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Abstract 1 Introduction 

Histograms are commonly used to capture attribute 
value distribution statistics for query optimizers. 
More recently, histograms have also been considered 
as a way to produce quick approximate answers to 
decision support queries. This widespread interest in 
histograms motivates the problem of computing his- 
tograms that are good under a given error metric. 
In particular, we are interested in an efficient algo- 
rithm for choosing the bucket boundaries in a way 
that either minimizes the estimation error for a given 
amount of space (number of buckets) or, conversely, 
minimizes the space needed for a given upper bound 
on the error. Under the assumption that finding opti- 
mal bucket boundaries is computationally inefficient, 
previous research has focused on heuristics with no 
provable bounds on the quality of the solutions. 

In this paper, we present algorithms for computing 
optimal bucket boundaries in time proportional to 
the square of the number of distinct data values, for a 
broad class of optimality metrics. This class includes 
the V-Optimality constraint, which has been shown 
to result in the most accurate histograms for sev- 
eral selectivity estimation problems. Through exper- 
iments, we show that optimal histograms can achieve 
substantially lower estimation errors than histograms 
produced by popular heuristics. We also present new 
heuristics with provably good space-accuracy trade- 
offs that are significantly faster than the optimal al- 
gorithm. Finally, we present an enhancement to tra- 
ditional histograms that allows us to provide quality 
guarantees on individual selectivity estimates. In our 
experiments, these quality guarantees were highly ef- 
fective in isolating outliers in selectivity estimates. 

It is often the case that a data set cannot be stored 
or processed in its entirety; only a summarized form 
is stored. A typical way in which data is summarized 
is by means of a histogram. The summarized data can 
be used to answer various kinds of queries, in the same 
way the original data would have been used. The an- 
swer obtained is not exact but approximate, and con- 
tains an error due to the information lost when the 
data was summarized. This error can be measured ac- 
cording to some appropriate metric such as the maxi- 
mum, average, or mean squared error of the estimate. 

This basic idea has long been used in a database 
context to estimate the result sizes of relational opera- 
tors for the purpose of cost-based query optimization. 
The objective is to approximate the data distribution 
of the values in a column, and to use that approxi- 
mation to make quick estimates of the result size of 
queries involving this column. 

The same idea has also been used for data analysis 
and decision support. It has recently been recognized 
that histograms can be used to provide fast approx- 
imate responses to user queries. Consider an appli- 
cation that manages a large table containing records 
of telephone calls indicating the length of each call, 
and that uses this table to answer queries about the 
statistics of call duration. We can save much time and 
space by summarizing this information in a histogram 
of frequencies of occurrence for calls with lengths in 
different ranges, at the cost of some error in the an- 
swers provided. 

In this context, the following question arises: 
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(1) Given the types of queries we wish to support and 
a constraint on the space we may use, what repre- 
sentation of the data minimizes the expected error 
in the answers provided? 

A complementary formulation is the following: 

(2) Given the types of queries and a constraint on the 
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expected error that is acceptable, what represen- 
tation of the data requires the least space? 

In the context of histograms, the representation of the 
data is obtained by partitioning it into subsets called 
buckets, and the problem becomes that of identifying 
the best placement of the bucket boundaries. (Sec- 
tion 3 presents a more formal description of these is- 
sues.) 

Our Contributions. The bulk of this paper is de- 
voted to addressing the first of the two questions (1) 
and (2) above, where the form of summarized data 
representation is a histogram. In Section 4, we present 
an algorithm for computing optimal histograms based 
on dynamic programming. Our main result is that it 
is possible to obtain an optimal solution for a broad 
range of error metrics in time that is quadratic in the 
number of distinct values of the attribute being consid- 
ered, and linear in the number of buckets being used. 
In addition, we present an improved version of this al- 
gorithm that can compute optimal histograms in a few 
minutes for data distributions over tens of thousands 
of values. We also present an even faster algorithm 
that determines a provably close to optimal histogram, 
and that combines the dynamic programming-based 
approach with an additional partitioning heuristic. 

In Section 5, we present the results of a set of ex- 
periments that compare our algorithms to the previ- 
ously known heuristics in terms of accuracy and run- 
ning time. 

In Section 6, we show how the second question (the 
dual problem) can be addressed using very similar 
techniques. We also present an alternative approach 
that takes essentially linear time to compute a his- 
togram that is provably close to optimal. 

Furthermore, we address a known limitation of 
histograms: Current histogramming techniques do 
not provide any quality guarantees for individual 
estimates. This is unlike, say, random-sampling 
techniques, which usually provide probabilistic error 
bounds on their estimates [OR86]. This problem has 
not been significant until recently because histograms 
have mostly been employed within optimizers, where 
there is no need to report the errors. However, this is 
no longer the case in applications such as approximate 
query answering systems and query profilers, which 
provide estimates directly to the user. 

In such applications, the confidence of a user is crit- 
ically dependent upon the provision of error bounds 
(qualities) for the estimates. Individual estimates us- 
ing histograms may differ widely in their quality, as 
some regions of the distribution may be much more 
difficult to represent than others. In that case, queries 
involving attribute values from these regions may be 
significantly less accurate than queries accessing other 

buckets. If each selectivity estimate was accompanied 
by some quality guarantee, then we could successfully 
identify ‘Loutliers” in the estimates, and flag them as 
unsuitable for further processing. 

In Section 7, we propose an enhancement to his- 
tograms and show how it can be used to provide qual- 
ity guarantees on selectivity estimates for equality and 
range queries. Our experiments indicate that the en- 
hancement gives significantly better quality guaran- 
tees for individual queries than the trivial worst-case 
bound. 

Though our algorithms are very general and work 
for a large class of error metrics, for the sake of con- 
creteness we present most of our results using a specific 
error metric, the Sum Squared Error (SSE). This met- 
ric was chosen because it plays an important role in se- 
lectivity estimation - it is identical to the V-Optimality 
constraint which has been shown to minimize the av- 
erage selectivity estimation error for equality-join and 
selection queries [IP95]. 

In Section 8, we briefly discuss how our algorithms 
can be used to generate optimal histograms for other 
error metrics such as the metric arising in the con- 
text of selectivity estimation for range queries, join 
queries, and metrics that incorporate knowledge about 
the query workload. Finally, Section 9 offers some con- 
cluding remarks. Due to space constraints, many of 
the proofs and more general forms of our results, as 
well as some of the experimental results, could not 
be included in this paper; the details can be found in 
[JKS98, MPS98]. 

2 Related Work 

The problem of approximating a given data distribu- 
tion has received considerable attention in several sci- 
entific communities. In numerical analysis, the prob- 
lem has been studied in the context of approximating 
a given function in a piecewise fashion by a class of 
simple functions such as polynomials of some fixed de- 
gree [CdB72]. However, not much attention has been 
given to the number of parameters or amount of space 
required for the representation. Finding an optimal set 
of “breakpoints” for a piecewise polynomial (or even 
linear) approximation is believed to be hard due to the 
continuous domain and the non-linearity of the prob- 
lem space [dB97]. 

In statistics, the problem has been posed in connec- 
tion with non-parametric density estimation as that 
of constructing a histogram of a given data distribu- 
tion. But again the effort has focused on minimizing 
the error without taking space constraints into account 
[GES85]. 

In the database community, the problem has been 
studied in the field of query optimization and more 
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specifically in the context of selectivity estimation for 
relational operators. Several techniques have been pro- 
posed [MCS88], including histograms [Koo80, SC84, 
Ioa93, IP95], sampling [OR86, LNSSO, HS92], and 
parametric techniques. Histograms are the most com- 
monly used form of statistics in practice (e.g., they 
are used in DB2, Oracle, and Microsoft SQL Server) 
because they incur almost no run-time overhead and 
are effective even with a very small amount of storage 
space. Several types of histograms have been proposed 
and evaluated experimentally in terms of their ac- 
curacy, including Equi Width and EquiHeight [Koo80, 
SC84], MaxDiff, Compressed, End-Biased (EBV), and 
V-Optimal histograms [IP95, PIHS96]. A formal tax- 
onomy of histograms was proposed in [PIHS96]. The 
V-Optimal histograms have been shown to minimize 
the average error for several selectivity estimation 
problems [IP95], but no efficient algorithms for con- 
structing them have been proposed. 

We are not aware of prior work on the dual question 
of minimizing space given a bound on the acceptable 
error, or on generating quality guarantees using his- 
tograms. 

3 Definitions and Problem Formula- 
tion 

In this section we define histograms and formulate the 
various problems studied in this paper. 

Consider a relation R containing an integer valued 
attribute X.’ The value set V of X is the set of val- 
ues of X that are present in R. For each v E V, the 
frequency f(v) is the number of tuples t E R with 
t.X = v. We assume that the elements of V have 
been sorted according to some sort parameter (follow- 
ing [PIHS96]), most commonly according to the nu- 
meric values of the vi, i.e., V = {vi 1 1 < i 5 N} 
where i < j iff vi < vj. Given this ordering, and using 
fi = f(vi), the frequency vector of X is the ordered 
set offrequencies F = {fl,fi,...,f~}. 

A histogram of data distribution X is constructed 
by partitioning the frequency vector F of X into B 
(2 1) intervals called buckets, and approximating the 
frequencies and values in each bucket in some suc- 
cinct fashion, as explained further below. The result is 
an approximate data distribution that can be used in 
place of the actual distribution, say, in selectivity esti- 
mation. Of course, the accuracy of any operation per- 
formed using the histogram depends on the accuracy 
of the approximation, which is determined by two fac- 
tors, the partitioning technique employed for grouping 

lMore general assumptions are possible, and are discussed in 
[JKS98]. To simplify the presentation, we will assume that X 
takes only integer values. 

values into buckets and the approximation technique 
employed within each bucket. 

Several techniques for the approximation within a 
bucket have been studied in the literature. The fre- 
quencies in a bucket are most commonly approximated 
by their average. The value domain is approximated 
either by a continuous distribution in the bucket range 
[Ko080] or by uniformly placing m values in the bucket 
range, where m is the total number of distinct values 
of V grouped into that bucket [PIHS96]. The latter 
approach has been experimentally shown to be more 
accurate for several estimation problems [PIHS96]. 

The main focus of this paper, however, is on the 
partitioning task. We are interested in computing a 
histogram of F, i.e., a summary vector H of length 
B << N that approximates F. To do so, we parti- 
tion F into B non-overlapping intervals 1i, 0 < i < B, 
a.nd represent each interval 1i by a single summary ele- 
ment hi (say, the average). We specify a reconstruction 
function, RH that uses H to return for each element 
oi in V an estimate of its frequency fi. The simplest, 
and most widely used, reconstruction function is sim- 
ply the piecewise constant function: For all values vj 
within bucket Iii, the estimate R~(wj) is set to hi. 

In order to evaluate the accuracy of a histogram, 
we specify an error metric E(H) that defines the total 
error of the approximation. Typically, E(H) can be 
represented as 2)(F, Rx(V)), the distance (using some 
distance metric, D, such as the mean squared error) 
between the original vector F and its reconstruction 
h(V). 

We now define the main problem that we consider 
in this paper. 

Definition 1 (Space-bounded histogram prob- 
lem) : Given a vector F of length N, a limit B on 
the length of H, and an error metric E(), find the his- 
togram H that minimizes E(H). 

The dual problem is as follows. 

Definition 2 (Error-bounded histogram prob- 
lem) : Given a vector F of length N, a limit F on 
the rror, and an error metric E(), find the histogram 
H of smallest length for which E(H) is at most c. 

On of the most natural choices for the bucket 
approximation is to choose hi = AVG(bi, ei),i = 
1 7”‘) B,2 where bi and ei are the end points of the 

*There are other possible choices for the hi, such as the ge- 
ometric mean of the bucket frequencies. It may also sometimes 
be appropriate to store more than one scalar value per bucket. 
For instance, one may store the number of cells with non-zero 
count along with the average. Much of the discussion in the 
paper can be carried over to such variants in a straightforward 
manner. 
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ith interval and 

Having fixed the choice of the hi, the problem of de- 
termining H reduces to that of finding the boundaries 
of the B buckets. 

The choice of the error metric is important, since 
it influences the boundaries of the buckets that are 
formed, and determines which properties of the distri- 
bution under consideration are preserved in the sum- 
mary vector. Thus, the error metric should be selected 
based on the intended use of the histogram. 

A common metric for measuring the difference be- 
tween two distributions is the Sum Squared Error 
(SSE), which is defined as follows. For any interval 
[a, bl, 

k=b 

SSE(b, 4) = ~(J’Pl - AVG(b, bl>?’ 
k=a 

The Sum Squared Error is one of the most natural er- 
ror metrics and the one that we focus on in this paper, 
though most of our results extend to all decompos- 
able metrics. The space-bounded histogram with SSE 
as error metric is known in the literature as the V- 
Optimal histogram [IP95]. In the following, we refer to 
this case as the space-bounded V-Optimal histogram, 
and to its dual (Definition 2) as the error-bounded V- 
Optimal histogram. 

4 Space-Bounded Histograms 

In this section, we provide algorithms for computing 
space-bounded V-Optimal histograms, i.e., algorithms 
that attempt to minimize the error for a given num- 
ber of buckets B. We propose three algorithms for the 
problem, all of which find provably optimal or close to 
optimal solutions: (1) a basic optimal algorithm based 
on dynamic programming, (2) an optimized and more 
sophisticated version of the basic optimal algorithm, 
and (3) an approximation algorithm with provable per- 
formance bounds that is significantly faster than the 
optimal algorithms. 

Before describing the algorithms, we state two im- 
portant technical lemmas. The proofs are by simple 
algebraic manipulation, and are omitted due to space 
constraints. 

Lemma 1 For any vector F of length N and any i,j 
with 1 5 i 5 j 5 N, we have 

SSE([i,j]) = c F[k12 - (j -i + 1) .AVG([i,j])2. 
i<k<j 

Note that if we define arrays P and PP of length n 
with P[i] = CICkCi F[k] and PP[i] = CICkCi F[k12, 
then we have 

-- 

c F[kj2 = PPL] - PP[i - l] 
i<k<j -- 

and 
AVG[(i, j)] = ‘bl - ‘Li - ‘1 

(j-i+l) . 

This means that after spending O(N) time and O(N) 
space to compute the prefix sum arrays P and PP, any 
SSE( [i, j]) can be computed in constant time using the 
above lemma. 

The next lemma is needed for the optimized version 
of the basic algorithm, and states a useful monotonic- 
ity property of the SSE metric. 

Lemma 2 For any vector F and any i, j, k with 0 5 
i<k<j<N, 

SSE([i, j]) > SSE([i, k]) + SSE([k + 1, j]). 

4.1 Basic Optimal Algorithm 

We now present an optimal algorithm for comput- 
ing V-Optimal histograms based on dynamic program- 
ming. In our description, we focus on computing 
SSE*, the SSE of the optimal histograms; the corre- 
sponding bucket boundaries can be obtained by main- 
taining an additional array that keeps track of the 
bucket boundaries of the partial solutions evaluated 
during the run of the algorithm. We point out that 
the algorithm is not restricted to the SSE error met- 
ric, but can be applied to a wide class of error metrics. 

Define SSE*(i, k) to be the minimum SSE for the 
prefix vector F[l, i] using at most k buckets. The cru- 
cial observation underlying the algorithm is that 

SSE*(i, k) = lr$=i{SSE*(j, k - 1) + SSE([j + 1, i])}, 
- 

(1) 
that is, the solution for k buckets can be reduced to 
the case of k - 1 buckets by considering all possible 
left boundaries of the rightmost (Icth) bucket. 

Thus, in order to calculate SSE’ = SSE*(N, B), 
we use dynamic programming and calculate 
SSE*(i,k) for all 1 5 i 5 N and 1 5 k < B, in 
increasing order of k, and for any fixed k, in increas- 
ing order of i. We store all computed values of the 
SSE*(i, k) in a table. Thus, when a new SSE*(i, k’) 
is calculated using Equation (l), any SSE*(j, k) that 
may be needed can be retrieved by a table lookup. 

There are a total of O(N . B) calculations of values 
SSE*(i, k), and each involves looping over O(N) val- 
ues of j in Equation (1). For each j, we perform a table 
lookup for SSE* (j, k), and a call to find SSE([j+l, i]) 
that takes constant time by Lemma 1. 

278 



Theorem 1 The space-bounded V-Optimal histogram 
with B buckets can be computed in O(N2B) time. 

4.2 Faster Implementation of the Optimal Al- 
gorithm 

The algorithm described above is already quite effi- 
cient and can compute large histograms on thousands 
of elements and hundreds of buckets in a few minutes. 
We now present a technique that gives another signifi- 
cant reduction in the running time on most input data. 
Note that the faster algorithm still guarantees an opti- 
mum solution, and that on worst-case input data, the 
algorithm takes time O(N2B), as before. However, 
this case seems unlikely to arise in practice. The algo- 
rithm applies to a wide class of error metrics satisfying 
the monotonicity property of Lemma 2. 

Consider the implementation of the basic optimal 
algorithm from the last subsection. Recall the compu- 
tation of SSE*(i, k), and note that we have already 
computed and stored all entries SSE*(i’, k - 1) with 
i’ < i. (These are the only entries we need to compute 
SSE*(i, k).) Suppose the algorithm now computes 

SSE*(i, k) = Iyj~l{SSE*(j, k - 1) + SSE([j + l,i])}, 
- 

by iterating j from i - 1 down to 1. Note that as j 
decreases, SSE([j + 1, i]) monotonically increases due 
to Lemma 2. Thus, as soon as we arrive at a j, such 
that SSE([jo + l,i]) > So, where So is the minimum 
solution found thus far, we can stop the search, as all 
other values of j will lead to even larger errors. 

This termination condition for the inner loop al- 
ready results in a performance improvement. How- 
ever, we can take this process much further. Assume 
that So is some initial ((<seed”) value that provides 
an upper bound for SSE*(i, k). Then we can use 
binary search to find j,, the minimum j such that 
SSE( [j, + 1, i]) > So, and as before, we can conclude 
that the optimum solution is obtained by some j > jo. 

Now we observe that SSE*(j, k - 1) monotonically 
increases as j increases, also due to Lemma 2. Thus, 
SSE*(jo, k-l) is alower bound for any SSE*(j, k-l) 
with j > j,. We can now define S1 = So-SSE*(jo, k- 
I), and perform another binary search that finds jl , 
the minimum j such that SSE([j + 1, i]) > S1, and we 
can conclude that the minimum solution is obtained 
by some j > jl. In general, we define 

S, = So - SSE*(j,-1, k - 1) 

and repeat this process until j, = &,-I. We then use 
this j, as the lower limit for j in the innermost loop, 
and compute the optimum solution. 

A good initial value for So can be obtained by run- 
ning the innermost loop of the basic algorithm for 

about N/B iterations. As stated before, the worst- 
case running time is still O(N2B), but we expect the 
algorithm to be significantly faster than the basic al- 
gorithm in most cases. 

4.3 An Approximation Algorithm 

Our third algorithm is a fast approximation scheme 
with provable performance bounds that leverages the 
dynamic programming schemes of the previous sub- 
sections. The overall idea is quite simple: We first 
partition the array A into 1 disjoint chunks, for some 
1, and then use the algorithm from the previous sub- 
section to compute a histogram within each chunk. 

A complication arises from the fact that we have to 
decide how to allocate buckets to the chunks, such that 
we use exactly B buckets overall. We solve this prob- 
lem by implementing an additional dynamic program- 
ming scheme over the number of buckets allocated to 
each chunk, which then repeatedly calls the dynamic 
programming algorithm inside each chunk with vary- 
ing numbers of buckets. The details are non-trivial, 
and omitted for space constraints. The approximation 
guarantee and running time of the algorithm can be 
summarized as follows. 

Theorem 2 For any integers e and B, our approx- 
imation algorithm computes a histogram with B + ! 
buckets and total SSE at most 6, where 6 is the SSE 
of the optimal histogram on B buckets. Moreover, if 

the e chunks are chosen to be of equal width, then the 
algorithm runs in time 0( 9). 

We implemented this algorithm based on the fast 
version of the optimal algorithm from the previous 
subsection, with an additional pruning technique ap- 
plied to the top-level dynamic programming scheme. 
For the initial partitioning into chunks, we restrict our- 
selves to equal-sized chunks in this paper. As demon- 
strated in the next section, we obtain significant speed- 
ups over the optimal algorithms with only a slight de- 
crease in the precision of the histogram. 

5 Experimental Results 

To assess the performance of various partitioning tech- 
niques, we conducted a series of experiments which are 
described in this section. We begin by specifying the 
data sets used. Due to space constraints we only give 
a sample of the most interesting results; more can be 
found in [JKS98, MPS98]. 

5.1 Experimental Testbed 

We describe experiments using the following two real 
data sets, extracted from census statistics. 
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l Dl: A density function on the third attribute of 
the SGI adult data set.3 This data set has 732 
unique values (N = 732). 

l D2: The hourly wages of people from a census 
data set4, with N = 30200. 

In addition, in the comparison of the running times, 
we also generated data according to a randomly per- 
muted Zipf distribution [Zip49]. The frequency vec- 
tors of the two real data sets are plotted in Figures 1 
and 2. Observe that the first set is relatively smooth, 
whereas the second set has a large number of spikes. 
(The second set has in fact similar properties as a ran- 
domly permuted Zipf distribution.) As we show in our 
experiments, this difference has a significant effect on 
the relative performance of the different techniques. 

We studied the accuracy, plotted as the Mean 
Squared Error y, and the running time, for the 
following partitioning techniques: (1) The basic op- 
timal algorithm of Subsection 4.1 (NAIVE-DP), (2) 
the faster optimal algorithm of Subsection 4.2) (DP), 
and (3) the approximation algorithm of Subsection 4.3 
(CHUNK). We compared these new algorithms with 
the following known techniques: 

l MHIST - a greedy heuristic that repeatedly se- 
lects and splits the bucket with the highest SSE. 
This is the one-dimensional variant of the multi- 
dimensional MHIST algorithm proposed in [PI97]. 

l MaxDiff - a heuristic that places the bucket 
boundaries between those B pairs of adjacent 
values that differ the most in their frequencies 
[PIHS96]. 

l EquiDepth - a heuristic that partitions the dis- 
tribution such that the sum of the frequencies in 
each bucket is approximately equal [X84]. 

l EquiWidth - a trivial heuristic that partitions the 
distribution into buckets of equal width [Koo80]. 

In the next two subsections we present the running 
times and accuracies of the various techniques. 

5.2 Running Times 

We first compare the running times of the three 
new algorithms based on dynamic programming 
(NAIVE-DP, DP, and CHUNK). For this purpose, we 
used a randomly permuted Zipf distribution with skew 
parameter z = 0.85 and varied the number of distinct 
values N. We set the space to 100 buckets and chose 
the number of partitions in CHUNK as 20; this means 

3available at www.kdnuggets.com 
4available at www.census.gov/DES/www/welcome.html 

that the algorithm is guaranteed to do as least as good 
as the optimal algorithms with 80 buckets. 

The results are shown in Figure 3. The limited 
range of input sizes presented already shows a very 
clear difference in performance between the three algo- 
rithms. In particular, the fastest algorithm (CHUNK) 
outperforms the slowest one (NAIVEDP) by about 
two orders of magnitude. If we increase the input 
size to tens and hundreds of thousands, the running 
time of NAIVEDP quickly rises to several hours, while 
CHUNK still runs in seconds or a few minutes. The 
running time for CHUNK can of course be further re- 
duced by increasing the number of partitions beyond 
20. In fact we found that increasing the number to 
50 with 100 buckets results in little decrease in the 
accuracy. 

Next, we compare the running times of the new 
and old techniques. For this purpose, we fixed the 
number of buckets B at 100 and varied the number of 
unique values N from 500 to 20000. The results are 
shown in Table 1. Note that the times for EquiWidth, 
EquiDepth, MHIST, and MaxDiff are negligibly small. 
CHUNK, on the other hand, while fast for small values 
of N, ultimately scales quadratically. As a result, the 
algorithm is significantly slower than the heuristics, 
but is still much faster than the two other dynamic 
programming algorithms. 

II Input Size (NJ 

Algorithm 1000 1 5000 1 lOOb0’ 1 20000 

DP 0.56 1 12.58 1 51.24 1 253.6 

Table 1: Running Times in Seconds. An asterisk is 
used to denote times less than 0.01 seconds. 

5.3 Accuracy 

The Mean Squared Errors (SSE/N) of the different 
techniques, as a function of the number of buckets, 
are presented in Figures 4 and 5. In both cases, 
CHUNK performs basically as well as DP (which is 
optimal). The performance of other techniques varies 
significantly between the two data sets. 

Not surprisingly, MHIST performs very well for 
smooth data (Dl), where it essentially matches 
CHUNK and DP, but fails completely on spiked data 
(D2), where it is as bad as the trivial EquiDepth and 
EquiWidth heuristics. MaxDiff, on the other hand, es- 
sentially matches CHUNK and DP on the spiked data 
(D2), but performs even worse than EquiDepth and 
EquiWidth on the smooth data. We also observe that 
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EquiDepth and EquiWidth benefit from more buckets 
for smooth data (though they are still very inaccurate), 
but fail to improve for spiked data. Thus, only DP and 
CHUNK achieve good accuracy on both smooth and 
spiked data. 

Figure 6 presents the accuracy of the algorithms on 
data set Dl, as a function of the number of values 
N, for a fixed number of 30 buckets. The relative 
performance of various techniques remains similar to 
the conclusions drawn above on Dl. Interestingly, the 
mean squared errors first increase and then decrease 
as N grows. This is due to the nature of Dl: the data 
is more irregular in the beginning and then tapers off 
to a more uniform tail at the end. 

6 Error Bounded Histogram 

In this section, we describe our algorithms for com- 
puting error-bounded V-Optimal histograms, as de- 
fined in Section 3. We present the following results: 
(1) An algorithm for finding the optimal histogram 
that follows directly from the results in Section 4, (2) 
a new dynamic programming-based approximation al- 
gorithm with proven guarantees that is suitable when 

Input Size 

Figure 3: Running Times of 
Various Dynamic Programming- 
Based Algorithms 
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E is small, and (3) an approximation algorithm with 
provable accuracy bounds that runs in essentially lin- 
ear time, and that is the main technical result in this 
section. As before, our results hold for a wide class of 
error metrics, though we focus on the SSE metric. 

Definition 3 We say an algorithm is an (cy,p)- 
approximation to the error-bounded V-Optimal his- 
togram problem with error limit e if it returns a par- 
tition with total SSE at most CYE using at most /3B’ 
buckets, where B’ is the optimum solution. 

The Primal Approach. The algorithm is immediate 
given the results in Section 4. We run the algorithm 
for the space-bounded V-Optimal histogram problem, 
and terminate once we compute an SSE* (N, Ic) that 
is at most e. Thus, 

Theorem 3 There exists an O(N2B*) time algorithm 
to find a space-bounded V-Optimal histogram with er- 
ror at most e, where B* is the optimum solution. 

The Dual Approach. For simplicity, assume that 
the error metric is integral. (This is not the case for 
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SSE, and we will also discuss the case of non-integral 
metrics.) Our solution is again based on dynamic pro- 
gramming. We focus only on computing the optimum 
number of buckets B’; it is easy to extend this to 
computing the corresponding placement of the bucket 
boundaries. Define B(A,i) to be the optimum solu- 
tion to the error-bounded V-Optimal histogram prob- 
lem on the prefix A[l, i] with error bound A. We have, 

WA, 9 = $y!=,{B(A - SSE([j + 1, i],j) + 1). 
- 

We need to calculate B(A, i) for each 1 5 i 5 N and 
1 5 A 5 6, and each such term requires O(N) time 
using the recursion above and employing dynamic pro- 
gramming. When the error metric is possibly non- 
integral (as with SSE), the range of values that A can 
take is large. Thus, we “discretize” the error in steps 
of K for some suitable choice of K, and apply the dy- 
namic programming above for integral error metrics 
with appropriate rounding to the next multiple of R; 
the details are omitted. We can show: 

Theorem 4 There eoists a (l+q, 1)-approximation 
algorithm for the error-bounded V-Optimal histogram 
with parameter E that runs in time O($), where B* 
is the optimal number of buckets. 

This algorithm has interesting trade-offs for suitable 
choices of 6. For example, when K = E/G for E < 1, 
this algorithm takes time O(N’fi) and achieves an 
error of at most O(mc) with an optimum number 
B’ of buckets. Thus, the algorithm is faster than the 
one in Theorem 3, but only gives an approximate so- 
lution. 

An Approximation Approach. Our main techni- 
cal result in this section is a fast approximation al- 
gorithm for the error-bounded V-Optimal histogram 
problem, with guaranteed accuracy. The algorithm is 
based on an interesting technical idea in that we use 
the solution to the similar problem of minimizing the 
maximum SSE in any bucket in order to get an ap- 
proximate solution for the V-Optimal problem of min- 
imizing the total SSE. This approach works because 
of two observations. Firstly, a solution that minimizes 
the maximum SSE in any bucket can be found more 
efficiently than a solution to the V-Optimal problem. 
Secondly, we can prove that the solution for this sim- 
pler problem can be used to get an approximate solu- 
tion to our V-Optimal problem. We will first formalize 
these observations before presenting our algorithm. 

Lemma 3 Given a partitioning with B buckets and a 
total SSE of at most E, there exists a partitioning in 
which the maximum SSE in any bucket is at most E’ 
with B + 25 buckets. 

Proof. We provide an algorithm that converts a par- 
tition with SSE at most E and B buckets into one with 
maximum SSE at most E’. Any bucket with SSE at 
most e’ is left unchanged. Using the property of the 
SSE metric in Lemma 2, it follows that there exist at 
most 5 buckets with an SSE greater than E’. We split 
all such buckets in two steps as follows. In the first 
step, we traverse them from left to right and lay down 
dividers as soon as the SSE of the interval seen thus 
far exceeds 6’. Clearly, this step introduces at most 
$ additional buckets 5. In the second step, we con- 
sider any bucket that has an SSE greater than c’, and 
partition it into two buckets, one containing only the 
rightmost element in the interval (the SSE of this in- 
terval is zero), and the other containing the rest. The 
second step introduces at most 5 additional buckets.l 

Lemma 4 The error-bounded histogram problem with 
a maximum SSE in any bucket of at most E can be 
solved in O(min{B* log N, N}) time after O(N) time 
preprocessing, where B* is the optimal solution. 

Proof. The details are in [MPS98]. I 
We now describe our approximation algorithm, 

which, at the high level, is somewhat non-intuitive. It 
simply consists of determining the smallest B (say B’) 
such that the optimum solution to the error-bounded 
histogram problem with a maximum SSE of at most g 
in any bucket is at most 3B. In order to do this, we re- 
peatedly use the algorithm in Lemma 4, while perform- 
ing a binary search for the value B’. Our algorithm 
returns the B’ thus found, and the corresponding par- 
tition, as the solution to the error-bounded V-Optimal 
histogram problem. The following can be shown: 

Theorem 5 The algorithm above is an (3,3)- 
approximation algorithm for the error-bounded V- 
Optimal histogram problem that takes time O(N + 
B’ log B’ log N), where B’ is the optimum solution, 

Proof. The running time follows from Lemma 4 
in a straightforward manner. We claim that the 
histogram computed by our algorithm is an (3,3)- 
approximation. Consider the optimal partitioning for 
the error-bounded V-Optimal histogram problem with 
SSE at most 6. By Lemma 3 with E’ = e/B*, there ex- 
ists a partition with SSE at most e/B* in any bucket 
using at most 3B* buckets. It follows that the B’ our 
algorithm finds is at most B*, and the solution re- 
turned has at most 3B’ buckets. Any such solution 
with a maximum SSE of at most e/B’ in each bucket 
has a total SSE of at most 3~. This establishes the 
theorem. n 

5The straightforward strategy would repeatedly place di- 
viders just before the SSE of the interval seen thus far exceeds c’. 
It is easy to convince oneself that this strategy will only provide 
guarantees that are much worse than the one we prove here. 
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7 Quality Guarantees 

In general, the accuracy of a selectivity estimate can 
vary widely from one query to the next, as the accuracy 
of the histogram may be different for different parts 
of the frequency distribution. While previous work 
seems to have largely ignored this problem, we believe 
that it is often highly desirable to have the histogram 
return some measure of the accuracy of the estimate. 
This would be particularly useful for applications that 
require a high degree of accuracy, e.g., approximate 
query processing. 

For this purpose, we propose to augment histograms 
with additional information that gives guaranteed or 
statistical bounds (“quality guarantees”) on the ac- 
curacy of a selectivity estimate. Of course, we could 
always return the worst-case error over all queries as 
our quality guarantee, but our goal is to return a good 
bound for each individual query. We present possible 
solutions for equality and range selection queries, and 
give experimental results that show the improvements 
they achieve over the worst-case guarantees. 

7.1 Quality Guarantees for Equality and 
Range Queries 

We define the quality of a selectivity estimate as an 
upper bound on its absolute error. Let R be a relation 
and let fa[k] be the frequency of value Ic in attribute 
a of R. Let the buckets in the histogram be bl, bz, . . ., 
in increasing order of the attribute values contained in 
them. 
Equality Selections: The result size of an equality 
predicate a == k is approximated by the average fre- 
quency fi of the bucket bi containing k. Then the 
absolute error of this estimate is ek =I fa[k] - fi 1. 
Let Ei be the maximum error in bucket bi, i.e., Ei = 
MAX{er, 1 k E bi}. A natural choice is to return Ei 
as the quality guarantee for an estimate of an equality 
query. Note that this requires storing an additional 
value (Ei) with each bucket. 
Range Selections: For simplicity, we consider one- 
sided range predicates of the form a _< Ic, though the 
scheme can be easily generalized. Let k fall into bucket 
bi, and let m, M be the smallest and largest attribute 
values in bi. Then the estimate of the result size of the 
query a 5 k is given by 

i-l 

c Sj + (k - m + 1) . fi, 
j=l 

where Sj = jbjj . fj is the sum of the frequencies in 
bucket bj. We derive an upper bound on the error by 
observing that no error at all is incurred for the first 
i - 1 buckets, since they are completely within the 
range and hence accurately captured by the Sj. An 

upper bound for bucket bi can be computed by using 
the equality selection bound Ei for each value in bi, 
giving a quality guarantee of MIN(k - m + 1, M - k + 
1). Ei. 

Note that this does not require any additional stor- 
age beyond the Ei already used to bound the equal- 
ity selection errors. However, we could decide to also 
maintain in each bucket the average absolute error. 
This average error could be returned as another qual- 
ity measure, or it could be used in conjunction with the 
Ei values to derive even tighter bounds on the (max- 
imum, not average) estimation error of range queries, 
by using Markov’s Inequality. 

In general, by maintaining appropriate types of 
statistics in each bucket, we could derive improved es- 
timates as well as quality guarantees for various types 
of queries. Of course, such extra statistics increase the 
space used by the histogram, but this may sometimes 
be a worthwhile expense. The best selection of statis- 
tics depends on the particular space and accuracy re- 
quirements of the application. If space is very tight, 
one might just provide flags that distinguish “good” 
from “bad” buckets. 

7.2 Experimental Results 

We briefly discuss the results of our experiments on 
the quality guarantees for equality and range selec- 
tion queries derived above. We compare these bounds 
with the actual errors in estimating the result sizes 
of equality and range selections, and with the naive 
worst-case bound given by using the maximum error 
over all buckets. 

Figures 7 and 8 compare the three bounds as func- 
tions of the bucket counts, averaged over all possible 
predicates of the form X == a and X 5 a, with 
1 5 a 5 N. The input is a randomly permuted Zipf 
distribution with z = 0.8, and the buckets are formed 
using a V-Optimal histogram, We observe that the 
naive worst-case bound for the error (the upper curve) 
is significantly higher than the average actual error 
(the lower curve), and that the bounds derived above 
lead to error bounds (the middle curve) that are sig- 
nificantly closer to the actual error. 

8 Other Applications 

8.1 Work Load Information 

The quality of a reduced data representation must be 
measured based on known (or expected) query loads. 
Sometimes, there is no information available regarding 
the expected query load, and in this case the best one 
can hope to do is to minimize the worst-case error, or 
the average error assuming a uniform distribution of 
queries (as our SSE metric has done so far). 
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Figure 7: Quality Guarantees: Equality Predicates Figure 8: Quality Guarantees: Range Predicates 

However, if information is available regarding ex- 
pected query loads, this must be folded into the error 
metric since it can affect the resulting optimal his- 
togram quite significantly. To illustrate this point, 
consider a synthetic data set drawn from a (truncated) 
Gaussian distribution and shown in Figure 9(a) along 
with a histogram with 30 buckets, created optimally 
using the SSE metric (Figure 9(b)). Suppose we know 
that outliers are of greatest interest in this data set, 
and are likely to be queried most often, we could op- 
timize the histogram for a situation where we expect 
attribute values to be selected by a query inversely 
proportional to the frequency of occurrence of the at- 
tribute value. For this query mix, a histogram created 
optimally to minimize the weighted mean square error 
looks like Figure 9(c). Observe the difference in the 
two histograms. 

Optimal histograms easily accommodate such infor- 
mation by weighting the optimization metric. All one 
has to do is to factor in the weights during the pre- 
processing phase when the SSE(i, j) (or any other 
metric) function values are calculated. The rest of 
the algorithm remains unchanged (details are avail- 
able elsewhere [JKS98]). N one of the other techniques 
accommodate this and, in fact, no one has addressed 
this issue in the existing literature. It is not surpris- 
ing that no single heuristic can possibly generate his- 
tograms even remotely similar to both Figures 9(b) and 
(c), for example. 

queries are frequently specified with range selections. 
Buckets that are completely included in a range intro- 
duce no error at all. At most one bucket at each end 
of the range is partially included, and we could have 
an error in estimating the total count for the values 
in the partial bucket included. In consequence, a pair 
of adjacent attribute values with counts much higher 
and much lower than the average for the bucket, may 
not introduce much error since the pair of attribute 
values together will be included in most range queries 
- an error is induced only when one of the attribute 
values is included in some range and the neighboring 
cell is excluded from that range. In comparison, a 
gradual “drift” of frequencies in a bucket could be sig- 
nificant since ranges that include the right end of the 
bucket would consistently be over- (under-) estimated 
whereas ranges that include the left end of the bucket 
would be under- (over-) estimated. 

In fact, we know that many data distributions in 
real-life are extremely skewed. We also know that 
access patterns to these data are extremely skewed. 
Therefore, it is important to take this skew into ac- 
count when choosing histogram boundaries. 

If a range query mix is specified, then this mix can 
be taken into account in computing the error metric. 
For each SSE(i, j) ( or any other metric) to be eval- 
uated, determine the boundaries of the range queries 
that lie between i and j. For each of these queries, 
there is a corresponding error that can be determined 
(depending on whether the left, right, or both bound- 
aries of the query range are included) and weighted 
by the query probability. Once this has been done 
in the pre-processing step, the DP algorithm can run 
normally. The results can be stunningly different than 
for the SSE metric. For example, consider a distribu- 
tion of an age attribute. Suppose we know that typical 
range queries ask about “even” ranges: i.e. about 30- 
40 but not about 32-44. In other words, with high 
probability range queries have boundaries at values 
that are multiples of 10. Then an optimal histogram 
on this data set will also have bucket boundaries only 
at multiple of 10. 

8.2 Range Queries 

The metrics discussed thus far have focused on the 
error in reconstruction of a single point. However, 
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Figure 9: Incorporating Workload Knowledge 

can still observe in general for range queries that in the 
estimation of result sizes for range queries, the error 
in the frequency estimate for cells in any bucket gets 
weighted by the range extent of the bucket. Follow- 
ing [PIHS96] an error metric can be constructed which 
minimizes the variance of the “area” inside buckets. 
Details are available elsewhere [JKS98]. 

Experimental Results. We compared the estima- 
tion accuracy of DP, EquiWidth, EquiDepth, and 
MaxDiff. 

The starting point of each query range is uniformly 
distributed over the attribute domain, and the end- 
ing point is uniformly distributed between the starting 
point and the end of the attribute domain. 

Figures 10(a) and 10(b) present the trends in ac- 
curacy of the three algorithms for data set Dl as the 
number of buckets increases (Figure 10(a)) and, as the 
number of cells increases (Figure 10(b)). 

8.3 Join Queries 

Histograms are also useful for estimating the result 
size of join queries. It has been argued in [IP95] that 
the error in the estimate of the query result size is 
minimized when the variance of the counts of frequen- 
cies in each bucket is minimized. This turns out to be 
the same as our SSE metric. We next present sample 
experimental results investigating the accuracy of join 
result size estimation of various types of histograms. 
More discussion and experimental results are available 
elsewhere [JKS98]. 

Experimental Results. The algorithms com- 
pared are DP, EquiWidth, EquiDepth and End-Biased 
(EBV). For all the graphs in this subsection dealing 
with accuracy of estimation, the standard deviation 
of the prediction error is used as previously suggested 
[IP95]. 

Figures 11(a) and 11(b) present the accuracy of the 
algorithms for D2 with increasing number of buckets 
(Figure 11(a)) and, with increasing number of cells 
(Figure 11(b)). For this data set and for a small num- 
ber of frequencies, DP is able to predict the join result 
size almost exactly. 

9 Concluding Remarks 

In this paper, we have studied the problem of comput- 
ing optimal histograms, which minimize the error for 
a given amount of space. We have provided several 
algorithms based on dynamic programming that are 
the first to efficiently and precisely compute optimal 
histograms under a large class of error metrics, includ- 
ing the well-known V-Optimal histograms, and have 
shown that the performance of our algorithms can be 
improved by several orders of magnitude through the 
use of several nontrivial optimizations. Our experi- 
ments show that the algorithms obtain significantly 
better accuracy than the known heuristics. 

We have also studied the dual problem of minimiz- 
ing the space required to meet a given error bound, 
and have proposed a way of augmenting histograms 
to return qualii$ guarantees for selectivity estimation 
queries. Finally, we have extended our techniques to 
incorporate knowledge of the query work load and to 
identify optimal histograms for range and join queries. 
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