
Clustering Categorical Data: An Approach Based on Dynamical 
Systems 

David Gibson Jon Kleinberg 
Dept. of Computer Science Dept. of Computer Science 

UC Berkeley Cornell University 
Berkeley, CA 94720 USA Ithaca, NY 14853 USA 

dag@cs.berkeley.edu kleinber@cs.comell.edu 

Prabhakar Raghavan 
Ahnaden Research Center 

IBM 
San Jose, CA 95 120 USA 
pragh@almaden.ibm.com 

Abstract 

We describe a novel approach for clustering col- 
lections of sets, and its application to the analysis 
and mining of categorical data. By “categorical 
data,” we mean tables with fields that cannot be 
naturally ordered by a metric - e.g., the names of 
producers of automobiles, or the names of prod- 
ucts offered by a manufacturer. Our approach is 
based on an iterative method for assigning and 
propagating weights on the categorical values in 
a table; this facilitates a type of similarity mea- 
sure arising from the co-occurrence of values in 
the dataset. Our techniques can be studied an- 
alytically in terms of certain types of non-linear 
dynamical systems. We discuss experiments on 
a variety of tables of synthetic and real data; we 
find that our iterative methods converge quickly 
to prominently correlated values of various cate- 
gorical fields. 

1 Introduction 

Much of the data in databases is categorical: fields in ta- 
bles whose attributes cannot naturally be ordered as numer- 
ical values can. The problem of clustering categorical data 
involves complexity not encountered in the corresponding 
problem for numerical data, since one has much less a pri- 
ori structure to work with. While considerable research 
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has been done on clustering numerical data (exploiting its 
inherent geometric properties), there has been much less 
work on the important problem of clustering and extracting 
structure from categorical data. 

As a concrete example, consider a database describing 
car sales with fields “manufacturer”, “model”, “dealer”, 
“price”, “color”, “customer” and “sale date”. In our set- 
ting, price and sale date are traditional “numerical” values. 
Color is arguably a categorical attribute, assuming that val- 
ues such as “red” and “green” cannot easily be ordered lin- 
early; more on this below. Attributes such as manufacturer, 
model and dealer are indisputably categorical attributes: 
it is very hard to reason that one dealer is “like” or “un- 
like” another in the way one can reason about numbers, and 
hence new methods are needed to search for similarities in 
such data. 

In this paper we propose a new approach for clustering 
categorical data, differing from previous techniques in sev- 
eral fundamental respects. First, our approach generalizes 
the powerful methodology of spectral graph partitioning 
[ 16, 191 to produce a clustering technique applicable to ar- 
bitrary collections of sets. For a variety of graph decom- 
position tasks, spectral partitioning has been the method of 
choice for avoiding the complexity of more combinatorial 
approaches (see below); thus one of our main contributions 
is to generalize and extend this framework to the analy- 
sis of relational data more complex than graphs, obtaining 
a method that does not suffer from the combinatorial ex- 
plosion encountered in existing approaches. Second, our 
development of this technique reveals a novel connection 
between tables of categorical data and non-linear dynami- 
cal systems; this connection allows for the natural develop- 
ment of a range of clustering algorithms that are mathemat- 
ically clean and involve essentially no arbitrary parameters. 

In addition to the development of the techniques them- 
selves, we report on their incorporation into an experimen- 
tal system for mining tables of categorical data. We have 
found the techniques to be effective in the context of both 
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synthetic and real datasets. 
We now review some of the key features of our ap- 

preach, and explain the ways in which it differs from other 
approaches. 

(I) NO apriori quantization: We wish to extract notions 
of proximity and separation from the items in a categorical 
dataset purely through their patterns of co-occurence, with- 
out trying to impose an artificial linear order or numerical 
structure on them. The approach of casting categorical val- 
ues into numbers or vectors can be effective in some cases 
(for one example, see the work on image processing and 
color perception in [ 11, 18,201; in the simplest form, each 
color is a 3-d vector of RGB intensities). However, it has 
a significant drawback: in engineering a suitable numerical 
representation of a categorical attribute, one may lose the 
structure one is hoping to mine. Moreover, it can lead to 
problems in high-dimensional geometric spaces in which 
the data is distributed very sparsely (as, for example, in the 
interesting k-modes algorithm for categorical data, due to 
Huang [25]). 

(2) Correlation vs. categorical similarity: Association 
rules and their generalizations have proved to be effective 
at mining that involves estimating/comparing moments and 
conditional probabilities; see e.g. the work on forming as- 
sociations from market basket data in [l, 2, 8, 371. Our 
analysis of co-occurrence in categorical data addresses a 
notion that is in several respects distinct from the under- 
lying motivation for association rules. First, we wish to 
define a notion of similarity among items of a database that 
will apply even to items that never occur together in a tu- 
ple; rather, their similarity will be based on the fact that the 
sets of items with which they do co-occur have large over- 
lap. Second, we would like this notion of similarity to be 
transitive in a limited way: if A and B are deemed similar; 
and B and C are deemed similar, then we should be able 
to infer a “weak” type of similarity between A and C. In 
this way, similarity can propagate to uncover more distant 
correlations. 

The first of these points also serves as part of the under- 
lying motivation of recent independent work of Das, Man- 
nila, and Ronkainen [ 131. However, the way in which we 
will use this notion for clustering is quite different. 

(3) New methods .for hypeeraph clustering: Viewing 
each tuple in the database as a set of items, we can treat the 
entire collection of tuples as an abstract set system, or hy- 
pelgraph [5], and approach the clustering problem in this 
context. (By a hypergraph, in this setting, we mean sim- 
ply an arbitrary collection of sets.) In this way, we use 
pure co-occurrence information among items to guide the 
clustering, without the imposition of additional prior struc- 
ture. At a high level, this is similar to the approach taken 
by Han, Karypis, Kumar, and Mobasher [23], as well as by 
the framework of association rules [2]. 

Clustering a collection of sets is a task that naturally 
lends itself to combinatorial formulations; unfortunately, 
the natural combinatorial versions of this problem are NP- 
complete and apparently difficult to approximate [2 11. This 
becomes a major obstacle in the approach of Han et al. [23] 
(and to a lesser degree in Das et al. [ 13]), who rely on 
combinatorial formulations of the clustering problem and 
heuristics whose behavior is difficult to reason about. 

We adopt a fundamentally different, less combinatorial, 
approach to the problem of clustering sets; it is motivated 
by spectral graph partitioning, a powerful method for the 
related problem of clustering undirected graphs that orig- 
inated in work of Donath and Hoffman [ 161 and Fiedler 
[19] in the 1970’s. Spectral methods relate good “parti- 
tions” of an undirected graph to the eigenvalues and eigen- 
vectors of certain matrices derived from the graph. These 
methods have been found to exhibit good performance in 
many contexts that are difficult to attack by purely combi- 
natorial means (see e.g. [4, 12,26,36]), and they has been 
successfully applied in areas such as finite-element mesh 
decomposition [36] and the analysis of Monte Carlo sim- 
ulation methods [26]. Recently the heuristic intuition un- 
derlying spectral partitioning has been used in the context 
of information retrieval [ 141 and in methods for identifying 
densely connected hypertextual regions of the World Wide 
Web [9,28]. 

Our new method can be viewed as a generalization of 
spectral partitioning techniques to the problem of hyper- 
graph cfustering. The extension to this more general set- 
ting involves significant changes in the algorithmic tech- 
niques required; in particular, the use of eigenvectors is 
replaced, in our method, by certain types of non-linear 
&namical systems. One of our contributions here is the 
generalization of the notion of non-principal eigenvectors 
(from linear maps) to our nonlinear dynamical systems. In 
what follows, we will argue that this introduction of dy- 
namical systems is perhaps the most natural way to extend 
the power of spectral methods to the problem of cluster- 
ing collections of sets; and we will show that this approach 
suggests a framework for analyzing co-occurrence in cat- 
egorical datasets in a way that avoids many of the pitfalls 
encountered with intractable combinatorial formulations of 
the problem. 

We now turn to an extended example that illustrates 
more concretely the type of problem addressed by our 
methodology. 

Example and Overview of Techniques. Consider again 
our hypothetical database of car sales. Association rules 
are effective at mining patterns of the form: of the tuples 
containing “Honda,” 18% (a large fraction) contain “Au- 
gust.” Our goal, on the other hand, is to elicit statements of 
the form “Hondas and Toyotas are ‘related’ by the fact that 
a disproportionate fraction of each are sold in the month of 
August”. Thus, we are grouping “Honda” and “Toyota” by 
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co-occurrence with a common value or set of values (“Au- 
gust” in this case), although clearly in a database ofindivid- 
ual car purchases, no single tuple is likely to contain both 
“Honda” and “Toyota.” We wish to allow such groupings 
to grow in complex ways; for example, we may discover 
that many Toyotas are also sold in September, as are many 
Nissans; that many dealers sell both Hondas and Acuras; 
that many other dealers have large volume in August and 
September. In this way we relate items in the database that 
have no direct co-occurrence -different automobile man- 
ufacturers, or dealers who may sell different makes of auto- 
mobile. What emerges is a high-level grouping of database 
entries; one might intuitively picture it as being centered 
around the notion of “late summer sales on Japanese model 
cars.” Distilling such a notion is likely to be of great value 
in customer segmentation, commonly viewed as one of the 
most successful applications of data mining to date. Note 
that in general, a dataset could contain many such seg- 
ments; indeed, our method is effective at uncovering this 
multiplicity (see Theorem 4 and the experiments in Sec- 
tion 5). 

Thus, if we picture a database consisting of rows of tu- 
ples, association rules are based on co-occurrence within 
rows (tuples), while we are seeking a type of similarity 
based on co-occurrence patterns of different items in the 
same column (field). Our problem, then, is how to define 
such a notion of similarity, allowing a “limited” amount 
of transitivity, in a manner that is efficient, algorithmi- 
cally clean, and robust in a variety of settings. We pro- 
pose a weight-propagation method which works roughly 
as follows. We first seed a particular item of interest (e.g. 
“Honda”) with a small amount of weight. This weight 
then propagates to items with which Honda co-occurs fre- 
quently - dealers, common sale times, common price 
ranges. These items, having acquired weight, propagate it 
f&her- back to other automobile manufacturers, perhaps 
-and the process iterates. In this way, we can achieve our 
two-fold objective; items highly related to Honda acquire 
weight, even without direct co-occurrence; and since the 
weight “diffuses” as it spreads through the database, we 
can achieve our “limited” form of transitivity. 

The weight-propagation schemes that we work with can 
be viewed as a type of non-linear dynamical system derived 
from the table of categorical data. Thus, our work demon- 
strates a natural transformation from categorical datasets to 
such dynamical systems that facilitates a new approach to 
the clustering and mining of this type of data. Much of 
the analysis of such dynamical systems is beyond the reach 
of current mathematics [35]. In a later section, we discuss 
some preliminary mathematical results that we are able to 
prove about our method, including convergence properties 
in some cases and an interpretation of a more complex for- 
mulation in terms of the enumeration of certain types of 
labeled trees. We also indicate certain aspects of the anal- 
ysis that appear to be quite difficult, given the current state 

of knowledge concerning non-linear dynamical systems. It 
is important to note that even for the systems that cannot be 
fully analyzed at a mathematical level, we find experimen- 
tally that they exhibit quite orderly behavior and consis- 
tently elicit meaningful structure implicit in tables of cate- 
gorical data, typically in linear time. 

Organization of the Paper. In the following section, we 
describe in detail the algorithmic components underlying 
our approach, and the way in which they can be used for 
clustering and mining categorical data. We also discuss 
there the mathematical properties of the algorithms that we 
have been able to prove. 

In Section 3 we describe STIRR (Sieving Through It- 
erated Relational Reinforcement), an experimental system 
for studying the use of this technique for analyzing cate- 
gorical tables. Because the iterative weight-propagation al- 
gorithms underlying STIRR converge in a small number of 
iterations in practice, the total computational effort in ana- 
lyzing a table by our methods is typically linear in the size 
of the table. By providing quantitative measures of simi- 
larity among items, STIRR also provides a natural frame- 
work for effectively visualizing the underlying relational 
data; this visualizer is depicted in Figure 2. 

In Sections 4 and 5, we evaluate the performance of 
STIRR on data from synthetic as well as from real-world 
sources. In Section 4 we report on experience with the 
STIRR system on a class of inputs we will call quasi- 
random inputs. Such inputs consist of carefully “planted” 
structure among random noise, and are natural for testing 
mining algorithms. The advantage of such quasi-random 
data is that we may control in a precise manner the various 
parameters associated with the dynamical systems we use, 
studying in the process their efficacy at discovering the ap- 
propriate planted structure. In Section 5, we report on our 
experiences with STIRR on “real-world” data drawn from 
a range of settings. In all these settings, the main clus- 
ters computed by STIRR correspond naturally to multiple, 
highly correlated groups of items within the data. 

2 Algorithms and basic analysis 
We now describe our core algorithm, which produces a dy- 
namical system from a table of categorical data. We begin 
with a table of relational data: we view such a table as con- 
sisting of a set of k fields, each of which can assume one 
of many possible values. (We will also refer to the fields 
as columns.) We represent each possible value in each pos- 
sible field by an abstract node, and we represent the data 
as a set T of tuples - each tuple T E ‘I’ consists of one 
node from each field. See Figure 1 for an example of this 
representation, on a table with three fields. A configuration 
is an assignment of a weight zu, to each node V; we will re- 
fer to the entire configuration as simply w. We will need a 
normalizution,finction N(w) to rescale the weights of the 
nodes associated with each field so that their squares add 
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up to 1. We draw on the high-level notion of a “weight- 
propagation” scheme developed in the introduction, 

For our purposes, a dynamical system is the repeated 
application of a function f on some set of values. A 
&ed point of a dynamical system is a point u for which 
f(u) = 21. That is, it is a point which remains the same 
under the (repeated) application off. Fixed points are one 
of the central objects of study in dynamical systems, and 
by iterating f one often reaches a fixed point. (See [ 151 for 
a comprehensive introduction to the mathematical study of 
dynamical systems.) At the end of this section, we indicate 
the connections between such systems and spectral graph 
theory, discussed above as a powerful method for attack- 
ing discrete partitioning problems. Spectral graph theory 
is based on studying linear weight-propagation schemes on 
graph structures; much of the motivation for the weight- 
propagation algorithms underlying STIRR derives from this 
connection, though the description of our methods here will 
be entirely self-contained. 

The dynamical system for a set of tuples will be based 
on a function f, which maps a current configuration to a 
new configuration. We define f as follows. We choose 
a combiner fimction CB, defined below, and update each 
weight wV as follows. 

To update the weight wV: 
For each hIpIe T = {u, UI , . . , I&-l) 

containing v do 
Xs t @(Ul,...,Uk-1). 

WV t CrXT. 

Thus, the weight of v is updated by applying CR separately 
to the members of all tuples that contain V, and adding the 
results. The function f is then computed by updating the 
weight of each w, as above, and then normalizing the set of 
weights using NO. This yields a new configuration f( zu). 

Iterating f defines a dynamical system on the set of con- 
figurations. We run the system through a specified number 
of iterations, returning the final set of configuration that we 
obtain. It is very difficult to rigorously analyze the limiting 
properties of the weight sets in the fully general case; below 
we discuss some analytical results that we have obtained in 
this direction. However, we have observed experimentally 
that the weight sets generally converge to fixed points or to 
cycles through a finite set of values. We call such a final 
configuration a basin; the term is meant to capture the intu- 
itive notion of a configuration that “attracts” a large number 
of starting configurations. 

To complete the description of our algorithms, we dis- 
cuss the following issues: our choice of combining opera- 
tors; our method for choosing an initial configuration; and 
some additional techniques that allow us to “focus” the dy- 
namical system on certain parts of the set of tuples. 

Choosing a combining operator. Our potential choices 
for $ are the following; in Section 4 we offer some addi- 

tional insights on the pros and cons among these choices. 

l The product operator II: e$Wl,...,Wk) = 

w1t”‘J”‘t”k. 

l The addition operator: @(wI, . , Wk) = w1 + w2 + 
. ..+t”k. 

l A generalization of the addition operator that we call 
the S, combining rule, where p is an odd natural num- 
ber. SP(wu,, , wk) = (w; + . . . + wc)(l/P). Note 
that addition is simply the & rule. 

l A “limiting” version of the S, rules, which we refer 
to as s,. S, ( WI, , Wk) is defined to be equal to 
wi, where wi has the largest absolute value among the 
weights in {WI, . . . , Wk}. (Ties can be broken in a 
number of arbitrary ways.) 

Thus, the SI combining rule is linear with respect to the 
tuples. The II and S, rules forp > 1, on the other hand, in- 
volve a non-linear term for each individual tuple, and thus 
have the potential to encode co-occurrence within tuples 
more strongly. S, is an especially appealing rule in this 
sense, since it is non-linear, particularly fast to compute, 
and also appears to have certain useful “sum-like” proper- 
ties. 

Non-principal basins. Much of the power of spectral 
graph partitioning for discrete clustering problems derives 
from its use of non-principal eigenvectors. In particular, 
it provides a means for assigning positive and negative 
weights to nodes of a graph, in such a way that the nodes 
with positive weight are typically well-separated from the 
nodes of negative weight. We will discuss this further at 
the end of the section. 

One of our contributions here is the generalization of the 
notion of non-principal eigenvectors (from linear maps) to 
our nonlinear dynamical systems. To find the eigenvectors 
of a linear system AZ = Xx, the power iteration method 
maintains a set of orthonormal vectors z(j), on which the 
following iteration is performed: First each of the {z(j)} 
is multiplied by A; then the set {z(j)} is restored to be 
orthormal. In an analogous way, we can maintain several 
configurations w(l), , wlrn) and perform the following 
iteration: 

Update w(‘) t f(w(‘)), for i = 1,2, . . . , m. 
Update the set of vectors {w(l), . . . , w(“‘)} so that it 
is orthonormal. 

Assuming that a standard method is used to keep the set 
{w(~)} orthornormal (see e.g. the Gram-Schmidt procedure 
in [22]), the configuration w(l) iterates to a basin as before; 
we refer to this as the “principal basin.” The updating of the 
other configurations is interleaved with orthonormalization 
steps, and we refer to these as “non-principal basins.” 
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Tuple 
1. 
2. 
3. 
4. 
5. 
6. 

A X 1 
B W 2 
B X 2 
c Y 3 

is represented as 

Figure 1: The representation of a collection of tuples. 

In the experiments that follow, we will see that these 
non-principal basins provide structural information about 
the data in a fashion analogous to the role played by non- 
principal eigenvectors in the context of spectral partition- 
ing. Specifically, forcing the configurations {w(j)} to re- 
main orthonormal as vectors introduces negative weights 
into the configurations. Just as the nodes of large weight 
in the basin tend to represent natural “groupings” of the 
data, the positive and negative weights in the non-principal 
basins tend to represent good partitions of the data. The 
nodes with large positive weight, and the nodes with large 
negative weight, tend to represent “dense regions” in the 
data with few connections between them. 

Choosing an initial configuration. There are a number of 
methods for choosing the initial configuration for the itera- 
tion. If we are not trying to “focus” the weight in a partic- 
ular portion of the set of tuples, we can choose the un$ofnrm 
initialization (all weights set to 1, then normalized) or the 
random initialization (each weight set to an independently 
chosen random value in [0, 11, then normalized). 

For combining operators which are sensitive to the 
choice of initial configuration-the product rule is a basic 
example - one can focus the weight on a particular por- 
tion of the set of tuples by initializing a configuration over 
a particular node. To initialize w over the node v, we set 
w,, = 1 for every node u appearing in a tuple with w, and 
wUf = 0 for every other node u’. (We then normalize w.) 
In this way, we hope to cause nodes “close” to v to acquire 
large weight. This notion will be addressed in the experi- 
ments of the following sections. 

Masking and modification. To augment or diminish the 
influence of certain nodes, we can apply a range of “lo- 
cal modifications” to the function f. Specifically, for a 
particular node V, we can compose f with the operation 
maslc(u), which sets wV = 0 at the end of each iteration. 
Alternately, we can compose f with augment(v, z), which 
adds a weight of z > 0 to w, at the end of each iteration. 
This latter operation “favors” v during the iterations, which 
can have the effect of increasing the weights of all nodes 
that have significant co-occurrence in tuples with V. 

Relation to other Iterative Techniques 

The body ofmathematical work that most closely motivates 
our current approach is spectral graph theory, which stud- 
ies certain algebraic invariants of graphs. We motivate this 
technical background with the following example. 

Example. Consider a triangle: a graph G consisting of 
three mutually connected nodes. At each node of G we 
place a positive real number, and then we define a dynami- 
cal system on G by iterating the following map: the number 
at each node is updated to be the average of the numbers at 
the two other nodes. The analysis of this dynamical system 
is not difficult: the numbers at the three nodes converge to 
one another as the map is iterated. 

Spectral graph theory is based on the relation between 
such iterated linear maps on an undirected graph G and the 
eigenvectors of the a&cency matrix of G. (If G has n 
nodes, then its adjacency matrix A(G) is a symmetric n- 
by-n matrix whose (i, j) entry is 1 if node i is connected to 
node j in G, and 0 otherwise.) The principal eigenvector of 
A can be shown to capture the equilibrium state of a linear 
dynamical system of the form in the above example; the 
non-principal eigenvectors provide information about good 
“partitions” of the graph G into dense pieces with few inter- 
connections. The most basic application of spectral graph 
partitioning, which motivates some of our algorithms, is 
the following. Each non-principal eigenvector of the adja- 
cency matrix of G can be viewed as a labeling of the nodes 
of G with real numbers - some positive and some nega- 
tive. Treating the nodes with positive numbers as one “clus- 
ter” in G, and the nodes with negative numbers as another, 
typically partitions the underlying graph into two relatively 
dense pieces, with few edges in between. 

The iteration of systems of non-linear equations arises 
also in connection with neural networks [32,33]. In many 
of these neural network settings, the emphasis is quite dif- 
ferent from ours-for example, one is concerned with the 
approximation of binary decision rules, or with the approx- 
imation of connection strengths among nodes on a discrete 
lattice (e.g. the work on Kohonen maps [29]). In our work, 
on the other hand, the analogues of “connections” - the 
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co-occurrences among tuples in a database - typically do 
not have any geometric structure that can be exploited, and 
our approach is to treat the connections as fixed while indi- 
vidual item weights are updated. 

In a related vein, the methodology ofprincipal curves 
allows for a non-linear approach to dimension-reduction, 
which can sometimes achieve significant gains over lin- 
ear methods such as principal component analysis [24,30]. 
This method thus implicitly requires an embedding in a 
given space in which to perform the dimension-reduction; 
once this dimension-reduction is performed, one can then 
approach the low-dimensional clustering problem on the 
data in a number of standard ways. 

Analysis 

There is much that remains unknown about the dynamical 
systems we use here, and this reflects the lack of existing 
mathematical techniques for proving properties of general 
non-linear dynamical systems. This of course does not pre- 
vent them from being useful in the analysis of categorical 
tables; and we now report on some of the basic proper- 
ties that we are able to establish analytically about the dy- 
namical systems we use. In addition, we state some basic 
conjectures that we hope will motivate further work on the 
theoretical underpinnings of these models. 

We first state a basic convergence result for the (linear) 
S1 combining rule, subject to a standard non-degeneracy 
assumption in linear algebra: that the set of eigenvalues as- 
sociated with the linear update rule has a unique maximum 
element. (We do not go into further details here on what 
happens when this assumption does not hold; this is fairly 
well understood in the literature). 

Theorem 1 For every se! T of tuples. and every initialcon- 
jguration w. w converges to a &ed point under the re- 
peated application of the combining rule 4. 

The proof is based on relating the fixed points of this sys- 
tem to the eigenvectors of an undirected graph derived from 
the set T of tuples. 

If we consider iterating a linear system on an undi- 
rected graph G (as in the power iteration method discussed 
above), there is a natural combinatorial interpretation of 
the weights that are computed: they count the number of 
walks in G starting from each vertex. We now show that 
the product rule lT has an analogous combinatorial inter- 
pretation for a set T of tuples. This combinatorial interpre- 
tation indicates a precise sense in which the product rule 
discovers “dense” regions in the data. 

To state this result, we need some additional terminol- 
ogy. If T is a set of tuples over a dataset with d fields, v is 
a node of T, and Ic is a natural number, then a (T, V, k)-tree 
is a complete (d - 1)-ary tree 2 of height 12 whose ver- 
tices are labeled with nodes of T as follows. (1) The root 
is labeled with v. (2) Suppose a vertex a of 2 is labeled 

with a node u E T; then there is a tuple r of T so that 
u E T and the children of a: are labeled with the elements 
ofT - {u}. Two (T, v, Ic)-trees are equivalent if there is a 
one-to-one correspondence between their vertices that re- 
spects the tree structure and the labeling; they are distinct 
otherwise. Note that if G is a graph, then a (G, v, k)-tree is 
precisely a walk of length k in G starting from V. 

Theorem 2 Let T be a set of tuples. and consider the dv- 
namical system dejned on it by the product rule II. For a 
node v ofT. let w,k denote the weight w, assigned to v qf- 
ter k iterations. Then w,” is proportional to the number of 
distinct (T, v, k)-trees. 

Next, we establish a basic theorem that partially under- 
lies our intuition about the partioning properties of these 
dynamical systems. We state it for the product rule, but 
analogous results can be shown for the other combining 
rules we consider. By a complete hypelgraph of size s, we 
mean a set of tuples over a dataset with s nodes in each 
column, so that there is a tuple for every choice of a node 
from each column. Let Tab denote a set of tuples consisting 
of the disjoint union of a complete hypergraph A of size a 
and a complete hypergraph B of size b. We define 1~ to 
be the configuration that assigns a weight of 1 to each node 
in A, and a weight of 0 to each node in B; we define lB 
analogously. 

Theorem 3 (i) Let w be a randomly initialized conjigura- 
tion on the set oftuples Tab, a > b. Then with probability 
at least 1 - exp(b - a), w will converge under the product 
rule II to the,fixedpoint N( 1~). 

(ii) Let w’ be a configuration initialized over a random 
node v E Hab. Then withpmbability &-, wi converges to 
N( 1~) under lI. and with pmbability & it convelges to 
N(~B). 

We conjecture that qualitatively similar behavior occurs 
when Tab consists of two “dense” sets of tuples that are 
“sparsely” connected to each other. At an experimental 
level, this is borne out by the results of subsequent sections. 

The previous theorem shows that it is possible for the 
product rule to converge to different basins, depending on 
the starting point. We now formulate a general statement 
that addresses a notion of completeness for such systems: 
all sufficiently “large” basins should be discovered within 
a reasonable amount of time. Let us say that a basin w* has 
measure E if at least an c fraction of all random starting con- 
figurations converge to w* on iterating a given combining 
rule. Let B, be the number of such basins. 

Theorem 4 With pmbabi1it.y at least 1 - l/B,. iterating 
the system,fmm 2~~’ In B, random initial conjigurations is 
suficient to discover all basins of measure at least E. 

This gives a precise sense - via a standard type of sam- 
pling result-in which all sufficiently large basins will be 

316 



Figure 2: Graphical view of system 
discovered rapidly by iterating from random starts. (Note 
that this discovery is relatively efficient - since B, can 
be as large as c-l, it can take up to c-l starting points to 
discover all the basins, and our randomized approach uses 
26-l In B,.) 

3 Overview of Experiments 
3.1 System overview 

The STIRR experimental system consists of a computation 
kernel written in C, and a control layer and GUI written 
in Tcl/Tk. We prepared input datasets in straightforward 
whitespace-delimited text files. The output can be viewed 
in a text window showing nodes of highest weight in each 
column, or as a graphical plot of node weights. The GUI 
allows us to modify parameters quickly and easily. 

Figure 2 depicts a graphical view of the first non- 
principal basin IJ t2) for an adult census dataset, using just 
4 of the categorical attributes. Each node is positioned ac- 
cording to its column and calculated weight. The nodes 
in each tuple are joined by a line (consisting of three seg- 
ments in this case). The Density control indicates only 1% 
of the tuples were plotted. The Jitter value “smears” each 
line’s position by a small random amount, to separate lines 
meeting at the same point. There is a simple tuple coloring 
mechanism, which changes the color of a selected line to 
show the weight assignment on that tuple. 

The value of the visualizer in presenting similar nodes 
to the user is evident in Figure 2; this may be used, for 
instance, to point to a subset of nodes for masking or modi- 
fication, as discussed earlier. It could thus be a useful com- 
ponent in an interactive data mining tool. 

3.2 Performance 

Our algorithm scales well with increasing data volumes. 
We measured the running time for 10 iterations, for varying 
numbers of tuples and numbers of columns. The S, com- 
biner was used, and 4 non-principal basins were computed. 
The plot in Figure 3.2 demonstrates that the running time is 

Figure 3: Running times. We have truncated the y 
axis for compactness; all the lines remain straight up 
to 1000000 tuples. 

linear in number of tuples, and nearly linear in number of 
columns - the slight variation is due to varying numbers 
of nodes per column. Qualitatively similar plots of running 
times are obtained for the other main combining rules. 

The running times were measured on a 128MB, 200 
MHz Pentium Pro machine, running Linux, with no other 
user processes. The dataset was generated randomly. 

4 Quasi-random inputs 

In this section we report on experience with the STIRR sys- 
tem on the class of quasi-random inputs discussed in the 
introduction. For the purposes of testing the performance 
of a mining algorithm, such inputs are a natural setting 
in which to search for “planted” structures among random 
noise. This is a technique used in the study of computation- 
ally difficult problems. For instance, in combinatorial op- 
timization, the work of Boppana [7] analyzes graph bisec- 
tion heuristics in quasi-random graphs in which a “small” 
bisection is hidden; Blum and Spencer [6] adopt the same 
approach to the analysis of graph-coloring algorithms. The 
advantage of such quasi-random data is that we may con- 
trol in a precise manner the various parameters associated 
with the dynamical systems we use, studying in the process 
their efficacy at discovering the appropriate planted struc- 
ture. Consider a randomly-generated categorical table in 
which we plant extra random tuples involving only a small 
number of nodes in each column. This subset of nodes may 
be thought of as a “cluster” in the data, since these nodes 
co-occur more often in the table than in a purely random 
table. (The analog in numerical data with random mul- 
tidimensional points is a region with a higher probability 
density than the ambient.) Our hope, then, might be that 
STIRR discovers such clusters. 

We now discuss the aspects of STIRR that we study 
through this approach; we describe the quasi-random ex- 
periment in each case. 
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Figure 4: Finding planted data. Table has 3 columns, 
1000 distinct attributes per column, 5000 rows; ‘ex- 
tra’ rows are planted tuples, using attributes from a 
set of 30 (10 per column); ‘purity’ is the percentage 
of these attributes ending up in the top 10 positions 
of the principal basin. $ is S, . 
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Figure 5: Separating two planted clusters. Extra 
rows now drawn from two distinct sets of 30 at- 

10 15 20 25 
Number of iterations 

tributes. s(A, B) is the difference in sizes of the two 
subsets of these attributes in the top 10 positions, 
summed over both ends of the first non-principal 
basin, and normalized. 
(1) How well does STIRR distil a cluster in which the 

nodes have an above-average rate of co-occurrence? In- 
tuitively, this is of interest because its analog in real data 
could be the set of people (in a travel database) with sim- 
ilar travel patterns, or a set of failures (in a maintenance 
database) that stem from certain suppliers, manufacturing 
plants, etc. Whereas a conventional data analysis technique 
would be faced with enumerating all cross-products across 
columns of all possible subsets in each column, and ex- 
amining the support of each, the STIRR technique appears 
to avoid this prohibitive computation. How quickly does 
STIRR elicit such structure (say, as a function ofthe number 
of iterations, the relative density of the cluster to the back- 
ground, the combine operator @, etc.)? Our experiments 
show that for quasi-random inputs, such structure emerges 
very quickly, typically in 5 to 10 iterations. Figure 4 depicts 
this experiment. 

I I I I 
4 5 6 7 

numba of redllndmt c0l.l 

Figure 6: Adding redundant columns. We augment 
the tables of figure 4 with columns of random at- 
tributes, and examine purity after 10 iterations. 

(2) How well does STIRR separate distinct planted clus- 
ters using non-principal basins? For instance, if in a ran- 
dom table we were to plant two clusters each involving a 
distinct set of nodes, will the first non-principal basin place 
the clusters at opposite ends of the partition? Again, this 
is a basic task in analyzing large categorical tables - dis- 
covering well-separated sub-populations - and we hope 
to avoid the exponential cost of NP-hard formulations of 
this as combinatorial graph decomposition problems. Intu- 
ition from spectral partitioning suggests that typically some 
non-principal partition will separate a pair of clusters; our 
experiments show that STIRR usually achieves such a sepa- 
ration within the first non-principal basin, for quasi-random 
inputs. Figure 5 summarizes this experiment, showing that 
the separation achieved stabilizes after about 15 iterations. 
We make the stringent demand in this experiment that the 
separation manifest itself in the first non-principal basin 
(rather than allowing any non-principal basin). Let a~ and 
60 be the numbers of nodes from clusters A and B at one 
end of this basin, and al and bl be the corresponding num- 
bers at the other end. Under perfect separation we would 
have a0 = 30 and bl = 30, or vice-versa. Our separation 
measure in this case (it generalizes easily to other cluster 
and table sizes) is 

s(A, B) = bo - hl + Ial - bll 
60 

(3) How well does STIRR cope with tables containing 
clusters in a few columns, with the remaining columns 
being random? This is standard problem in data min- 
ing, where we seek to mask out irrelevant factors (here 
columns) from a pattern. We study this by adding (to a 
randomly generated table) additional random tuples con- 
centrated on a few nodes in 3 of the columns; the entries 
for the remaining columns are randomly distributed over 
all nodes. Thus these remaining columns correspond to 
irrelevant attributes that might (by their totally random dis- 
tribution) mask the cluster planted in columns l-3. Our ex- 
periments show that STIRR will indeed mask out such “ir- 
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Figure 7: Convergence for different TV+. Table has 2 100 rows: 1000 using one set of attributes, A, and 
1100 with another, B. Convergence is measured as the number of B attributes in the top 20 positions. 
The experiment measured average running times and iterations until 90% convergence. 

relevant” attributes; we do not know of an analog for this 
phenomenon in spectral graph partitioning. As Figure 6 
shows, as the number of redundant columns is increased, 
STIRR suffers a relatively modest and graceful loss of pu- 
rity. 

(4) How does the choice of combine operator (@) affect 
speed of convergence? Quasi-random experiments provide 
a controlled way to investigate this; figure 7 shows experi- 
ments to assess convergence rate for different combine op- 
erators. The S, (Max) operator is the clear winner. The 
product rule IT did not converge monotonically, so one may 
consider second place in this experiment to belong to the SI 
rule; or to Sa or Ss if the arithmetic speed can be improved. 

Each data point in each experiment is an average over 
100 runs: using 10 random tables, with 10 random start- 
ing points. The the number of entities in the table here 
is fixed; we obtained similar results for other table sixes. 
The convergence requires very few iterations, even with the 
fairly strict separation measure used in the two-cluster ex- 
periment. 

5 Real data 

We now discuss some of our experience with this method 
on a variety of “real” data sets. 

Basic data sets. First, we consider two data sets that illus- 
trate co-occurrence patterns. 

(1) Bibliographic data. We took publicly-accessible 
bibliographic databases of 7000 papers from database re- 
search 1381, and of 30,000 papers written on theoretical 
computer science and related fields [34], and constructed 
two data sets each with four columns as follows. For each 
paper, we recorded the name of the first author, the name 
of the second author, the conference or journal of publi- 
cation, and the year of publication. Thus, each paper be- 
came a relation of the form (Author-l. Author-2. Con@- 

ence/Journal. Year). Note that we deliberately treat the 
year, although a numerical field, as a categorical attribute 
for the purposes of our experiments. In addition to the ta- 
bles of theory papers and database papers, we also con- 
structed a mixed table with both sets of papers. 

(2) Login Data. From four heavily used server hosts 
within IBM Almaden, we compiled the history of user lo- 
gins over a several-month period. This represented a total 
of 47,000 individual logins. For each login, we recorded 
the user name, the remote host from which the login oc- 
curred, the hour of the login, and the hour of the corre- 
sponding logout. Thus we created the tuples of the form: 
(user remote-host. login-time, logout-time). Again, the 
hours were treated as categorical attributes. 

Sequential Data Sets. We also investigated a natural 
approach by which this method can be used to analyze 
sequential datasets. The hope here is to use local co- 
occurrences in time to elicit local cause-effect patterns in 
the data. We approach this as follows. Given a long 
string of sequentially occurring events, we label them 
as er,e2 ,..., e,. We then imagine a “sliding window” 
of length 1 passing over the data, and construct e-tuples 
(ei, ei+l, , ei+f-1) for each i between 1 and n - 1+ 1. 
For data exhibiting a strong local cause-effect structure, we 
hope to see such structure emerge from the co-occurrences 
among events close in time. 

This framework bears some similarity to a method of 
Mannila, Toivonen, and Verkamo [3 l] for defining frequent 
“episodes” in sequential data. Our approach is different 
from theirs, however, since we do not search separately for 
each discrete type of episode; rather, we use the core algo- 
rithm of STIRR to group events that co-occur frequently 
in temporal proximity, without attempting to impose an 
episode structure on them. 

One example we studied was drawn from a readily ac- 
cessible source of sequential data, exhibiting strong ele- 
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ments of causality: chess moves. Often, the identity of a 
single move in a chess game allows one to make plausi- 
ble inferences about the identity of the moves that occurred 
nearby in time. We worked with 4-move windows, on a 
dataset of moves from 2000 chess games, Many of the 
basins discovered by STIRR represented common local mo- 
tifs in the opening and middle-game; due to lack of space, 
we do not discuss this setting further. 

Overview. At a very high level, the following phenomena 
emerge. First, the principal and non-principal basins com- 
puted by the method correspond to dense regions of the 
data with natural interpretations. For the sequential data, 
the nodes with large weight in the main basins exhibit a nat- 
ural type of cause-effect relationship in the domains stud- 
ied. 

The fact that we have treated numerical attributes as cat- 
egorical data - without attempting to take advantage of 
their numerical values - allows us to make some interest- 
ing observations about the power of the method at “pulling 
together” correlated nodes. Specifically, we will see in 
the examples below that nodes which are close as num- 
bers are typically grouped together in the basin computa- 
tions, purely thmugh their co-occurrence with other cate- 
gorical attributes. This suggests a strong sense in which 
co-occurrence among categorical data can play a role simi- 
lar to that of proximity in numerical data, for the purpose of 
clustering. We divide the discussion below into two main 
portions, based on the combining rule CFi that we use. 

5.1 The S,, Rules 

We now discuss our experience with the S, combining 
rules. We ran the S, dynamical system on a table derived 
as described above from a mixture of theory and database 
research papers. The first non-principal basin point is quite 
striking: in Figure 8 we list the ten items with the most pos- 
itive and most negative weights in each column (together 
with their weights); a double horizontal line separates these 
groups. (Note that no row in Figure 8 need be a tuple in the 
input; the table simply lists, for each column, the ten nodes 
with the most positive (and the ten with the most negative) 
values.) Note also that our parser identified all people by 
their last names so that, for instance, the Chen at the top 
is actually several Chens taken together. A number of phe- 
nomena are apparent from the above summary views of the 
theory and database communities (the fact that the theory 
community ended up at the positive end of the partition and 
the database community at the negative end is not signih- 
cant - this depends only on the random initial configura- 
tion, and could just as well have been reversed). What is 
significant is that such a clean dissection resulted from the 
dynamical system, and that too within the first (rather than 

pers have sometimes been parsed as second authors. 

5.2 The Product Rule 

The high-level observations above apply to our experience 
with the combining rule II; but the sensitivity of II to the 
initial configuration leads to some additional recurring phe- 
nomena. 

(1) First, although there is not a unique fixed point that 
all initial configurations converge to, there is generally a 
relatively small number of large basins. Thus we can gain 
additional “similarity” information about initial configura- 
tions by looking at those configurations that reach a com- 
mon basin. 

(2) The short-term temporal behavior of the dynamical 
system defined by II, as we go through the first few itera- 
tions, can be quite informative. In particular, as a cormgu- 
ration moves towards its ultimate basin, the configurations 
through which it passes can provide interesting information 
about groupings of certain nodes Thus, our method is capa- 
ble of providing structural information about the data both 
through the dynamics of the process, as well as through the 
static basin results. 

(3) The “masking” of frequently occurring nodes can be 
a useful way to uncover hidden structure in the data. In par- 
ticular, a frequent node can force nearly all initial configu- 
rations to a common basin in which it receives large weight. 
By masking this node, one can discover a large number 
of additional basins that otherwise would have been “over- 
whelmed” in the iterations of the dynamical system. 

Bibliographic Data. We begin with the bibliographic 
data on theoretical CS papers. There are a number of co- 
occurrences that one might hope to analyze in this data, 
involving authors, conferences, and dates. Thus, if we 
choose an initial configuration centered around the name 
of a particular conference and then iterate the product rule, 
we generally obtain a basin that corresponds naturally to 
the “community” of individuals who frequently contribute 
to this conference, together with similar conferences. 

Initializing a configuration over a specific year leads 
to another very interesting phenomenon, alluded to above: 
the basin groups “nearby” years together, purely based on 
co-occurrences in the data. It is of course natural to see 
how this should happen; but it does show a concrete way 
in which co-occurrence mirrors more traditional notions 
of “proximity.” For example, initializing over the year 
1976 leads to the following basin. Observe that the years 
grouped with 1976 are 1978,1977,1975,and 1985. We ob- 

0.697 Garey ,824 Johnson .344 JACM .461 1976 
0.241 Aho .059 Hirschberg .228SICOMP .I52 1978 
0.026 Yu .039 Hopcroft .123TCS ,122 1977 
0.018 Hassin .03oGraham .123TRAUB .095 197s 

some lower) non-principal basin. Note that these phenom- 0.004 Chandra 1 ,009 Tarjan ) ,046lF.L 1 .082 1985 
ena have been preserved despite some noise in the database 
research bibliography: first names on singly-authored pa- Figure 9: A cluster of related years 
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0.1811: Chen 
0.1185: Chang 
0.1147: Zhang 
0.1119: Agarwal 
0.1104: Bellare 
0.1053: Gu 
0.09467: Dolev 
0.0857 1: Hemaspaand 
0.08423: Farach 
0.08232: Ehrig 
-0.1195: Stonebrake 
-0.1059: Agrawal 
-0.1023: Wiederhold 
-0.07735: Abiteboul 
-0.06783: Yu 
-0.06722: Navathe 
-0.06615: Lihvin 
-0.06308: Bernstein 
-0.0623: Jajodia 
-0.0587: Mono 

0.1629: Chen 
0.1289: Wang 
0.1007: COMF’REVS 
0.1: Li 
0.09004: Rozenberg 
0.08837: Igarashi 
0.08 17 1: Shark 
0.0797: Huang 
0.07924: Maurer 
0.0783: Lee 

-0.1068: Wiedethold 
-0.09615: David 
-0.08343: Dewitt 
-0.07643: Richard 
-0.07454: Stonebrak 
-0.07403: Michael 
-0.07159: Robert 
-0.06843: Jagadish 
-0.06722: James 
-0.067 1: Navathe 

serve also that this is a fairly descriptive summary view of 
theoretical CS research around 1976. It is important to note 
that initializing over different years can lead to the same 
basin; this, as discussed above, is due to the “attracting” 
nature of strong basins. Thus, for example, we obtain ex- 
actly the same basin when we initialize over 1974, although 
1974 does not ultimately show up among the top 5 years 
when the basin is reached. 

Login Data. We now discuss some examples from the lo- 
gin data introduced above. For this data, there was one user 
who logged in/out very frequently, gathering large weight 
in our dynamical system, almost regardless of the initial 
configuration. Thus for all the random initializations tried 
on this data set, a common basin was reached. 

In order to discover additional structure, it proved very 
useful to mask this user, via the masking operation intro- 
duced above. Users in this data can exhibit similarities 
based on co-occurrence in login times and machine use. 
If we first mask the extremely common user(s), and then 
initialize the configuration over the user root, such fur- 
ther structure emerges: the four highest-weight users turn 
out to be root; a special “help” login used by the system 
administrators; and the individual login names of two of 
the system administrators. Thus STIRR discerns system ad- 
ministrators based on their co-occurrences across columns 
with root. 

Finally, we illustrate another case in which “similar” 
numbers are grouped together by co-occurrence, rather 
than by numerical proximity. When we initialize over the 
hour 23 (i.e., 1 lpm) as the login time, we obtain a set of 
users with predominantly late login times, and we obtain 
the following hours as the highest-weight nodes for login 
and logout times: 

0.317: TCS 0.563: 1995 
0.2264: IPL 0.5596: 1994 
0.195: LNCS 0.4332: 1996 
0.1633: INFCTRL 0.151: 1993 
0.1626: DAMATH 0.07487: 1992 
0.1464: JPDC 0.0155: 1976 
0.1371: SODA 0.005276: 1972 
0.1266: STOC 0.004569: 1985 
0.1074: IEEETC 0.001891: 1973 
0.1002: JCSS 0.001679: 1970 

-0.384: IEEEDataEng -0.2165: 1986 
-0.256: VLDB -0.1983: 1987 
-0.2392: SIGMOD -0.1519: 1989 
-0.1504: PODS -0.14: 1988 
-0.1397: ACMTDS -0.11: 1984 
-0.1176: IEEETransa -0.0657 1: 1975 
-0.04832: IEEETrans -0.0643 1: 1990 
-0.04658: IEEETechn -0.03765: 1980 
-0.04533: Workshop1 -0.03238: 1974 
-0.03581: IEEEDBEng -0.02873: 1982 

Figure 8: Separating a mixture of theorv and database oaners 
iJ.430 22 ,457’ 22 
0.268 21 .286 23 
0.173 23 .134 21 
0.079 20 .060 00 

Thus the algorithmconcludes that the hours 22,21,23,20, 
and 00 are all “similar,” purely based on the login patterns 
of users. 

6 Conclusions and Further Work 
We have given a new method for clustering and mining ta- 
bles of categorical data, by representing them as non-linear 
dynamical systems. The two principal contributions of this 
paper are: (1) we generalize ideas from spectral graph anal- 
ysis to hypergraphs, bridging the power of these techniques 
to clustering categorical data; (2) we develop a novel con- 
nection between tables of categorical data and nonlinear 
dynamical systems. Experiments with the STIRR system 
show that such systems can be effective at uncovering sim- 
ilarities and dense “sub-populations” in a variety of types of 
data; this is illustrated both through explicitly constructed 
“hidden populations” in our quasi-random data, as well as 
on real data drawn from a variety of domains. Moreover, 
these systems converge very rapidly in practice, and hence 
the overall computation effort is typically linear in the size 
of the data. 

The connection between dynamical systems and the 
mining of categorical data suggests a range of interesting 
further questions. At the most basic level, we are interested 
in determining other data mining domains in which this ap- 
proach can be effective. We also feel that a more general 
analysis of the dynamical systems used in these algorithms 
-a challenging prospect-would be interesting at a theo- 
retical level and would shed insight into further techniques 
of value in the context of mining categorical data. 
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