
Fast High-Dimensional Data Search in
Incomplete Databases

Beng Chin Ooi Cheng Hian Goh Kian-Lee Tan
Dept. of Information Systems & Computer Science

National University of Singapore
Lower Kent Ridge, Singapore 119260

Email: {ooibc,gohch,tankl}@iscs.nus.edu.sg

Abstract

We propose and evaluate two indexing
schemes for improving the efficiency of
data retrieval in high-dimensional databases
that are incomplete. These schemes are
novel in that the search keys may con-
tain missing attribute values. The first is
a multi-dimensional index structure, called
the Bitstring-augmented R-tree (BR-tree),
whereas the second comprises a family of
multiple one-dimensional one-attribute (MO-
SAIC) indexes. Our results show that both
schemes can be superior over exhaustive
search. Experimental results suggest that BR-
trees have lower update and storage costs and
are able to support range queries more effi-
ciently under most circumstances, when com-
pared to the MOSAIC indexing scheme. How-
ever, contrary to conventional wisdom, the
MOSAIC structure outperforms the BR-tree
in retrieval time for point queries, as well as
in range queries over incomplete databases for
dimension-unrestricted data distributions.

1 Introduction

We examine the problem of high-dimensional data
search in incomplete databases. The widespread adop-

Permission to copy without fee all or part of this material is
granted provided that the copies ape not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

tion of database technologies in various advanced
applications (such as multimedia and medical sys-
tems) has given rise to the pressing need for efli-
cient access methods for supporting data retrieval on
multi-attribute (high-dimensional) search keys. Tra-
ditionally, this is accomplished via the use of multi-
dimensional indexes (see [4] for a comprehensive sur-
vey). Unfortunately, these index structures, do not
perform well when the database is incomplete: a sce-
nario characterized by missing attribute values in some
tuples of the database. This performance degrada-
tion is so severe that even an exhaustive search of the
database would have yielded better performances.

In this paper, we address the issues pertaining to
the design of fast mechanisms that avoid the costly
alternative of performing an exhaustive search. A tax-
onomy of different index strategies is presented, and
two representative index structures are singled-out and
evaluated in a series of experimental studies. The first
structure is a multidimensional index structure, called
the Bitstring-augmented R-tree (BR-tree), and the sec-
ond structure is a family of multiple single-dimensional
indexes, called the MOSAIC structure. Our results
show that the proposed schemes are effective in reduc-
ing the search time for a wide range of queries as com-
pared to exhaustive search. The BR-tree is shown to
be more efficient in supporting range queries and have
lower insertion and storage costs compared to the MO-
SAIC structure. However, contrary to conventional
wisdom, the MOSAIC structure outperforms the BR-
tree in point queries and also range queries when the
underlying data distribution is dimension unrestricted.

The rest of this paper is organized as follows. In the
next section, we provide a concise characterization of
the problem addressed in this paper. We submit that
the problem is much more prevalent than commonly
believed, and review related work. Section 3 describes
the framework and the proposed indexing structures.

357

In Section 4, we present details of an experimental
study, and the findings. Finally, we conclude in Sec-
tion 5 with directions for future work.

2 High Dimensional Data Search in In-

complete Databases

2.1 Motivation

We believe that the problem of high dimensional
data search in incomplete databases is becoming more
prevalent, and deserves attention from the database
community. Over the past decade, we have witnessed
an increasing trend whereby database technologies are
adopted for novel and advanced applications with com-
plex data types. Such applications are characterized
by three features. First, the data sets are usually high-
dimensional. For example, in multimedia databases,
feature vectors such as color histograms and shape de-
scriptors extracted from the multimedia objects are
usually mapped into points in a high-dimensional fea-
ture space. Other applications adopting similar ap-
proaches include CAD applications [15], molecular bi-
ology databases [l, 201 and Geographic Information
Systems.

Second, such applications frequently involve high-
dimensional search operations, i.e., data retrieval re-
quiring restrictions on several attributes simultane-
ously. For example, similarity queries in multimedia
applications often require comparisons across multiple
features of objects stored in a database [5, 8, 121; this
is often translated to search operations on a multi-
dimensional index that is used for organizing the cor-
responding feature space. As pointed out in [3], the
number of dimensions is likely to remain high for a
large class of applications, even if we should reduce
the dimensionality of data for retrieval.

Third, most of the new applications are very large
and may consist of several thousand attributes for each
tuple. It is therefore not uncommon to find missing
data occurring in some of the attributes. For example,
Table 1 shows the distribution of missing attributes in
a sample thyroid disease database [9]. As can be seen,
almost all the tuples have at least one attribute value
whose value is unknown. Out of over 31000 tuples with
28 dimensions in the database, only 20 tuples have no
missing information; instead, more than 21000 tuples
have one attribute with missing information, and as
many as 1000 tuples have six attributes with missing
information.

Although high-dimensional data retrieval has been
extensively investigated in the literature, high-
dimensional data retrieval in incomplete databases
has not received much attention, probably because
the problem is less likely to arise in conventional
database systems where multi-dimensional searches

No. of missing
attribute values

0
1
2
3
4
5
6
7

8-28

No. of
tuples

20
21639
5980
2178
213
640
1110
24
0 L Total 31804

Table 1: Distribution of missing information in a thy-
roid disease database.

are less common. In a conventional setting, miss-
ing values can be dealt with using a fragmentation
strategy [lo]. F or example, in designing an employee
database, some employees may have a home telephone
while others do not; the missing data can be avoided
by partitioning the database into two - one for em-
ployee data (without phone number) while the other
for the phone numbers.

Recently, different aspects of incomplete database
(information) have also appeared in the literature. In
[13], the incompleteness of a database is defined with
respect to missing tuples, rather than attribute infor-
mation. In [7], the concept of incompleteness is used in
a data cube. Work on incomplete databases, as in hav-
ing missing or unknown attribute values, have largely
focused on the semantics of missing information [lo].

On the other hand, the design of indexes to sup-
port high-dimensional data search is an area of ac-
tive research. Work on high-dimensional data search
have focused on designing efficient high-dimensional
indexing structures [4]. These structures include the
skd-tree [18], grid file [17], SR-tree [12], R-tree [ll],
R*-tree [2], R+-tree [19], TV-tree [14] and X-tree [3].
An alternative paradigm is to make use of multiple
single-attribute indexes to facilitate multi-dimensional
search (see, for example, [IS]). The database folklore,
however, have maintained that multi-dimensional in-
dex is more efficient compared to having a plethora
of single-dimensional indexes. As we will demonstrate
later, this turns out to be untrue in the context of
incomplete databases.

2.2 Problem Definition

Let D be a database with a schema of the form
(Xl, x2, ..., X,). This database D is said to be
incomplete if tuples in it are allowed to have miss-
ing attribute values, either because the values are not

358

known at the time the data are being captured, or be-
cause the corresponding attributes are not relevant for
the tuple at hand [lo]. The exact semantics of the
missing values are irrelevant to our discussion and we
will denote missing information with the symbol ‘?‘.

We assume that data retrieval is based on a k-
dimensional search key, where k 5 n. For simplicity
and without any loss of generality, we assume that the
k dimensions of the search key are the first k attributes
in the schema, the values of which are drawn from the
set of non-negative integers. We refer to a query such
as this as a high-dimensional query. In general, the
search key associated with a query takes the form

(bk x:1, Lx’,, & . ‘. , rx:, 41,
where xi < CC; ‘d i E (1,. . . , k}. The values zf and
x” are the lower- and upper-bound respectively of the
i-th attribute. This query is said to be a point query
if CI$ = X” for all i E (1,. . , k}. Otherwise, it is a
range query. Throughout this paper, we assume that
query ranges are well defined, i.e., missing values are
not allowed as part of the search key.

Suppose we are given a range query Q where the
k-dimensional search key is ([CC\, ~$1, [x’,, ~$1, . .,

Ix’, ! ~$1). A tuple t = (~1,. . , yk, . . . , yra) in the
database is said to be an answer for Q if every
yi (i E {l,..., k}) that is not a missing value falls
in the corresponding range defined in the query, i.e.,
xi 5 yi 5 x”. For example, if the query search key is
given by ([1,3],[4,7],[2,9]), then both tuples (l,?, 2,. .)
and (?,?, 9,. . .) are said to be answers to the query.
It is not hard to see that the above definition of an
answer extends trivially to point queries.

The simplest approach to extending a multi-
dimensional index for use in incomplete databases is
to treat missing values in the database as “distin-
guished”. Thus, given a tuple t(xi, . . , x,+, . . , zcn),
this can be mapped to a k-dimensional coordinate
(f(a), . , f(a)) where

For example, if n = 4, k = 3, then the tuple (1,?,2,3)
will be mapped to the coordinate (l,-1,2). The re-
sulting k-dimensional space can now be indexed using
a multi-dimensional index (e.g., R-tree) as in a com-
plete database. Intuitively, this approach merely ex-
tends the domain of attributes in the search key with
the distinguished value -1, and maps all missing (un-
known) values to this symbol.

With this scheme, a query based on the search key
will have to be replaced by 2k subqueries. This is easily
verified as follows: consider a point query that requests
for all answers that match the search key (XI, . . . ,xk).

For each attribute value y; (i 5 k) of a matching tuple
(!h,...,Yk,... , yn), either yi = xi or the y;-value is
missing, i.e., each yi value can take one of two values
(xi or -1). This gives rise to a total of 2k variations for
a search key of length k. Similarly, any range query
can be decomposed to 2” subqueries (each of which is
a range query).

The problem with the approach described above lies
in the observation that all unknown values along a
given dimension are now mapped to a single orthog-
onal hyperplane. If the proportion of missing values
in the database is high, this will result in a highly
skewed data set. As reported in [19], a highly skewed
data set (such as one produced under this mapping)
gives rise to poor performances when used with tra-
ditional multi-dimensional indexes (e.g., the R-tree).
Our goal in this paper is to examine alternative in-
dexing strategies that will improve the efficiency of
high-dimensional search in incomplete databases. To
the best of our knowledge, this problem has not been
discussed elsewhere and our contribution here will be
the first to a novel and important problem.

3 High Dimensional Data Search Tech-
niques

To provide us with greater insight into strategies for
indexing high-dimensional data, we have identified a
framework composing of four generic strategies derived
from two orthogonal choice-sets. The first requires a
decision on whether or not tuples with missing values
should be indexed separately from those which do not
have missing values. The second deals with choices
concerning the nature of the index structures.

The first decision gives rise to two categories of
strategies, which we refer to as partitioned versus non-
partitioned. In the case of a non-partitioned index-
ing strategy, the index(es) is (are) built on the en-
tire database. On the other hand, a partitioned strat-
egy would have split the data into two partitions:
the missing information group which contains tuples
with some missing information, and the full informa-
tion group which contains tuples whose attribute val-
ues are all well-defined. Note that this partitioning is
conceptual and pertains only to how data are being
indexed. Hence, both tuples from the missing infor-
mation group, and the full information group can be
stored in the same data page. The difference is that
a partitioned strategy creates two groups of indexes,
one for the missing information group and another for
the full information group.

The second decision deals with the dimensionality
of the indexes. On one extreme, we can choose to
construct a single multi-dimensional index for a k-
dimensional search key. On the other hand, we can

359

construct a single-attribute index for each dimension,
i.e., there will be k one-dimensional indexes. Tech-
niques for efficient merger of partial results from single-
attribute indexes have been described in greater details
in [16].

Based on the two choice sets, we can derive dif-
ferent strategies for high-dimensional data search on
a k-dimension search key. The remaining discussion
will be focused on non-partitioned strategies, since the
observations can be easily generalized for partitioned
approaches.

3.1 The Bitstring-augmented
Multi-dimensional Index

As we have noted earlier in Section 2, an incomplete
database can be indexed in a brute-force manner by
replacing all missing information (‘?‘) with a distin-
guished value (-1). However, this results in a highly-
skewed data set that performs poorly using conven-
tional multi-dimensional indexes such as the R-tree.
To circumvent this problem, we introduce a novel map-
ping function that “randomly” scatters the points in
the k-dimensional space defined by the search key, in
an attempt to reduce this data skew. Note that the
specific function described below is merely one of many
possible forms.

Let (~1, . . . , z,+) be the search key corresponding to
a tuple t. We introduce a bit string yr y,+ as follows:

{

1 if pi is known
Yi = 0 otherwise

We define a mapping f on the search
as follows:

key (xl, , xk)

if xi is known
. .

f(Xi) =
if xi 1s mlssmg and (2)

C$=l Yj # 0
0 otherwise

Notice that it is possible for two distinct search keys
to be mapped to the same point in the k-dimensional
space under this mapping. For example, both the
search keys (2,4,6) and (2,?,6) will be mapped to
(2,4,6). To distinguish between two tuples that have
different search keys but are mapped to the same value
under the mapping function f, we associate with each
index entry the bitstring yr . . .yk where yi is as defined
earlier. The complete search keys corresponding to the
above examples are therefore given by < (2,4,6), 111>
and <(2,4,6), lOl> respectively. We shall refer to
the resultant multi-dimensional index structure as the
bitstring-augmented multi-dimensional index.

As before, a query on the multi-dimensional
database must be decomposed into a correspond-
ing set of 2k subqueries before it can be evaluated
on the bitstring-augmented multi-dimensional index.
For ease of exposition, we distinguish between point
queries and range queries below.

A point query can be processed as a set of 2k
point subqueries as follows. First, the set of sub-
queries is generated by systematically identifying all
the tuples (which may or may not contain missing
values) that satisfy the query given. For example,
if the search key given by a query is (1,2), this will
match tuples with keys (1,2), (?,2), (l,?), and (?,?),
suggesting that the original query should be trans-
formed to <(1,2), ll>, <(2,2),01>, <(l, l), ll>, and
<(O, 0), 00> respectively. Each of the latter subqueries
can now be evaluated as a point query, i.e., by prob-
ing the index structure for a search key with the same
value.

For range queries, the query transformation process
is identical except for the way the subqueries are gen-
erated. Consider a range query with a range-restricted
search key:

As before, the original query needs to be decomposed
into 2k subqueries corresponding to all possible permu-
tations of the bitstring y1 . . yk. This transformation
is described in the algorithm below:

Algorithm Rewrite(Q = [Xl, Yl], . . , [Xk, Yk])

For each permutation yr . . . y,+ construct the subquery
([Xi, Yil, , [XL, $1, YIYZ . . .Yk) where

(Xi if yi = 1

= 0 and x:=1 yj # 0

otherwise

and

if ui = 1 - yi’ = if yi = 0 and c,k=r yj # 0

0 otherwise

The subqueries are defined such that it retrieves
all tuples (including those having missing values) that
satisfy the query. As an illustration, we show below
the subqueries generated for a range query with search
key ([1,31,[5,71,[9,111):

360

row YlY2?/3 matching tuples subquery search key
1 000 (?,?,?) P,W)
2 001 y;y)l~ ([9,111,[9,111,[91111)
3 010
4 011 (1:[5:7]:;9,11])

([5,71,[5,71,[5,71)
(P!%[5,x%1q

5 100 0,31,?,?) ([L3l,P?31,P,31)
6 101 Wl,?,P,111) wl,[5,w1111)
7 110 (L31,[5,71,?) @~3lJ5171,[3151)
8 111 (P,w,m%111) ([1,31,[5,71,[%11])

One can easily observe that the subqueries are con-
structed such that queries looking for tuples with miss-
ing values look only in a “tight” range as implied
by the mapping function. For example, for tuples
in row 7, we need only to look for points in the re-
gion ([1,3],[5,7],[3,5]) rather than the entire hyperplane
defined by ([1,3],[5,7],[O,oo]). A pictorial representa-
tion of the search space is illustrated in Figure 1. As
we will demonstrate later in Section 4, this gives rise
to impressive performance of the bitstring-augmented
multi-dimensional index for supporting range queries.
We note however that other tuples not satisfying the
original query may be mapped to the region. For ex-
ample, the tuple with search key (2,6,4) does not sat-
isfy the query (which is [1,3],[5,7],[9,11]) but will be
retrieved by the subquery in row 7. This implies that
the search procedure must filter these false matches
by examining the bitstring. In effect, the search pro-
cedure is identical to that of the R-tree [ll] except that
additional filtering step is needed when examining the
leaf nodes.

i

G

Figure 1: A reduced search space using bitstring-
augmented multidimensional index.

To verify that the proposed mapping does improve
the efficiency of search operations in incomplete multi-
dimensional databases, we conducted a preliminary ex-
perimental study on the relative performance between
the two mapping schemes, using the R-tree as the un-
derlying multi-dimensional index structure. The ex-
periment is conducted on a database size of 1OOK tu-
ples with &dimension search keys. We vary the per-
centage of coverage in range queries from 0 to 5% of

the domain space. We denote the scheme under Equa-
tion 1 as Single Value Transformation (SVT) and that
under Equation 2 as Bitstring-augmented Transforma-
tion (BAT). As comparison, we also included the cost
for sequentially scanning the entire input file (denoted
as SCAN). The result is shown in Figure 2. From the
result, it is clear that SVT is very much worse than
BAT because of the skew data points as a result of
using Equation 1. It also shows that BAT can be very
effective in randomizing the points in a multidimen-
sional space. Because scheme SVT performs poorly,
for the rest of this paper, we shall focus on using the
BAT scheme when multi-dimensional indexes are used.

1oGQo

8000 SW -

SCAN -.-D--

OL I I I I I
0 1 2 3 4 5

Percentage of coverage for range queries

Figure 2: Comparison of SVT, BAT and SCAN.

3.2 Multiple One-attribute One-dimension
Indexes

In this category, a one-dimensional index is built on
each attribute (dimension) of the search key. This
is essentially an inverted index that allows for rapid
identification of the set of tuples having a given value
in the dimension being indexed. Thus, there will be
as many inverted indexes as there are dimensions in
the search key. Under this scheme, the transforma-
tion under Equation 1 suffices since every value in one
single-attribute index is either a null or a non-null.

It turns out that processing point and range queries
are very straightforward with this method. Con-
sider a range (point being a special case) query, say
([Xi, Yi], [X2, Yz], . . . , [Xk, Yk]). Then for any arbi-
trary dimension, say i, the set of tuples that can con-
tribute to the final result are those indexed by values
in the range [Xi, Yi] and those indexed by -1. This

361

Table 2: Parameters and their values.

Parameter 1 Default Values 1 Variations

System Parameters
page size 4K page
index node size 4K page
buffer size 128 pages

Database Parameters
no. of tuples 1 million 100,000
no. of dimensions 8 2,4,16
domain of dimensions [1..100000000]
distribution of missing attribute values Dimension-restricted Unrestricted

Query Parameters

query type point range - 1%,2%,5%
no. of queries/query type 1000

means that a total of only 2k subqueries need to be
constructed; this number is significantly smaller than
the 2k subqueries that are needed if the bitstring-
augmented multi-dimensional index had been used.
Suppose the results obtained from a subquery i is given
by Resi. The final result (satisfying the original query)
is given by the intersection of all candidate tuples in
all dimensions, i.e., Req fl Resz fl . . Resk.

Compared with a single k-dimensional index, this
approach is clearly less space efficient. In fact, it
has been traditionally recognized that this approach
may not be efficient (because of union and intersection
operations) for high-dimensional data search as com-
pared to a single high-dimensional index. However,
this may no longer be true for incomplete databases,
whereby the choice of a multi-dimensional index re-
quires a query to be rewritten into a large number of
subqueries. This suggests that having a family of mul-
tiple one-dimension single-attribute indexes may not
be such a bad idea. As we shall see later in our exper-
imental results, this turns out to be the case.

From the above discussion, we note that we can ac-
tually design a hybrid of the above two approaches.
In most applications, we can expect some attributes
to be constrained by a non-null clause during inser-
tion. Let the number of such attributes in the search
key be m, m < k. Thus, we can build a m-dimensional
index on the attributes with no missing attribute val-
ues, and multiple one-dimensional indexes on each of
the remaining dimensions.

4 A Performance Study

In this section, we present an experimental study
on high dimensional data search in an incomplete
database. In our study, we restrict our discussion to
two mechanisms, and investigate their relative perfor-
mance in terms of number of disk accesses. We also

compare the two approaches with respect to their in-
sertion cost and storage cost.

Among the possible schemes presented in Section 3,
we pick the following two for further study:

1. Single k-dimensional index. We adapt the ba-
sic R-tree index [ll] by introducing the bitstring
information. Recall that we are using the trans-
formation function given by Equation 2. We refer
to this variation as the Bitstring-augmented R-
tree, BR-tree in short.

2. Multiple one-dimensional one-attribute in-
dexes. In this category, we implemented the B+-
tree as the underlying indexing mechanism. The
“extra” unknown value (-1) for each dimension is
treated separately. We shall refer to this structure
as MOSAIC since multiple one-dimension single-
attribute indexes are to be used collectively to
answer a query.

For purpose of comparison, we also include the cost
for sequentially scanning the data file. This approach
is denoted as SSCAN.

4.1 Experimental Setup

Several parameters are used in our experiments and
these and their default settings are shown in Table 2.

The data set used in our experiment consists of
Fourier points in a high-dimensional space for contours
of industrial parts. The database is the same as that
used in the experimental study for the X-tree [3] ex-
cept that we restrict the size to no more than 1 million
tuples. The domain of each dimension is in the range
[l..lOOOOOOOO] (Th e original data set used in [3] con-
tain floating points, which we converted to integers in
our study.)

362

No. of missing attribute values [% of tuples

0 I 9/25
!

1 7j25
2 5125
3 3125
4 l/25

Table 3: Distribution of missing attribute values in
&dimensional data set (n = 4).

We note that the original data set does not con-
tain missing information. To model missing attribute
values, we adopt the following process:

l Determine the number of dimensions that, will
contain missing values. Let us denote this by n.
In our study, the number of missing attribute val-
ues per tuple is restricted to at most half of that of
the number of dimensions in the search key, i.e.,
1 5 71 5 LO.5 . k].

l Determine the percentage of tuples in the
database that will have i missing attribute val-
ues, i = 0, 1, . . . , n. This is given by the following
expression:

The function N(i) is chosen such that the percent-
age of i missing values is inversely proportional to
i (i.e., a larger number of tuples having small num-
ber of missing values and vice versa). In addition,
it also satisfies the property that C,“=, N(j) = 1.

As default, we employ the dimension-restricted dis-
tribution method, which is to predetermine the di-
mensions that will contain missing attribute values,
i.e., only these predetermined dimensions shall con-
tain missing attribute values while the other dimen-
sions will be well defined. As pointed out earlier, this
is not uncommon since most applications will require
some attribute values to be non-null. For example,
in our default setting of &dimensions, the percentages
of tuples having correspondingly different number of
missing attribute values are given by Table 3.

We note that under the dimension-restricted distri-
bution, the size of the bitstring is also reduced to just
n bits. Furthermore, the number of subqueries is also
reduced to 2” (as compared to 2k).

For a million tuples, we can expect the indexes to be
fairly large, and hence it, is unlikely that the entirety of
an index fits in memory. Instead, some index pages are
paged out as we traverse the tree, and re-fetched at a

later time when they are re-referenced. For simplicity,
we employ the priority-based least recently used buffer
replacement strategy [6]. As default, the buffer size is
128 pages, each page being 4K pages. The index nodes
are also 4K pages.

In each experiment, 1000 queries are generated.
The average number of I/OS is used as a metric for
comparative study. For point queries, each point
is randomly selected from the respective test data.
Range queries are formed from point queries by en-
larging the point such that the extent of each dimen-
sion covers a certain percentage of the domain space of
that dimension. In our study, we restrict three range
query coverages - l%, 2% and 5%.

16000 P

MOSAIC - ,;’

14000
BR-Tree ----S.
SSCAN ---B-

i ,;’
,.’

.,.’
I

VI
.’

2 lccco-

I

; ,,.I’
% : .’ ,

5
j ,>’
: .’

E
B

8ooo - d ,I j

8 ,;’ i
e!

2
6000 - ,,.’ ;

,;’

” 0 i 4 6 8 10 12 14 16

Number of dimensions

Figure 3: On point queries.

4.2 Experiment 1: Point Queries

In this set of experiment, we examine the perfor-
mance of the two proposed schemes for point queries.
Figure 3 shows the result for different data sets with
different number of dimensions. From the result, we
note that when the number of dimensions is small, the
BR-tree performs well. However, as the number of
dimensions increases, its performance degrades drasti-
cally. This is because of the large number of subqueries
that have to be processed. In fact, the performance of
BR-tree is worse than sequentially scanning the data
file when the number of dimensions increases to 16. On
the other hand, we note that the average number of
I/OS for the MOSAIC structure is the least among the
three methods studied. Furthermore, we note that the
number of I/OS grows almost linearly with the number
of dimensions of the index. Such a property makes it

363

MOSAIC -
BR-Tree . . . *
ssc,QI ---D--

I I I I I I

0 1 2 3 4 5

Percentage of coverage for range queries

01 I I t I I
0 1 2 3 4 5

Percentage of coverage for range queries

(a) Relation size = 1M

a very promising mechanism for searching high dimen-
sional data in incomplete databases.

4.3 Experiment 2: Range Queries

In this set of experiments, we evaluate the performance
of the two schemes for range queries under the default
setting. We vary the range from 0 to 5% of the do-
main range. The result is shown in Figure 4(a). From
the result, we see a different picture compared to the
experiments on point queries. While MOSAIC per-
forms well for point queries, it degenerates quickly for
range queries, so much so that it performs worse than
SSCAN. This is because in a range query, the num-
ber of potential tuples in a dimension that satisfy the
final answer is fairly large. This result in many swap-
ping in and out of pages when performing the union
and intersection operations. On the other hand, for
BR-tree, because all the dimensions are examined si-
multaneously, the search covers a smaller search space.
The linear increment in performance as the percentage
of coverage increases gives the BR-tree a competitive
edge over the MOSAIC structure.

We also repeated the experiment for smaller size
relations with 1OOK tuples. The result, shown in Fig-
ure 4(b) is largely similar to Figure 4(a) demonstrating
that MOSAIC is effective for point queries while BR-
tree is best for range queries.

(b) Relation size = 1OOK

Figure 4: On range queries.

4.4 Experiment 3: Effect of Data Distribution

We also study how different distributions of the miss-
ing attribute values can impact the performance of
the two schemes. We relax the constraint of fix-
ing the dimensions that should contain missing at-
tribute values, i.e., missing attribute values can ap-
pear in any dimension of the search keys. We call
this method the unrestricted distribution approach.
As in the dimension-restricted distribution approach,
the percentage of tuples with i missing attribute val-
ues is given by ((n - i)/n)’ - ((n - i - 1)/n)’ where
n is the maximum number of missing attribute values
per tuple. We denote the approach by unrestricted-
n. We studied two such distributions for a database
size of 1OOK tuples: unrestricted-4 and unrestricted-2.
The result for point queries is shown in Figure 5(a),
whereas the result for 2% range coverage is shown in
Figure 5(b). As shown in the figure, we note that the
MOSAIC structure is marginally affected by the distri-
bution used. However, the performance of the BR-tree
is very dependent on the distribution. This is because
of the number of subqueries that have to be gener-
ated. When the distribution is restricted, the number
of subqueries is 2 4 = 16. When the distribution is
unrestricted-2, the number of subqueries increases to
(8C2+8C~+8Co) = 37. Th e number of subqueries fur-
ther increases to (8C4 + ‘C’s + ‘Cz + *Cl + *CO) = 163
when the distribution changes to unrestricted-4.

364

BR-tree

cl MOSAIC

m SSCAN

BR-tree

0 MOSAIC

m SSCAN

unrestricted-4 Unrestricted-2 Restricted Unrestricted-4 Unrestricted-2 Restricted

(a) Point queries. (b) Range queries with 2% range coverage.

Figure 5: Effect of different distributions for missing attribute values

10 - 16 MOSAIC -
BR-Tree ..___....

“-8
MOSAIC -
BR-Tree ._._.___........

6 -

14

,_.._.. .‘.
,,,__,._.._........ ..‘.‘.’

,_,~__,,._,,_,__._._...................-..‘..““““‘-““......-...-

4 -
,....’ ,._..-

,..’ /’
,,,,....- J

2-

0 I I I I I
0 2OOOOO ‘UOOOO 6OOOOO 8OOOOO le+O6

Number of records

I I I I I 1 I I
0 2 4 6 8 10 12 14 16

Number of dimensions

(a) Vary number of tuples with 8 dimensions. (b) Vary number of dimensions with 1 million tuples.

Figure 6: Comparison of insertion cost.

365

To summarize the retrieval results, we have ob-
served from the experiments that neither the BR-tree
nor the MOSAIC structure is superior in all cases.
While the BR-tree is effective for range queries on
data with dimension-restricted data distribution, the
MOSAIC structure performs better for unrestricted
data distribution and point queries. These observa-
tions suggest that both the BR-tree and the MOSAIC
structure are appropriate for different application do-
mains. For example, in the case of multimedia ap-
plications, most if not all queries are range queries
(as opposed to point queries), making the BR-tree a
very valuable index in these contexts. On the other
hand, the MOSAIC structure is expected to be better
in the medical domain such as the thyroid database
in our motivational example since missing values are
distributed over a large number of attributes (dimen-
sions).

4.5 On Insertion Cost

Figure 6 compares the average I/O cost in building the
two indexes. The insertion cost provides an indication
on the update performance of each indexing method.
In Figure 6(a), we see the average I/O cost per tu-
ple inserted for the defa.ult setting, i.e., a data set of
1 million tuples with 8 dimensions. We note that as
the number of tuples increases, the average cost per
insertion increases for both methods. This is expected
since the index structures grow with more tuples. We
also note that it is more costly to insert a tuple to the
MOSAIC st,ructure than to the BR-tree. The reason
is because in MOSAIC, the insertion involves multi-
ple (in this case, 8) indexes, whereas in BR-tree there
is only one single tree structure to traverse. In fact,
the insertion cost in MOSAIC is between two to three
times more costly than that in BR-tree. This is de-
spite the fact that the code is optimized for MOSAIC
in the sense that the input data is sorted.

Figure 6(b) shows the relative performance of the
insertion cost between the BR-tree and MOSAIC
structure as the number of dimensions is varied. We
observe that the insertion cost for MOSAIC grows
faster than BR-tree as the number of dimensions in-
creases. This follows from the same observation made
earlier that there are more indexes to be updated for
an insertion into the MOSAIC structure.

4.6 On Storage Cost

Though storage cost is getting cheaper and affordable,
storage efficiency remains an important parameter for
evaluating the effectiveness of an index structure. We
present the storage cost (in terms of KB) for the MO-
SAIC structure and BR-tree in Figure 7. As expected,
the MOSAIC structure is less storage efficient than the

BR-tree. Its space consumption increases linearly but
more steeply than that of the BR-tree as the number
of dimensions increases As such, the relative difference
between the two approaches widens quickly. For ex-
ample, for small number of dimensions (e.g. 2), the
storage cost is almost the same, but for large number
of dimensions (e.g., 16), MOSAIC consumes up to 3
times more storage space than the BR-tree.

Figure 7: Comparison of storage cost.

5 Conclusion

In this paper, we have addressed the problem of
high-dimensional data search in incomplete databases.
Records and search keys in such a database may con-
tain missing attribute values, which are not efficiently
supported by existing high dimensional indexes. We
have proposed and evaluated two indexing schemes
called the Bitstring-augmented R-tree (BR-tree) and
the MOSAIC structure. Experimental results showed
that both methods are advantageous. In particu-
lar, the BR-tree has vastly superior performance com-
pared to a regular R-tree that treats missing values
as a distinguished token denoted by ‘-1’. This can
be attributed to the novel mapping function we in-
troduced to scatter the search keys “randomly” in the
multi-dimensional search space that are being indexed.
Moreover, it performs more efficiently compared to the
MOSAIC structure for range queries and is superior in
terms of update and storage costs. On the other hand,
the MOSAIC structure outperforms the BR-tree in re-
trieval for point queries.

We are currently extending the work reported here
in several ways. First, we have started to examine the
impact of partial queries, i.e., queries that may contain
missing information. Second, we also plan to study a
number of other indexing approaches as suggested by
the framework proposed in Section 3. In particular,
a mix of multi-dimensional and single-dimensional in-
dexes may provide a good balance in retrieval, up-

366

date and storage cost. Last but not least, we will
examine other methods to handle the large number
of subqueries that are generated for approaches that
are based on a single high-dimensional index. One
promising approach is to “cluster” several subqueries
together. For example, for a point query, its subqueries
can be grouped into a smaller set of range queries.

Acknowledgment

This work is partially supported by NUS Research
Grants RP950658. We like to thank Haoyu Dai for his
research assistantship, and Kriegel and his colleagues
for allowing us to use the dataset in [3] for our exper-
iments.

References

111

PI

[31

PI

[51

PI

PI

PI

S.F. Altschul, W. Gish, W. Miller, E.W. Myers,
and D.J. Lipman. A basic local alignment search
tool. Journal of Molecular Biology, 215(3):403-
140, 1990.

N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. In Pro-
ceedings of the 1990 ACM-SIGMOD Conference,
pages 322-331, Atlantic City, NJ, June 1990.

S. Berchtold, D.A. Keim, and H-P Kriegel. The
X-tree: An index structure for high-dimensional
data. In Proceedings of the 22nd VLDB Con-
ference, pages 28-39, Mumbai, India, September
1996.

E. Bertino, B.C. Ooi, R. Sacks-Davis, K.L. Tan,
J. Zobel, B. Shilovsky, and B. Catania. Index-
ing Techniques for Advanced Database Systems.
Kluwer Academic Publishers, August 1997.

T. Bozkaya and M. Ozsoyoglu. Distance-based
indexing for high-dimensional metric spaces. In
Proceedings of the 1997 ACM-SIGMOD Confer-
ence, pages 357-368, Tucson, Arizona, May 1997.

C.-Y. Chan, B. C. Ooi, and H. Lu. Extensible
buffer management of indexes. In Proceedings of
the 18th VLDB Conference, pages 444-455, Au-
gust 1992.

C. Dyreson. Information retrieval from an in-
complete data cube. In Proceedings of the 22nd
VLDB Conference, pages 532-542, Mumbai, In-
dia, September 1996.

C. Faloutsos, Ron Barber, Myron Flickner, Jim
Hafner, Wane Biblack, Dragutin Petkovic, and
William Equitz. Efficient and effective querying

PI

PO1

1111

WI

1131

P41

D51

WI

P71

WI

PI

WI

by image content. Journal of Intelligent Informa-
tion Systems, 3(3):231-262, 1994.

Garavan Institute and J.R. Ross. Thyroid disease
dataset. In Garavan Institute, 1987.

G.H. Gessert. Four valued logic for relational
database systems. SIGMOD RECORD, 19(1):29-
35, 1990.

A. Guttman. R-trees: A dynamic index structure
for spatial searching. In Proceedings of the 1984
ACM-SIGMOD Conference, pages 47-57, Boston,
MA, June 1984.

N. Katayama and S. Satoh. The SR-tree: An in-
dex structure for high-dimensional nearest neigh-
bor queries. In Proceedings of the 1997 ACM-
SIGMOD Conference, pages 369-380, Tucson,
Arizona, May 1997.

A. Levy. Obtaining complete answers from in-
complete databases. In Proceedings of the 22nd
VLDB Conference, pages 402-412, Mumbai, In-
dia, September 1996.

K. Lin, H.V. Jagadish, and C. Faloutsos. The
TV-tree: An index structure for high-dimensional
data. The VLDB Journal, 3(4):517-542, 1994.

R. Mehrotra and J.E. Gray. Feature-based re-
trieval of similar shapes. In Proceedings of 9th
Data Engineering Conference, pages 108-115, Vi-
enna, Austria, 1993.

C. Mohan, D. Haderle, Y. Wang, and J. Cheng.
Single table access using multiple indexes: Op-
timization, execution, and concurrency control
techniques. In Proceedings of EDBT’QO, pages
29-43, March 1990.

J. Nievergelt, H. Hinterberger, and K.C. Sevcik.
The grid file: An adaptable, symmetric multikey
file structure. ACM TODS, 9(1):38-71, 1984.

B. C. Ooi, R. Sacks-Davis, and K. Mc-
Donelli. Spatial indexing by binary decomposi-
tion and spatial bounding. Information Systems,
16(2):211-237, 1991.

T. Sellis, N. Roussopoulous, and C. Faloutsos.
R+-trees: A dynamic index for multi-dimensional
objects. In Proceedings of the 16th VLDB Confer-
ence, pages 507-518, Brighton, England, August
1987.

B.K. Shoichet, D.L. Bodian, and I.D. Kuntz.
Molecular docking using shape descriptors. Jour-
nal of Computational Chemistry, 13(3):380-397,
1992.

367

