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Abstract 

The databases of a wide range of applications, 
e.g., in data warehousing, store multiple states 
of time-evolving data. These databases contain 
a substantial part of now-relative data: data that 
became valid at some past time and remains valid 
until the current time. More specifically, two tem- 
poral aspects of data are frequently of interest, 
namely valid time, when data is true, and trans- 
action time, when data is current in the database, 
leading to bitemporal data. Only little work, based 
mostly on R-trees, has addressed the indexing of 
bitemporal data. No indices exist that contend 
well with now-relative data, which leads to tem- 
poral data regions that are continuous functions of 
time. The paper proposes two extended R*-trees 
that permit the indexing of data regions that grow 
continuously over time, by also letting the internal 
bounding regions grow. Internal bounding regions 
may be triangular as well as rectangular. New 
heuristics for the algorithms that govern the index 
structure are provided. As a result, dead space 
and overlap, now also functions of time, are re- 
duced. Performance studies indicate that the best 
extended index is typically 3-5 times faster than 
the existing R-tree based indices. 

1 Introduction 

Data stored in a database has two fundamental temporal 
aspects-valid time and transaction time [SAU] [JS96]. 
The valid time of a database fact is the time when the fact 
is true in the modeled reality, while the fact’s transaction 
time is the time during which it is current in the database. 
Valid and transaction time are orthogonal in that each could 
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be independently recorded, and each has specific properties 
associated with it. The valid time of a fact can be in the past 
or in the future (allowing to store information about the past 
and the future) and can be changed freely. In contrast, the 
transaction time of a fact cannot extend beyond the current 
time and cannot be changed. Valid time is meaningful and 
necessary for a wide range of applications, and transaction 
time is particularly useful in applications where traceability 
or accountability are important. Applications dealing with 
temporal data would benefit from temporal support being 
built into the DBMS. In response to this, several dozen 
temporal data models and query languages have been pro- 
posed, and temporal support is finding its way into the SQL 
standard [Sno96]. This paper addresses the need for effi- 
cient indexing of temporal data. 

Existing research shows that regular indices such as B+- 
trees are unsuited for temporal data [ST97], and there has 
recently been proposed a number of indices for temporal 
data. The majority are for transaction-time data, and only 
few support valid-time data. Even less research has been 
done on creating indices that support data with both valid 
and transaction time, so-called bitemporal data. 

Due to the similarities between bitemporal and spatial 
data-the combined valid and transaction time of a fact can 
be treated as a region in two-dimensional space-spatial in- 
dices can be adapted for indexing bitemporal data. Several 
existing proposals [KTF95] [KTF97] are based on the R*- 
tree [Bec90]. 

The existing bitemporal indices fall short in efficiently 
supporting data related to the current time, i.e., data for 
which the end of the valid time or transaction time is not 
fixed, but tracks the progressing current time. We term such 
data now-relative. It occurs naturally and frequently. Con- 
sider an example where we want to record new employ- 
ees in a company’s database. The time when the employ- 
ees start working (valid-time interval begin) is known, but 
we frequently do not know when the employees will leave. 
This is captured by letting the valid-time end extend to the 
progressing current time. The same applies to transaction 
time. The transaction-time interval begin is the time when 
we insert a fact into the database. Since we do not know 
when the fact will stop being current in the database, its 
transaction-time end is not fixed, but extends to the current 
time. Existing indices support efficiently only now-relative 
transaction-time intervals. None support data where the 
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valid-time interval is now-relative. 
The paper describes how to support now-relative bitem- 

poral data in R-tree [Gut841 based indices, and it proposes 
two extended R*-trees. The new indices permit the indexed 
data regions to grow as time progresses, by also letting the 
internal bounding regions grow. Internal regions may be 
triangular as well as rectangular, and new heuristics for the 
algorithms that govern the index structure are provided. As 
a result, dead space and overlap, now functions of time, are 
reduced. This reduces the number of paths followed dur- 
ing a search, and performance studies indicate that the best 
extended index is typically 3-5 times faster than existing 
R-tree based indices. 

The presentation is structured as follows. In Section 2, 
we briefly describe important concepts and explain how the 
time associated with bitemporal data may be described us- 
ing two-dimensional regions. Section 3 surveys the exist- 
ing work related to the indexing of temporal data and mo- 
tivates the need for a new bitemporal index. The structures 
of the proposed R*-tree extensions are given in Section 4, 
and Section 5 presents algorithms for the insert, delete, and 
search operations. Section 6 presents performance studies. 
The final section concludes and points to research direc- 
tions. 

2 Background 

To investigate the indexing of bitemporal data, we need a 
suitable representation of bitemporal data. TQuel’s four- 
timestamp format [Sno87] (4TS) is the most popular for 
this purpose. With this format, tuples each have a num- 
ber of non-temporal attributes and four time attributes: 
VTbegin and VTend-the times when the tuple’s infor- 
mation became and ceased to be true in the modeled reality; 
TTbegin and TTend-the times when the tuple became 
and ceased to be current in the database. 

A tuple is now-relative if its information is valid un- 
til the current time or if the tuple is part of the current 
database state. This is represented by the use of vari- 
ables, which denote the current time, for the time attributes 
VTend and TTend [Cli97]. The variable UC (denoting 
‘until changed’) is used for TTend, and the variable NOW 
is used for VTend. Table 1 exemplifies the 4TS format. 
The time granularity is a month, and the current time (CT) 
is 9197. 

Table 1: The EmpDep Relation 

(1) 
(2) 
(3 
(4) 
(5) 
(6) 

Tuple (1) records that the information “John works in 
Advertising” was true from 3197 to 5197 and that this was 
recorded during 4/97 and is still current. Tuple (3) records 

that “Jane works in Sales” from 5/97 until the the current 
time, that we recorded this belief on 5/97, and that this re- 
mains part of the current database state. 

Specific constraints apply to insertions, deletions, and 
modifications of tuples. When inserting a new tuple, the 
constraints VTbegin 5 VTend and VTbegin < ‘current 
time’ if VTend is equal to NOW apply to validtime; and 
the constraints TTbegin = ‘current time’ and TTend = 
UC apply to transaction time. Any current database tuple 
can be deleted or modified. Deleting a tuple, the TTend 
value UC is changed to the fixed value ‘current time’-11, 
making the tuple not current anymore (e.g., Tuple (2)); tu- 
pies are not physically deleted. A modification is modeled 
as a deletion followed by an insertion (e.g., an update led 
to Tuple 4 and Tuple 5). - 

VT 

Figure 1: Bitemporal Regions 

The temporal aspect of a tuple can be represented graph- 
ically by a two-dimensional (“bitemporal”) region in the 
space spanned by valid and transaction time [JS96]. Cases 
l-5 in Figure 1 illustrate the bitemporul regions of Tuples 
(l-4) and (6), respectively. 

A now-relative transaction-time interval yields a rect- 
angle that “grows” in the transaction time direction as 
time passes (Tuple (1) Case 1). Having both transaction- 
and valid-time intervals being now-relative yields a stair- 
shaped region growing in both the transaction-time and the 
valid-time direction as time passes (Tuple (3), Case 3). In- 
formation can be recorded in the database after it becomes 
true in the modeled reality. In this situation, also having 

‘We use closed intervals and let [TTbegin, TTend] denote the inter- 
val that includes TTbegin and TTend. 

346 



both the transaction- and valid-time intervals being now- 
relative yields a stair-shape with a high first step (Tuple (6), 
Case 5). 

It is also possible to record information in the database 
before it becomes true in the modeled reality. In this case, 
the valid-time end must be a ground value (Tuple (2), Case 
2); otherwise, the valid-time end, which would extend to 
the current time, would initially be smaller than the valid- 
time start, violating the second insertion constraint. If, at 
some time, a tuple stops being current, the bitemporal re- 
gion stops growing (Tuples (2), (4); Cases 2,4,6). 

Stated generally, we obtain six combinations of time at- 
tributes for which the bitemporal regions are qualitatively 
different (Figure l), see Figure 2 where ‘ttl’, ‘tt2’, ‘vtl’, 
and ‘vt2’ denote ground values that satisfy the constraints 
given above. 

TTbegin TTend VTbegin VTend 
Case 1 ttl UC vtl vt2 
case 2 tt1 tt2 vtl vt2 
Case 3 tt1 UC vtl NOW (ttl=vtl) 
Case 4 tt1 tt2 vtl NOW (ttl=vtl) 
Case 5 tt1 UC vtl NOW (ttl>vtl) 
Case 6 tt1 tt2 vtl NOW (ttl>vtl) 

Figure 2: Possible Combinations of Time Attributes 

We have set the context for using spatial indices for in- 
dexing bitemporal data. The next section discusses the ex- 
isting indices for bitemporal data that are based on spatial 
indices. 

3 Existing Bitemporal Indices 

A wealth of indices for temporal data exist; references 
[Ber97, ST971 provide comprehensive surveys. We focus 
on the indexing of bitemporal data. In one approach, a 
bitemporal index is obtained by making a valid-time in- 
dex partially persistent [Dri89]. The Bitemporal Interval 
Tree [KTF95] represents this approach. Another approach 
is to view bitemporal data as a special case of spatial data 
(recall Figure 1) and to adapt spatial indices to bitemporal 
data. This is the approach we adopt in this paper. 

Many indices have been developed for spatial data 
[Sam90]. One of the most robust indices for spatial data 
with extent (i.e., non-point data) is the R-tree [Gut841 in 
its different variants-e.g., the R+-tree [SRF87], the R*- 
tree [Bec90], and the Hilbert R-tree [KF94]. All variants 
of the R-tree try to minimize the overlap between the min- 
imum bounding rectangles of the nodes at each level of the 
tree and to minimize the dead space in the bounding rect- 
angle of each node (dead space is the space in the min- 
imum bounding rectangle not occupied by any enclosed 
rectangle). Minimizing overlap reduces the I/O-incurring 
branching of search into several subtrees. Minimizing dead 
space reduces the probability that queries unnecessarily ac- 
cess disk pages, eventually finding no qualifying data. 

The R*-tree is promising for indexing of bitemporal 
data, but it is not directly applicable because it accommo- 
dates only static rectangles. We have to also contend with 

growing rectangles and static and growing stair-shapes. 
The straightforward approach to accommodating growing 
bitemporal regions is to represent them using static rect- 
angles that extend to the maximum possible transaction- 
and valid-time values. As a consequence, the minimum 
bounding rectangles in internal tree nodes also extend to 
the maximum values, resulting in excessive dead space and 
overlap; see Figure 3. 

Figure 3: Indexing Growing Bitemporal Regions Using 
Maximum Timestamp Values 

Kumar et al. [KTF95, KTF97] propose a new approach 
to handling now-relative transaction time, but do not ad- 
dress now-relative valid time. In their approach (the 2-R 
approach), they use two R-trees. The front R-tree indexes 
all growing rectangles, while the buck R-tree indexes all 
static rectangles. Observing that all growing rectangles 
are in the front tree and that they all end at the (progress- 
ing) current time, Kumar et al. show that storing only the 
transaction-time begin values with fixed valid-time inter- 
vals in the front tree is adequate to support now-relative 
transaction time. The 2-R approach contends well with 
now-relative transaction time, but both trees often have to 
be searched in a single query, resulting in more disk ac- 
cesses and diminishing the advantages of the decreased 
overlap. The problem of representing now-relative valid 
time also remains open. 

It is possible to combine the spatial index approach 
and the partial persistence approach. Reference [KTF97] 
presents the Bitemporal R-Tree, where an R-tree is used to 
index the valid-time intervals and key values of the data ob- 
jects, and transaction-time support is achieved by making 
the structure partially persistent. However, the Bitemporal 
R-Tree does not accommodate now-relative valid-time in- 
tervals, and, like all structures based on partial persistence, 
it introduces some space overhead. Experiments that do not 
consider now-relative valid time [KTF97] indicate that this 
tree has very good query performance. 

The straightforward approach to accommodating now- 
relative valid-time intervals that was exemplified in Fig- 
ure 3 does not seem promising. With this approach, many 
queries with valid-time interval above the current time will 
access the resulting very large rectangles that have valid- 
time end values bigger than any valid time specified in 
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Figure 4: Graphical Representation of a) a “Hidden” Growing Stair-shape, b) a Minimum Bounding Rectangle of Node 2, 
and c) a Minimum Bounding Region of Node 2 

queries and valid-time begin values smaller than or equal to 
the current time. Yet, none of these accesses will contribute 
to the answer of the query because the actual bitemporal 
data regions represented by these rectangles have valid- 
time end values equal to the current time, and the valid time 
specified in the query is greater than the current time. 

The straightforward approach, which we call the 
maximum-timestamp approach, does not utilize the knowl- 
edge of the actual shapes of bitemporal regions. To achieve 
the best performance, a bitemporal index should utilize this 
knowledge. 

In subsequent sections, we present an extension of 
the existing spatial index that efficiently handles bitem- 
poral data with both fixed and now-relative valid- and 
transaction-time intervals. 

4 Structure 

Having identified shortcomings in the existing bitemporal 
indices, the next step is to show how these shortcomings 
may be eliminated by extending these indices. In this sec- 
tion, we extend the static structure of the R*-tree by intro- 
ducing variables NOW and UC in index nodes. 

4.1 Recording Exact Geometries in Leaf Nodes 

By using variables NOW and UC at all tree levels, it be- 
comes possible to record the exact geometry of the bitem- 
poral regions (Section 2) in leaf nodes and to record mini- 
mum bounding rectangles, that grow when the regions in- 
side them grow, in non-leaf nodes. In comparison with the 
maximum-timestamp approach, dead space and overlap is 
much reduced; compare node 2 in Figures 3 and 4(b). 

With this extension, the content of tree nodes does not 
differ significantly from that of the original R*-tree. A leaf- 
node entry contains four timestamps, encoding a bitem- 
poral region, and a pointer to the actual bitemporal data 
stored in the database. The possible combinations of the 
four timestamps are shown in Figure 2, and they encode 
the bitemporal regions in Figure 1. 

A non-leaf node entry contains four timestamps, a flag 
Hidden, and a pointer to a child node. Here, the times- 

tamps represent a minimum bounding rectangle that en- 
closes all child-node entries. Note that timestamps (ttl, 
UC, vtl, NOW) represent a stair-shape in a leaf-node en- 
try, but represent a rectangle growing in both transaction 
and valid time directions in an entry of a non-leaf node. A 
sample tree, corresponding to Figure 4(b), is given in Fig- 
ure 5(a). 

~Flae Hidden 

Figure 5: Extended Versions of the R*-tree 

A small growing stair-shape may be placed together 
with other regions in a larger bounding rectangle having 
a fixed valid-time end (that is bigger than the current time). 
One day, the stair-shape will outgrow its bounding rectan- 
gle, making this rectangle invalid, see Figure 4(a). The flag 
Hidden is used to handle such stair-shapes. 

Considering properties of the tree, let M denote the 
maximum number of entries that fit in a node, and let m 
denote the minimum number of entries that must be in any 
non-root node. We then have that m < M/2. In addition, 
the tree is balanced. 

The tree structure just described reduces dead space and 
overlap, but further improvement is possible. Assume that 
we want to find all regions that overlap with the query win- 
dow given in Figure 4(b). The search extends to nodes 
1 and 2 since their minimum bounding rectangles overlap 
with the query window, but no regions qualify for the an- 
swer in node 2. 
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4.2 Using Minimum Bounding Regions 

We take one step further and lift the restriction that the 
minimum bounding regions in non-leaf nodes be rectangles 
and allow all the kinds of bitemporal regions introduced in 
Section 2. In some cases, it may be reasonable to group 
stair-shapes together in one node and bound them with a 
stair-shape instead of a rectangle. Consider the example 
from the previous section: in Figure 4(c), we see the ben- 
efit when the same regions as in Figure 4(b) are bounded 
with a stair-shape instead of a rectangle. Performing the 
same search, we now have to access only node 1. 

In order to indicate whether the 4 timestamps in an en- 
try of a non-leaf node encode a minimum bounding rect- 
angle or a minimum bounding stair-shape, we introduce a 
flag, Rectangle, in entries of non-leaf nodes. This is 
needed to separate the situations where we want a VTend 
value of NOW and a TTend value of UC to denote a grow- 
ing stair-shape versus a growing rectangle. If a minimum 
bounding region does not enclose any regions that go above 
the line y = 2, we do not want it to be a rectangle. Fig- 
ure 5(b) shows the extended tree with the Ret tangle flag 
(cf. Figure 4(c)). The tree with this node structure, we term 
the GR-tree. 

To summarize, we have extended the R*-tree in two 
steps. We have done this in order to be able to do per- 
formance experiments on both the GR-tree and the inter- 
mediate version of the GR-tree (with minimum bounding 
rectangles in non-leaf nodes), to see the effect on the per- 
formance and the relevant tree properties (dead space and 
overlap) of the more general regions in non-leaf nodes. 

Since entries in the GR-tree nodes not only encode static 
rectangles, but also encode, e.g., growing stair-shapes, the 
original R* -tree algorithms must also be reconsidered. 

5 Index Algorithms 

Section 5.1 covers the basic index algorithms and lower- 
level algorithms. Sections 5.2-5.4 describe in depth the 
insertion algorithm by covering the original R*-tree algo- 
rithm and its improvements including a time parameteriza- 
tion. Section 5.5 briefly describes algorithms for the inter- 
mediate GR-tree and the maximum-timestamp approaches. 

5.1 Search, Deletion, and Insertion 

Search, deletion, and insertion are the main operations on 
the tree. 

The R*-tree algorithm for search [Bec90] scans the tree, 
evaluating the predicate given in the query (e.g., equality, 
overlap) on the query window and the regions encoded in 
the index-node entries. 

Deletion in the R*-tree is done in the following way: if 
a node from which an entry is deleted gets underfull, all 
other entries from that node are deleted and are re-inserted 
into the tree at the same level. Thus, the insertion algorithm 
is responsible for maintaining a good structure of the tree. 

The R*-tree insertion algorithm first invokes the 
ChooseSubtree algorithm to find an appropriate node in 

which to place a new entry. If the selected node already 
contains M entries, the OverflowTreatment algorithm is in- 
voked. If, during the insertion of the new entry, this is the 
first call of OverflowTreatment at the given level of the tree, 
the RemoveTop algorithm is invoked; otherwise the Split 
algorithm is invoked. The RemoveTop algorithm2 removes 
p entries from a node and reinserts them. In the worst case, 
all these entries are reinserted into the same node or they 
overflow some other node. In these cases, OverflowTreat- 
ment is called again, and this time it invokes the Split al- 
gorithm. The split of a node can result in overflow of the 
parent node. If this happens, OverflowTreatment is called 
for the parent node. 

These algorithms employ lower-level algorithms that 
determine whether a pair of regions overlap and whether 
one region contains another region; and algorithms that 
compute the area and margin of a region, the distance be- 
tween the centers of minimum bounding rectangles of two 
regions, the intersection of a pair of regions, and the mini- 
mum bounding region of a node. 

While the original R*-tree search, deletion, and inser- 
tion algorithms are suitable for the GR-tree, new lower- 
level algorithms, capable of manipulating bitemporal re- 
gions (recall Figure 1) encoded using flags and timestamp 
variables, must be provided. Flags and timestamp variables 
require special treatment in these algorithms. 

The original R*-tree insertion algorithm can be em- 
ployed for the GR-tree, but since the R*-tree was designed 
for static rectangles, the criteria according to which (1) a 
relevant node is selected (ChooseSubtree), (2) p entries for 
removal are selected (RemoveTop), and (3) the entries of 
the overfull node are split into two nodes (Split) are likely 
to be inefficient for bitemporal regions. 

5.2 The Original R* -Tree Insertion Algorithm 

The ChooseSubtree algorithm places a new entry in the 
tree. It starts at the root node and traverses the tree. At 
each visited node, the algorithm places a new entry in the 
subtree where the placement of the entry leads to the least 
enlargement of the overlap between the bounding regions 
of the subtrees of the node. 

To determine the overlap enlargement when placing an 
entry in a subtree, the overlap between the subtree’s min- 
imum bounding region, not including the new entry, and 
the minimum bounding regions of all the other subtrees is 
determined. Then the overlap, when the minimum bound- 
ing region of the subtree is extended with the new entry, 
is determined, and the overlap enlargement resulting from 
the placement of the entry is found. The subtree, or node, 
where including the new entry yields the least overlap-area 
enlargement, is selected. For example, parts a)-c) in Fig- 
ure 6 show that the minimum bounding region of node 2 
requires the smallest overlap-area enlargement when in- 
serting a new entry. Ties are resolved by choosing the 
node whose minimum bounding region requires the least 

2This algorithm implements forced reinsertion, introduced in [Bec90]. 
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Figure 6: Overlap Between Two Minimum Bounding Regions (a) Before Insertion of a New Entry, (b) After Insertion of a 
New Entry into Node 1, and (c) After Insertion of a New Entry into Node 2, (d) Case (b) After a Period of Time, (e) Case 
(c) After a Period of Time 

area enlargement when including the new entry, and fur- 
ther ties are resolved by choosing the node whose mini- 
mum bounding region has the smallest area with the new 
entry enclosed.3 

The R*-tree Split algorithm investigates a subset of all 
the possible distributions of entries into two nodes and finds 
the best distribution according to three heuristics: 

1. The sum of the margins of the resulting bounding 
rectangles (margin-value of the distribution) should 
be as small as possible. 

2. The overlap between the resulting bounding rectan- 
gles (overlap-value of the distribution) should be as 
small as possible. 

3. The sum of the areas of the resulting bounding rect- 
angles (area-value of the distribution) should be as 
small as possible. 

The subset of all possible distributions to investigate is 
selected as follows. Along each of the two axes, entries 
of the overfull node are sorted according to their bottom 
and top values, i.e., according to VTbegin and VTend 
values for the valid-time axis and according to TTbegin 
and TTend values for the transaction-time axis. Then, for 
each of the four sortings, the algorithm investigates M - 
2m + 2 distributions. The i-th distribution is generated by 
assigning the first m - 1 + i entries of the sorting to the first 
node and the rest to the other. The R*-tree Split algorithm 
is divided into two steps. Using the first heuristic above, 
one axis is selected. Then, the last two heuristics are used 
considering only the distributions along this axis. 

‘The algorithm differs slightly for leaf and non-leaf nodes. For non- 
leaf nodes, overlap area enlargement is not considered-only area enlarge- 
ment and area are considered. 

The Original R* -‘bee Split Algorithm 

RSl For each axis: (1) sort the rectangles by their lower then 
by their upper value and determine all distributions as described 
above; (2) compute S, the sum of margin-values of all the distri- 
butions for the axis. 
RS2 Let the axis with the minimum S be the split axis. 
RS3 Along the split axis, choose the distribution with the min- 
imum overlap-value. Resolve ties by choosing the distribution 
with the minimum area-value. 

The original R*-tree RemoveTop algorithm sorts the en- 
tries of the overfull node by the distances of their centers 
from the center of the minimum bounding rectangle of the 
overfull node and chooses to remove and reinsert the p per- 
cent of the entries with the largest distances. Experiments 
show that p = 30% yields the best performance [Bec90]. 

5.3 Parameterization 

The original R*-tree ChooseSubtree, Split, and Remove- 
Top algorithms try to ensure that the tree structure is as 
good as possible at the current time, be it by selecting an 
appropriate node or by appropriately dividing entries of a 
node into two nodes. 

In the GR-tree, the indexed regions may be functions 
of time. This implies that quantities such as overlap and 
dead space are also functions of time. This leads to the 
introduction of a time parameter in the algorithms. 

For example, in the case of the ChooseSubtree algo- 
rithm, the time parameter allows us to compute the overlap- 
area enlargement not only as of the current time, but also as 
of some later time. A growing entry placed in some node 
may yield the smallest overlap-area enlargement at the cur- 
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rent time, but this enlargement may not remain the smallest 
as time passes, because a growing entry in a node forces 
the node’s minimum bounding region to also grow. It may 
be better to place the entry in a node that is not the best at 
the current moment, but may be the best after some time. 
For example, parts a)-c) of Figure 6 suggest to include the 
new entry in node 2, while parts d) and e) illustrate that it 
is probably better to insert the new entry in node 1, because 
the overlap of the two minimum bounding regions then re- 
mains constant as time passes. 

The parameterized ChooseSubtree, Split, and Remove- 
Top algorithms do not differ substantially from the corre- 
sponding original R*-tree algorithms. They invoke new 
lower-level algorithms (Section 5.1) for performing oper- 
ations such as intersection and overlap as of the time spec- 
ified by the time parameter. 

The time parameter should improve the capability of 
the insertion algorithm to handle bitemporal regions. The 
performance study in Section 6.2 considers which specific 
time parameter values to use invoking the algorithms. 

5.4 Improved Algorithms 

Beyond the parameterization, other options exist for im- 
proving the ChooseSubtree, Split, and RemoveTop algo- 
rithms. Special attention can be paid to the different types 
of bitemporal regions that these algorithms have to contend 
with. From the point of view of the algorithms, there are 
four different types of bitemporal regions. 

Static rectangles and static stair-shapes. 
Rectangles growing in one direction (with variable 
UC). 
Growing stair-shapes (with variables UC and 
NOW, and the Rectangle flag not set). 
Rectangles growing in both directions (with vari- 
ables UC and NOW, and the Rectangle flag 
set). 

We say that an entry is of type t if the region represented 
by that entry is of type t; in the same way, a node is of type 
t if its bounding region is of type t. 

Having in mind the importance of small overlap and 
dead space in the tree, it is natural to prioritize the first 
type of nodes as the best and the fourth type of nodes as the 
worst. Based on this prioritization of node types, a general 
heuristic that could govern the ChooseSubtree, Split, and 
RemoveTop algorithms is to group entries into nodes so as 
to achieve the best types of the nodes possible, keeping the 
number of bad nodes in the tree as low as possible. This 
implies that entries of the same type should be grouped to- 
gether. For example, wanting to achieve the lowest possi- 
ble number of nodes bounded with growing stair-shapes, 
we have to group growing stair-shapes together into nodes 
bounded by growing stair-shapes; distributing them among 
several nodes is bad because, e.g., inserting a single grow- 
ing stair-shape into a static node means that this node must 
be bounded by a growing stair-shape. 

54.1 The Choose Subtree Algorithm 

The original R*-tree ChooseSubtree algorithm considers 
the overlap and area enlargements when choosing the node 
in which to insert a new entry. We designed a slightly 
modified version of this algorithm that uses an additional 
heuristic, taking into account the type of the new entry 
and the types of the nodes where the entry can be inserted. 
The modified ChooseSubtree algorithm selects the group of 
nodes of the same type where it is the best to insert the new 
entry. Then, it passes that group of nodes to the original 
R*-tree ChooseSubtree algorithm4, which makes its deci- 
sion according to overlap and area enlargement. 

More specifically, the modified ChooseSubtree algo- 
rithm first tries to select a group of nodes of the same type 
such that, when the new entry is inserted in any node of that 
group, the type of that node will remain the same. If sev- 
eral groups of different type nodes satisfy this condition, 
the group with nodes of the best type is chosen. 

If no groups at all qualify, the new entry will make the 
type of the chosen node worse. In this case, the algorithm 
chooses a group of nodes of the same type such that, when 
the entry is inserted into any node of that group, the type 
of that node will be worsened the least. If there are several 
such groups, the algorithm chooses the group of nodes of 
the worst type. 

In the performance studies, both the original R*-tree 
ChooseSubtree algorithm and the modified ChooseSubtree 
algorithm, termed the additional-heuristics ChooseSubtree 
algorithm, are tested. 

5.4.2 Split Policies 

Two approaches to improving the Split algorithm can be 
taken. First, similarly to the ChooseSubtree algorithm, the 
Split algorithm could explicitly contend with the different 
types of entries, trying to achieve good types of resulting 
nodes. Second, the original R*-tree Split algorithm could 
be modified so that it investigates additional distributions, 
but uses the same set of heuristics. We investigate each 
approach in turn. 

Following the heuristic formulated in the beginning of 
Section 5.4, the additional-heuristics Split algorithm tries 
to split entries of an overfull node into two nodes so that 
each node may be bounded by a region of the best type 
possible. At the same time, it tries not to distribute entries 
of the same type into two different nodes. 

Each of the two nodes produced by the split can be 
bounded by a region of the four types mentioned. There 
are ten possible pairs of types of the resulting two bounding 
regions. We prioritize these pairs according to their good- 
ness (see Figure 7). A pair of bounding regions q and ~2 
is considered better than a pair of bounding regions yi and 
y.2 if: 
(Qmh) # tw4yd V tweb2) # tw(y2)> A 
((type(n) 5 tyw(yl) A type(m) 5 Qme(y2)) V 

4When using the original R* -tree algorithm for the GR-tree, we as- 
sume that it uses the new lower-level algorithms. 
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Figure 7: Pairs of Bounding-Region Types 

The Additional-Heuristics Split Algorithm 

AHSl From the ten pairs of types of bounding regions, select 
the pair (tl, t2) such that: (a) it is possible to achieve this pair of 
bounding-region types when dividing the entries of the overfull 
node into two nodes and (b) no other pair with a higher priority 
can be achieved. Let the node to be bounded with a region of type 
tl be Ni, and let the node to be bounded with a region of type 
tz be N2. Let S contain all entries of the overfull node and let 
t1 I t2. 
AHS2 Move to N2 all entries from S that cannot be put into N1 
because of the type of its bounding region. Move to Nr all en- 
tries from S that cannot be put into N2 because of the type of its 
bounding region. 
AHS3 Let St denote all entries from S of type t. For t = 1 to 4, if 
there are no entries of type t in N2 and I&) + ] Ni ] 5 M -m + 1, 
move St into Ni, else if there are no entries of type t in Nl and 
]St]+jN2]5iV-m+l,moveStintoN2. 
AHS4 If IS] = 0, stop. 
AHSS If INi ] = 0 A IN21 = 0, invoke the additional-sorts Split 
algorithm (to be described shortly) and stop. 
AHS6 If INI I = 0, pick a “seed” entry e from S for Guttman’s 
quadratic Distribute algorithm [Gut841 such that its inclusion 
intoN would enlarge that node’s minimum bounding region the 
most. Put e into Ni. Goto AH%. 
AHS7 If ) N2 I = 0, pick a seed entry e from S and put it into Nz. 
AHSS Apply Guttman’s quadratic Distribute algorithm and stop. 

Note that the above algorithm uses a time-parameterized 
version of Guttman’s quadratic Distribute algorithm. 

We now consider the second approach to improving the 
original R*-tree split algorithm. The original R*-tree Split 
algorithm could be used without changes for the two trivial 
cases where all entries are static rectangles or all entries are 
static stair-shapes. 

The R*-tree Split algorithm considers distributions of 
entries based on the four sortings (recall Section 5.2). More 
distributions may be considered by introducing additional 
sortings, and this may be advantageous because the new 
sortings could implicitly address the differences between 
rectangles and stair-shapes. 

The additional-sorts Split algorithm given below first 

calls the original R*-tree Split algorithm and then inves- 
tigates additional distributions based on two more sortings. 
In the first sorting, entries are sorted by their VTend - 
TTbegin value, which expresses how far the upper-left 
corner of the region is from the axis y = 2. VTend is 
set to the appropriate fixed value if the region encoded by 
the entry is a growing rectangle and its VTend is NOW. For 
stair-shapes, the value 0 is used instead of VTend - TTbe- 
gin, because the stairs of stair-shaped regions always lie 
on the axis y = x. In the second sorting, the lower-right 
corners of the regions are used, i.e., entries are sorted by 
VTbegin - TTend. The algorithm is sketched next. 

The Additional-Sorts Split Algorithm 

ASS1 Invoke the original R*-tree Split algorithm. 
ASS2 If all entries are static rectangles or all entries are static 
stair-shapes, exit. 
ASS3 Sort the entries by @Tend - TTbegin) and by (VTbe- 
gin - TTend). Determine all distributions as described in Sec- 
tion 5.2. 
ASS4 Among the distributions generated in ASS3 and the one 
chosen in ASSl, select the one with the minimum overlap-value. 
Resolve ties by choosing the distribution with the minimum area- 
value. 

5.4.3 The RemoveTop Algorithm 

In addition to the original R*-tree RemoveTop algorithm, 
alternative RemoveTop algorithms are possible. 

First, a RemoveTop algorithm can be induced from the 
Split algorithm employed, which can be explained as fol- 
lows. The RemoveTop algorithm is expected to identify 
in some way the “worst” entries of an overfull node for 
reinsertion. RemoveTop is thus similar to the Split algo- 
rithm in that it has to divide entries of an overfull node into 
two groups. The difference from the Split algorithm is that 
these groups must have predefined numbers of entries. 

Second, a RemoveTop algorithm of quadratic complex- 
ity can be employed. It removes entries that, when re- 
moved, shrink the area of the minimum bounding region 
of the node the most. After removing one entry, this algo- 
rithm scans the remaining entries to find the next entry to 
remove. 

5.5 Algorithms for the Intermediate GR-Tree and 
Maximum-Time&amp-Approach-Based Indices 

We have presented the algorithms for the GR-tree. The in- 
termediate GR-tree is simpler: although it records the same 
general bitemporal regions in its leaf nodes as does the GR- 
tree, it uses only static and growing rectangles in its non- 
leaf nodes. This means that the new lower-level algorithms 
for overlap, area, containment, margin, and distance com- 
putations must be used (see Section 5.1) for leaf nodes. But 
other algorithms, for example, algorithms to compute the 
intersection of a pair of regions and to compute the mini- 
mum bounding region of a node, are simpler than those for 
the GR-tree. The intersection algorithm is invoked for non- 
leaf nodes only, and it therefore gets only rectangles as its 
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Table 2: Workload Parameters 

Parameter Description Values used “Average” value 
SS percentage of stair-shaped regions in the index 0, 20,40,60, 80, 100 60 
Ins probability of insertion 50,60,70, 80,90, 100 70 
Dev deviation of VTbegin, when the mean is the insertion time 1000,5000,10000,25000,50000 5000 
VL maximum valid-time interval length 50, loo, 500, looo, 3ooo,5oGCl 500 

QmClXl maximum valid- and transaction-time intervals given in a query 1, loo, 300,500, looo, 3ooo 300 

arguments (the original R* -tree intersection algorithm can 
be used), and the algorithm for computing the minimum 
bounding region of a node produces only rectangles as its 
results. 

As for the GR-tree, we will consider our proposed 
ChooseSubtree, Split, and RemoveTop algorithms along 
with the original R*-tree ones for the intermediate GR-tree 
in order to choose the best combination of algorithms. 

In the next section, we do performance studies for 
the GR-tree, the intermediate GR-tree, and both the R*- 
tree and the 2-R index using the maximum-timestamp ap- 
proach. The latter two indices use the original R*-tree al- 
gorithms. The only additional computation needed is to 
check whether found leaf-node entries actually qualify for 
the answer of a query (recall Section 3). 

6 Performance 

This section reports on a series of experiments aimed at ex- 
ploring the performance and other characteristics of the in- 
dices that support now-relative bitemporal data. Section 6.1 
discusses data and query generation. Section 6.2 presents a 
study aimed at choosing a good time-parameter value and 
the best combination of the ChooseSubtree, Split, and Re- 
moveTop algorithms for the GR-tree and the intermediate 
GR-tree. This sets the stage for a comparison, in Sec- 
tion 6.3, of the performance of the two tuned GR-trees, the 
R* -tree (1 -R) and the 2-R index. 

6.1 Data and Query Generation 

The four indices were implemented using the Generalized 
Search Tree Package, GiST [HNP95]. The numbers of 
I/O operations are measured using simulation. The page 
size is set to 1024 bytes, and one tree node occupies one 
page. Thus, one node read or write corresponds to one 
page access (one I/O operation). A buffer of size 100 
pages is allocated for each index (for the 2-R index, two 
buffers of 50 pages are allocated). We include a buffer be- 
cause Leutenegger and Lopez [LL98] showed that omitting 
a buffer may lead to quantitatively and qualitatively incor- 
rect conclusions. The root is always kept in the buffer; for 
the other nodes, the least-recently-used page replacement 
policy is employed. If a node is changed during an inser- 
tion or a deletion, its page is changed in the buffer and is 
marked as a “dirty” page. Dirty pages are written to disk at 
the end of the operation or when they have to be removed 
from the buffer. 

To fairly compare search and update performance of the 
indices, the same data has to be inserted into the trees and 
the same queries have to be run on them. We use so-called 
workloads to simulate the construction and usage of an in- 
dex for a certain period, termed the index life-time. In our 
experiments, a workload typically contains 60,000 update 
operations. An update operation is either an insertion or 
a (logical) deletion. One update operation occurs at each 
point in the life-time. First, we perform 4000 insertions in 
a sequence. Then, insertions occur with probability Ins and 
deletions occur with probability 1 - Ins. 

When inserting regions, we use several parameters. We 
let the valid-time begin of a bitemporal region be strongly 
bounded to the insertion time of a region. Specifically, it 
is normally distributed with a mean equal to the insertion 
time and with some deviation, Dev. The valid-time interval 
length is uniformly distributed between 0 and VL. Alterna- 
tively, the valid-time end can be NOW, i.e., regions can be 
stair-shapes. The percentage of stair-shaped regions to be 
inserted in an index is denoted as SS. 

We intermix queries with update operations in the 
workload, with the aim of measuring search performance 
throughout the entire index life-time. We use bitemporal 
range queries (25% of all queries), point queries (25%), and 
transaction timeslice queries (50%). Besides, 65% of all 
queries have their transaction-time end equal to the current 
time. Parameter Qm& denotes the maximum valid-time 
range for bitemporal range queries and timeslice queries, 
and the maximum transaction-time range for bitemporal 
range queries. We use overlap as the query predicate, 
meaning that data regions that overlap with the given query 
window qualify for the result. 

The data and query generation parameters described 
above are termed workload parameters and are defined in 
Table 2. Each of the experiments usually uses different val- 
ues of one of the parameters and average values of the other 
parameters. 

In the experiments, we compute for each used workload 
the average number of I/OS performed by the update and 
search operations present in that workload. 

6.2 fining the Indices 

We have already seen that the properties, e.g., overlap, that 
govern the heuristics used in the ChooseSubtree, Split, and 
RemoveTop algorithms are time-dependent, and this led to 
the parameterization of these algorithms by time (cf. Sec- 
tion 5.3). The next step is to consider which specific time- 
parameter values to use. 
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If the time-parameter value is set to t, the algorithms aim 
to achieve a tree that is at its best as oft time units after the 
current time. But only the data present in the index at the 
current time is considered. In practice, the tree is queried, 
new regions are inserted, and existing ones are deleted all 
the time. So the objective is to find a time-parameter value 
that yields the best average search performance throughout 
the entire index life-time. 

We have carried out extensive studies of the GR- 
tree with the goals of understanding how different time- 
parameter values affect the performance of the tree for 
varying workloads, allowing us in turn to identify an over- 
all good time-parameter value. 

Search 

IJo 65 

0 2500 5Mo 7500 low0 125M 15M)o 2m 25m Sam 75oal loam 

Figure 8: Search I/O Cost for Trees Constructed Using Dif- 
ferent Time-Parameter Values and Using a Workload with 
Average Workload Parameters, but SS = 20 

The results of the experiments show that there is no sin- 
gle time-parameter value that works best in all cases. How- 
ever, when the time parameter is set to 0, the search I/O 
cost of the resulting tree is always the biggest. This is es- 
pecially visible when the percentage of stair-shaped regions 
(SS) in the tree is low (Figure 8) or the regions are strongly 
bounded to their insertion time (a low Dev value). In the 
remaining studies, we have chosen a time-parameter value 
of 10,000 for the GR-tree and the intermediate GR-tree be- 
cause values around 10,000 consistently showed good av- 
erage case performance. 

Another set of experiments was carried out to select the 
best combination of Split, RemoveTop, and ChooseSubtree 
algorithms. The original R*-tree, additional-heuristics, and 
additional-sorts Split algorithms; the original R*-tree, split- 
like, and quadratic RemoveTop algorithms; and the origi- 
nal R*-tree and additional-heuristics ChooseSubtree algo- 
rithms were considered. The three Split algorithms were 
combined with the three RemoveTop algorithms and with 
the two ChooseSubtree algorithms. Thus, eighteen combi- 
nations of algorithms were investigated in total. The GR- 
tree was tested using four sets of workloads with varying 
values of SS, Dev, VL, and Ins. 

The results of the experiments are shown in Figure 9, 
where the average number of disk accesses during a search 
operation is plotted for the GR-trees constructed using dif- 
ferent combinations of Split, RemoveTop, and ChooseSub- 
tree algorithms. To see the overall gain in search per- 
formance achieved by usage of new algorithms and the 
time parameter, we also show the results for the GR-trees 

constructed using the original R*-tree algorithms with the 
time-parameter value 0. 

The combination of the additional-heuristics Split al- 
gorithm, the quadratic RemoveTop algorithm, and the 
additional-heuristics ChooseSubtree algorithm show the 
best performance. The results also suggest that the 
additional-heuristics Split algorithm can be substituted by 
the additional-sorts Split algorithm without sacrificing the 
search performance. This can be explained by the observa- 
tion that using the additional-heuristics ChooseSubtree al- 
gorithm, after some initial period of tree construction, most 
nodes of the tree become homogeneous, holding entries of 
the same type. The additional-heuristics Split algorithm in- 
vokes the additional-sorts Split algorithm in such cases (cf. 
Section 5.4.2). 

Similar experiments were performed for the intermedi- 
ate GR-tree. The best results were achieved using the same 
combination of the Split, RemoveTop, and ChooseSubtree 
algorithms and time parameter value 10,000. 

6.3 Comparison of the Four Indices 

Section 6.2 dealt with the tuning of the GR-tree. In this 
section, we compare search and update performance of 
both tuned GR-trees and the two maximum-timestamp- 
approach based indices, 1-R and 2-R. We use two sets of 
workloads: the first with varying X3 values, and the second 
with varying Qrnu~Z values. Figure 10 presents the search 
and update performance of the trees constructed using both 
sets of workloads. 

Considering search I/O cost, the GR-tree outperforms 
both the 1-R and the 2-R trees and the intermediate GR- 
tree. The update I/O cost is the lowest in the 2-R index 
because there are two trees instead of one. The front and 
back trees taken separately are smaller than the trees of the 
other indices. At the same time, two trees negatively affect 
the search performance because queries often lead to search 
in both of them. 

The performance of the indices is influenced by the dead 
space and overlap. When the percentage of growing stair- 
shapes gets bigger, the overlap in both GR-trees increases 
more significantly as time passes, thereby decreasing the 
performance. With a growing percentage of stair-shapes, 
dead space also increases in the intermediate GR-tree. This 
does not apply for the GR-tree because it employs strict 
insertion and splitting policies and uses minimum bound- 
ing stair-shapes. In 1-R and 2-R, dead space and overlap 
are excessive because they depend on the maximum times- 
tamp value, which must be very big in order to exceed any 
fixed time value used throughout the existence of an index. 

In summary, our studies indicate that both GR-trees out- 
perform the maximum-timestamp-approach-based indices 
by a significant margin (the only exception is the good up- 
date performance in the 2-R index). If we consider only the 
GR-trees, we can observe that in most cases, using mini- 
mum bounding regions instead of minimum bounding rect- 
angles improves index performance. 
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Figure 9: Search I/O Cost for Trees Constructed Using Different Combinations of RemoveTop, Split, and ChooseSubtree 
Algorithms and Using Workloads with Average Workload Parameters, but (a) Varying SS, (b) Varying Dev, and (c) Varying 
Ins 

7 Conclusions 

Because regular indices such as the Bf-tree are unsuited 
for indexing temporal data, a number of indices for tempo- 
ral data have been proposed. None of these support now- 
relative valid-time intervals, which are accommodated by 
almost all temporal data models and are natural and mean- 
ingful for many kinds of applications. For bitemporal in- 
dices based on R-trees, the maximum-timestamp approach 
is a straightforward solution to the indexing now-relative 
data. But with this approach, facts with now-relative valid- 
time intervals are represented using very large rectangles, 
and the resulting search performance is poor due to exces- 
sive dead space in the index nodes and overlap between 
nodes. 

We proposed an extension of the R*-tree, the GR- 
tree, for general bitemporal data. Now-relative valid and 
transaction-time intervals are supported using variables 
NOW for valid time and UC for transaction time. Index 
leaf nodes capture the exact geometry of the bitemporal re- 
gions of data. Bitemporal regions can be static or growing, 
rectangles or stair-shapes. We explored two versions of the 
GR-tree: one using minimum bounding rectangles in non- 
leaf nodes, and one using minimum bounding regions in 
non-leaf nodes. 

A new suite of index algorithms was developed to sup- 
port the new index structure. Because dead space and over- 
lap in the GR-trees are functions of time and because the 
index algorithms utilize these, a time parameter was added 
to the index algorithms. One new ChooseSubtree, two new 
Split, and two new RemoveTop algorithms that take into 
account the specific properties of the bitemporal regions 

were introduced. 
The performance studies show that the best combina- 

tion of the proposed algorithms, with a time parameter of 
10000, yields an index that significantly outperforms the 
index with the original R*-tree algorithms. The GR-tree 
outperforms the indices using the straightforward approach 
by at least a factor of 3. We also experienced that using 
minimum bounding regions instead of merely rectangles in 
non-leaf nodes of the GR-tree yields a noticeable improve- 
ment. 

Currently, we are working on improving the space uti- 
lization of the GR-tree. The sequential nature of transac- 
tion time can be addressed when performing splits. It is 
also possible to elaborate on the paper’s idea and introduce 
more general shapes than stair-shapes in non-leaf nodes. 
This would require more complex computations and more 
storage space, but might reduce dead space and overlap 
enough to further improve the overall search and update 
performance. It also appears to be possible to integrate the 
handling of now-relative data into other existing bitempo- 
ral indices, such as the 2-R index, thus avoiding the inef- 
ficient maximum-timestamp solution. Finally, the theoreti- 
cal analysis of R-trees is still lightly researched, making an- 
alytical studies of GR-trees a desirable direction. The time 
parameter and its influence on performance introduces new 
challenges to the analytical studies of R-trees. 
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