
Optimal Histograms with Quality Guarantees

H. V. Jagadish
AT&T Labs

jag@research.att.com

Viswanat h Poosala
Bell Labs

poosala@research.bell-labscom

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Ken Sevcik
University of Toronto

kcs@cs.toronto.edu

S. Muthukrishnan
Bell Labs

muthu@research.bell-labs.com

Torsten Sue1
Bell Labs

suel@research.bell-labscom

Abstract 1 Introduction

Histograms are commonly used to capture attribute
value distribution statistics for query optimizers.
More recently, histograms have also been considered
as a way to produce quick approximate answers to
decision support queries. This widespread interest in
histograms motivates the problem of computing his-
tograms that are good under a given error metric.
In particular, we are interested in an efficient algo-
rithm for choosing the bucket boundaries in a way
that either minimizes the estimation error for a given
amount of space (number of buckets) or, conversely,
minimizes the space needed for a given upper bound
on the error. Under the assumption that finding opti-
mal bucket boundaries is computationally inefficient,
previous research has focused on heuristics with no
provable bounds on the quality of the solutions.

In this paper, we present algorithms for computing
optimal bucket boundaries in time proportional to
the square of the number of distinct data values, for a
broad class of optimality metrics. This class includes
the V-Optimality constraint, which has been shown
to result in the most accurate histograms for sev-
eral selectivity estimation problems. Through exper-
iments, we show that optimal histograms can achieve
substantially lower estimation errors than histograms
produced by popular heuristics. We also present new
heuristics with provably good space-accuracy trade-
offs that are significantly faster than the optimal al-
gorithm. Finally, we present an enhancement to tra-
ditional histograms that allows us to provide quality
guarantees on individual selectivity estimates. In our
experiments, these quality guarantees were highly ef-
fective in isolating outliers in selectivity estimates.

It is often the case that a data set cannot be stored
or processed in its entirety; only a summarized form
is stored. A typical way in which data is summarized
is by means of a histogram. The summarized data can
be used to answer various kinds of queries, in the same
way the original data would have been used. The an-
swer obtained is not exact but approximate, and con-
tains an error due to the information lost when the
data was summarized. This error can be measured ac-
cording to some appropriate metric such as the maxi-
mum, average, or mean squared error of the estimate.

This basic idea has long been used in a database
context to estimate the result sizes of relational opera-
tors for the purpose of cost-based query optimization.
The objective is to approximate the data distribution
of the values in a column, and to use that approxi-
mation to make quick estimates of the result size of
queries involving this column.

The same idea has also been used for data analysis
and decision support. It has recently been recognized
that histograms can be used to provide fast approx-
imate responses to user queries. Consider an appli-
cation that manages a large table containing records
of telephone calls indicating the length of each call,
and that uses this table to answer queries about the
statistics of call duration. We can save much time and
space by summarizing this information in a histogram
of frequencies of occurrence for calls with lengths in
different ranges, at the cost of some error in the an-
swers provided.

In this context, the following question arises:

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

(1) Given the types of queries we wish to support and
a constraint on the space we may use, what repre-
sentation of the data minimizes the expected error
in the answers provided?

A complementary formulation is the following:

(2) Given the types of queries and a constraint on the

275

expected error that is acceptable, what represen-
tation of the data requires the least space?

In the context of histograms, the representation of the
data is obtained by partitioning it into subsets called
buckets, and the problem becomes that of identifying
the best placement of the bucket boundaries. (Sec-
tion 3 presents a more formal description of these is-
sues.)

Our Contributions. The bulk of this paper is de-
voted to addressing the first of the two questions (1)
and (2) above, where the form of summarized data
representation is a histogram. In Section 4, we present
an algorithm for computing optimal histograms based
on dynamic programming. Our main result is that it
is possible to obtain an optimal solution for a broad
range of error metrics in time that is quadratic in the
number of distinct values of the attribute being consid-
ered, and linear in the number of buckets being used.
In addition, we present an improved version of this al-
gorithm that can compute optimal histograms in a few
minutes for data distributions over tens of thousands
of values. We also present an even faster algorithm
that determines a provably close to optimal histogram,
and that combines the dynamic programming-based
approach with an additional partitioning heuristic.

In Section 5, we present the results of a set of ex-
periments that compare our algorithms to the previ-
ously known heuristics in terms of accuracy and run-
ning time.

In Section 6, we show how the second question (the
dual problem) can be addressed using very similar
techniques. We also present an alternative approach
that takes essentially linear time to compute a his-
togram that is provably close to optimal.

Furthermore, we address a known limitation of
histograms: Current histogramming techniques do
not provide any quality guarantees for individual
estimates. This is unlike, say, random-sampling
techniques, which usually provide probabilistic error
bounds on their estimates [OR86]. This problem has
not been significant until recently because histograms
have mostly been employed within optimizers, where
there is no need to report the errors. However, this is
no longer the case in applications such as approximate
query answering systems and query profilers, which
provide estimates directly to the user.

In such applications, the confidence of a user is crit-
ically dependent upon the provision of error bounds
(qualities) for the estimates. Individual estimates us-
ing histograms may differ widely in their quality, as
some regions of the distribution may be much more
difficult to represent than others. In that case, queries
involving attribute values from these regions may be
significantly less accurate than queries accessing other

buckets. If each selectivity estimate was accompanied
by some quality guarantee, then we could successfully
identify ‘Loutliers” in the estimates, and flag them as
unsuitable for further processing.

In Section 7, we propose an enhancement to his-
tograms and show how it can be used to provide qual-
ity guarantees on selectivity estimates for equality and
range queries. Our experiments indicate that the en-
hancement gives significantly better quality guaran-
tees for individual queries than the trivial worst-case
bound.

Though our algorithms are very general and work
for a large class of error metrics, for the sake of con-
creteness we present most of our results using a specific
error metric, the Sum Squared Error (SSE). This met-
ric was chosen because it plays an important role in se-
lectivity estimation - it is identical to the V-Optimality
constraint which has been shown to minimize the av-
erage selectivity estimation error for equality-join and
selection queries [IP95].

In Section 8, we briefly discuss how our algorithms
can be used to generate optimal histograms for other
error metrics such as the metric arising in the con-
text of selectivity estimation for range queries, join
queries, and metrics that incorporate knowledge about
the query workload. Finally, Section 9 offers some con-
cluding remarks. Due to space constraints, many of
the proofs and more general forms of our results, as
well as some of the experimental results, could not
be included in this paper; the details can be found in
[JKS98, MPS98].

2 Related Work

The problem of approximating a given data distribu-
tion has received considerable attention in several sci-
entific communities. In numerical analysis, the prob-
lem has been studied in the context of approximating
a given function in a piecewise fashion by a class of
simple functions such as polynomials of some fixed de-
gree [CdB72]. However, not much attention has been
given to the number of parameters or amount of space
required for the representation. Finding an optimal set
of “breakpoints” for a piecewise polynomial (or even
linear) approximation is believed to be hard due to the
continuous domain and the non-linearity of the prob-
lem space [dB97].

In statistics, the problem has been posed in connec-
tion with non-parametric density estimation as that
of constructing a histogram of a given data distribu-
tion. But again the effort has focused on minimizing
the error without taking space constraints into account
[GES85].

In the database community, the problem has been
studied in the field of query optimization and more

276

specifically in the context of selectivity estimation for
relational operators. Several techniques have been pro-
posed [MCS88], including histograms [Koo80, SC84,
Ioa93, IP95], sampling [OR86, LNSSO, HS92], and
parametric techniques. Histograms are the most com-
monly used form of statistics in practice (e.g., they
are used in DB2, Oracle, and Microsoft SQL Server)
because they incur almost no run-time overhead and
are effective even with a very small amount of storage
space. Several types of histograms have been proposed
and evaluated experimentally in terms of their ac-
curacy, including Equi Width and EquiHeight [Koo80,
SC84], MaxDiff, Compressed, End-Biased (EBV), and
V-Optimal histograms [IP95, PIHS96]. A formal tax-
onomy of histograms was proposed in [PIHS96]. The
V-Optimal histograms have been shown to minimize
the average error for several selectivity estimation
problems [IP95], but no efficient algorithms for con-
structing them have been proposed.

We are not aware of prior work on the dual question
of minimizing space given a bound on the acceptable
error, or on generating quality guarantees using his-
tograms.

3 Definitions and Problem Formula-
tion

In this section we define histograms and formulate the
various problems studied in this paper.

Consider a relation R containing an integer valued
attribute X.’ The value set V of X is the set of val-
ues of X that are present in R. For each v E V, the
frequency f(v) is the number of tuples t E R with
t.X = v. We assume that the elements of V have
been sorted according to some sort parameter (follow-
ing [PIHS96]), most commonly according to the nu-
meric values of the vi, i.e., V = {vi 1 1 < i 5 N}
where i < j iff vi < vj. Given this ordering, and using
fi = f(vi), the frequency vector of X is the ordered
set offrequencies F = {fl,fi,...,f~}.

A histogram of data distribution X is constructed
by partitioning the frequency vector F of X into B
(2 1) intervals called buckets, and approximating the
frequencies and values in each bucket in some suc-
cinct fashion, as explained further below. The result is
an approximate data distribution that can be used in
place of the actual distribution, say, in selectivity esti-
mation. Of course, the accuracy of any operation per-
formed using the histogram depends on the accuracy
of the approximation, which is determined by two fac-
tors, the partitioning technique employed for grouping

lMore general assumptions are possible, and are discussed in
[JKS98]. To simplify the presentation, we will assume that X
takes only integer values.

values into buckets and the approximation technique
employed within each bucket.

Several techniques for the approximation within a
bucket have been studied in the literature. The fre-
quencies in a bucket are most commonly approximated
by their average. The value domain is approximated
either by a continuous distribution in the bucket range
[Ko080] or by uniformly placing m values in the bucket
range, where m is the total number of distinct values
of V grouped into that bucket [PIHS96]. The latter
approach has been experimentally shown to be more
accurate for several estimation problems [PIHS96].

The main focus of this paper, however, is on the
partitioning task. We are interested in computing a
histogram of F, i.e., a summary vector H of length
B << N that approximates F. To do so, we parti-
tion F into B non-overlapping intervals 1i, 0 < i < B,
a.nd represent each interval 1i by a single summary ele-
ment hi (say, the average). We specify a reconstruction
function, RH that uses H to return for each element
oi in V an estimate of its frequency fi. The simplest,
and most widely used, reconstruction function is sim-
ply the piecewise constant function: For all values vj
within bucket Iii, the estimate R~(wj) is set to hi.

In order to evaluate the accuracy of a histogram,
we specify an error metric E(H) that defines the total
error of the approximation. Typically, E(H) can be
represented as 2)(F, Rx(V)), the distance (using some
distance metric, D, such as the mean squared error)
between the original vector F and its reconstruction
h(V).

We now define the main problem that we consider
in this paper.

Definition 1 (Space-bounded histogram prob-
lem) : Given a vector F of length N, a limit B on
the length of H, and an error metric E(), find the his-
togram H that minimizes E(H).

The dual problem is as follows.

Definition 2 (Error-bounded histogram prob-
lem) : Given a vector F of length N, a limit F on
the rror, and an error metric E(), find the histogram
H of smallest length for which E(H) is at most c.

On of the most natural choices for the bucket
approximation is to choose hi = AVG(bi, ei),i =
1 7”‘) B,2 where bi and ei are the end points of the

*There are other possible choices for the hi, such as the ge-
ometric mean of the bucket frequencies. It may also sometimes
be appropriate to store more than one scalar value per bucket.
For instance, one may store the number of cells with non-zero
count along with the average. Much of the discussion in the
paper can be carried over to such variants in a straightforward
manner.

277

ith interval and

Having fixed the choice of the hi, the problem of de-
termining H reduces to that of finding the boundaries
of the B buckets.

The choice of the error metric is important, since
it influences the boundaries of the buckets that are
formed, and determines which properties of the distri-
bution under consideration are preserved in the sum-
mary vector. Thus, the error metric should be selected
based on the intended use of the histogram.

A common metric for measuring the difference be-
tween two distributions is the Sum Squared Error
(SSE), which is defined as follows. For any interval
[a, bl,

k=b

SSE(b, 4) = ~(J’Pl - AVG(b, bl>?’
k=a

The Sum Squared Error is one of the most natural er-
ror metrics and the one that we focus on in this paper,
though most of our results extend to all decompos-
able metrics. The space-bounded histogram with SSE
as error metric is known in the literature as the V-
Optimal histogram [IP95]. In the following, we refer to
this case as the space-bounded V-Optimal histogram,
and to its dual (Definition 2) as the error-bounded V-
Optimal histogram.

4 Space-Bounded Histograms

In this section, we provide algorithms for computing
space-bounded V-Optimal histograms, i.e., algorithms
that attempt to minimize the error for a given num-
ber of buckets B. We propose three algorithms for the
problem, all of which find provably optimal or close to
optimal solutions: (1) a basic optimal algorithm based
on dynamic programming, (2) an optimized and more
sophisticated version of the basic optimal algorithm,
and (3) an approximation algorithm with provable per-
formance bounds that is significantly faster than the
optimal algorithms.

Before describing the algorithms, we state two im-
portant technical lemmas. The proofs are by simple
algebraic manipulation, and are omitted due to space
constraints.

Lemma 1 For any vector F of length N and any i,j
with 1 5 i 5 j 5 N, we have

SSE([i,j]) = c F[k12 - (j -i + 1) .AVG([i,j])2.
i<k<j

Note that if we define arrays P and PP of length n
with P[i] = CICkCi F[k] and PP[i] = CICkCi F[k12,
then we have

--

c F[kj2 = PPL] - PP[i - l]
i<k<j --

and
AVG[(i, j)] = ‘bl - ‘Li - ‘1

(j-i+l) .

This means that after spending O(N) time and O(N)
space to compute the prefix sum arrays P and PP, any
SSE([i, j]) can be computed in constant time using the
above lemma.

The next lemma is needed for the optimized version
of the basic algorithm, and states a useful monotonic-
ity property of the SSE metric.

Lemma 2 For any vector F and any i, j, k with 0 5
i<k<j<N,

SSE([i, j]) > SSE([i, k]) + SSE([k + 1, j]).

4.1 Basic Optimal Algorithm

We now present an optimal algorithm for comput-
ing V-Optimal histograms based on dynamic program-
ming. In our description, we focus on computing
SSE*, the SSE of the optimal histograms; the corre-
sponding bucket boundaries can be obtained by main-
taining an additional array that keeps track of the
bucket boundaries of the partial solutions evaluated
during the run of the algorithm. We point out that
the algorithm is not restricted to the SSE error met-
ric, but can be applied to a wide class of error metrics.

Define SSE*(i, k) to be the minimum SSE for the
prefix vector F[l, i] using at most k buckets. The cru-
cial observation underlying the algorithm is that

SSE*(i, k) = lr$=i{SSE*(j, k - 1) + SSE([j + 1, i])},
-

(1)
that is, the solution for k buckets can be reduced to
the case of k - 1 buckets by considering all possible
left boundaries of the rightmost (Icth) bucket.

Thus, in order to calculate SSE’ = SSE*(N, B),
we use dynamic programming and calculate
SSE*(i,k) for all 1 5 i 5 N and 1 5 k < B, in
increasing order of k, and for any fixed k, in increas-
ing order of i. We store all computed values of the
SSE*(i, k) in a table. Thus, when a new SSE*(i, k’)
is calculated using Equation (l), any SSE*(j, k) that
may be needed can be retrieved by a table lookup.

There are a total of O(N . B) calculations of values
SSE*(i, k), and each involves looping over O(N) val-
ues of j in Equation (1). For each j, we perform a table
lookup for SSE* (j, k), and a call to find SSE([j+l, i])
that takes constant time by Lemma 1.

278

Theorem 1 The space-bounded V-Optimal histogram
with B buckets can be computed in O(N2B) time.

4.2 Faster Implementation of the Optimal Al-
gorithm

The algorithm described above is already quite effi-
cient and can compute large histograms on thousands
of elements and hundreds of buckets in a few minutes.
We now present a technique that gives another signifi-
cant reduction in the running time on most input data.
Note that the faster algorithm still guarantees an opti-
mum solution, and that on worst-case input data, the
algorithm takes time O(N2B), as before. However,
this case seems unlikely to arise in practice. The algo-
rithm applies to a wide class of error metrics satisfying
the monotonicity property of Lemma 2.

Consider the implementation of the basic optimal
algorithm from the last subsection. Recall the compu-
tation of SSE*(i, k), and note that we have already
computed and stored all entries SSE*(i’, k - 1) with
i’ < i. (These are the only entries we need to compute
SSE*(i, k).) Suppose the algorithm now computes

SSE*(i, k) = Iyj~l{SSE*(j, k - 1) + SSE([j + l,i])},
-

by iterating j from i - 1 down to 1. Note that as j
decreases, SSE([j + 1, i]) monotonically increases due
to Lemma 2. Thus, as soon as we arrive at a j, such
that SSE([jo + l,i]) > So, where So is the minimum
solution found thus far, we can stop the search, as all
other values of j will lead to even larger errors.

This termination condition for the inner loop al-
ready results in a performance improvement. How-
ever, we can take this process much further. Assume
that So is some initial ((<seed”) value that provides
an upper bound for SSE*(i, k). Then we can use
binary search to find j,, the minimum j such that
SSE([j, + 1, i]) > So, and as before, we can conclude
that the optimum solution is obtained by some j > jo.

Now we observe that SSE*(j, k - 1) monotonically
increases as j increases, also due to Lemma 2. Thus,
SSE*(jo, k-l) is alower bound for any SSE*(j, k-l)
with j > j,. We can now define S1 = So-SSE*(jo, k-
I), and perform another binary search that finds jl ,
the minimum j such that SSE([j + 1, i]) > S1, and we
can conclude that the minimum solution is obtained
by some j > jl. In general, we define

S, = So - SSE*(j,-1, k - 1)

and repeat this process until j, = &,-I. We then use
this j, as the lower limit for j in the innermost loop,
and compute the optimum solution.

A good initial value for So can be obtained by run-
ning the innermost loop of the basic algorithm for

about N/B iterations. As stated before, the worst-
case running time is still O(N2B), but we expect the
algorithm to be significantly faster than the basic al-
gorithm in most cases.

4.3 An Approximation Algorithm

Our third algorithm is a fast approximation scheme
with provable performance bounds that leverages the
dynamic programming schemes of the previous sub-
sections. The overall idea is quite simple: We first
partition the array A into 1 disjoint chunks, for some
1, and then use the algorithm from the previous sub-
section to compute a histogram within each chunk.

A complication arises from the fact that we have to
decide how to allocate buckets to the chunks, such that
we use exactly B buckets overall. We solve this prob-
lem by implementing an additional dynamic program-
ming scheme over the number of buckets allocated to
each chunk, which then repeatedly calls the dynamic
programming algorithm inside each chunk with vary-
ing numbers of buckets. The details are non-trivial,
and omitted for space constraints. The approximation
guarantee and running time of the algorithm can be
summarized as follows.

Theorem 2 For any integers e and B, our approx-
imation algorithm computes a histogram with B + !
buckets and total SSE at most 6, where 6 is the SSE
of the optimal histogram on B buckets. Moreover, if

the e chunks are chosen to be of equal width, then the
algorithm runs in time 0(9).

We implemented this algorithm based on the fast
version of the optimal algorithm from the previous
subsection, with an additional pruning technique ap-
plied to the top-level dynamic programming scheme.
For the initial partitioning into chunks, we restrict our-
selves to equal-sized chunks in this paper. As demon-
strated in the next section, we obtain significant speed-
ups over the optimal algorithms with only a slight de-
crease in the precision of the histogram.

5 Experimental Results

To assess the performance of various partitioning tech-
niques, we conducted a series of experiments which are
described in this section. We begin by specifying the
data sets used. Due to space constraints we only give
a sample of the most interesting results; more can be
found in [JKS98, MPS98].

5.1 Experimental Testbed

We describe experiments using the following two real
data sets, extracted from census statistics.

279

l Dl: A density function on the third attribute of
the SGI adult data set.3 This data set has 732
unique values (N = 732).

l D2: The hourly wages of people from a census
data set4, with N = 30200.

In addition, in the comparison of the running times,
we also generated data according to a randomly per-
muted Zipf distribution [Zip49]. The frequency vec-
tors of the two real data sets are plotted in Figures 1
and 2. Observe that the first set is relatively smooth,
whereas the second set has a large number of spikes.
(The second set has in fact similar properties as a ran-
domly permuted Zipf distribution.) As we show in our
experiments, this difference has a significant effect on
the relative performance of the different techniques.

We studied the accuracy, plotted as the Mean
Squared Error y, and the running time, for the
following partitioning techniques: (1) The basic op-
timal algorithm of Subsection 4.1 (NAIVE-DP), (2)
the faster optimal algorithm of Subsection 4.2) (DP),
and (3) the approximation algorithm of Subsection 4.3
(CHUNK). We compared these new algorithms with
the following known techniques:

l MHIST - a greedy heuristic that repeatedly se-
lects and splits the bucket with the highest SSE.
This is the one-dimensional variant of the multi-
dimensional MHIST algorithm proposed in [PI97].

l MaxDiff - a heuristic that places the bucket
boundaries between those B pairs of adjacent
values that differ the most in their frequencies
[PIHS96].

l EquiDepth - a heuristic that partitions the dis-
tribution such that the sum of the frequencies in
each bucket is approximately equal [X84].

l EquiWidth - a trivial heuristic that partitions the
distribution into buckets of equal width [Koo80].

In the next two subsections we present the running
times and accuracies of the various techniques.

5.2 Running Times

We first compare the running times of the three
new algorithms based on dynamic programming
(NAIVE-DP, DP, and CHUNK). For this purpose, we
used a randomly permuted Zipf distribution with skew
parameter z = 0.85 and varied the number of distinct
values N. We set the space to 100 buckets and chose
the number of partitions in CHUNK as 20; this means

3available at www.kdnuggets.com
4available at www.census.gov/DES/www/welcome.html

that the algorithm is guaranteed to do as least as good
as the optimal algorithms with 80 buckets.

The results are shown in Figure 3. The limited
range of input sizes presented already shows a very
clear difference in performance between the three algo-
rithms. In particular, the fastest algorithm (CHUNK)
outperforms the slowest one (NAIVEDP) by about
two orders of magnitude. If we increase the input
size to tens and hundreds of thousands, the running
time of NAIVEDP quickly rises to several hours, while
CHUNK still runs in seconds or a few minutes. The
running time for CHUNK can of course be further re-
duced by increasing the number of partitions beyond
20. In fact we found that increasing the number to
50 with 100 buckets results in little decrease in the
accuracy.

Next, we compare the running times of the new
and old techniques. For this purpose, we fixed the
number of buckets B at 100 and varied the number of
unique values N from 500 to 20000. The results are
shown in Table 1. Note that the times for EquiWidth,
EquiDepth, MHIST, and MaxDiff are negligibly small.
CHUNK, on the other hand, while fast for small values
of N, ultimately scales quadratically. As a result, the
algorithm is significantly slower than the heuristics,
but is still much faster than the two other dynamic
programming algorithms.

II Input Size (NJ

Algorithm 1000 1 5000 1 lOOb0’ 1 20000

DP 0.56 1 12.58 1 51.24 1 253.6

Table 1: Running Times in Seconds. An asterisk is
used to denote times less than 0.01 seconds.

5.3 Accuracy

The Mean Squared Errors (SSE/N) of the different
techniques, as a function of the number of buckets,
are presented in Figures 4 and 5. In both cases,
CHUNK performs basically as well as DP (which is
optimal). The performance of other techniques varies
significantly between the two data sets.

Not surprisingly, MHIST performs very well for
smooth data (Dl), where it essentially matches
CHUNK and DP, but fails completely on spiked data
(D2), where it is as bad as the trivial EquiDepth and
EquiWidth heuristics. MaxDiff, on the other hand, es-
sentially matches CHUNK and DP on the spiked data
(D2), but performs even worse than EquiDepth and
EquiWidth on the smooth data. We also observe that

280

T-----T
200

150

100

50

0
0 1w 200 300 433 5w E4w 700 800

Figure 1: Data Set Dl Figure 2: Data Set D2

-+- EquiDepth
---E@uWidth
- MaxDiff
--. - MHIST

h CHUNK

Oci
Number of buckets

300

800

700

600

500

400

300

200

100

0
0 5000 loco0 15000 2oM)o 25300 30000 35000

+DP

looI.
0 10 20

Number of buckets

Figure 4: Effect of Bucket Space Figure 5: Effect of Bucket Space Figure 6: Effect of Data Size (N)
on Error (Dl data set) on Error (D2 data set) on Error (Dl data set)

EquiDepth and EquiWidth benefit from more buckets
for smooth data (though they are still very inaccurate),
but fail to improve for spiked data. Thus, only DP and
CHUNK achieve good accuracy on both smooth and
spiked data.

Figure 6 presents the accuracy of the algorithms on
data set Dl, as a function of the number of values
N, for a fixed number of 30 buckets. The relative
performance of various techniques remains similar to
the conclusions drawn above on Dl. Interestingly, the
mean squared errors first increase and then decrease
as N grows. This is due to the nature of Dl: the data
is more irregular in the beginning and then tapers off
to a more uniform tail at the end.

6 Error Bounded Histogram

In this section, we describe our algorithms for com-
puting error-bounded V-Optimal histograms, as de-
fined in Section 3. We present the following results:
(1) An algorithm for finding the optimal histogram
that follows directly from the results in Section 4, (2)
a new dynamic programming-based approximation al-
gorithm with proven guarantees that is suitable when

Input Size

Figure 3: Running Times of
Various Dynamic Programming-
Based Algorithms

-c MaxDlff
-+. MHIST

0-l - I
0 200 400 fL!t

Number of Unique Values(N)

E is small, and (3) an approximation algorithm with
provable accuracy bounds that runs in essentially lin-
ear time, and that is the main technical result in this
section. As before, our results hold for a wide class of
error metrics, though we focus on the SSE metric.

Definition 3 We say an algorithm is an (cy,p)-
approximation to the error-bounded V-Optimal his-
togram problem with error limit e if it returns a par-
tition with total SSE at most CYE using at most /3B’
buckets, where B’ is the optimum solution.

The Primal Approach. The algorithm is immediate
given the results in Section 4. We run the algorithm
for the space-bounded V-Optimal histogram problem,
and terminate once we compute an SSE* (N, Ic) that
is at most e. Thus,

Theorem 3 There exists an O(N2B*) time algorithm
to find a space-bounded V-Optimal histogram with er-
ror at most e, where B* is the optimum solution.

The Dual Approach. For simplicity, assume that
the error metric is integral. (This is not the case for

281

SSE, and we will also discuss the case of non-integral
metrics.) Our solution is again based on dynamic pro-
gramming. We focus only on computing the optimum
number of buckets B’; it is easy to extend this to
computing the corresponding placement of the bucket
boundaries. Define B(A,i) to be the optimum solu-
tion to the error-bounded V-Optimal histogram prob-
lem on the prefix A[l, i] with error bound A. We have,

WA, 9 = $y!=,{B(A - SSE([j + 1, i],j) + 1).
-

We need to calculate B(A, i) for each 1 5 i 5 N and
1 5 A 5 6, and each such term requires O(N) time
using the recursion above and employing dynamic pro-
gramming. When the error metric is possibly non-
integral (as with SSE), the range of values that A can
take is large. Thus, we “discretize” the error in steps
of K for some suitable choice of K, and apply the dy-
namic programming above for integral error metrics
with appropriate rounding to the next multiple of R;
the details are omitted. We can show:

Theorem 4 There eoists a (l+q, 1)-approximation
algorithm for the error-bounded V-Optimal histogram
with parameter E that runs in time O($), where B*
is the optimal number of buckets.

This algorithm has interesting trade-offs for suitable
choices of 6. For example, when K = E/G for E < 1,
this algorithm takes time O(N’fi) and achieves an
error of at most O(mc) with an optimum number
B’ of buckets. Thus, the algorithm is faster than the
one in Theorem 3, but only gives an approximate so-
lution.

An Approximation Approach. Our main techni-
cal result in this section is a fast approximation al-
gorithm for the error-bounded V-Optimal histogram
problem, with guaranteed accuracy. The algorithm is
based on an interesting technical idea in that we use
the solution to the similar problem of minimizing the
maximum SSE in any bucket in order to get an ap-
proximate solution for the V-Optimal problem of min-
imizing the total SSE. This approach works because
of two observations. Firstly, a solution that minimizes
the maximum SSE in any bucket can be found more
efficiently than a solution to the V-Optimal problem.
Secondly, we can prove that the solution for this sim-
pler problem can be used to get an approximate solu-
tion to our V-Optimal problem. We will first formalize
these observations before presenting our algorithm.

Lemma 3 Given a partitioning with B buckets and a
total SSE of at most E, there exists a partitioning in
which the maximum SSE in any bucket is at most E’
with B + 25 buckets.

Proof. We provide an algorithm that converts a par-
tition with SSE at most E and B buckets into one with
maximum SSE at most E’. Any bucket with SSE at
most e’ is left unchanged. Using the property of the
SSE metric in Lemma 2, it follows that there exist at
most 5 buckets with an SSE greater than E’. We split
all such buckets in two steps as follows. In the first
step, we traverse them from left to right and lay down
dividers as soon as the SSE of the interval seen thus
far exceeds 6’. Clearly, this step introduces at most
$ additional buckets 5. In the second step, we con-
sider any bucket that has an SSE greater than c’, and
partition it into two buckets, one containing only the
rightmost element in the interval (the SSE of this in-
terval is zero), and the other containing the rest. The
second step introduces at most 5 additional buckets.l

Lemma 4 The error-bounded histogram problem with
a maximum SSE in any bucket of at most E can be
solved in O(min{B* log N, N}) time after O(N) time
preprocessing, where B* is the optimal solution.

Proof. The details are in [MPS98]. I
We now describe our approximation algorithm,

which, at the high level, is somewhat non-intuitive. It
simply consists of determining the smallest B (say B’)
such that the optimum solution to the error-bounded
histogram problem with a maximum SSE of at most g
in any bucket is at most 3B. In order to do this, we re-
peatedly use the algorithm in Lemma 4, while perform-
ing a binary search for the value B’. Our algorithm
returns the B’ thus found, and the corresponding par-
tition, as the solution to the error-bounded V-Optimal
histogram problem. The following can be shown:

Theorem 5 The algorithm above is an (3,3)-
approximation algorithm for the error-bounded V-
Optimal histogram problem that takes time O(N +
B’ log B’ log N), where B’ is the optimum solution,

Proof. The running time follows from Lemma 4
in a straightforward manner. We claim that the
histogram computed by our algorithm is an (3,3)-
approximation. Consider the optimal partitioning for
the error-bounded V-Optimal histogram problem with
SSE at most 6. By Lemma 3 with E’ = e/B*, there ex-
ists a partition with SSE at most e/B* in any bucket
using at most 3B* buckets. It follows that the B’ our
algorithm finds is at most B*, and the solution re-
turned has at most 3B’ buckets. Any such solution
with a maximum SSE of at most e/B’ in each bucket
has a total SSE of at most 3~. This establishes the
theorem. n

5The straightforward strategy would repeatedly place di-
viders just before the SSE of the interval seen thus far exceeds c’.
It is easy to convince oneself that this strategy will only provide
guarantees that are much worse than the one we prove here.

282

7 Quality Guarantees

In general, the accuracy of a selectivity estimate can
vary widely from one query to the next, as the accuracy
of the histogram may be different for different parts
of the frequency distribution. While previous work
seems to have largely ignored this problem, we believe
that it is often highly desirable to have the histogram
return some measure of the accuracy of the estimate.
This would be particularly useful for applications that
require a high degree of accuracy, e.g., approximate
query processing.

For this purpose, we propose to augment histograms
with additional information that gives guaranteed or
statistical bounds (“quality guarantees”) on the ac-
curacy of a selectivity estimate. Of course, we could
always return the worst-case error over all queries as
our quality guarantee, but our goal is to return a good
bound for each individual query. We present possible
solutions for equality and range selection queries, and
give experimental results that show the improvements
they achieve over the worst-case guarantees.

7.1 Quality Guarantees for Equality and
Range Queries

We define the quality of a selectivity estimate as an
upper bound on its absolute error. Let R be a relation
and let fa[k] be the frequency of value Ic in attribute
a of R. Let the buckets in the histogram be bl, bz, . . .,
in increasing order of the attribute values contained in
them.
Equality Selections: The result size of an equality
predicate a == k is approximated by the average fre-
quency fi of the bucket bi containing k. Then the
absolute error of this estimate is ek =I fa[k] - fi 1.
Let Ei be the maximum error in bucket bi, i.e., Ei =
MAX{er, 1 k E bi}. A natural choice is to return Ei
as the quality guarantee for an estimate of an equality
query. Note that this requires storing an additional
value (Ei) with each bucket.
Range Selections: For simplicity, we consider one-
sided range predicates of the form a _< Ic, though the
scheme can be easily generalized. Let k fall into bucket
bi, and let m, M be the smallest and largest attribute
values in bi. Then the estimate of the result size of the
query a 5 k is given by

i-l

c Sj + (k - m + 1) . fi,
j=l

where Sj = jbjj . fj is the sum of the frequencies in
bucket bj. We derive an upper bound on the error by
observing that no error at all is incurred for the first
i - 1 buckets, since they are completely within the
range and hence accurately captured by the Sj. An

upper bound for bucket bi can be computed by using
the equality selection bound Ei for each value in bi,
giving a quality guarantee of MIN(k - m + 1, M - k +
1). Ei.

Note that this does not require any additional stor-
age beyond the Ei already used to bound the equal-
ity selection errors. However, we could decide to also
maintain in each bucket the average absolute error.
This average error could be returned as another qual-
ity measure, or it could be used in conjunction with the
Ei values to derive even tighter bounds on the (max-
imum, not average) estimation error of range queries,
by using Markov’s Inequality.

In general, by maintaining appropriate types of
statistics in each bucket, we could derive improved es-
timates as well as quality guarantees for various types
of queries. Of course, such extra statistics increase the
space used by the histogram, but this may sometimes
be a worthwhile expense. The best selection of statis-
tics depends on the particular space and accuracy re-
quirements of the application. If space is very tight,
one might just provide flags that distinguish “good”
from “bad” buckets.

7.2 Experimental Results

We briefly discuss the results of our experiments on
the quality guarantees for equality and range selec-
tion queries derived above. We compare these bounds
with the actual errors in estimating the result sizes
of equality and range selections, and with the naive
worst-case bound given by using the maximum error
over all buckets.

Figures 7 and 8 compare the three bounds as func-
tions of the bucket counts, averaged over all possible
predicates of the form X == a and X 5 a, with
1 5 a 5 N. The input is a randomly permuted Zipf
distribution with z = 0.8, and the buckets are formed
using a V-Optimal histogram, We observe that the
naive worst-case bound for the error (the upper curve)
is significantly higher than the average actual error
(the lower curve), and that the bounds derived above
lead to error bounds (the middle curve) that are sig-
nificantly closer to the actual error.

8 Other Applications

8.1 Work Load Information

The quality of a reduced data representation must be
measured based on known (or expected) query loads.
Sometimes, there is no information available regarding
the expected query load, and in this case the best one
can hope to do is to minimize the worst-case error, or
the average error assuming a uniform distribution of
queries (as our SSE metric has done so far).

283

(Average Result Size = 500)

50-l ‘\ I

o/l
50 100 150 200 250

Bucket Count Bucket Count

Figure 7: Quality Guarantees: Equality Predicates Figure 8: Quality Guarantees: Range Predicates

However, if information is available regarding ex-
pected query loads, this must be folded into the error
metric since it can affect the resulting optimal his-
togram quite significantly. To illustrate this point,
consider a synthetic data set drawn from a (truncated)
Gaussian distribution and shown in Figure 9(a) along
with a histogram with 30 buckets, created optimally
using the SSE metric (Figure 9(b)). Suppose we know
that outliers are of greatest interest in this data set,
and are likely to be queried most often, we could op-
timize the histogram for a situation where we expect
attribute values to be selected by a query inversely
proportional to the frequency of occurrence of the at-
tribute value. For this query mix, a histogram created
optimally to minimize the weighted mean square error
looks like Figure 9(c). Observe the difference in the
two histograms.

Optimal histograms easily accommodate such infor-
mation by weighting the optimization metric. All one
has to do is to factor in the weights during the pre-
processing phase when the SSE(i, j) (or any other
metric) function values are calculated. The rest of
the algorithm remains unchanged (details are avail-
able elsewhere [JKS98]). N one of the other techniques
accommodate this and, in fact, no one has addressed
this issue in the existing literature. It is not surpris-
ing that no single heuristic can possibly generate his-
tograms even remotely similar to both Figures 9(b) and
(c), for example.

queries are frequently specified with range selections.
Buckets that are completely included in a range intro-
duce no error at all. At most one bucket at each end
of the range is partially included, and we could have
an error in estimating the total count for the values
in the partial bucket included. In consequence, a pair
of adjacent attribute values with counts much higher
and much lower than the average for the bucket, may
not introduce much error since the pair of attribute
values together will be included in most range queries
- an error is induced only when one of the attribute
values is included in some range and the neighboring
cell is excluded from that range. In comparison, a
gradual “drift” of frequencies in a bucket could be sig-
nificant since ranges that include the right end of the
bucket would consistently be over- (under-) estimated
whereas ranges that include the left end of the bucket
would be under- (over-) estimated.

In fact, we know that many data distributions in
real-life are extremely skewed. We also know that
access patterns to these data are extremely skewed.
Therefore, it is important to take this skew into ac-
count when choosing histogram boundaries.

If a range query mix is specified, then this mix can
be taken into account in computing the error metric.
For each SSE(i, j) (or any other metric) to be eval-
uated, determine the boundaries of the range queries
that lie between i and j. For each of these queries,
there is a corresponding error that can be determined
(depending on whether the left, right, or both bound-
aries of the query range are included) and weighted
by the query probability. Once this has been done
in the pre-processing step, the DP algorithm can run
normally. The results can be stunningly different than
for the SSE metric. For example, consider a distribu-
tion of an age attribute. Suppose we know that typical
range queries ask about “even” ranges: i.e. about 30-
40 but not about 32-44. In other words, with high
probability range queries have boundaries at values
that are multiples of 10. Then an optimal histogram
on this data set will also have bucket boundaries only
at multiple of 10.

8.2 Range Queries

The metrics discussed thus far have focused on the
error in reconstruction of a single point. However,

(Average Result Size = 878233)

- - - 0 - - - Naive error estimates
- Error estimates

6000-
E
E

z 4OOQ-

3

h:

Actual errors

i
I
,
,
1

2000
-1 “4

50 100 150 200 250

In the absence of query probability information, one

284

(a) Gaussian Data (b) Optimal histogram (c) Optimal histogram with workload info

Figure 9: Incorporating Workload Knowledge

can still observe in general for range queries that in the
estimation of result sizes for range queries, the error
in the frequency estimate for cells in any bucket gets
weighted by the range extent of the bucket. Follow-
ing [PIHS96] an error metric can be constructed which
minimizes the variance of the “area” inside buckets.
Details are available elsewhere [JKS98].

Experimental Results. We compared the estima-
tion accuracy of DP, EquiWidth, EquiDepth, and
MaxDiff.

The starting point of each query range is uniformly
distributed over the attribute domain, and the end-
ing point is uniformly distributed between the starting
point and the end of the attribute domain.

Figures 10(a) and 10(b) present the trends in ac-
curacy of the three algorithms for data set Dl as the
number of buckets increases (Figure 10(a)) and, as the
number of cells increases (Figure 10(b)).

8.3 Join Queries

Histograms are also useful for estimating the result
size of join queries. It has been argued in [IP95] that
the error in the estimate of the query result size is
minimized when the variance of the counts of frequen-
cies in each bucket is minimized. This turns out to be
the same as our SSE metric. We next present sample
experimental results investigating the accuracy of join
result size estimation of various types of histograms.
More discussion and experimental results are available
elsewhere [JKS98].

Experimental Results. The algorithms com-
pared are DP, EquiWidth, EquiDepth and End-Biased
(EBV). For all the graphs in this subsection dealing
with accuracy of estimation, the standard deviation
of the prediction error is used as previously suggested
[IP95].

Figures 11(a) and 11(b) present the accuracy of the
algorithms for D2 with increasing number of buckets
(Figure 11(a)) and, with increasing number of cells
(Figure 11(b)). For this data set and for a small num-
ber of frequencies, DP is able to predict the join result
size almost exactly.

9 Concluding Remarks

In this paper, we have studied the problem of comput-
ing optimal histograms, which minimize the error for
a given amount of space. We have provided several
algorithms based on dynamic programming that are
the first to efficiently and precisely compute optimal
histograms under a large class of error metrics, includ-
ing the well-known V-Optimal histograms, and have
shown that the performance of our algorithms can be
improved by several orders of magnitude through the
use of several nontrivial optimizations. Our experi-
ments show that the algorithms obtain significantly
better accuracy than the known heuristics.

We have also studied the dual problem of minimiz-
ing the space required to meet a given error bound,
and have proposed a way of augmenting histograms
to return qualii$ guarantees for selectivity estimation
queries. Finally, we have extended our techniques to
incorporate knowledge of the query work load and to
identify optimal histograms for range and join queries.

Acknowledgements

Thanks to Stefan Berchtold, Christina Christara, Carl de
Boor, Yannis Ioannidis, Flip Korn, Andrew Odlyzko, Niko-
laos Sidiropoulos and Sridhar Ramaswamy for valuable dis-
cussions and comments on the writeups. We also thank the
reviewers for their comments, and Betty Salzberg for over-
seeing the preparation of the final paper.

References

[CdB72]

[dB97]

[GES85]

[HS92]

S. D. Conte and Carl de Boor. Elementary Nu-
merical Analysis: An algorithmic approach. Mc-
Graw Hill Publishing Company, 1972.

Carl de Boor. Personal communication. 1997.

T. Gasser, J. Engel, and B. Seifert. Non para-
metric density estimation. Ann. Stat., Septem-
ber 1985.

P. Haas and A. Swami. Sequential Sampling Pro-
cedures for Query Size Estimation. Proceedings
of ACM SIGMOD, San Diego, CA, pages 341-
350, June 1992.

285

1
P f

(4 (b) Dl: Increasing N

Figure 10: DP, EquiWidth, EquiDepth, MaxDiff for Dl

Figure 11: DP, EquiWidth, EquiDepth, EBV, MaxDiff for Dl

[Ioa93]

[IP95]

[JKS98]

[Koo80]

[LNSSO]

[MCSSS]

[MPS98]

Y. Ioannidis. Universality of serial histograms.
Proc. of the 19th Int. Conf. on Very Large
Databases, pages 256-267, December 1993.

Y. Ioannidis and V. Poosala. Balancing his-
togram optimality and practicality for query re-
sult size estimation. Proc. of ACM SIGMOD,
pages 233-244, May 1995.

H. V. Jagadish, Nick Koudas, and K. C. Sevcik.
Choosing Bucket Boundaries for a Histogram.
University of Toronto Technical Report, TR-375,
May 1998.

R. P. Kooi. The optimization of queries in rela-
tional databases. PhD thesis, Case Western Re-
server University, Sept 1980.

R. J. Lipton, J. F. Naughton, and D. A. Schnei-
der. Practical selectivity estimation through
adaptive sampling. Proc. of ACM SIGMOD,
pages l-11, May 1990.

M. V. Mannino, P. Chu, and T. Sager. Statisti-
cal profile estimation in database systems. A CM
Computing Surveys, 20(3):192-221, Sept 1988.

S. Muthukrishnan, V. Poosala, and T. Suel. Op-
timal Histograms with Quality Guarantees. Bell
Labs Technical Report, May 1998.

[OR861

[PI971

[PIHS96]

[SC!841

[Zip491

F. Olken and D. Rotem. Simple random sam-
pling from relational databases. Proc. of the
12th Int. Conf. on Very Large Databases, Au-
gust 1986.

V. Poosala and Y. Ioannidis. Selectivity estima-
tion without the attribute value independence
assumption. Proc. of the 23rd Int. Conf. on Very
Large Databases, August 1997.

V. Poosala, Y. Ioannidis, P. Haas, and
E. Shekita. Improved histograms for selectivity
estimation of range predicates. Proc. of ACM
SIGMOD, pages 2944305, June 1996.

G. P. Shapiro and C. Connell. Accurate estima-
tion of the number of tuples satisfying a condi-
tion. Proc. of ACM SIGMOD, pages 256-276,
1984.

G. K. Zipf. Human behaviour and the principle
of least effort. Addison-Wesley, Reading, MA,
1949.

286

