
BINDING PROPAGATION
IN DISJUNCTIVE DATABASES*

Sergio Greco

DEIS
Universita della Calabria

87030 Rende, Italy
greco@si.deis.unical.it

Abstract

In this paper we present a technique for

the propagation of bindings into disjunc-

tive deductive databases. The optimiza-

tion is based on the rewriting of the source

program into a program which is equiva-
lent to the original one under the possi-

ble semantics. In particular, the rewrit-

ing technique generates a program which

is disjunctive with nested rules in the head,
i.e., elements in the head may also be (spe-

cial) rules. The proposed optimization re-

duces the size of the data relevant to an-

swer the query and, consequently, (i) re-

duces the complexity of computing a single

model and, more importantly, (ii) greatly

*Work partially supported by a MURST grant under the

project “Interdata”.Theauthorisalsosupportedby ISI-CNR.

Permission to copy without fee all ok part of this material is

granted provided that the copies are not made DT distributed

for direct commercial advantage, the VLDB copyright no-

tice and the title of the publication and its date appear, and

notice is given that copying is by permission oj the Very

Large Data Base Endowment. To copy otherwise, OT to re-

publish, requires a fee and/or special permission from the

Endowment.

Proceedings of the 24th VLDB Conference

New York, USA, 1998

reduces the number of models to be consid-
ered to answer the query. Although in this
paper we consider negation free and strati-

fied linear programs, the technique can eas-

ily be extended to the full class of programs

with stratified negation.

1 Introduction

Recent research on databases has been concerned

with situations where the knowledge of the world is
incomplete. Two classic cases of incomplete knowl-

edge are the presence of null values - i.e., a value

of some attribute is unknown, and by the definition

of probabilistic knowledge [13]. Another interest,-
ing area arises in the presence of incomplete data,

i.e., it is unknown among several facts which one

is true, but it is known that one or more are true.

A natural way to extend databases to include in-

complete data is to permit disjunctive statements

as part of the language. This leads to deductive

databases which permit clauses with disjunctions
in their heads [15].

The presence of disjunctions in the head of rules

makes the computation of queries very difficult.

This is because no efficient techniques, such as

the ones defined for standard Datalog queries (e.g.,
magic-set), have been defined, and for the presence

of multiple models (generally the number of models

287

can be exponential with respect to the size of the

input [l]).

Computation algorithms for disjunctive queries
are based on the evaluation of the ground instantia-

tion of programs and the only significant technique

so far presented, known as intelligent grounding,

is mainly based on the elimination of ground rules
whose head cannot be derived from the program

[6]. However, in many cases it is not necessary to

compute all the models of the program. Take for

instance a query asking if, given a graph G, there

exists a simple path from the node a to the node 6.
In this case it is not necessary to check all models

but just the ones containing paths with source node

a and end node b. Although intelligent grounding

reduces the number of ground rules, by eliminating
useless rules (or heads of rules), it does not reduce

the number of models to be checked.

Therefore, techniques which reduce the number

of models, by eliminating the ones which are not

useful to answer the query, should be exploited.
The following example, presents a program were

only a strict subset of the minimal models needs to

be considered to answer the query.

Example 1.1 Consider the disjunctive program P

consisting of the following rule

P(X) ” q(X) + 4X)

and a database D consisting of a set of the facts

a(l), 42), “‘, a(n).

Consider now a query asking if there is some
model for PUD containing the stomp(m). A ‘brute
force’ approach, based on an exhaustive search of

the minimal models of P U D, would consider 2”

minimal models.

However, to answer the query (under ‘brave rea-
soning’) we could consider only the ground rule

P(m) ” q(m) + a(m)

and, therefore, consider only two minimal models:

MI = {p(m)) UD and Mz = {q(m)} U D. 0

The main result of this paper is the introduc-

tion of a technique which permits us to exploit
binding propagation into disjunctive Datalog pro-
grams. The proposed technique extends binding

propagation methods, previously defined for Data-

log queries.

Although, for the sake of presentation, we con-
sider only the extension of the magic-set method [2,

211, other methods such as supplementary magic-

set, factorization techniques and special techniques

for linear and chain queries [3, 11, 17, 18, 20, 211,

can be applied as well. To the best of our knowl-
edge, this is the first attempt to use the well known
magic-set optimization for normal Datalog for the

disjunctive case.

The rest of the paper is organized as follows. In

Section 2 we recall basic concepts of Datalog and

magic-set optimization. In Section 3 we present ba-

sic concepts of disjunctive Datalog and disjunctive

nested rules. We also introduce a restricted class
of disjunctive Datalog with nested rules whose se-
mantics can be given in terms of minimal models

(this is not true generally). In Section 4 we present
our rewriting method for disjunctive queries. More

specifically, in Section 4.1 we consider only nega-
tion free programs and in Section 4.2 the exten-

sion for stratified programs. Finally, in Section 5

we present an improvement of this technique for a

subclass of disjunctive queries. Due to space limi-
tations the proofs of our results are omitted. They

can be found in the extended version of the paper.

2 Binding propagation in Datalog

2.1 Datalog

We assume familiarity with the Datalog language
and only recall basic concepts on binding propaga-

tion and magic-set rewriting [al, 31.

Database predicates are divided into two parts:
extensional predicates consisting of ground tu-

ples and intentional predicates consisting of rules.

288

Extensional predicates define the input database

whereas the rules define the program. As usual,
we assume that rules are safe, i.e. each variable
occurring in a rule also has to occur in a positive

body literal of that rule. We denote by U,, Bp

and ground(P), the database domain (Herbrand
universe), the set of all possible ground atoms (Her-

brand base) and the ground instantiation of P, re-

spectively, defined as usual. Total (Herbrand) in-

terpretations and models of P are also defined in
the usual way.

Let P be a program, D a database and T an ex-
tensional predicate symbol, D(r) denotes the set
of tuples in the relation T. Given a program P

and a database D, P, denotes the program P U

{r(t)lr is an extensional predicate and t E D(r)}.

A Datalog query is a pair (G, P) where G is an atom
called query-goal and P is a Datalog program. The

answer to a query (G,P) and a database D is the

set of substitutions for the variables in G such that

G is true with respect to PD. Two queries (G,P)

and (G’,‘P’) are equivalent if they have the same

answer for all possible databases.

Given a program P and two predicate symbols p

and q, we write p -+ q if there exists a rule where q

occurs in the head and p in the body or there exists

a predicate s such that p -+ s and s + q. If p -+ q

then we say that q depends on p; also we say that

q depends on any rule where p occurs in the head.

A program is stratified if there is no rule r where a
predicate p occurs in a negative literal in the body,

q occurs in the head and q -+ p, i.e. there is no

recursion through negation.

We assume that programs are partitioned accord-
ing to a topological order (PI, . . , P,) such that each

two predicates p and q, defined in the same compo-
nent Pi, are mutually recursive. This means that

each predicate appearing in Pi depends only on
predicates belonging to Pi such that j 5 i. We

assume also that the computation follows the topo-
logical order and that when we compute the com-

ponent Pi the components PI, Pi-1 have already

been computed. When we compute the component
Pi all the facts obtained from the computation of
the components PI, Pi-1 are basically treated
the same as database facts. A rule in a compo-
nent Pi is called exit rule if each predicate in the
body belongs to a component Pj such that j < i.

All the other rules are recursive rules.

2.2 Magic-set rewriting

We recall now the magic-set rewriting techniques

for Datalog queries. The technique here presented

applies only to negation free linear programs where
bindings are propagated only through predicates

which are not mutually recursive with the head

predicate.

The magic-set method consists of three separate

steps

An Adornment step in which the relationship

between a bound argument in the rule head

and the bindings in the rule body is made ex-

plicit .

A Generation step in which the adorned pro-

gram is used to generate the magic rules which
simulate the top-down evaluation scheme.

A Modification step in which the adorned rules

are modified by the magic rules generated in
step (2); these rules will be called modified

rules.

We now informally recall the above steps for the

case of linear programs, i.e. programs containing

at most one predicate mutually recursive with the

head predicate in the body of rules.

An adorned program is a program whose predi-

cate symbols have associated a string (Y, defined on

the alphabet {b, f}, of length equal to the arity of

the predicate. A character b (resp. f) in the i-th
position of the adornment associated with a predi-
cate p means that the i-th argument of p is bound

(resp. free).

289

The adornment step consists in generating a new

program whose predicates are adorned. Given a
rule r and an adornment Q of the rule head, the
adorned version of r is derived as follows:

1. Identify the distinguished arguments of the

rules as follows: an argument is distinguished
if it is bound in the adornment cr, is a constant

or appears in a base predicate of the rule-body

which includes an adornment argument;

2. Assume that the distinguished arguments are

bound and use this information in the adorn-
ment of the derived predicates in the rule body.

Adornments containing only f symbols can be

omitted.

Given a query & = (q(T), P) and let ct be

the adornment associated with q(T). The set of

adorned rules for Q is generated by 1) first com-

puting the adorned version of the rules defining q

and 2) next generating, for each new adorned predi-
cate pp introduced in the previous step, the adorned

version of the rules defining p w.r.t. p; Step 2 i re-

peated until no new adorned predicate is generated.

The second step in the process is to use the
adorned program for the generation of the magic

rules. For each of the adorned predicates in the

body of the adorned rule:

1. Eliminate all the derived predicates in the rule

body which are not mutually recursive with the

rule head;

2. Replace the derived predicates symbol pa with

magic-pa and eliminate the variables which are

free w.r.t. a;

3. Replace the head predicates symbol qp with

magic-qfl and eliminate the variables which are

free w.r.t. /3;

4. Interchange the transformed head and derived
predicate in the body.

Finally, the modification step of an adorned rule
is performed as follows. For each adorned rule

whose head is p”(X), where X is a list of variables,
append the rule body with magic-pQ(X’) where X’
is the list of variables in X which are bound w.r.t.
CY.

The final program will contains only the rules

which are useful to answer the query.

Example 2.1

Consider the query Q = (p(1, C), P) where P is
defined as follows:

P(X,C) + q(x, 2,c).
q(X, Y, C) - 4X, Y, C).
q(X, y, C) - b(X, Y, Z, W), q(Z, W, D)> ~(4 C).

The adorned program P’ is

Pbf(X,Y) + qbbf(X, 2,c).
qbbf(X,Y,C) + a(X,Y,C).
qbbf (X, Y, C) + b(X,Y,Z,W), qbbf(Z,W& c(D,C).

The rewritten query is Q’ = (pbf (1, Y), P’) where

P’ is as follows:

magicpbf (1).
magic-q bbf(x,2) + magicpbf (X).
magic-q bbf(z,W) +- magic-qbf (X, Y), b(X, Y, Z, W).

Pbf(X,Y) + magicpbf (X), qbbf (X, 2, C).
qbbf(X,Y,C) + magicqbbf(X,Y), a(X,Y,C).
qbbf(X,Y,C) + magic-qbbf(X,Y), b(X,Y,Z,W),

qbbf (Z, W, D), c(D, C). 0

Observe that, although the technique here pre-
sented applies only to negation free linear programs,

it is general and can also be applied to non-linear

programs with some form of negation (e.g., strati-

fied negation) where bindings are also propagated

through derived predicates [3].

Let & = (G,P) b e a query, then Magic(Q)
denotes the query derived from & by applying

the magic-set method. The query Magic(Q) will

be denoted also as (magic(G), mugic(G, P)) where
mugic(G,p) denotes the rewriting of P w.r.t. the

goal G.

290

3 Disjunctive Deductive Databases

3.1 Disjunctive Datalog

For a background and unexplained concepts, see
[15]. A disjunctive Datalog rule T is a clause of the

form

al V . ..V a,, +- bl,...,bk,lbk+l,...,lbk+~

where n 2 1, k,m > 0 and ~l,...,a,,bl,..,,bk+~

are function-free atoms.

We denote by Head(r) (resp. Body(r)) the set

of head atoms (resp. body literals) of T. If n = 1,

then r is normal (i.e. V-free); if m = 0, then r is
positive (or l-free). A disjunctive Datalog program

P, also called disjunctive deductive database, is a

finite set of rules; it is normal (resp. positive) if

all its rules are normal (resp. positive). The def-

inition of stratified program defined for standard
programs also applies to disjunctive programs. In

the following we shall first consider positive disjunc-

tive deductive databases and next we consider also

disjunctive programs with stratified negation.

Minker proposed in [16] a model-theoretic se-

mantics for positive P, which assigns to P the set.

MM(P) of its minimal models, where a model M for

P is minimal, if no proper subset of M is a model

for P. Accordingly, the program P = {a V b -} has
the two minimal models {a} and {b}, i.e. MM(P) =

{ Iall {b) 1.

The more general stable model semantics also ap-

plies to programs with (unstratified) negation. For
general P, the stable model semantics assigns to

P the set SM(P) of its stable models. For positive

P, stable model and minimal model semantics co-

incide, i.e. SM(P) = MM(P).

The result, of a query Q = (G,P) on an input

database D is defined in terms of the minimal mod-

els of PD, by taking either the union of all models
(possible inference) or the intersection (certain in-

ference). Thus, given a program P and a database
D, a ground atom G is true, under possible (brave)
semantics, if there exists a minimal model A4 for PD

such that G E M. Analogously, G is true, under
certain (cautious) semantics, if G is true in every

minimal model for PD.

3.2 Disjunctive Datalog with nested rules

In this section, we recall the extension of disjunctive

Datalog by nested rules first proposed in [lo].

A nested rule is of the form:

A c-, blr...,bk,Tbk+l;.., b -T k+m, k,m>O

where A, bl,. . . , bk+m are atoms. If m = 0, then

the implication symbol “4 can be omitted.

A disjunctive nested rule r is of the form

where n > 1, k,m 2 0, bl,...rbk+m are atoms,

and Al,..., A, are nested rules. If Al, , A, are

atoms, then r is flat.

Example 3.1 A rule may appear in the head of
another rule. For instance, the rule ri : a V (b i---,

c) + d is an allowed disjunctive nested rule, while
the rule r2 : a V b + d is a flat disjunctive rule •I

The definition of stratified programs can be also

extended to disjunctive programs with nested rules.
Given a program P and two predicate symbols p

and q, we write p --f q if i) there exists a rule r
such that 4 occurs in head of some nested rule of

r, say r’, and p appears either in the body of r’ or

in the body of r, ii) there exists a predicate s such
that p -+ s and s -+ q. A program is stratified if

there exists no rule r where a predicate p occurs in
a negative literal and q occurs in the head of some

nested rule appearing in the head of r, i.e. there is
no recursion through negation.

Let r be a ground nested rule. We say that r is
applied in the interpretation 1 if (i) every literal in

Body(r) is true w.r.t. I, and (ii) the atom in the

head of r is true w.r.t. 1. A rule r E ground(P) is
satisfied (or true) w.r.t. I if its body is false (i.e.,

some body literal is false) w.r.t. I or an element

291

of its head is applied. (Note that for flat rules this
notion coincides with the classical notion of truth).

Example 3.2 The nested rule b 4 -V is applied

in the interpretation I = {b, d}, as its body is true

w.r.t. 1 and the head atom b is in I. Therefore,

rule ri : a V (b + Y) t d is satisfied w.r.t. I. ~1

is’true also in the interpretation 1 = {a, d}; while it
is not satisfied w.r.t. the interpretation I = {c, d}.

Observe that the two implication symbols have

different semantics. In the interpretation I = {c},

the rule b + lc is not true whereas the rule b + lc

is true. 0

A model for P is an interpretation A4 for P which

satisfies every rule r E ground(P).

Example 3.3 For the flat program P = {u V b +}

the interpretations {a}, (6) and {u, b} are its mod-

els.

For the program P = {u V b +; c V (d c--, u) +

} the interpretations {a, d}, {a, c}, {b, c}, {u, b, d},

{a, 4 cl, Ia, c, 4, ia, b, c, d} are models. {b, d} is

not a model, as rule c V (d c-’ u) +- has a true body

but neither c nor d c--’ a are applied w.r.t. {b,d}

(the latter is not applied because a is not true). 0

In the presence of negation and nested rules, not

all minimal models represent an intuitive meaning

for the programs at hand. A proper semantics for

Disjunctive Datalog with nested rules and (possi-
ble unstratified) negation has been defined in [lo]

by extending the notion of unfounded set given for

normal and disjunctive logic programs in [22] and

[14], respectively.

We present here a subclass of Disjunctive Datalog

with nested rules whose semantics is given by the
set of minimal models.

Definition 3.4 A nested disjunctive program P is
said to be weakly nested if all nested rules in P are

not recursive. 0

Thus, in weakly nested programs, predicates ap-
pearing in the head of nested rules are not mutually

recursive with predicates appearing in the body of
the nested rules. For instance, the program of Ex-

ample 3.1 consisting of the single rule ~1 is weakly

nested since the nested rule b + c is not recursive.

Theorem 3.5 Let P be a positive weakly nested

disjunctive program. Then, SM(P) = MM(P). 0

The above result implies that for weakly nested
programs the set of minimal and stable models co-
incide. Thus, for this class of programs we can con-

sider the global set of minimal models, whereas for

general nested disjunctive programs we must con-

sider only minimal models which are also stable.

4 Binding Propagation in Disjunc-

tive Programs

In this section we present the propagation of bind-

ings into disjunctive programs. Before presenting
how disjunctive queries are rewritten to propagate

bindings into the bodies of rules, let us first de-

fine the equivalence of queries for disjunctive pro-

grams. A (nest,ed) disjunctive Datalog puery over a
database defines a mapping from the database to a

finite (possibly empty) set of finite (possibly empty)

relations for the goal.

Given an atom G and an interpretation M,
A(G, M) denotes the set of substitution for the vari-

ables in G such that G is true in M. The answer to

a query C? = (G, P) over a database D under brave

(resp. cautious) semantics, denoted Ansb (Q, D)

(resp., Ans,(Q,D)) is the relation UMA(G,M)

such that A4 E MM(P, D) (resp., ~IMA(G, AI) such

that M E MM(P, D)). Two queries CJ1 = (Gi, Pi)

and Q2 = (G2, P 2 are said to be equivalent under)
semantic s (6Ji gJ Qs) if for every database D on a

fixed schema is Ans,(Ql) = Ans,(Q2). Moreover,
for stratified disjunction free programs, since two

semantics coincide, we will simply write Qi f Q2.

292

We next present how bingings are propagated in
the body of disjunctive rules. We consider first the
case of positive programs and next we extend the
method to programs with stratified negation.

4.1 Positive Programs

The main problem in propagating bindings in dis-
junctive rules is that, generally, we cannot apply

standard techniques since by propagating bindings
from some atom in the head into the body, we re-

strict all head atoms. This behaviour can be better

explained by means of an example. Consider the
query & = (q(3), P) where P is as follows:

P(l).

P(Y) ” q(Y) + P(X), 4X,Y)

Assuming that the database D consists of the tuples

a(l,2) and a(2,3), the program PD has three min-

imal models: A41 = {p(l),p(2),p(3)} U D, A42 =

{p(l), p(2), q(3)) u D and & = {~(l),q@)l U D.

However, if we apply the standard magic-set tech-
nique we get the following program P’

w(3).

P(l).

P(Y)” q(Y) + w(Y), P(X), .(X,Y)

where adornments have been omitted. Pb has the

unique minimal model M = {mq(3), p(1)) U D.

Therefore, the queries Q and Q’ = (q(3), P’) are

not equivalent.

We now present an algorithm for the optimiza-
tion of disjunctive Datalog queries. The algorithm

uses nested rules as a vehicle to propagate bind-

ings. We will use the following running example to

explain our rewriting method.

Example 4.1 We are given the query
(ancfather(john, Y), ANC) where the program ANC
consists of the following rules:

father(X,Y)Vmother(X,Y) +- parent(X,Y).

ancfather(X,Y) e father(X,Y).

ancfather(X,Y) +- father(X,Z),ancfather(Z,Y).

Definition 4.2 Let P be a disjunctive Datalog
program. The standard version of P, denoted
HI(P), is the Datalog program derived from P by

replacing each disjunctive rule Al V . . . V A, +- B

with the m rules of the form Ai + B for 1 < -
i 5 m. Moreover, we denote with sv(CJ) the query

(G, 4’)). 0

Example 4.3 The standard version of the pro-

gram ANC of Example 4.1, denoted sv(ANC), is as
follows

father(X,Y) +-

mother(X,Y +-

ancfather(X,Y) +

ancfather(X,Y) +

Observe that we

parent(X,Y).

parent(X,Y).

father(X,Y).

father(X,Z), ant-father(Z,Y).

are considering negation free

programs and, therefore, the standard version of

a disjunctive program has a unique minimal model.

Proposition 4.4 Let P be a positive disjunctive

Datalog program and let N be the minimal model

of s,(P). Then, every minimal model for P is con-

taked in N. 0

Given a disjunctive Datalog program P (query

g), we denote with SV(P) (resp., SV(&)) the stan-

dard program (resp., query) derived from MI(P)

(rew., SW(Q)) by replacing each derived predicate

symbol p appearing in the head of some disjunctive

rule with a new predicate symbol P. For instance,

the standard version SV(ANC) of the program ANC

of Example 4.1 is derived from the program sw(ANC)

of Example 4.3 by replacing the predicate sym-
bols father and mother, respectively, with the new

predicate symbols FATHER and MOTHER.

The application of the magic-set method to
SV(Q) gives an equivalent query which can be eval-

uated more efficiently [3, al].

293

Example 4.5 Consider the program of Example

4.3 and the query goal ancfather(john, Y). The
adorned program with respect to the query goal is

FATHERbf(X,Y) + parent(X,Y).
MOTHER(X,Y) + parent(X,Y).
anc-fatherbf(X,Y) + FATHERbf(X,Y).

anc-fatherbf(X,Y) + FATHERbf(X,Z),

anc-fatherbf(Z,Y).

Thequeryobtainedbyapplyingthemagic-setmethod
is (ancfatherbf(john,Y), Magic(SV(ANC))) where

the rewritten program Magic(SV(ANC)) is as follows:

magic-anc-fatherbf(john).

magic-c-fatherbf(Z)+ magicancfatherbf(X),

FATHERbf(X,Z).

magic_FATHERbf(X)+ magic-cfatherbf(X).

FATHERbf(X,Y) + magic_FATHERbf(X), parent(X,Y).

MOTHER(X,Y) + parent(X,Y).

anc-fatherbf(X,Y)+ magic_anc-fatherbf(X),

FATHERbf(X,Y).

anc-fatherbf(X,Y) + magicancfatherbf(X),

FATHERbf(X,Z),

anc-fatherbf(Z,Y). 0

Fact 4.6 Let Q be a positive disjunctive Datalog

query. Then, Magic(SV(Q)) E SV(Q). 0

We are now in the position to present our rewrit-

ing algorithm. The algorithm is based on the
rewriting of each atom a in the head of a disjunc-
tive rule into a nested rule a t) A, where the atom

A is used to make a restriction on the values of a.

Predicates in the body of nested rules are defined

by standard Datalog rules which can be optimized
by means of classical rewriting techniques such as

magic-set. The algorithm implementing the rewrit-

ing of disjunctive queries is reported in Fig. 1.

Observe that the nested disjunctive program gen-
erated by Algorithm 1 is a (positive) weakly nested
program.

Example 4.7 The complete program obtained

from the application of Algorithm 1 to the

Algorithm 1 Magic-set for disjunctive queries

Input: & = (g, P)

output: &’ = (g, P’)

begin

(1) Generate m(Q);

(2) Generate SV(S);

(3) P’ = Magic((G, W(P)));

(4) for each pred. R” generated in Step (2) do

add to P’ the following rule with k = arity(R)

R(X,,I U,) T R*(XI, Xk);

(5) for each rule r = aI V . . . V a,(X,) +- B do

replace r with the rule

(al (XI)+AI(XI))V...V(U~(X~)QA,(X,)) +-B

end.
Figure 1: Rewriting of disjunctive queries

program of Example 4.1 with the query goal
ancfatherbf (john, Y) is as follows:

rl :magicsnc-fatherbf(john).

re :magicancfatherbf(Z)+ magic-ancfather bfw
FATHERbf(X,Z).

rg :magicJ'ATHERbf(X)+ magic-ancfatherbf(X).

r4 :FATHERbf(X,Y) +magic_FATHERbf(X),parent(X,Y).

rg :MOTHER(X,Y) + parent(X,Y).

r6 :FATHER(X,Y) + FATHERbf(X,Y).

r7 :(father(X,Y) +-J FATHER(X,Y))V

(mother(X,Y) +MOTHER(X,Y)) + parent(X,Y).

r8 :anc-fatherbf(X,Y)+ magic-cfatherbf(X),
father(X,Y).

rg :ancfatherbf(X,Y)+ magicancfatherbf(X),

father(X,Z),

ancfatherbf(Z,Y).

Where rule rs is added in Step 4 whereas the body

of the last two rules is modified in Step 3. 0

Theorem 4.8 Let & = (G,P) be a disjunctive

Datalog query and let &’ be the query derived by

applying Algorithm 1 to &. Then, Q E-b &‘. 0

The computation of positive weakly nested dis-

junctive queries can be carried out by any algorithm

computing minimal (or even stable) models for dis-
junctive queries [la, 41, just by introducing a mi-

nor change. More specifically, it is sufficient, in the

294

construction of a minimal model, to consider rules

whose body is true (as usual), and nested rules in

the head whose bodies are also true.

4.2 Stratified Programs

The minimal model semantics is not able to cap-

ture the intuitive meaning of programs with nega-
tion. Stable and perfect models have been pro-

posed to capture the semantics of general disjunc-

tive programs. The disjunctive stable models of a

program P are defined as follows. For any inter-
pretation I, denote with Pr the ground positive

program derived from ground(P) (1) by removing

all rules that contain a negative literal 1~1 in the

body and a E I, and (2) by removing all negative

literals from the remaining rules. An interpreta-
tion iM is a (disjunctive) stable model of P if and

only if M E MM(P”). The set of stable models

will be denoted SM(P). Since each stable model is

minimal we have that SM(P) C_ MM(P).

The perfect model semantics has been defined

for general disjunctive programs but is particu-
larly suited for stratified disjunctive programs. In

this paper we do not consider propagation of bind-

ings into programs with unstratified negation since
stratified negation in disjunctive programs is suffi-

cient to gain the full expressive power of unstrati-

fied negation [5] and also because the combination

of disjunction and unstratified negation may result

in programs with unclear meaning.

An interpretation hil is a perfect model for a

stratified program P, iff for some stratification

(PO, Pl, Pk) of P NI n BP, E MM(Pr”‘), for
i = 0, k, where P,f = ground(PO U . . . U Pi), AJo =

0 and h/ii = A4 n Bpzbl [5]. The set of perfect mod-
els of P is denoted by PM(P). Since each perfect
model is minimal we have that PM(P) c MM(P).

Moreover, for stratified programs we have that
PM(P) = SM(P) whereas for positive programs

MM(P) = PM(P) = SM(P).

Fact 4.9 Let P be a stratified disjunctive Datalog

program, then, sv(P) is also stratified. cl

The application of the magic-set rewriting to

stratified non-linear programs may result in pro-
grams which are, syntactically, not stratified. Thus,
for the sake of simplicity, here we consider only lin-

ear programs, and defer the rewriting of general
programs to the extended version of the paper.

Proposition 4.10 Let P be a stratified linear dis-

junctive Datalog program and let N be the perfect

model of sv(P). Then, every perfect model for P is

contained in N. 0

Now, let Magic’s(Q) be the function rewriting

a stratified linear query &. The algorithm for the

rewriting of Q can be derived from Algorithm 1

by simply replacing the rewriting of the positive

program in Step (2) with the function Magic’s(&).

We will denote the modified algorithm as Algorithm

1.1.

Corollary 4.11 Let Q = (g, P) be a stratified dis-

junctive linear Datalog query and let &’ be the query

derived by applying Algorithm 1.1 to &. Then,

& -b &‘. cl

4.3 Special subclasses of queries

When bindings in non-linear rules are passed

through recursive predicates, the only method at

hand is the generalized magic-set method [3]. How-
ever, there are several programs such as left-linear,

right-linear, counting linear, factorized and chain

programs for which specialized methods exist that

are much more efficient than the magic-set method.
Given the importance and frequency of these spe-

cial situations in actual applications, deductive sys-

tems detect these special cases and compile them

using special techniques, such as those proposed in

[17, 18, 20, 111.

The rewriting of disjunctive queries is orthogonal
with respect to the specific rewriting technique used

295

to optimize the standard version of the query (step

(2) in Algorithm 1). Thus, for special classes of

queries, it is possible to apply specialized optimiza-
tion techniques. The following example presents a

disjunctive program which can be optimized by us-

ing the classical right-linear optimization technique

[18, 211.

lhcample 4.12 Consider the query goal sp(X, b)

over the following program P.

rl :sp(X,Y) + dx, Y).
r2 : sp(X,Y)Vno-sp(X,Y) + sp(X,Z), g(Z,Y).

r3 :no-sp(X,Z) + sp(X,Y),node(Z),Z # Y.

r4 :no.sp(Z,Y) + sp(X,Y),node(Z),Z # X.

The query, under brave reasoning, computes the

simple path in the graph having as end node b.

The standard version of SV(P) is as follows

r5 : SP(X,Y) t- g(X, y).
I-6 : sP(x,Y) + SW, Z), g(Z,Y).
r7 :NO-SP(X,Y) t SP(X,Z), g(Z,Y).

rg : NO-SP(X,Z) + SP(X,Y),node(Z),Z # Y.

rg :NO-SP(Z,Y) + SP(X,Y),node(Z),Z # X.

The definition of the predicate SP, w.r.t. the goal
SP(X, b), is right-linear and, therefore, can be op-

timized by using the special technique defined for

this class of queries. The definition of SP consists
of one single set of recursive rules.

r10 :magicSP(b).+

rll :magicSP(Z) + magicSP(Y), g(Z,Y).

x-12 :SP'(X) +- magicSP(Y),g(X,Y).

r13 :SP(X,b) +- SP'(X).

The final program consists of the following rules

SP(X, y) + dx, y).
(sp(X,Y) t-) SP(X,Y))V

(no-sp(X,Y) +-J NOSP(X,Y)) + sp(X,Z), g(Z,Y).

nosp(X,Z) +- sp(X,Y),node(Z),Z # Y.

nosp(Z,Y) +- sp(X,Y),node(Z),Z # X.

plus the definition of SP and NOSP consisting of

the rules 77 - ris. 0

5 Extending binding propagation

In this section we present an extension of the bind-

ing propagation for disjunctive queries to propagate

bindings among heads of the same rule. Our algo-
rithm generates a nested program which makes a
stronger restriction on the data, but it applies to a

restricted set of queries.

Consider the query of Example 1.1. From the

application of Algorithm 1, we have that the values
of q depend on the binding in the query goal (q(m)).

However, from the disjunctive rule, the atom q(m)

does not depend on atoms p(x) with 2 # m (i.e. it

depends only on the atom p(m)). This means that

we can consider only the atoms p(m) and q(m) to
answer the query. Therefore, bindings can also be

propagated among atoms in the head of disjunctive

rules.

Before presenting our algorithm, we need to in-
troduce a restricted class of programs denoted as

strongly safe.

Definition 5.1 Let & = (G,P) be a disjunctive
query and let NJ(P) be the standard version of

P. Then, the extended standard version of P, de-

noted esw(P), is the program derived from SW(P)

by adding for each disjunctive rule r and for each

pair of atoms al and a2 in the head of r the two
rules al + a2 and a2 + al. 0

As in the standard version of programs, we shall

denote with ESV(P) the program derived from

esw(P) by replacing every derived predicate sym-

bol r, appearing in a disjunctive head, with a new

predicate symbol R.

For instance the extended standard version of the
program of Example 1.1 consists of the following
rules

P(X) +4X)
q(X) + a(X)dW + n(X)
q(X) -p(X)

296

Observe that, the last two rules added to the ex-

tended standard version are used only to propagate

bindings among heads and they will be deleted from
the final version. Moreover, the extended standard

version could contain unsafe rules even in the case

where the source program is safe. Thus, we consider

here a restricted class of disjunctive programs.

Definition 5.2 A disjunctive program is slrongly

safe if all its rules are safe and for each disjunc-

tive rule all atoms in the head have the same vari-

ables. 0

Observe that all programs presented in this paper

are strongly safe. Thus, we have

Fact 5.3 Let ‘P be a strongly safe disjunctive Dat-

alog program. Then, esv(‘P) is safe. q

The algorithm we present uses the extended stan-
dard version to propagate adornments also among

heads of rules. Rules added in the extended ver-
sion are used only to propagate adornments and not
to restrict our predicates and, therefore, they are

deleted (in Step (4) of Algorithm 2) after the magic

rules are generated. The new algorithm which is a.

variant of Algorithm 1 for the class of strongly safe

programs and is reported in Figure 2.

Theorem 5.4 Let Q = (g,P) be a strongly safe

disjunctive Datalog query and let &’ be the query

derived by applying Algorithm 2 to &. Then, & Eb

Q’. 0

We conclude by presenting an application exam-

ple of Algorithm 2

Example 5.5 Consider the following program P

with the query goal p(a, Y).

P(X, Y) V $6 Y) + b(X, Y)

Algorithm 2 Magic rewriting for strongly safe dis-

junctive Datalog queries

Input: & = (g, P)
output: Q’ = (g, P’)

begin

(1) Generate s,(P) and esv(P);

(2) Generate PI = ESV(P) and PZ = SV(P)
(3) AP= P, - P2; P’ = Magic((G, P,));

(4) deletefromP’ modified rules derivedfrom rules in AP;
(5) for each pred. R” generated in Step (2) do

add to P’ the following rule with k = arity(R)

R(XI,X.) + R”(Xl,X.);

(6) for each rule r = aI V . . . v am(Xm) +- B do

replace r with the rule

(ul(X,)~A~(X~))v...v(arn(X,)~‘Arn(X,))tB
end.

Figure 2: Rewriting of strongly safe queries

The Datalog program ESV(P) consists of the

rules

P(X, Y) + b(X) Y)

Q(X, Y) + b(X, Y)
P(X, Y) - Q(X, Y)

Q(X, Y> - P(X, Y)

The program derived from the application of the
magic-set method is

rl : magicP(a).

r:! : magic-Q(X) +-magicP(X).
r3 : magicP(X) +- magicJJ(X).

~4 : P(X,Y) + magic_P(X), b(X,Y)

r5 : Q(X,Y) +- magicJ(X), b(X,Y)

~6 : P(X,Y) +- magicP(X), Q(X,Y)

r7 : Q(X,Y) +-magicP(X), P(X,Y)

The final program consists of the above rules

~1 - 1”s (rules rs and r7 are deleted because they

are modified rules derived from rules in ESV(P) -

SV(P)) plus the rule

(p(X,Y) c--'P(X,Y)) V (q&Y) c--'Q(X,Y)) + b(X,Y)

where we have omitted adornments and conse-

quently, rules of the form P(X) +- P”(X). cl

297

6 Conclusions

In this paper we have presented a technique for
the application of classical optimization methods

for Datalog queries to disjunctive Datalog. The

application of binding propagation techniques has
been carried out by rewriting disjunctive rules into

nested disjunctive rules (i.e. disjunctive rules whose
heads could contain special Datalog rules). The

computation of nested disjunctive queries is no

more difficult than for disjunctive queries. Al-

though in this paper we have considered only
negation-free and stratified linear programs, our

technique can be easily extended to the global class

of stratified disjunctive queries.

Acknowledgements: The author would like to

thank the anonymous referees for many stimulating

suggestions.

References

[I] Abiteboul, S., Hull, R., Vianu, V., Foundations of

Databases. Addison-Wesley. 1995.

[a] F. Bancilhon, D. Mayer, Y. Sagiv, and J.F. Ull-

man. Magic sets and other strange ways to imple-

ment logic programs. Proc. PODS Conf., 1986.

[3] Beeri, C. and R. Ramakrisnhan. (1991) On the

power of magic. Journal of Logic Programming.

(prel. version in PODS 1987).

[4] Dix J., U. Furbach and A. Nerode (eds.) Proc. 1nnt.

Conf. Logic Programming and Nonmonotonic Rea-

soning (System Descriptions). 1997.

[5] Eiter, T., Gottlob, G. and Mannila, Disjunctive

Datalog, in ACM Trans. on Database Systems,

Sept. 1997, Vol 22, N. 3 (Prel. vers. in PODS-94).

[6] Eiter T., N. Leone, C. Mateis, G. Pfeifer and F.

Scarcello. A Deductive System for Non-monotonic

Reasoning. Proc. LPNMR Conf., 1997. 363-374.

[7] Fernindez, J.A. and Minker, J., Semantics of Dis-

junctive Deductive Databases, in Proc. 4th ICDT

Conference. 1992. pp. 21-50.

[8] Gelfond, M., Lifschitz, V., The Stable Model Se-

mantics for Logic Programming, in Proc. Fifth

Conf. on Logic Progr., 1988, pp. 1070-1080.

[9] Gelfond, M. and Lifschitz, V., Classical Nega-

tion in Logic Programs and Disjunctive Databases,

New Generation Computing, 9, 1991, 365-385.

[lo] Greco, S., N. Leone, and F. Scarcello, Disjunctive
Datalog with Nested Rules, Proc. LPKR Work-

shop, Port Jefferson, NY, 1997.

[ll] S. Greco and C. Zaniolo, The PushDown Method

to Optimize Chain Logic Programs. In Proc.

ICALP Conference, 1995.

[la] IFIP-GI Workshop (1994), “Disjunctive Logic Pro-

gramming and Disjunctive Databases,” 13-th IFIP

World Computer Congress.

[13] Lakshmanan, Laks V.S. and F. Sadri. (1994) Prob-

abilistic deductive databases. In Proc. Int. Logic

Programming Symposium, 254-268.

[14] Leone, N., Rullo, P., Scarcello, F. (1997) Disjunc-

tive Stable Models: Unfounded Sets, Fixpoint Se-

mantics and Computation, Information and Com-

putation, Forthcoming.

[15] Lobo, J., Minker, J. and Rajasekar, A. (1992)

Foundations of Disjunctive Logic Programming

MIT Press, Cambridge, MA.

[16] Minker, J., On Indefinite Data Bases and the

Closed World Assumption, in “Proc. 6’h CADE

Conference, 1982, pp. 292-308.

[17] J. Naughton, R. Ramakrisnhan, Y. Sagiv, and J.F.

Ullman. Argument Reduction by Factoring. Proc.

15th VLDB Conference, 1989, pp. 173-182.

[18] J. Naughton, R. Ramakrisnhan, Y. Sagiv, and J.F.

Ullman. Efficient evaluation of right-, left-, and

multi-linear rules. Proc. SIGMOD Conf., 1989. pp.

235-242.

[19] Przymusinski, T. (1991), Stable Semantics for Dis-

junctive Programs, New Generation Computing, 9,

pp. 401-424.

[20] R. Ramakrisnhan, Y. Sagiv, J.F. Ullman, and

M.Y. Vardi. Logical Query Optimization by Proof-

Tree Transformation. JCSS, 47, 1993, pp. 222-248.

[21] J.D. Ullman, Principles of Database

and Knowledge-Base Systems, Computer Science

Press, Rockville, Maryland (USA), 1989.

[22] Van Gelder, A., Ross, K. A. and Schlipf, J. S.

(1991), The Well-Founded Semantics for General

Logic Programs, J. of ACM, 38(3), pp. 620-650.

298

