
On Optimal Node Splitting for R-trees *

Yvh J. Garcia R. Mario A. L6pez Scott T. Leutenegger

Mathematics and Computer Science Department
University of Denver, Denver, CO 80208-0189

{ygarcia,mlopez,leut}@cs.du.edu

Abstract

The problem of finding an optimal bipartition
of a rectangle set has a direct impact on query
performance of dynamic R-trees. During up-
date operations, overflowed nodes need to be
split (bipartitioned) with the goal of minimiz-
ing resultant expected query time. The pre-
vious algorithm for optimal node splitting re-
quires exponential time. One contribution of
this paper is a polynomial time algorithm for
finding optimal bipartitions for any objective
function whose value depends exclusively on
the bounding hyper-rectangles of the ensuing
partitions. The algorithm runs in O(nd) time
where d > 1 is the number of dimensions of
the input. Experimental studies indicate that
the use of optimal splits alone results in im-
provements of query performance of only be-
tween 5% and 15% when compared to other
heuristics. Thus, a second contribution is to
demonstrate the near optimality of previous
split heuristics, a fact that suggests that re-
search should focus on global rather than local
optimization issues. Finally, we propose a new
dynamic R-tree insertion method that uses a
more global restructuring heuristic when pro-
cessing node overflows. When coupled with

This work has been partially supported by the National Sci-
ence Foundation under grant IRI-9610240 and by the Colorado
Advanced Software Institute under grants m-96-05 and ‘IT-97-
06.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy othemise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

optimal splits our method results in improve-
ments of up to 120% over the leading stan-
dard.

1 Introduction

A search for spatial objects that satisfy a given mul-
tidimensional query is one of the most frequent op-
erations in areas related to spatial databases. Geo-
graphic information systems, computer-aided design,
computer vision and robotics, temporal and scientific
databases, and multi-keyed indexing for traditional
databases are examples of such areas. R-trees [Gut841
were developed as an index structure that allows the
efficient execution of multidimensional queries. Al-
though this structure is based on (hyper-) rectangles
with sides parallel to the axes, arbitrarily shaped ob-
jects can be handled by operating with their minimum
bounding boxes.

R-trees are dynamic data structures that can be up-
dated incrementally. Efficient insertion and deletion
algorithms are provided by Guttman [Gut84]. Thus,
the first proposal for building an R-tree consists of sim-
ply inserting one record at a time until the input data
is exhausted. Guttman’s insertion algorithm operates
by identifying a leaf to host the new record and up-
dating its ancestors accordingly. An insertion to an
already full node is handled by creating a new sib-
ling to the full node and partitioning the rectangles of
the full node plus the new record into two sets which
are then stored in the new and previously full node,
respectively. Note that insertion of the new sibling
may require further splits along the path of ances-
tors of the previously full node. Since splits are the
sole mechanism for creating nodes, these splits shape
the resulting R-tree and affect its future query per-
formance. Other dynamic approaches have been pro-
posed [BecSO, Kam94, Se187].

Guttman presented splitting algorithms with lin-
ear, quadratic, and exponential time complexity. He
showed that the quadratic algorithm resulted in signif-
icantly better performance than the linear. Further-

334

more, he argued that the exponential algorithm was
best, but due to its time complexity was not practical
and hence only presented results for a limited number
of small tests.

rectangle (MBR). The algorithms extend to higher di-
mensions in a straight forward manner, but to keep
the exposition clear we only consider the 2-dimensional
case.

One of the main contributions of this paper is the
development of a polynomial time splitting algorithm
that is provably optimal, i.e. equivalent to Guttman’s
exponential algorithm, for a given objective function.
Thus, we have reduced the complexity of the optimal
splitting algorithm from exponential to O(nd), where
d > 1 is the number of dimensions of the input data.
In our experimental results we choose minimization
of the expected number of node accesses as stated in
[Kam93] (i.e., A + qz * L, + L, + pa, + qz . qar * N, where
A,LmL,,qz,q,, N axe the sum of areas, sum of node

An R-tree node is allowed to hold between m and
M (R,P) pairs. If the node is a leaf, R is the minimum
bounding rectangle (MBR) of the actual database ob-
ject pointed to by child pointer P. Otherwise, R is the
MBR of all rectangles stored in the subtree pointed
to by P. Note that: (a) rectangles at any level may
overlap, (b) an R-tree created from a particular set of
objects is not guaranteed to be unique and (c) every
descending path in the tree is a sequence of nested rect-
angles with the last one containing an actual database
object.

extents in x, y, extents of query in x,y and number of
nodes respectively). Note that for point queries it is
just the sum of areas.

The other major contribution of this work is a
new R-tree insertion scheme which we call SIBLING-
SHIFT (or simply SHIFT). We couple the optimal split
algorithm with our SHIFT insertion method and show
that resultant query performance can be significantly
superior (up to a factor of 2.2) to that of Hilbert R-tree
(the current best dynamic algorithm) even though it
results in a slower insertion operation (on average by
a factor of 2). Furthermore, we show that using split-
ting algorithms based on sweep-line over coordinates
per axis or Hilbert values with our SHIFT framework
does not work as well as when our optimal split algo-
rithm is used.

A query region Q is satisfied by retrieving and ex-
amining each rectangle that intersects Q at every level.
A recursive procedure descending the tree from the
root through possibly several paths suffices for this re-
trieval. To process a node, out of the rectangles it
stores, those intersecting Q are retrieved. For non-leaf
nodes, a recursive search is requested on child nodes
of the retrieved rectangles. The retrieved rectangles
of the leaf nodes are simply reported. For the rest of
the paper we assume that exactly one node fits per
disk page and the terms node and page will be used
interchangeably.

An example of the graphical layout of the input
rectangles and the MBR boundaries as well as the R-
tree node structure is shown in Figure 1.

The remainder of the paper is organized as follows.
Background information on R-trees and descriptions of
the algorithms considered are presented in Section 2.
We introduce our proposed optimal splitting algorithm
with its analysis in Section 3, and our new insertion
method in Section 4. In Section 5 we describe our
experimental methodology and present results for both
real and synthetic data sets. We conclude in Section 6.

2.2 Guttman’s General Insertion Algorithm

Guttman’s general insertion algorithm proceeds as fol-
lows:

1.

2.

3.

4.

Choose the leaf L where to place new record R

2 The R-tree and Its Algorithms

In this section we provide an overview of the R-tree
and include the original insertion algorithms proposed
by Guttman. We then briefly describe the Hilbert
R-tree dynamic insertion algorithm. Readers familiar
with this background material should skip to section 3.

if there is room in L for data item R insert it,
otherwise split the entries in L with R into two
subsets, one will become the entries of a newly
created leaf L’, and the other will remain as the
only entries for L.

Propagate MBR changes upward from L (and the
MBR of L’ along with a pointer to L’ if a split
was done).

2.1 The R-tree

If the propagation resulted in a split of the root,
create a new root whose children are the result of
the old root split.

An R-tree is a generalization of the B+-tree developed The leaf is chosen recursively descending from the
for efficient processing of intersection queries on spa- root to the branch with the subtree whose MBR needs
tial databases. R-trees keep a set of (hyper-) rectangles the smallest area enlargement to include the new
and allows the handling of arbitrarily shaped objects record. Ties are solved by choosing the smallest re-
by representing each one with its minimum bounding sulting MBR area.

335

Figure 1: R-tree Example. Input data are filled rect-
angles. Node MBRs boundaries are a little bigger to
differentiate them. & is an example of a query region.

After insertion, changes are propagated to the root.
First, the MBR in the parent’s entry for L is updated.
In case that there was an split, either the MBR of L’ is
inserted as a new entry in the parent if there is room,
or an split is done with the parent node entries and
the new MBR otherwise.

Guttman proposed three ways to split a node, and
differentiate them by their time complexity which were
linear, quadratic, and exponential. The split proce-
dure was trying to solve the bipartition of a set of
rectangles with an minimum value for the sum of the
areas of the MBRs of the ensuing parts.

The three split algorithms are:

1. Linear: Chose two seeds, one for each resultant
node, whose normalized distance in some dimen-
sion is greatest. For each remaining entry, assign
it to the part that needs the least MBR area en-
largement with ties being solved by the least MBR
area, then the fewer entries, or any if no solution
is found.

2. Quadratic: First, chose two seeds by consider-
ing all pairs of entries and determining the most
wasteful if put together. The waste of grouping
entries El and Ez is computed as the area of the
MBR of El and Es minus the areas of El and
Ez. The cost of assigning an entry to one node

is the MBR area increase to include the entry in
the node. To finish the split, assign the entry with
highest difference of assignment costs until entries
exhaustion. The node where to place the entry is
decided as it is for Linear.

3. Exponential: (Exhaustive) Generate all possible
groupings and chose the best.

2.3 The Hilbert R-tree

Proposed by Kamel and Faloutsos in [Kam94], this is a
data structure based on the R-tree and an ordering of
the leaves imposed by the Hilbert value. The Hilbert
value is the length of the fractal space filling Hilbert
curve from the origin up to the point the value is to
be computed of. In brief the R-tree internal nodes are
augmented to hold the largest Hilbert value of its de-
scendant leaves. Insertion algorithms are guided by
these Hilbert values. As a result, the leaves are sorted
by Hilbert value. Another addition in the Hilbert R-
tree, is the idea of creation of new nodes (splits) only
when s neighboring sibling are full and a new record
is to be inserted in one of them. If s neighboring sib-
lings are not full overflow entries are evenly distributed
among all s “cooperative” siblings. In our implemen-
tation we used the 2-to-3 split as it is purported to be
the best compromise in time versus space utilization.
According to [Kam94], the Hilbert R-tree is currently
the best dynamic R-tree variant.

3 The Bipartition Algorithm

In this section, we begin by proving some basic results
essential for the correctness of our algorithms. Then,
we present the basic algorithm, analyze its complexity
and modify it to derive a solution subject to the par-
titions having specific cardinalities. We simplify the
presentation by discussing only the 2 dimensional case.
Generalizations to higher dimensions are straightfor-
ward. For the rest of the paper, we use the notation
in Table 1. The u-th defining value of a rectangle is
simply the extreme value (i.e., maximum or minimum)
of the u-th coordinate over all points contained in the
rectangle.

3.1 Properties of Optimal Bipartitions

It is easy to see that the number of bipartitions of a set
of n rectangles is exponential in n. However, many of
the candidate bipartitons share the same pair of MBRs
since the rectangles not touching the MBR boundary
do not play a role in defining it. We show that for a
cost function depending only on the MBRs the number
of different MBR pairs is polynomial. Thus, in search-
ing for an optimal bipartition, it suffices to consider
only a polynomial number of them.

336

S
n

2dG
G
c u,R

;
Y
Y

Table 1: Notation

set of input rectangles
cardinality of S
MBR of S
MBRs from a bipartition of S
rectangle’s uth defining value
R’s uth defining value
defining value for R’s min. X
defining value for R’s max. X
defining value for R’s min. Y
defining value for R’s max. Y

Lemma 1 The number of different MBRs from sub-
sets of a set of n rectangles is at most n4.

Proof An MBR is defined by 4 values. Since there
are n input rectangles, there are at most n different
ways for selecting each of these values. 0

Accordingly, since a bipartition requires two MBRs,
the total number of MBR pairs to evaluate is at most
ng. We can now further reduce the number of candi-
date pairs.

Definition 1 Considering the notation in Table 1, RQ
or RI is called an anchor MBR if it shares at least
two of the defining values of R,. The values thus
shared with R, are called anchoring defining values.

Lemma 2 Every pair RQ, R1 of MBRs for a biparti-
tion of S contains an anchor MBR and there are O(n2)
different anchor MBRs.

Proof Each of the four values defining R, has to
be present in either & or RI. Therefore, at least one
of (&, RI } has to share at least two of the four R,
defining values. There are only (:) = 6 different
ways for selecting a pair of R, defining values. For
a fked pair of such values, only two other values are
needed to complete the definition of an anchor MBR
with only n choices for each value. Therefore, there
are at most 6. n * n different anchor MBRs. 0

Since at least one MBR must be an anchor, the
number of MBR pairs to evaluate is at most O(n2 en”).
This number is even lower for particular cost functions,
as shown below.

Definition 2 Let A and B be rectangles. A function
f (A, B) is said to be extent monotone if f increases
monotonically with increases in either the x-extents or
y-extents of either A or B. In other words f (A, B)
increases whenever one of {CX,A - &,A, CY,A - c#,A,
C&B - C&B, cy,g - Cy,B} ah increases.

For example, f (A, B) = area(A) + area(B) and
g(A, B) = perimeter(A) + perimeter(B) are both ex-
tent monotone functions.

Now, with the help of the following result, the num-
ber of MBR pairs to evaluate is only O(n2) when op-
timizing an extent monotone function.

Theorem 1 Let cost(Ro, RI) be an extent monotone
bnction. It sufices to consider O(n2) pairs when find-
ing a bipartition that minimizes the value of cost(., .).

Proof First we note that for a given MBR Z&-,, the
optimal value for co&(&, RI) can be obtained from
RQ and a RI that is the MBR of those input rectan-
gles not totally contained in I$-,. This is obvious from
the fact that any other RI will have a bigger extent
and therefore, a higher co&(&, RI). Without loss of
generality assume that & is an anchor MBR. It fol-
lows that only O(n2) values of RQ and hence O(n2)
candidate MBR pairs need to be considered. 0

We note that our claims, suitably modified, also
hold whenever f is not extent monotone but -f is.

3.2 The Basic Bipartition Algorithm

The basic algorithm operates by going thru each of the
O(n2) pairs of MBRs and remembering the one with
the best value for the given extent monotone cost func-
tion. Once the two MBRs that provide the best cost
are found, then each input rectangle is assigned to its
corresponding MBR. Rectangles contained in the in-
tersection of the best MBR pair are assigned following
a given criteria (for example, to the MBR that has the
least number of rectangles assigned so far). The basic
algorithm is presented in Figure 2.

We compute the MBR RI corresponding to an an-
chor MBR Ro as the the MBR of the input rectangles
that are outside (even partially) of &.

Definition 3 For a given Ro, Let C, be the u-th
defining value of &. Let H be the open half-plane
defined by C, and not containing &. the MBR com-
plementary to & with respect to C, is defined as
the MBR of the inpult rectangles intersecting H.

An example of the MBRs complementary wrt to all
defining values of an MBR & is shown is Figure 3.
Clearly, RI is just the MBR of the set of MBRs com-
plementary to & with respect to each bounding value
defining fi but not defining R,.

The preprocessing step computes the complemen-
tary MBRs so that the computation of RI (wrt each
anchor &) inside the triple loop of Figure 2 can be
done in constant time. Since the outer loop performs
O(1) iterations the total time is O(n”) as desired.

When building the complementary MBRs, if the
defining value C,, is Cx or Cy, i.e., a maximum (resp.

337

{Preprocessing}
For each one u of {z, y, X, Y}

Sort all the C,,s
Incrementally build the MBR complementary wrt C,, as the MBR
of previous C, in the ordering and said Chs rectangle
(where previous is subject to the way the ordering is traverse).

{Evaluate all relevant MBR pairs}
For each pair {CU,CY} of R, defining values to consider (6 possible pairs)

For each value of coordinate C, (u differ from U and V)
For each value of coordinate C, (where v differs from U,V, and u)

Let Ro be the rectangle {CU, Cv, C,,C,}
If RQ is a proper MBR (i.e. each border is touched
by at least one interior input rectangle) then

Let R, be the MBR complementary to I& wrt C,,
Let R, be the MBR complementary to Ro wrt C,
Let RI be the MBR of & and &
Remember &J, RI if cost(&, RI) is better than the optimal cost so far

{classify input rectangles by optimal MBR pair}
For each input rectangle, assign it to the MBR that totally contains
it or to any in case of ambiguity.

Figure 2: The basic optimal bipartition algorithm

3

Ro P
R,

Figure 3: R, is the MBR complementary to Z&, wrt

CX,Ro I and R, is so wrt CY,R,,. The values C%,R~
and CV,~,, are not considered since & shares those
values with R,.

C, or C,, i.e., a minimum) then the input list is tra-
versed in descending (resp. ascending) order. Notice
that the sorting step takes O(nlogn) time and the
traversal is linear, so, the quadratic complexity of the
whole bipartition algorithm holds.

A simple generalization of this algorithm solves the
optimal bipartition problem for any fixed d > 1 num-
ber of dimensions with running time of O(nd). The
algorithm for d dimensions will iterate over d-tuples of
rectangle defining values for each d-tuple of anchoring
defining values.

3.3 Imposing Cardinality Constraints

The previous (unconstrained) algorithm may result in
partitions with very different cardinalities. Node split-
ting often requires partitions with roughly the same
number of rectangles. We refer to this as a biparti-
tion with cardinality constraint, where R,J (resp. RI)
must contain a number of rectangles in a user speci-
fied range. A simple brute force approach that runs
in O(n3) time would compute the cardinality of both
Rc and RI with each iteration of the innermost loop
of Figure 2. However, a few changes to the basic algo-
rithm are sufficient to compute bipartitions with cardi-
nality constraints while preserving the quadratic run-

338

I 1 I

Figure 4: For corner C+, Cy,z of rectangle 2 (upper
left corner), Q is the MBR containing rectangles 2,
5 and 7. The corner cardinality is 5. Note that the
z, Y corner of rectangle 3 is not counted as it is
outside Q.

ning time.
The first change we will need is to check that the

range of cardinalities of Ro and RI are valid before
evaluating their cost. We specify range since rectan-
gles in Ro n RI can be assigned to either of & or RI.
Notice that said test requires the cardinality of the in-
tersection which is easily computed as the sum of both
cardinalities minus n. horn now on we consider only
the maximum cardinality of Ro and RI. To preserve
the quadratic complexity, the cardinality test uses pre-
computed information which we proceed to define:

Defhition 4 Let R be an h4BR and (G,R, CV,R) one
of the corners of R. Let Q be the rectangle de-
fined by said corner and a corner of R, such that
R fl Q = R. The corner cardinality of Q, denoted
Card[C,,R, CV,~], is the number of input redangIe cor-
ners of the same orientation (e.g. top left) contained
in Q.

Figure 4 illustrates how to compute Q and corner
cardinality for the upper left corner of rectangle R = 2.

Consider now the problem of computing the cardi-
nality of R. We consider 5 cases depending on the
number of defining values of R, shared by R (see Fig-
ure 5):

Four values. That means that R = R,. Clearly,
the cardinality of R is n and its pairing MBR has
cardinality 0.

Figure 5: MBR R with 4.3,2, and 1 R, defining values.

Three values. The cardinality of R is that of any of
its corners which is not a corner of R,.

Two values. We call a corner interior if it is strictly
inside R, (i.e., not on the boundary of RB). If
R haa an interior corner, its cardinality is that of
said corner. Otherwise, the cardinality of R is the
sum of the cardinalities of any two (non-interior)
corners of R in the same R, edge minus n.

One value. Clearly R has two interior corners. Let
P be a corner obtained as the point of intersection
between the line through the two interior corners
of R and the boundary of R,. The cardinality of
R is simply the sum of the cardinality of its two
interior corners minus the cardinality of P.

No value. This caSe can be generated by the algo-
rithm only if R’s pairing MBR is a four-values
case containing all n input rectangles (Note that
R is not an anchor MBR). So, the cardinality for
this case is 0.

Assuming that Card&, C,,] is available in constant
time, the cardinalities of a pair &, RI can be obtained
without affecting the time complexity of the basic bi-
partition algorithm (given in Figure 2) as long as any
additional preprocessing does not exceed such running
time.

The addition to the preprocessing step that allows
to have the cardinality of the corners available in con-
stant time is presented in Figure 6 (to be done just
after the original preprocessing). Again, previous0
is subject to the order of traversal. The ordering is
traversed in such a way that the first value is the clos-
est to the global corner diagonally opposed to the ‘one
being filled up (for example, if the process is creat-
ing Card[C,, C,], then the first values correspond to
the max C, and max C,). It suffices to have a series
of linearly built cross references in order to know to
which rectangle a given coordinate belongs to.

The last addition to the preprocessing step imposes
a quadratic complexity due to the double for loop of
n elements each. That implies that the overall
complexity for the bipartition algorithm still holds.

One final modification to the basic algorithm con-
cerns the classification of the input rectangles. The

339

For each pair u,v of possible corners indices (4 pairs)
For each C, in the proper order

Let count be zero
For each c, in the proper order

If c,, and c, belong to the same rectangle then increment count
Assign count to Card[C,,,C,,]
If there is a previotu(c,) then

Increment Card[C”, C,,] by Card[previous(C,), C,,]
If there is a previow(c,) then

decrement Card[previous(C,,), prewious(c,)]

Figure 6: Computing corners cardinality

rectangles that are not in the intersection of the re-
sulting MBRs should be done first. Each of these rect-
angles goes to the MBR that contains it. Then, the
assignment of the rest of the input rectangles (the ones
in the intersection of & and RI) should be done one
at a time to either the MBR that contains the least
number of assignments when possible or to any other-
wise.

4 A High Utilization Insertion Algo-
rithm

In this section, we describe our insertion method for
a dynamic R-tree. Then, we briefly explain the other
two splitting algorithms aside from the optimal bipar-
tition used in combination with our insertion method.

Two orthogonal splitting issues impact search per-
formance: (1) minimization of some objective function
(such as area or perimeter) of the split algorithm and
(2) node utilization.

Previous work has shown that improving space uti-
lization, i.e., maintaining a higher occupancy per node,
can improve the resultant search performance. Thus,
even if a split algorithm provides optimal splits with
regards to the objective function, further improve-
ments can be made by maintaining high node utiliza-
tion. The Hilbert R-tree [Kam94] achieves improved
node utilization by using 2-3 splitting.

In addition to the split algorithm (local optimiza-
tion), overall tree structure (global optimization) has
a significant impact on search performance. The
superior performance of packing algorithms [Rou85,
Kam93, Leu97] is attributable to both better node
occupancy and better tree structure. The dynamic
Hilbert R-tree not only achieves good overall node uti-
lization, but also improves overall tree structure by
following the Hilbert order.

We have devised a new dynamic algorithm incor-
porating improved node utilization and improved tree
restructuring. Our new insertion algorithm, called
SHIFT, only creates a new node if no sibling can be
found to absorb one of the subsets created by a split.
In addition, the SHIFT algorithm improves overall
structure by heuristics designed to reorganize entries
among siblings.

The algorithm selects the insertion path by greed-
ily choosing at each node the branch that optimizes
a given cost function. (The objective function used
in our experiments is the expected number of node
accesses as described in [Kam93].) Furthermore, our
algorithm differs from other solutions in the way that
node overflows are handled. If a node is full, it is split
into two sets. One set remains in the node and the
other set, say set B, is inserted into one of the node’s
siblings. The sibling is chosen so as to minimize the
given objective function. If the chosen sibling can not
accommodate the entire set B the sibling is likewise
split. This continues until either a sibling that can
accommodate the offered rectangle set is found or all
siblings have been tried and failed. In the later case,
a new node is created and an entry put in the parent
node. This insertion into the parent node is handled
recursively.

We now describe in detail our approach for insert-
ing into a full node. For simplicity, we use the same
symbol to denote both a node as well as the set of
rectangles stored in that node. Let E be a node into
which we wish to insert a set of rectangles R. Initially
R is a single rectangle, but, as discussed below, sub-
sequent iterations may require the insertion of more
than one rectangle. Let P be the parent of E (we
discuss the root node later). Initially, flag E as dirty
and all its siblings as clean. There are two cases to
consider depending on whether or not E has enough

340

room for R. If E has no more than M -] RI rectangles,
add R to E and stop. Otherwise, split the rectangle
set E U R using a splitting algorithm (e.g., optimal
bipartition). This results in two rectangle sets, E,
and Eb, one set to remain in node E, the other to
be inserted into a sibling node. Among siblings of E,
find the clean node F, (resp. Fb) whose cost increases
the least when including E, (resp. Eb). Without loss
of generality, assume that the cost of Fb increases less
than that of F,, i.e., cost(MBR(F,UE,)) -cost(Fa) >
cost(MBR(Fb U Eb)) - cost(&). Mark Fb’s entry as
dirty. To complete this iteration and proceed with the
next one, the entry for E is updated to be associated
with E,, reset E to be the entry for Fb and reset R
to Eb. Now repeat the splitting of the new E by in-
serting the new R into E. Continue until a node that
can accommodate R is found, or all siblings have been
tried and failed.

Note that a true split (i.e. an increase in the number
of entries of P) occurs only when no clean sibling of
E is found to absorb R, in which case a new node is
created for R. Also note that an overflow of the root
node always results in a split since the root has no
siblings.

In the worst case, an insert into a full node could
require M - 1 disk accesses (one for each sibling).
However, our experimental results in Section 5 show
that SHIFT insertions are on average 2 times slower
than Hilbert insertions and never more than 2.86 times
slower. This is because few insertions require splitting
of the node. When a split is required it may require
up to M - 1 disk accesses, but this cost is amortized
across all insertions.

Note that our method for dealing with overflow is
orthogonal to the actual split algorithm used. Thus,
we consider the following three combinations of SHIFT
and splitting algorithm:

a SHIFT-COORD: The splitting is done by passing
a sweep-line by each axis, and remembering the
rectangle center value that provides the minimum
sum of cost for the MBRs of the partitions left at
each side of said value.

l SHIFT-HILBERT: Same as before, but Hilbert
values are used instead of rectangle defining val-
ues .

l SHIFT-OPTIMAL: Using the optimal split.

5 Experimental Results

In this section we present our experimental methodol-
ogy and the obtained results. Since Hilbert R-trees
are the current state of the art in low dimensional
R-trees, our main focus is on comparing four algo-
rithms: Hilbert R-trees (HILB), SHIFT-OPTIMAL,

SHIFT-HILBERT and SHIFT-COORD. In addition,
we evaluate the performance of Guttman’s insertion
algorithm [Gut841 under two different splitting poli-
cies: Guttman’s quadratic splitting (GUT) and opti-
mal splitting (OPT).

5.1 Methodology

We implemented all R-tree algorithms, assuming the
maximum number of M entries per node to be 100,
and present results from both synthetic and real data.
All data sets were normalized to fit within the unit
square for ease of study. We consider the following
data sets:

TIGER: This is the Long Beach data set coming
from the TIGER system of the U. S. Bureau of
Census. This data set of 53,145 rectangles has
been extensively used in past studies.

VLSI: A CIF data set of 97,069 rectangles pro-
vided by Bell Labs from the design of a chip
[Lop96]. Its highly skewed distribution makes this
data set of particular interest.

UNIF: This is a synthetically generated set of
50,000 squares with a uniform distribution of ar-
eas and center point locations. Rectangle area is
uniformly distributed between 0 and 2 . a, where
a = &. The lower-left corners are uniformly
distributed within the unit square. The upper
right corner is chosen to give the desired area
and it is truncated by the boundaries of the unit
square when it does not fit.

CLUSTER: This synthetic data set is created by
fixing rectangle locations, areas and aspect ratios
(quotient of the smaller extent over the greatest)
so as to make it irregular. The rectangle cen-
ters are generated beginning with a random num-
ber numReg (between 0 and 50) of rectangular
regions with uniform distribution of areas (such
that the overall sum is 1). Then, for each region,
(]5O,OOO/numReg] - 1) points are uniformly dis-
tributed inside the region. A total of 50,000 points
is completed with uniformly distributed locations
over the entire unit square. A sample distribu-
tion is shown in Figure 7. Areas and aspect ratios
are generated by uniform distributions. An addi-
tional uniformly distributed random variable was
used to determine with equal probability whether
the rectangle is wide or tall.

As shown in [Leu98], the number of disk accesses
given a specific buffer size is a more meaningful perfor-
mance metric than number of nodes accessed. Thus,
we implemented an LRU buffer used in conjunction

341

Table 2: Disk accesses for tiger data

Figure 7: Regions of concentration of points

with a raw disk partition, to prevent false buffering
by the OS, and report the number of disk accesses for
various buffer sizes.

Specifically, we consider buffer sizes of 10, 25, 50,
and 100 pages. For the VLSI data set, this represents
roughly l%, 2.5%, 5% and 10% of the final R-tree.
For the other data sets, the corresponding percentages
are 2%, 5%, 10% and 20%. Each presented data point
is obtained from averaging 10,000 point queries uni-
formly distributed within the unit square.

5.2 Results

We first consider a comparison without the SHIFT
heuristic. We compare Hilbert R-trees (HILB),
Guttman’s quadratic (GUT), and Guttman’s insertion
algorithm using optimal splitting (OPT). Different val-
ues of node utilization affect overall R-tree perfor-
mance as previously shown in [BecSO]. To address this
we consider minimum node occupancies of 0,10,20,40,
and 50% of M. Therefore, we used the full version
of the optimal bipartition algorithm with cardinality
constraints.

In Table 2 we present results for the tiger longbeach
data set. There is a column for each buffer size and a
row for each method. For the OPT algorithm there is
also a line for each node utilization considered.

First, compare the number of disk access of the
quadratic algorithm (GUT) with the optimal split al-
gorithm with node utilization of 50% (OPT 0.5). In
general there is very little’difference (less than 15%) in
resultant query performance. Thus, there is little gain
from optimal splitting. This is because the initial splits
have a profound impact on final Rtree structure, and
a specific split only considers one node, not the whole

Method m/M 10 25 50 100
HILB 1.0958 0.7572 0.6355 0.5390
GUT 1.1921 0.8754 0.6555 0.5464
OPT 0.50 1.0939 0.7710 0.6009 0.5306

0.40 1.0131 0.7161 0.5652 0.4934
0.20 0.9259 0.6467 0.5255 0.4598
0.10 0.9280 0.6555 0.5316 0.4667
0.00 1.0277 0.7191 0.5481 0.4749

tree. A split that is optimal for the node in question
may actually cause global structure to be worse than
a suboptimal split.

These results indicate that optimal splitting of a
node, a local optimization problem, does not neces-
sarily improve global tree structure. Thus, improving
overall tree structure is better done by other methods.
Possible methods include increasing the amount of
freedom during splitting by allowing under-filled nodes
[BecSO], using packing algorithms [Rou85, Kam93,
Leu97], or taking into consideration more global prop-
erties of the tree such as the forced reinserts of the R*
tree [BecSO] and the Hilbert ordering structure of the
Hilbert tree [Kam94], or the restructuring of our new
SHIFT algorithm.

To improve tree structure we first consider allowing
under-filled nodes, thus allowing more split choices to
be considered. Table 2 shows that query performance
can be improved by lo-45%, but that the determin-
ing the “optimal” minimum utilization is not straight
forward. Note, Beckmann et al suggest a minimum
utilization of 40% works well in practice, but for the
tiger data we have found a minimum of lo-20% works
best. Thus, allowing more freedom in split choices,
at the expense of worse node utilization can actually
improve search performance.

We now consider the opposite approach: increasing
node utilization by using our SHIFT insertion frame-
work. As a reminder, this policy not only improves
node utilization, but also restructures sibling nodes by
trying to find a new home for the newly split portion
of the node.

We first consider the relative insertion speed of the
SHIFT family versus Hilbert R-trees. In Table 3 there
is a row for each data set used in our experiments. The
first and second columns are for the total number of
node accesses performed during the construction of the
tree for SHIFT and HILB respectively. The last col-
umn, is the node access ratio of SHIFT over HILB. For
SHIFT, we took the worst case out of the three combi-
nations of splitting algorithms (SHIFT-OPT, SHIFT-
HILB, SHIFT-COORD). SHIFT is never more than
2.86 times slower than HILB. Below we show that
this slower insertion speed is justified by faster search

342

speeds. disk accesses than the Hilbert R-tree.

Table 3: Relative insertion speed

Next consider results for the VLSI data set. In Ta-
ble 6 we see that SHIFT-OPTIMAL is best overall
and requires up to 2.2 times fewer disk accesses than
Hilbert.

Table 6: Improvement for VLSI (buffer size=lO)

Since SHIFT is geared towards better node utiliza-
tion, we compare the number of nodes in the R-trees
built by SHIFT, HILB and a packing algorithm (MIN)
which results in the minimum number of nodes needed
for the tree. Those numbers corresponds to columns 1,
2, and 3 respectively in Table 4. Columns 4 and 5 are
the ratios (column 3 / column 1) and (column 3 / col-
umn 2) respectively. The SHIFT framework achieves
a better utilization than HILB.

~1
SHIFT-OPTIMAL 3.16 4.24 21.36 87.24

Table 7: Improvement for UNIF (buffer size=lOO)

Table 4: Node utilization

data set 1 Shift) Hilb) Min 1 Min/Shift 1 Min/Hilb
Tieer 1 580 1 628 1 539 1 0.9293 0.8582
VLSI

1
1043 1137 982 0.9415 0.8637

Unif 555 572 506 0.9117 0.8846
Cluster 545 579 506 0.9284 0.8739

Finally, we present the relative query improvement
of SHIFT-OPTIMAL over SHIFT-HILBERT, SHIFT-
COORD, and HILB as the ratio average of num-
ber of disk accesses of each algorithm over SHIFT-
OPTIMAL. The first rows are the ratio of each com-
peting algorithm. The last row is the actual number of
disk accesses for SHIFT-OPTIMAL from which actual
performance of each algorithm can be derived. We ex-
perimented with square queries with sides of length 0.0
(point query), 0.01, 0.1, and 0.3 generated in a man-
ner similar to that for the UNIF data set. There is
a column for each query side length. Choice of buffer
size did not affect the relative performance so we only
consider one buffer size for each experiment.

Table 5: Improvement for TIGER (buffer size=lO)

algorithm
HILB
SHIFT-COORD

Disk accwes ratio
0.0 0.01 0.1 0.3

1.34 1.26 1.12 1.10
0.85 0.93 1.07 1.13

SHIFT-HILBERT 1.54 1 1.40 1 1.13 1 1.06
Actual disk accesses

SHIFT-OPTIMAL 0.82 1 1.33 [10.95 1 54.54

Consider first the TIGER data set results. In Ta-
ble 5 we see that SHIFT-COORD works best for small
queries and SHIFT-OPTIMAL works best for larger
queries. SHIFT-OPTIMAL requires 10% - 34% fewer

Disk accesses ratio
algorithm 0.0 0.01 0.1 0.3
HILB 0.98 1.00 1.02 1.02
SHIFT-COORD 0.99 1.05 1.15 1.17
SHIFT-HILBERT 1.28 1.27 1.16 1.09

I Actual disk accestxa
SHIFT-OPTIMAL 1 1.34 1 1.87 1 10.14 1 44.61

Next consider the UNIF data set. In Table 7 we
see that SHIFT-OPTIMAL is slightly better than the
other methods but there is not a significant difference.
We surmise that the uniformity of the data set makes
it easy for all of the methods to structure the tree
effectively.

Finally, consider the results in Table 8 for the
CLUSTER data set. SHIFT-OPTIMAL requires 8% -
45% fewer disk accesses than Hilbert, but for point
queries SHIFT-COORD is marginally better than
SHIFT-OPIMAL.

In general, SHIFT produces trees requiring signifi-
cantly fewer disk accesses than Hilbert. Furthermore,
SHIFT-COORD works better than SHIFT-OPTIMAL
for small queries and the reverse is true for large
queries.

Table 8: Improvement for CLUSTER (buffer size=25)

343

6 Contributions and Conclusions

In this paper we have made the following contribu-
tions:

l We have reduced the time complexity of optimal
bipartition of a set of 2 dimensional rectangles
(node splitting) from exponential to O(n2). The
optimality is measured by a fairly general user-
defined objective function.

l We have generalized the O(n2) optimal biparti-
tioning algorithm to handle constraints of parti-
tion cardinality range (node utilization).

l We have generalized the optimal bipartitioning al-
gorithm for a fixed number d > 1 of dimensions
for which the complexity is O(n”).

l We have provided empirical results which show
that optimal splitting alone results in R-trees
whose query performance is up to 15% better than
Guttman’s quadratic algorithm.

l We have devised a new insertion framework called
SHIFT and show that when SHIFT is combined
with optimal splitting resultant trees provide up
to 120% improvement relative to Hilbert R-trees.

l We have also shown that SHIFT works best when
coupled with optimal bipartition instead of other
splitting algorithms.

References

[BecSO] Beckmann, N., Kriegel, H.P., Schneider, R.,
Seeger, B., “The R*-tree: an Efficient and
robust Access Method for Points and Rect-
angles ;” Proc. ACM SIGMOD, p. 323-331,
May 1990.

[Gut841 Guttman, A., “R-trees: a Dynamic Index
Structure for Spatial Searching,” Proc. ACM
SIGMOD, p. 47-57, 1984.

[Kam93] Kamel, I., Faloutsos, C., “On Packing
R-trees”, Proc. 2nd International Confer-
ence on Information and Knowledge Man-
agement, p. 490-499, Arlington, VA, Novem-
ber 1993 (CKIM-93).

[Kam94] Kamel, I., Faloutsos, C., “Hilbert R-
tree: An improved R-tree Using Frac-
tals” , Proc. International Conference on
Very Large Databases, 1994 (VLDB-94).

[Leu98] Leutenegger, S.T., Lopez, M.A., “The Effect
of Buffering on the Performance of R-Trees”,
Proc. 14th International Conference on Data
Engineering, 1997 (ICDE97).

[Leu97]

[Lop961

[Rou85]

[Se1871

Leutenegger, S.T., Lopez, M.A., Edging-
ton, J., “STR: A Simple and Efficient Al-
gorithm for R-Tree Packing “, Proc. 13th In-
ternational Conference on Data Engineering,
p. 497-506, 1997 (ICDE97).

Lopez, M.A., Janardan, R., Sahni S., “Ef-
ficient Net Extraction for Restricted Ori-
entation Designs”, IEEE i?ansactions on
Computer-Aided Design, vol. 15, no. 9, p.
1151-1159, September 1996.

Roussopoulos, N, Leifker, D., “Direct Spatial
Search on Pictorial Databases Using Packed
R-trees,“, Proc. ACM SIGMOD, May 1985.

Sellis, T., Roussopoulos, N., Faloutsos, C.,
“The Rf Tree: A Dynamic Index for Mul-
tidimensional Objects,” Proc. 13th Interna-
tional Conference on Very Large Databases,
p. 507-518, September 1987 (VLDB-87).

344

