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Abstract 

We propose and evaluate two indexing 
schemes for improving the efficiency of 
data retrieval in high-dimensional databases 
that are incomplete. These schemes are 
novel in that the search keys may con- 
tain missing attribute values. The first is 
a multi-dimensional index structure, called 
the Bitstring-augmented R-tree (BR-tree), 
whereas the second comprises a family of 
multiple one-dimensional one-attribute (MO- 
SAIC) indexes. Our results show that both 
schemes can be superior over exhaustive 
search. Experimental results suggest that BR- 
trees have lower update and storage costs and 
are able to support range queries more effi- 
ciently under most circumstances, when com- 
pared to the MOSAIC indexing scheme. How- 
ever, contrary to conventional wisdom, the 
MOSAIC structure outperforms the BR-tree 
in retrieval time for point queries, as well as 
in range queries over incomplete databases for 
dimension-unrestricted data distributions. 

1 Introduction 

We examine the problem of high-dimensional data 
search in incomplete databases. The widespread adop- 
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tion of database technologies in various advanced 
applications (such as multimedia and medical sys- 
tems) has given rise to the pressing need for efli- 
cient access methods for supporting data retrieval on 
multi-attribute (high-dimensional) search keys. Tra- 
ditionally, this is accomplished via the use of multi- 
dimensional indexes (see [4] for a comprehensive sur- 
vey). Unfortunately, these index structures, do not 
perform well when the database is incomplete: a sce- 
nario characterized by missing attribute values in some 
tuples of the database. This performance degrada- 
tion is so severe that even an exhaustive search of the 
database would have yielded better performances. 

In this paper, we address the issues pertaining to 
the design of fast mechanisms that avoid the costly 
alternative of performing an exhaustive search. A tax- 
onomy of different index strategies is presented, and 
two representative index structures are singled-out and 
evaluated in a series of experimental studies. The first 
structure is a multidimensional index structure, called 
the Bitstring-augmented R-tree (BR-tree), and the sec- 
ond structure is a family of multiple single-dimensional 
indexes, called the MOSAIC structure. Our results 
show that the proposed schemes are effective in reduc- 
ing the search time for a wide range of queries as com- 
pared to exhaustive search. The BR-tree is shown to 
be more efficient in supporting range queries and have 
lower insertion and storage costs compared to the MO- 
SAIC structure. However, contrary to conventional 
wisdom, the MOSAIC structure outperforms the BR- 
tree in point queries and also range queries when the 
underlying data distribution is dimension unrestricted. 

The rest of this paper is organized as follows. In the 
next section, we provide a concise characterization of 
the problem addressed in this paper. We submit that 
the problem is much more prevalent than commonly 
believed, and review related work. Section 3 describes 
the framework and the proposed indexing structures. 
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In Section 4, we present details of an experimental 
study, and the findings. Finally, we conclude in Sec- 
tion 5 with directions for future work. 

2 High Dimensional Data Search in In- 

complete Databases 

2.1 Motivation 

We believe that the problem of high dimensional 
data search in incomplete databases is becoming more 
prevalent, and deserves attention from the database 
community. Over the past decade, we have witnessed 
an increasing trend whereby database technologies are 
adopted for novel and advanced applications with com- 
plex data types. Such applications are characterized 
by three features. First, the data sets are usually high- 
dimensional. For example, in multimedia databases, 
feature vectors such as color histograms and shape de- 
scriptors extracted from the multimedia objects are 
usually mapped into points in a high-dimensional fea- 
ture space. Other applications adopting similar ap- 
proaches include CAD applications [15], molecular bi- 
ology databases [l, 201 and Geographic Information 
Systems. 

Second, such applications frequently involve high- 
dimensional search operations, i.e., data retrieval re- 
quiring restrictions on several attributes simultane- 
ously. For example, similarity queries in multimedia 
applications often require comparisons across multiple 
features of objects stored in a database [5, 8, 121; this 
is often translated to search operations on a multi- 
dimensional index that is used for organizing the cor- 
responding feature space. As pointed out in [3], the 
number of dimensions is likely to remain high for a 
large class of applications, even if we should reduce 
the dimensionality of data for retrieval. 

Third, most of the new applications are very large 
and may consist of several thousand attributes for each 
tuple. It is therefore not uncommon to find missing 
data occurring in some of the attributes. For example, 
Table 1 shows the distribution of missing attributes in 
a sample thyroid disease database [9]. As can be seen, 
almost all the tuples have at least one attribute value 
whose value is unknown. Out of over 31000 tuples with 
28 dimensions in the database, only 20 tuples have no 
missing information; instead, more than 21000 tuples 
have one attribute with missing information, and as 
many as 1000 tuples have six attributes with missing 
information. 

Although high-dimensional data retrieval has been 
extensively investigated in the literature, high- 
dimensional data retrieval in incomplete databases 
has not received much attention, probably because 
the problem is less likely to arise in conventional 
database systems where multi-dimensional searches 

No. of missing 
attribute values 

0 
1 
2 
3 
4 
5 
6 
7 

8-28 

No. of 
tuples 

20 
21639 
5980 
2178 
213 
640 
1110 
24 
0 L Total 31804 

Table 1: Distribution of missing information in a thy- 
roid disease database. 

are less common. In a conventional setting, miss- 
ing values can be dealt with using a fragmentation 
strategy [lo]. F or example, in designing an employee 
database, some employees may have a home telephone 
while others do not; the missing data can be avoided 
by partitioning the database into two - one for em- 
ployee data (without phone number) while the other 
for the phone numbers. 

Recently, different aspects of incomplete database 
(information) have also appeared in the literature. In 
[13], the incompleteness of a database is defined with 
respect to missing tuples, rather than attribute infor- 
mation. In [7], the concept of incompleteness is used in 
a data cube. Work on incomplete databases, as in hav- 
ing missing or unknown attribute values, have largely 
focused on the semantics of missing information [lo]. 

On the other hand, the design of indexes to sup- 
port high-dimensional data search is an area of ac- 
tive research. Work on high-dimensional data search 
have focused on designing efficient high-dimensional 
indexing structures [4]. These structures include the 
skd-tree [18], grid file [17], SR-tree [12], R-tree [ll], 
R*-tree [2], R+-tree [19], TV-tree [14] and X-tree [3]. 
An alternative paradigm is to make use of multiple 
single-attribute indexes to facilitate multi-dimensional 
search (see, for example, [IS]). The database folklore, 
however, have maintained that multi-dimensional in- 
dex is more efficient compared to having a plethora 
of single-dimensional indexes. As we will demonstrate 
later, this turns out to be untrue in the context of 
incomplete databases. 

2.2 Problem Definition 

Let D be a database with a schema of the form 
(Xl, x2, ..., X,). This database D is said to be 
incomplete if tuples in it are allowed to have miss- 
ing attribute values, either because the values are not 
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known at the time the data are being captured, or be- 
cause the corresponding attributes are not relevant for 
the tuple at hand [lo]. The exact semantics of the 
missing values are irrelevant to our discussion and we 
will denote missing information with the symbol ‘?‘. 

We assume that data retrieval is based on a k- 
dimensional search key, where k 5 n. For simplicity 
and without any loss of generality, we assume that the 
k dimensions of the search key are the first k attributes 
in the schema, the values of which are drawn from the 
set of non-negative integers. We refer to a query such 
as this as a high-dimensional query. In general, the 
search key associated with a query takes the form 

(bk x:1, Lx’,, & . ‘. , rx:, 41, 
where xi < CC; ‘d i E (1,. . . , k}. The values zf and 
x” are the lower- and upper-bound respectively of the 
i-th attribute. This query is said to be a point query 
if CI$ = X” for all i E (1,. . , k}. Otherwise, it is a 
range query. Throughout this paper, we assume that 
query ranges are well defined, i.e., missing values are 
not allowed as part of the search key. 

Suppose we are given a range query Q where the 
k-dimensional search key is ([CC\, ~$1, [x’,, ~$1, . ., 

Ix’, ! ~$1). A tuple t = (~1,. . , yk, . . . , yra) in the 
database is said to be an answer for Q if every 
yi (i E {l,..., k}) that is not a missing value falls 
in the corresponding range defined in the query, i.e., 
xi 5 yi 5 x”. For example, if the query search key is 
given by ([1,3],[4,7],[2,9]), then both tuples (l,?, 2,. .) 
and (?,?, 9,. . .) are said to be answers to the query. 
It is not hard to see that the above definition of an 
answer extends trivially to point queries. 

The simplest approach to extending a multi- 
dimensional index for use in incomplete databases is 
to treat missing values in the database as “distin- 
guished”. Thus, given a tuple t(xi, . . , x,+, . . , zcn), 
this can be mapped to a k-dimensional coordinate 
(f(a), . , f(a)) where 

For example, if n = 4, k = 3, then the tuple (1,?,2,3) 
will be mapped to the coordinate (l,-1,2). The re- 
sulting k-dimensional space can now be indexed using 
a multi-dimensional index (e.g., R-tree) as in a com- 
plete database. Intuitively, this approach merely ex- 
tends the domain of attributes in the search key with 
the distinguished value -1, and maps all missing (un- 
known) values to this symbol. 

With this scheme, a query based on the search key 
will have to be replaced by 2k subqueries. This is easily 
verified as follows: consider a point query that requests 
for all answers that match the search key (XI, . . . ,xk). 

For each attribute value y; (i 5 k) of a matching tuple 
(!h,...,Yk,... , yn), either yi = xi or the y;-value is 
missing, i.e., each yi value can take one of two values 
(xi or -1). This gives rise to a total of 2k variations for 
a search key of length k. Similarly, any range query 
can be decomposed to 2” subqueries (each of which is 
a range query). 

The problem with the approach described above lies 
in the observation that all unknown values along a 
given dimension are now mapped to a single orthog- 
onal hyperplane. If the proportion of missing values 
in the database is high, this will result in a highly 
skewed data set. As reported in [19], a highly skewed 
data set (such as one produced under this mapping) 
gives rise to poor performances when used with tra- 
ditional multi-dimensional indexes (e.g., the R-tree). 
Our goal in this paper is to examine alternative in- 
dexing strategies that will improve the efficiency of 
high-dimensional search in incomplete databases. To 
the best of our knowledge, this problem has not been 
discussed elsewhere and our contribution here will be 
the first to a novel and important problem. 

3 High Dimensional Data Search Tech- 
niques 

To provide us with greater insight into strategies for 
indexing high-dimensional data, we have identified a 
framework composing of four generic strategies derived 
from two orthogonal choice-sets. The first requires a 
decision on whether or not tuples with missing values 
should be indexed separately from those which do not 
have missing values. The second deals with choices 
concerning the nature of the index structures. 

The first decision gives rise to two categories of 
strategies, which we refer to as partitioned versus non- 
partitioned. In the case of a non-partitioned index- 
ing strategy, the index(es) is (are) built on the en- 
tire database. On the other hand, a partitioned strat- 
egy would have split the data into two partitions: 
the missing information group which contains tuples 
with some missing information, and the full informa- 
tion group which contains tuples whose attribute val- 
ues are all well-defined. Note that this partitioning is 
conceptual and pertains only to how data are being 
indexed. Hence, both tuples from the missing infor- 
mation group, and the full information group can be 
stored in the same data page. The difference is that 
a partitioned strategy creates two groups of indexes, 
one for the missing information group and another for 
the full information group. 

The second decision deals with the dimensionality 
of the indexes. On one extreme, we can choose to 
construct a single multi-dimensional index for a k- 
dimensional search key. On the other hand, we can 

359 



construct a single-attribute index for each dimension, 
i.e., there will be k one-dimensional indexes. Tech- 
niques for efficient merger of partial results from single- 
attribute indexes have been described in greater details 
in [16]. 

Based on the two choice sets, we can derive dif- 
ferent strategies for high-dimensional data search on 
a k-dimension search key. The remaining discussion 
will be focused on non-partitioned strategies, since the 
observations can be easily generalized for partitioned 
approaches. 

3.1 The Bitstring-augmented 
Multi-dimensional Index 

As we have noted earlier in Section 2, an incomplete 
database can be indexed in a brute-force manner by 
replacing all missing information (‘?‘) with a distin- 
guished value (-1). However, this results in a highly- 
skewed data set that performs poorly using conven- 
tional multi-dimensional indexes such as the R-tree. 
To circumvent this problem, we introduce a novel map- 
ping function that “randomly” scatters the points in 
the k-dimensional space defined by the search key, in 
an attempt to reduce this data skew. Note that the 
specific function described below is merely one of many 
possible forms. 

Let (~1, . . . , z,+) be the search key corresponding to 
a tuple t. We introduce a bit string yr y,+ as follows: 

{ 

1 if pi is known 
Yi = 0 otherwise 

We define a mapping f on the search 
as follows: 

key (xl, , xk) 

if xi is known 
. . 

f(Xi) = 
if xi 1s mlssmg and (2) 

C$=l Yj # 0 
0 otherwise 

Notice that it is possible for two distinct search keys 
to be mapped to the same point in the k-dimensional 
space under this mapping. For example, both the 
search keys (2,4,6) and (2,?,6) will be mapped to 
(2,4,6). To distinguish between two tuples that have 
different search keys but are mapped to the same value 
under the mapping function f, we associate with each 
index entry the bitstring yr . . .yk where yi is as defined 
earlier. The complete search keys corresponding to the 
above examples are therefore given by < (2,4,6), 111> 
and <(2,4,6), lOl> respectively. We shall refer to 
the resultant multi-dimensional index structure as the 
bitstring-augmented multi-dimensional index. 

As before, a query on the multi-dimensional 
database must be decomposed into a correspond- 
ing set of 2k subqueries before it can be evaluated 
on the bitstring-augmented multi-dimensional index. 
For ease of exposition, we distinguish between point 
queries and range queries below. 

A point query can be processed as a set of 2k 
point subqueries as follows. First, the set of sub- 
queries is generated by systematically identifying all 
the tuples (which may or may not contain missing 
values) that satisfy the query given. For example, 
if the search key given by a query is (1,2), this will 
match tuples with keys (1,2), (?,2), (l,?), and (?,?), 
suggesting that the original query should be trans- 
formed to <(1,2), ll>, <(2,2),01>, <(l, l), ll>, and 
<(O, 0), 00> respectively. Each of the latter subqueries 
can now be evaluated as a point query, i.e., by prob- 
ing the index structure for a search key with the same 
value. 

For range queries, the query transformation process 
is identical except for the way the subqueries are gen- 
erated. Consider a range query with a range-restricted 
search key: 

As before, the original query needs to be decomposed 
into 2k subqueries corresponding to all possible permu- 
tations of the bitstring y1 . . yk. This transformation 
is described in the algorithm below: 

Algorithm Rewrite(Q = [Xl, Yl], . . , [Xk, Yk]) 

For each permutation yr . . . y,+ construct the subquery 
([Xi, Yil, , [XL, $1, YIYZ . . .Yk) where 

( Xi if yi = 1 

= 0 and x:=1 yj # 0 

otherwise 

and 

if ui = 1 - yi’ = if yi = 0 and c,k=r yj # 0 

0 otherwise 

The subqueries are defined such that it retrieves 
all tuples (including those having missing values) that 
satisfy the query. As an illustration, we show below 
the subqueries generated for a range query with search 
key ([1,31,[5,71,[9,111): 
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row YlY2?/3 matching tuples subquery search key 
1 000 (?,?,?) P,W) 
2 001 y;y)l~ ([9,111,[9,111,[91111) 
3 010 
4 011 (1:[5:7]:;9,11]) 

([5,71,[5,71,[5,71) 
(P!%[5,x%1q 

5 100 0,31,?,?) ([L3l,P?31,P,31) 
6 101 Wl,?,P,111) wl,[5,w1111) 
7 110 (L31,[5,71,?) @~3lJ5171,[3151) 
8 111 (P,w,m%111) ([1,31,[5,71,[%11]) 

One can easily observe that the subqueries are con- 
structed such that queries looking for tuples with miss- 
ing values look only in a “tight” range as implied 
by the mapping function. For example, for tuples 
in row 7, we need only to look for points in the re- 
gion ([1,3],[5,7],[3,5]) rather than the entire hyperplane 
defined by ([1,3],[5,7],[O,oo]). A pictorial representa- 
tion of the search space is illustrated in Figure 1. As 
we will demonstrate later in Section 4, this gives rise 
to impressive performance of the bitstring-augmented 
multi-dimensional index for supporting range queries. 
We note however that other tuples not satisfying the 
original query may be mapped to the region. For ex- 
ample, the tuple with search key (2,6,4) does not sat- 
isfy the query (which is [1,3],[5,7],[9,11]) but will be 
retrieved by the subquery in row 7. This implies that 
the search procedure must filter these false matches 
by examining the bitstring. In effect, the search pro- 
cedure is identical to that of the R-tree [ll] except that 
additional filtering step is needed when examining the 
leaf nodes. 

i 

G 

Figure 1: A reduced search space using bitstring- 
augmented multidimensional index. 

To verify that the proposed mapping does improve 
the efficiency of search operations in incomplete multi- 
dimensional databases, we conducted a preliminary ex- 
perimental study on the relative performance between 
the two mapping schemes, using the R-tree as the un- 
derlying multi-dimensional index structure. The ex- 
periment is conducted on a database size of 1OOK tu- 
ples with &dimension search keys. We vary the per- 
centage of coverage in range queries from 0 to 5% of 

the domain space. We denote the scheme under Equa- 
tion 1 as Single Value Transformation (SVT) and that 
under Equation 2 as Bitstring-augmented Transforma- 
tion (BAT). As comparison, we also included the cost 
for sequentially scanning the entire input file (denoted 
as SCAN). The result is shown in Figure 2. From the 
result, it is clear that SVT is very much worse than 
BAT because of the skew data points as a result of 
using Equation 1. It also shows that BAT can be very 
effective in randomizing the points in a multidimen- 
sional space. Because scheme SVT performs poorly, 
for the rest of this paper, we shall focus on using the 
BAT scheme when multi-dimensional indexes are used. 

1oGQo 

8000 SW - 

SCAN -.-D-- 

OL I I I I I 
0 1 2 3 4 5 

Percentage of coverage for range queries 

Figure 2: Comparison of SVT, BAT and SCAN. 

3.2 Multiple One-attribute One-dimension 
Indexes 

In this category, a one-dimensional index is built on 
each attribute (dimension) of the search key. This 
is essentially an inverted index that allows for rapid 
identification of the set of tuples having a given value 
in the dimension being indexed. Thus, there will be 
as many inverted indexes as there are dimensions in 
the search key. Under this scheme, the transforma- 
tion under Equation 1 suffices since every value in one 
single-attribute index is either a null or a non-null. 

It turns out that processing point and range queries 
are very straightforward with this method. Con- 
sider a range (point being a special case) query, say 
([Xi, Yi], [X2, Yz], . . . , [Xk, Yk]). Then for any arbi- 
trary dimension, say i, the set of tuples that can con- 
tribute to the final result are those indexed by values 
in the range [Xi, Yi] and those indexed by -1. This 
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Table 2: Parameters and their values. 

Parameter 1 Default Values 1 Variations 

System Parameters 
page size 4K page 
index node size 4K page 
buffer size 128 pages 

Database Parameters 
no. of tuples 1 million 100,000 
no. of dimensions 8 2,4,16 
domain of dimensions [1..100000000] 
distribution of missing attribute values Dimension-restricted Unrestricted 

Query Parameters 

query type point range - 1%,2%,5% 
no. of queries/query type 1000 

means that a total of only 2k subqueries need to be 
constructed; this number is significantly smaller than 
the 2k subqueries that are needed if the bitstring- 
augmented multi-dimensional index had been used. 
Suppose the results obtained from a subquery i is given 
by Resi. The final result (satisfying the original query) 
is given by the intersection of all candidate tuples in 
all dimensions, i.e., Req fl Resz fl . . Resk. 

Compared with a single k-dimensional index, this 
approach is clearly less space efficient. In fact, it 
has been traditionally recognized that this approach 
may not be efficient (because of union and intersection 
operations) for high-dimensional data search as com- 
pared to a single high-dimensional index. However, 
this may no longer be true for incomplete databases, 
whereby the choice of a multi-dimensional index re- 
quires a query to be rewritten into a large number of 
subqueries. This suggests that having a family of mul- 
tiple one-dimension single-attribute indexes may not 
be such a bad idea. As we shall see later in our exper- 
imental results, this turns out to be the case. 

From the above discussion, we note that we can ac- 
tually design a hybrid of the above two approaches. 
In most applications, we can expect some attributes 
to be constrained by a non-null clause during inser- 
tion. Let the number of such attributes in the search 
key be m, m < k. Thus, we can build a m-dimensional 
index on the attributes with no missing attribute val- 
ues, and multiple one-dimensional indexes on each of 
the remaining dimensions. 

4 A Performance Study 

In this section, we present an experimental study 
on high dimensional data search in an incomplete 
database. In our study, we restrict our discussion to 
two mechanisms, and investigate their relative perfor- 
mance in terms of number of disk accesses. We also 

compare the two approaches with respect to their in- 
sertion cost and storage cost. 

Among the possible schemes presented in Section 3, 
we pick the following two for further study: 

1. Single k-dimensional index. We adapt the ba- 
sic R-tree index [ll] by introducing the bitstring 
information. Recall that we are using the trans- 
formation function given by Equation 2. We refer 
to this variation as the Bitstring-augmented R- 
tree, BR-tree in short. 

2. Multiple one-dimensional one-attribute in- 
dexes. In this category, we implemented the B+- 
tree as the underlying indexing mechanism. The 
“extra” unknown value (-1) for each dimension is 
treated separately. We shall refer to this structure 
as MOSAIC since multiple one-dimension single- 
attribute indexes are to be used collectively to 
answer a query. 

For purpose of comparison, we also include the cost 
for sequentially scanning the data file. This approach 
is denoted as SSCAN. 

4.1 Experimental Setup 

Several parameters are used in our experiments and 
these and their default settings are shown in Table 2. 

The data set used in our experiment consists of 
Fourier points in a high-dimensional space for contours 
of industrial parts. The database is the same as that 
used in the experimental study for the X-tree [3] ex- 
cept that we restrict the size to no more than 1 million 
tuples. The domain of each dimension is in the range 
[l..lOOOOOOOO] (Th e original data set used in [3] con- 
tain floating points, which we converted to integers in 
our study.) 
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No. of missing attribute values [ % of tuples 

0 I 9/25 
! 

1 7j25 
2 5125 
3 3125 
4 l/25 

Table 3: Distribution of missing attribute values in 
&dimensional data set (n = 4). 

We note that the original data set does not con- 
tain missing information. To model missing attribute 
values, we adopt the following process: 

l Determine the number of dimensions that, will 
contain missing values. Let us denote this by n. 
In our study, the number of missing attribute val- 
ues per tuple is restricted to at most half of that of 
the number of dimensions in the search key, i.e., 
1 5 71 5 LO.5 . k]. 

l Determine the percentage of tuples in the 
database that will have i missing attribute val- 
ues, i = 0, 1, . . . , n. This is given by the following 
expression: 

The function N(i) is chosen such that the percent- 
age of i missing values is inversely proportional to 
i (i.e., a larger number of tuples having small num- 
ber of missing values and vice versa). In addition, 
it also satisfies the property that C,“=, N(j) = 1. 

As default, we employ the dimension-restricted dis- 
tribution method, which is to predetermine the di- 
mensions that will contain missing attribute values, 
i.e., only these predetermined dimensions shall con- 
tain missing attribute values while the other dimen- 
sions will be well defined. As pointed out earlier, this 
is not uncommon since most applications will require 
some attribute values to be non-null. For example, 
in our default setting of &dimensions, the percentages 
of tuples having correspondingly different number of 
missing attribute values are given by Table 3. 

We note that under the dimension-restricted distri- 
bution, the size of the bitstring is also reduced to just 
n bits. Furthermore, the number of subqueries is also 
reduced to 2” (as compared to 2k). 

For a million tuples, we can expect the indexes to be 
fairly large, and hence it, is unlikely that the entirety of 
an index fits in memory. Instead, some index pages are 
paged out as we traverse the tree, and re-fetched at a 

later time when they are re-referenced. For simplicity, 
we employ the priority-based least recently used buffer 
replacement strategy [6]. As default, the buffer size is 
128 pages, each page being 4K pages. The index nodes 
are also 4K pages. 

In each experiment, 1000 queries are generated. 
The average number of I/OS is used as a metric for 
comparative study. For point queries, each point 
is randomly selected from the respective test data. 
Range queries are formed from point queries by en- 
larging the point such that the extent of each dimen- 
sion covers a certain percentage of the domain space of 
that dimension. In our study, we restrict three range 
query coverages - l%, 2% and 5%. 

16000 P 

MOSAIC - ,;’ 

14000 
BR-Tree ----S. 
SSCAN ---B- 

i ,;’ 
,.’ 

.,.’ 
I 

VI 
.’ 

2 lccco- 

I 

; ,,.I’ 
% : .’ , 

5 
j ,>’ 
: .’ 

E 
B 

8ooo - d ,I j 

8 ,;’ i 
e! 

2 
6000 - ,,.’ ; 

,;’ 

” 0 i 4 6 8 10 12 14 16 

Number of dimensions 

Figure 3: On point queries. 

4.2 Experiment 1: Point Queries 

In this set of experiment, we examine the perfor- 
mance of the two proposed schemes for point queries. 
Figure 3 shows the result for different data sets with 
different number of dimensions. From the result, we 
note that when the number of dimensions is small, the 
BR-tree performs well. However, as the number of 
dimensions increases, its performance degrades drasti- 
cally. This is because of the large number of subqueries 
that have to be processed. In fact, the performance of 
BR-tree is worse than sequentially scanning the data 
file when the number of dimensions increases to 16. On 
the other hand, we note that the average number of 
I/OS for the MOSAIC structure is the least among the 
three methods studied. Furthermore, we note that the 
number of I/OS grows almost linearly with the number 
of dimensions of the index. Such a property makes it 
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(a) Relation size = 1M 

a very promising mechanism for searching high dimen- 
sional data in incomplete databases. 

4.3 Experiment 2: Range Queries 

In this set of experiments, we evaluate the performance 
of the two schemes for range queries under the default 
setting. We vary the range from 0 to 5% of the do- 
main range. The result is shown in Figure 4(a). From 
the result, we see a different picture compared to the 
experiments on point queries. While MOSAIC per- 
forms well for point queries, it degenerates quickly for 
range queries, so much so that it performs worse than 
SSCAN. This is because in a range query, the num- 
ber of potential tuples in a dimension that satisfy the 
final answer is fairly large. This result in many swap- 
ping in and out of pages when performing the union 
and intersection operations. On the other hand, for 
BR-tree, because all the dimensions are examined si- 
multaneously, the search covers a smaller search space. 
The linear increment in performance as the percentage 
of coverage increases gives the BR-tree a competitive 
edge over the MOSAIC structure. 

We also repeated the experiment for smaller size 
relations with 1OOK tuples. The result, shown in Fig- 
ure 4(b) is largely similar to Figure 4(a) demonstrating 
that MOSAIC is effective for point queries while BR- 
tree is best for range queries. 

(b) Relation size = 1OOK 

Figure 4: On range queries. 

4.4 Experiment 3: Effect of Data Distribution 

We also study how different distributions of the miss- 
ing attribute values can impact the performance of 
the two schemes. We relax the constraint of fix- 
ing the dimensions that should contain missing at- 
tribute values, i.e., missing attribute values can ap- 
pear in any dimension of the search keys. We call 
this method the unrestricted distribution approach. 
As in the dimension-restricted distribution approach, 
the percentage of tuples with i missing attribute val- 
ues is given by ((n - i)/n)’ - ((n - i - 1)/n)’ where 
n is the maximum number of missing attribute values 
per tuple. We denote the approach by unrestricted- 
n. We studied two such distributions for a database 
size of 1OOK tuples: unrestricted-4 and unrestricted-2. 
The result for point queries is shown in Figure 5(a), 
whereas the result for 2% range coverage is shown in 
Figure 5(b). As shown in the figure, we note that the 
MOSAIC structure is marginally affected by the distri- 
bution used. However, the performance of the BR-tree 
is very dependent on the distribution. This is because 
of the number of subqueries that have to be gener- 
ated. When the distribution is restricted, the number 
of subqueries is 2 4 = 16. When the distribution is 
unrestricted-2, the number of subqueries increases to 
(8C2+8C~+8Co) = 37. Th e number of subqueries fur- 
ther increases to (8C4 + ‘C’s + ‘Cz + *Cl + *CO) = 163 
when the distribution changes to unrestricted-4. 
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Figure 5: Effect of different distributions for missing attribute values 
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Figure 6: Comparison of insertion cost. 
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To summarize the retrieval results, we have ob- 
served from the experiments that neither the BR-tree 
nor the MOSAIC structure is superior in all cases. 
While the BR-tree is effective for range queries on 
data with dimension-restricted data distribution, the 
MOSAIC structure performs better for unrestricted 
data distribution and point queries. These observa- 
tions suggest that both the BR-tree and the MOSAIC 
structure are appropriate for different application do- 
mains. For example, in the case of multimedia ap- 
plications, most if not all queries are range queries 
(as opposed to point queries), making the BR-tree a 
very valuable index in these contexts. On the other 
hand, the MOSAIC structure is expected to be better 
in the medical domain such as the thyroid database 
in our motivational example since missing values are 
distributed over a large number of attributes (dimen- 
sions). 

4.5 On Insertion Cost 

Figure 6 compares the average I/O cost in building the 
two indexes. The insertion cost provides an indication 
on the update performance of each indexing method. 
In Figure 6(a), we see the average I/O cost per tu- 
ple inserted for the defa.ult setting, i.e., a data set of 
1 million tuples with 8 dimensions. We note that as 
the number of tuples increases, the average cost per 
insertion increases for both methods. This is expected 
since the index structures grow with more tuples. We 
also note that it is more costly to insert a tuple to the 
MOSAIC st,ructure than to the BR-tree. The reason 
is because in MOSAIC, the insertion involves multi- 
ple (in this case, 8) indexes, whereas in BR-tree there 
is only one single tree structure to traverse. In fact, 
the insertion cost in MOSAIC is between two to three 
times more costly than that in BR-tree. This is de- 
spite the fact that the code is optimized for MOSAIC 
in the sense that the input data is sorted. 

Figure 6(b) shows the relative performance of the 
insertion cost between the BR-tree and MOSAIC 
structure as the number of dimensions is varied. We 
observe that the insertion cost for MOSAIC grows 
faster than BR-tree as the number of dimensions in- 
creases. This follows from the same observation made 
earlier that there are more indexes to be updated for 
an insertion into the MOSAIC structure. 

4.6 On Storage Cost 

Though storage cost is getting cheaper and affordable, 
storage efficiency remains an important parameter for 
evaluating the effectiveness of an index structure. We 
present the storage cost (in terms of KB) for the MO- 
SAIC structure and BR-tree in Figure 7. As expected, 
the MOSAIC structure is less storage efficient than the 

BR-tree. Its space consumption increases linearly but 
more steeply than that of the BR-tree as the number 
of dimensions increases As such, the relative difference 
between the two approaches widens quickly. For ex- 
ample, for small number of dimensions (e.g. 2), the 
storage cost is almost the same, but for large number 
of dimensions (e.g., 16), MOSAIC consumes up to 3 
times more storage space than the BR-tree. 

Figure 7: Comparison of storage cost. 

5 Conclusion 

In this paper, we have addressed the problem of 
high-dimensional data search in incomplete databases. 
Records and search keys in such a database may con- 
tain missing attribute values, which are not efficiently 
supported by existing high dimensional indexes. We 
have proposed and evaluated two indexing schemes 
called the Bitstring-augmented R-tree (BR-tree) and 
the MOSAIC structure. Experimental results showed 
that both methods are advantageous. In particu- 
lar, the BR-tree has vastly superior performance com- 
pared to a regular R-tree that treats missing values 
as a distinguished token denoted by ‘-1’. This can 
be attributed to the novel mapping function we in- 
troduced to scatter the search keys “randomly” in the 
multi-dimensional search space that are being indexed. 
Moreover, it performs more efficiently compared to the 
MOSAIC structure for range queries and is superior in 
terms of update and storage costs. On the other hand, 
the MOSAIC structure outperforms the BR-tree in re- 
trieval for point queries. 

We are currently extending the work reported here 
in several ways. First, we have started to examine the 
impact of partial queries, i.e., queries that may contain 
missing information. Second, we also plan to study a 
number of other indexing approaches as suggested by 
the framework proposed in Section 3. In particular, 
a mix of multi-dimensional and single-dimensional in- 
dexes may provide a good balance in retrieval, up- 
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date and storage cost. Last but not least, we will 
examine other methods to handle the large number 
of subqueries that are generated for approaches that 
are based on a single high-dimensional index. One 
promising approach is to “cluster” several subqueries 
together. For example, for a point query, its subqueries 
can be grouped into a smaller set of range queries. 
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