Arizona., May 1992.

H. Toivonen. “ Sampling Large Databases for Asso-
ciation Rules”. In Proceedings of the 22nd Interna-
tional Conference on Very Large Data Bases, Bom-
bay, India, September 1996.

379

