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Abstract 

Approximate predicates can be used to re- 
duce the number of comparisons made by ex- 
pensive, complex predicates. For example, 
to check if a point is within a region (ex- 
pensive predicate) we can first check if the 
point is within a bounding rectangle (approx- 
imate predicate). In general, approximate 
predicates may have false positive and false 
negative errors. In this paper we study the 
problem of selecting and structuring approx- 
imate predicates in order to reduce the cost 
of processing a user query, while keeping er- 
rors within user-specified bounds. We model 
different types of approximate predicates and 
their dependencies, we derive expressions for 
the errors of compound predicates, and we 
develop query optimization strategies. We 
also study the complexity of our optimiza- 
tion strategies under various scenarios, and 
we present an experimental case study that 
illustrates the potential gains achieved by op- 
timizing queries with approximate predicates. 

1 Introduction 
As database systems are used in wider classes of ap- 
plications, there arises a need for evaluating complex 
predicates. Such predicates can, for example, compare 
images in the database to some reference image, can 
identify “similar” text in a document database, can 
check for containment of points within regions, or can 
search for certain trading patterns in a stock market 
database. Because these predicates are often expen- 
sive to evaluate, application designers design cheaper 
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approximate predicates to cut down the number of data 
elements that must be analyzed by the original or ideal 
predicate. For example, to check if a point is contained 
inside a complex region, we can first check if the point 
is within the region’s bounding rectangle. One expects 
that most database points will not be in the rectangle, 
so the ideal containment test need only be run on a 
much smaller subset of points. 

The bounding rectangle approximate predicate has 
false-positiue errors, i.e., some data points satisfy the 
approximate predicate but not the ideal predicate. 
Other approximate predicates may have false-negative 
errors, where data values are incorrectly rejected; some 
predicates may have both types of errors. End users 
may be willing to tolerate limited errors in their re- 
sults, in order to improve performance significantly. 

Given a user query and a set of approximate pred- 
icates for some of the ideal predicates in the query, 
there are many ways in which the predicates can be 
combined to improve performance and to keep errors 
low. For instance, the output of one approximate pred- 
icate can be routed to another predicate; this could be 
useful if the first is a cheap predicate but has high 
false-positives, while the second predicate is more ex- 
pensive but will remove the false-positives. Two pred- 
icates could be evaluated “in parallel” and their out- 
puts combined, in order to reduce false-negative errors. 

In this paper we study the problem of selecting 
and structuring approximate predicates in order to im- 
prove the performance of a given user query. More 
specifically, our contributions are as follows: 

We present a model for approximate predicates, 
including their selectivities, costs and errors. 

We derive formulae for the selectivities, costs and 
errors for logical combinations of approximate 
predicates. 

We show how approximate predicates can be com- 
bined to answer Select-Project-Join queries con- 
taining expensive, user-defined predicates. We 
concentrate only on the case the Where clause of 
the query consists of a conjunction of built-in and 
expensive predicates. We defer processing arbi- 
trary Boolean queries for future work. 

We suggest metrics for optimizing queries involv- 
ing approximate predicates. We present optimiza- 
tion strategies for various scenarios of interest. 
For some scenarios, our strategies yield provably 
optimal plans; for others the strategies are heuris- 
tic ones. For some of the heuristic strategies, we 
develop approximation ratios that bound how far 
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a solution can be from the optimal one. In all sce- 
narios, we discuss the complexity of our strategies. 

l We discuss how our strategies can be incorporated 
into existing query optimizers for extensible sys- 
tems (that can handle complex predicates), and 
evaluate these strategies empirically to show the 
potential performance gains. 

The rest of the paper is organized as follows. In 
Section 1.1 we present some motivating examples of 
complex, data-intensive applications where the use of 
approximate predicates may lead to significant cost 
savings. In Section 1.2 we consider related work. In 
Section 2 we formally characterize predicates, and out- 
line the modifications required in a system catalog to 
maintain meta-data for these predicates. In Section 3 
we characterize the space of query plans that must be 
considered. In Section 4 we propose a brute-force opti- 
mizer, followed by more efficient ones in Sections 5, 6 
and 7. In Section 8 we evaluate our techniques and 
show the performance benefits in using approximate 
predicates. 

1.1 Motivating applications 

In the QBIC system, color histogram matching is an 
important way of computing similarity measures be- 
tween images. This matching is based on a 256- 
dimensional color histogram and requires a 256 matrix- 
vector multiplication. However, QBIC employs a much 
faster “pre-computation” in 3D space to filter input to 
the more expensive histogram matching phase. Only 
images that pass the fast test are given to the his- 
togram test, and only the ones that pass both tests 
are shown to the end user. This filtering saves sub- 
stantial computational effort [ea95]. 

In our own case, we were motivated to study ap- 
proximate predicates while implementing the Stanford 
Copy Analysis Mechanism (SCAM) [Ros96, SGM96]. 
SCAM is a prototype of a copyright violation detection 
system [SGM95, SGM96] that allows digital authors to 
find illegal copies (or fragments) of their documents in 
a digital library such as the web. For this, SCAM gets 
a feed of web documents from the Stanford BackRub 
webcrawler, and then stores and indexes these docu- 
ments. SCAM can compute the set of documents with 
potential overlaps to a query document by finding the 
maximal common subsequences between each docu- 
ment and the query document. However this is ex- 
pensive, since even if comparing two documents takes 
about a milli-second, checking one document against 
the 60 million estimated documents’ in the web will 
take about 20 hours. 

To be computationally tractable, SCAM adopts 
a filtering strategy: it uses some of its approxi- 
mate predicates (based on word and sentence similar- 
ity [SGM96]) to compute a set of candidate documents 
with “potential significant overlap” with the query 

‘This is the current estimated number of pages in popular 
search engines such as Excite and AltaVista. 

document. These documents are subsequently checked 
by the pair-wise ideal test. This filtering strategy re- 
duces the time to check a document to typically less 
than a minute (rather than 20 hours) on a SUN Ultra- 
Spare machine. SCAM’s approximate predicates may 
have false positives and false negative errors. How- 
ever, these errors appear to be tolerable when one is 
detecting copyright violations [SGM95, SGMSG]. 

There are many other motivating applications such 
as data scrubbing [ME971 and search problems. For 
instance, approximation algorithms with bounded er- 
rors have been developed for many NP-hard problems 
such as the minimum-cost traveling sales-person prob- 
lem (TSP) [Aro96], and for approximate searches in 
high-dimensional spaces [IM97]. Hence if a user can 
tolerate errors, these approximations can be used as a 
filter to complex ideal predicates, or to even replace 
the ideal predicates. 

1.2 Related Work 

Recently, there have been several proposals to op- 
timize queries with expensive, user-defined predi- 
cates for extensible databases. The LDL project at 
MCC [CGK89] and the Papyrus project at HP Lab- 
oratories [CS93] proposed viewing expensive predi- 
cates as relations and using the System R dynamic 
programming algorithm for join and expensive predi- 
cate enumeration. Hellerstein and Stonebraker [HS93] 
proposed predicate migration as a way of interleav- 
ing join and selection predicates. Chaudhuri and 
Shim [CS96, CS97] recently proposed an algorithm 
to optimize the placement of expensive predicates 
in a query plan, in a System-R style query opti- 
mizer [SAC+79]. These optimizers do not consider 
approximate predicates and errors. The focus in our 
paper is on approximate predicates, and how to select 
the “right” subset of approximate predicates to filter 
input to the more expensive user-defined predicates, 
depending on the user’s tolerance for errors. 

The trade-off between quality of result versus time 
spent in computing result has been explored in the 
past in different contexts in relational databases. In 
sampling-based selectivity estimation [HNSSSG, YI95], 
sizes of query results are estimated by sampling proce- 
dures; better estimates are obtained by spending more 
time on sampling. Several researchers in the past 
have exploited filtering as a tool improve specific pro- 
cesses such as spatial joins [PD96], magic rewriting for 
OLAP style queries [Sea96], image retrieval [ea95] and 
in approximating Datalog [CK94]. However the tech- 
niques we discuss in this paper are on a “meta-level;” 
we discuss how to compose a set of several approximate 
filters, such as the above, to optimize a user query. 

2 Characterizing predicates 

We now define different types of predicates, and how to 
characterize them in terms of expense, selectivity, and 
errors. We distinguish between two kinds of predicates 
based on how they can be evaluated. 
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Access predicate: These predicates select and 
stream out tuples in a given relation, using some 
index access method. For instance, consider an 
index that identifies every image in the database 
based on its dominant color components. An ac- 
cess predicate to find all images with substantial 
yellow components can use this index, and stream 
out the corresponding “yellow” images. 

Restriction predicate: These predicates are 
directly evaluated on a given tuple, rather than 
on a relation. For example, consider a predicate 
to check if a given image (tuple) has a substantial 
yellow component. We can implement a restric- 
tion predicate to compute the color histogram of 
the image, and check if the yellow component ex- 
ceeds some threshold. 

LetI={11,1z,... , Im} be a set of ideal predicates. 
For each Ii, 1 5 i < m, we have a set of approximate 
predicates Ai (= { Ai,j }) that can filter 1i. Let A = 
~i”a=~Ai. 

We now define the important characteristics of re- 
striction predicate Ai,j that approximates its corre- 
sponding ideal predicate Ii. Let selectivity Sif = 
P(Ai,j) be the probability that some given tuple satis- 
fies Ai,j. It is then expected that for any input stream 
of t tuples, t * si,.j tuples satisfy Aij. Another im- 
portant characteristic of Ai,j is ei,j, the expense of 
evaluating the predicate for each tuple, expressed in 
units-per-tuple (upts). We quantify Aij’s false nega- 
tive error as ni,j = P(lAi,jlIi), which is the condi- 
tional probability that a tuple does not satisfy Ai.,j, 
given that the tuple satisfies Ii. Similarly we quantify 
Aij’s false positive error as pi,j = P(Ai,jJ-Ii), which 
is the conditional probability that a tuple satisfies Aif, 
given that the tuple does not satisfy Ii. 

Access predicates have characteristics similar to re- 
striction predicates. We define for access predicate 
Ai,j the expense ei,j to be the expense of finding 
and streaming out tuples satisfying the predicate, nor- 
malized with respect to the number of tuples in the 
database. For instance, if an index on a database with 
2000 images charges 1000 units to search and retrieve 
images with substantial yellow component, we define 
ei,j = IOOO/ZOOO = 0.5 upts. We define the selectivity 
P(Ai,j) = si,j to be the fraction of output tuples to the 
total number of tuples in the relation. Similarly, we 
define pi,j to be P(Ai,j(‘Ii) and ni,j to be P(‘Ai,j(Ii). 

Ideal predicates have expense and selectivity char- 
acteristics. In particular, we define si to be P(li), and 
the expense of evaluating the predicate ei. By de% 
nition, ideal predicates do not have false positive or 
negative errors. 

EXAMPLE 2.1 Consider a relation with 1000 tu- 
ples. Out of all the tuples in the relation, 10 tuples 
satisfy ideal predicate 11, i.e., si = lO/lOOO = 0.01. 
Say the expense of running II on one tuple is 10,000 
units. 

Consider restriction predicate Al,1 which has a per- 
tuple expense of 50 upts. Out of all the tuples in the 

relation, 107 tuples satisfy Al,l. Out of these, 8 tuples 
also satisfy 11. We can compute sl,l = 107/1000 = 
0.107, pl,l = P(A+Il) = (107 - S)/(lOOO - 10) = 
0.1, and n1,1 = P(~A1,1(11) = (10 - 8)/10 = 0.2. 

Next consider access predicate Al,2 which costs 
5000 units to execute using an index: 50 tuples satisfy 
A1,2. Out of these, 9 tuples also satisfy 11. We can 
compute eij = 5000/1000 = 5, Si,j = 50/1000 = 0.05, 
p1,2 = P(Al,ll~li) = (50 - 9)/(1000 - 10) = 0.04, and 
n1,2 = (10 - 9)/10 = 0.1. 0 

3 Space of query plans 
Conventional query optimizers evaluate a variety of 

query plans for each user query (in terms of predicate 
placement, join orderings and index selections) before 
choosing the “best” plan to execute. With approxi- 
mate predicates, the optimizer has to consider a much 
larger space of plans, since each user query can now 
be replaced with one of several alternate queries with 
approximate predicates. The query optimizer now has 
to choose the “best” plan among the set of original 
and alternate plans. 

We now illustrate the space of plans possible in an 
extensible database that supports ideal and approxi- 
mate predicates. Consider an example database with 
ten tuples. Consider the catalog information in Ta- 
ble 1, with meta-data about expensive predicates II 
and 12 along with their approximate predicates Al,l, 
A1,2, Al,3 and A~,J. The values listed in the table are 
“made-up” so as to make exposition clear, and should 
not be interpreted in any special way. 

We use a standard query tree representation [UllSS] 
to show the logical query plans for our examples in this 
section. The tree has relations at its leaves; selections, 
joins, projections and cross-products are placed at the 
tree’s internal nodes [U1188]. In some cases, the trees 
may be annotated with other implementation details 
such as indices selected and interesting orders, but we 
will not use such annotations in our examples below 
for simplicity. 

EXAMPLE 3.1 Consider the following simple 
SELECT query issued by the user: Find all tuples from 
table R satisfying predicate 11. 

We present in Figure 1 query trees for alternate 
queries along with their expenses (e) , and overall false 
positive (p) and negative (n) errors. (In the next sec- 
tion, we show how to compute or estimate these values 
for any given query plan.) 

Plan (a) is the tree for the user query that applies 
predicate Ii on all tuples in table R. Plans (b) and (c) 
are examples of filtering input to 11 by checking Al,3 
or Al,2 on tuples in R before checking for 11. Plans (d) 
and (e) show how approximate predicates can be com- 
posed using conjuncts (ANDs or “A”) and disjuncts 
(ORs or “V”) to filter input to Ii. Observe that by 
composing approximate predicates, we managed to (1) 
reduce the execution expense from 2500 in Plan (c) to 
2400 in Plan (d), and (2) reduce the false negative er- 
ror from 0.1 in Plan (c) to 0.01 in Plan (e). Plans (f) 
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] Char. / Predicate Type Expense (upts) Selectivity False Positive False Negative 
I1 Restriction 1000 0.1 0 0 

41 Access 10 0.9 0.25 0.1 
Al,2 Access 50 0.2 0.1 0.1 
43 

I2 

A2,1 

Restriction 100 I 0.3 I 0.1 I I 0.2 
Restriction 2( 100 I 0.2 I I 0 I 0 II 

Restriction 500 0.5 0.2 0.1 n 

Table 1: Example database catalog. 
and (g) show how a restriction predicate such as Al,3 
can be “sequenced” (SQN or +) on top of composed 
access predicates, to reduce the expense of Plans (c) 
and (e), at the cost of increased n errors. The SQN 
operator is similar to AND operator in terms of er- 
rors and selectivity, but differs in terms of expense. 
For instance, Al,1 A Al,: will have a higher expense 
than Al,1 + Al,! since m the former, Al,3 is applied 
on all tuples while in the latter it is applied only to 
tuples that satisfy Al,l. Plans (h) and (i) are similar 
to Plans (d) and (g) except they do not check (expen- 
sive) 11 on the tuples: these plans have lower expected 
expense at the cost of potential false positives (p > 0). 

The set of query trees we present in Figure 1 is 
clearly not complete, but gives the reader a flavor for 
the space of plans for filtering simple predicates. 0 

EXAMPLE 3.2 Consider a JOIN query that per- 
forms an equi-join between two relations RI and R2 
as shown in Plan (a) of Figure 2. 

We present some possible query trees in Figure 2 
along with expenses and false positive and negative 
errors incurred in executing each plan. 

Plan (b) reduces the execution expense by filtering 
11 with A1,2. Plan (c) is a more complex alternate 
query that filters tuples in RI and R2 using some ap- 
proximate predicates and finally performing 11 after 
the equi-join. Note that this plan never checks tuples 
with 12 and therefore p > 0. Clearly we can see that 
this set of alternate queries is not complete: in fact any 
of the alternate queries in Example 3.1 can be used 
to filter 11, and similarly for 12. Also we can push 
ideal and approximate predicates to several places in 
the query tree, both with respect to the equality join 
predicate, as well as to each other (as in expensive 
predicate placement [CS96, HS93]). The example set 
of alternate queries we present however do illustrate 
the increased set of plans to be considered by a query 
optimizer. 0 

From the examples we see that a query optimizer 
should consider alternate queries where approximate 
predicates are composed using operators such as V, 
A, 1 and +. In our execution model, we define well- 
formed query plans to be ones where the following com- 
postions cannot be executed: 

1. Negated access predicates: This corresponds 
to accessing an index to find tuples that satisfy 
a given predicate, and returning the rest of the 
tuples in the relation. 

2. Sequenced access predicates: This corre- 
sponds to accessing an index to find tuples that 
satisfy a given predicate, sequencing these tuples 
to another index and computing a smaller set of 
tuples that satisfy both predicates. 

Note that the second assumption does not preclude 
“index intersection;” our execution model does allow 
tuples to be retrieved from two sets of indices inde- 
pendently, and subsequently intersected using the A 
operator. 

A query optimizer that needs to consider the space 
of well-formed plans becomes more complex than tra- 
ditional query optimizers due to the increased number 
of plans. However we also see from the same examples 
that the potential payoffs are huge (we show this us- 
ing experiments in Section 8). Hence we believe the 
increased complexity in building a query optimizer is 
a worthwhile price to pay for the potential payoffs in 
query execution. 

3.1 Minimization measures 

In this subsection we define measures to evaluate query 
plans for alternate queries, so an optimizer can choose 
the best plan to execute the given user query. In clas- 
sical query optimization, the goal is to choose query 
plans, for a given query, with minimal query execu- 
tion expense. In extensible databases with approx- 
imate predicates, two natural measures to minimize 
when evaluating different query plans are: 

1. Expense (MIN-EXP): This measure selects the 
query plan with the least execution cost, irre- 
spective of the errors, among the possible alter- 
nate queries and their physical implementations. 
This metric is useful when approximate predi- 
cates, that make no false negative errors, stream 
candidate tuples to be checked by the ideal pred- 
icate. In this case, all query plans yield correct 
results, so cost is the way to compare plans. This 
measure could also be useful in other cases, for 
example, if we know that all approximate pred- 
icates have acceptably low false negative errors, 
or if ideal predicates are replaced by approximate 
ones with acceptably low false positive rates. In 
these cases, errors are assumed to be low enough, 
and we can select plans baaed on cost only. 

2. Expense 
subject to (p, n) constraint ((p, n)-MN-EXP): 
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e=lOOOO e=4OCQ 
p=o p=o 
n=O n = 0.2 

t7-: 
7 

e=2500 e=2dOO e=9800 
u=o o=o o=o 

R 

(d) 

R R 

(0 (9) 

e=1300 e = 4520 
p=o p=o 
n = 0.28 ” = 0.2 

yY.3 

y1.2 v A1,1 

R 

(i) 

e= 1520 
p = 0.03 
n = 0.2 

Figure 1: Some query plans for Example 3.1. 
In many applications, the user would like to con- 
trol the quality of results returned by specifying 
acceptable bounds for false positive and negative 
errors. In such scenarios, the minimization func- 
tion is expense subject to the constraint that the 
query plan has error estimates tolerable to the 
user. 

Of course, MIN-EXP is one instance of 
(p, n)-MIN-EXP with p and n set to zero, but 
we will see that we can construct more efficient 
query optimizers for the MIN-EXP measure than for 
(p, n)-MIN-EXP; h ence we retain MIN-EXP as a min- 
imization measure in its own right. 

4 General query optimization 

A query optimizer that supports approximate pred- 
icates has to choose from the space of plans illus- 
trated in the previous section. There are a variety 
of approaches for this. We now present the approach 
we advocate in this paper, and defer a discussion of 
its advantages and drawbacks until after we explain 
the scheme. Our approach incorporates a traditional 
query optimizer (T&O), as a component. Given a log- 
ical query, the T&O performs traditional query opti- 
mization tasks such as plan enumeration, evaluating 
join orderings, index selections and predicate place- 
ment [U1188, CS96, HSSS]. Current T&OS of course do 
not understand the special semantics of approximate 
predicates. If the T&O gets a query with approximate 
predicates, it treats these predicates as any other user- 
defined predicate. The T&O returns the best physical 
plan for implementing the given query, along with its 
estimate of the cost of executing that plan. 

With our approach, we build a wrapper that under- 
stands approximate predicates, around the T&O. The 
wrapper is given a user query containing only ideal 

I 
Da 
/\ 

/I ‘\; 

R1 R2 

I 
w’ 
/ 

*I3 h 

*1,2 ,A *1,1 y 

R1 R2 

64 (b) @I 

e=35OQO 
p=o 
n=O 

e = 27500 
p=o 
n = 0.2 

e= 11780 
p=O.l 
” = 0.2 

Figure 2: Some query plans for Example 3.2. 

predicates, and information on the available approxi- 
mate predicates. The wrapper extends the user query 
by composing some subset of approximate and ideal 
predicates into the query, so that the extended query 
has errors tolerable to the user. The wrapper then 
feeds this extended query to the TQO, which performs 
its tasks and returns the cost of executing the opti- 
mized version of the extended query. The wrapper 
iterates through alternate extended queries, and then 
chooses the alternate query whose optimized version 
costs the minimum to execute. 

We now study this wrapper approach in more detail. 
The wrapper we present here is clearly not efficient, 
and hence we call it the Naive Wrapper. More efficient 
versions will be presented in latter sections. To keep 
our discussion brief, we focus on the optimization of 
the query [CJ, (R1)]W13 [am,], which is a join of two 
relations RI and Rz with ideal predicates II and Iz 
to be applied on RI and Rz, and Is being the join 
predicate. (Generalizing to more complex queries is 
straightforward.) 

Figure 3 shows pseudo-code for the Naive Wrapper 
for this class of join queries. The wrapper first con- 
siders all subsets of predicates in Ai U {Ii}, 1 5 i 5.3, 
(Step [l]), and constructs alternate extended queries 
using A,V,- (Steps [2], [3]). Next, the wrapper com- 
putes the expected false and positive errors for each 
alternate query; the techniques for this will be covered 
in Sections 5 and 6. If the alternate query so pro- 
duced has a tolerable error (Step [4]), it is handed to 
the T&O (Step [5]). (If we are using a simple MIN- 
EXP metric, then all such queries are handed to the 
optimizer.) The optimizer computes the cost of each 
alternate query, and the wrapper selects the alternate 
query with the minimum overall cost of execution. 

Notice that the TQO may rearrange the predi- 
cates in order to reduce costs. For example, if Cl is 
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Algorithm 4.1 Naive Wrapper for (p, n)-MIN-EXP 
Inp A: Approximate predicates; [up, a,,]: Acceptable errors 
Procedure 

[0] BestPlan := Dummy plan with infinite cost 
[ll For each VI C [Al U {II}], Uz G [AZ U {~z}], U3 C [A3 U {Z3}] 

[2] For each composition 9, Cz, C3 of predicates in Ui , UZ and Us 
with V, A, and 7 such that the compositions are well-formed 

Ii] 
Construct extended query Q as gcl,-,ca,-,c3(R1 x Rz). 
If false positive and negative errors of Q are less than a.p and a, 

[ii 
Q’ := Q optimized using TQO 
If cost(Q’) < cost(BestPlan) 

[71 BestPlan := Q’ 
[8] Return BestPlan. 

Al.1 A Al.2 A II, the op%mizer may &&,d,% e$ecuxe 
Fi ure 3. Naive w a in an quer o timizer f I 

&t&e resear& k’ ni)-yzN-E?p. t a itiona query optimization. we 
them in some sequence (i.e., introdncing the SQN op- 
erator into the tree). It is important to note that such 
restructuring does not change the errors of an alternate 
query. Thus, a query that was deemed acceptable in 
Step [4] will continue to be acceptable after the op- 
timizer restructures it to reduce costs. This property 
makes it possible to cleanly separate the wrapper from 
the optimizer, and we use this property again in the 
wrappers that we present in the following sections. 

The naive wrapper in Figure 3 exhaustively enu- 
merates all possible alternate queries, and hence is not 
practical: the number of Boolean functions on n vari- 
ables is 22” when these variables are composed using 
A, V and 7. So, given IAl approximate predicates, the 
number o%,;\ternate queries produced in Steps [l] and 

[2] is O(2 ). As we mentioned earlier, in later sec- 
tions we present much more efficient wrappers, at least 
for certain classes of queries. 

The main advantage of the wrapper approach is its 
modularity. One can build upon existing optimizers, 
that codify decades of experience. Thus, to optimize 
queries with approximate predicates, we do not have 
to re-invent well known techniques for access path se- 
lections, join ordering, hash joins, and so on. 

On the other hand, modularity may be a poten- 
tial problem because current TQOs (such as those 
discussed in Section 1.2) assume that predicates are 
uncorrelated while making optimization decisions, es- 
pecially during predicate placement [CS96, HS93]. 
Clearly this assumption is not valid in our case since 
approximate predicates are correlated with the ideal 
predicate, and may be correlated with each other. 

Of course, we can still use T&OS even if predicates 
are correlated, except that the resulting plans may be 
sub-optimal. However, in our experiments (Section 8), 
we observed that incorporating approximate predi- 
cates with the wrapping approach leads to significant 
performance improvements, despite using sub-optimal 
T&OS. Notice that with the wrapper approach, predi- 
cate dependencies are still handled correctly when cre- 
ating alternate queries and when estimating their false 
positive and negative errors. Also when new TQOs are 
developed to correctly handle predicate correlations by 

can easily incorporate them immediately using our ap- 
preach . 

The alternative to wrappers involves the tight cou- 
pling of the enumeration of alternate plans with the 
optimization phase, so that alternate queries can be 
automatically pruned when their costs exceed the cost 
of another candidate alternate query. This may lead 
to a more efficient optimization phase, but involves 
modifying an existing optimizer significantly, so that 
error computations are incorporated into the plan eval- 
uation process. Tight integration does not solve the 
predicate-interdependence issue. Thus, we would still 
produce sub-optimal plans, unless the optimizer is also 
modified to take correlations into account, which has 
not yet been addressed by research in query optimiza- 
tion. 

In summary, with the wrapper approach we can 
immediately incorporate approximate predicates into 
any current query optimizer that supports user-defined 
predicates. For this modularity, we pay the penalty of 
inefficient query optimizers that do not tightly couple 
alternate query generation with cost-based optimiza- 
tion. Also, the underlying query optimizer may pro- 
duce sub-optimal physical plans due to assumptions of 
predicate independence. However, we have observed 
experimentally (Section 8) that the execution time for 
queries drops dramatically when we incorporate ap- 
proximate predicates to filter expensive predicates, de- 
spite sub-optimal physical plans. 

In the next few sections, we consider how to im- 
prove the alternate query generation process, so we do 
not evaluate a doubly exponential number of alternate 
queries. In Section 5 we focus on the MIN-EXP mea- 
sure and simple Select queries. In Section 6 we ex- 
tend the ideas from Section 5, and develop an efficient 
wrapper for SPJ queries under the MIN-EXP measure. 
We subsequently show in Section 7 why optimizing for 
the (p, n)-MIN-EXP measure is hard, and then present 
heuristics for the (p, n)-MZN-EXP measure (based on 
our provably good wrappers for MZN-EXP). 
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5 Optimizing simple SELECT queries 
for MIN-EXP measure 

In this section we consider how to build a good filter for 
a simple Select query ur, ( RI) for the MIN-EXP mea- 
sure. To do this, we first need to model how approxi- 
mate predicates affect each other, i.e., what is the value 
of an approximate predicate checking a tuple that has 
already been checked by another approximate predi- 
cate. In Section 5.1 we propose two models of com- 
mon predicate dependencies. We then show how to 
construct good filters in Section 5.3. 

5.1 Modeling predicate dependencies 

While there are many possible ways in which pred- 
icates can depend on each other, we now consider 
two cases we have found common among approximate 
predicates in SCAM and QBIC. 

1. Local Independence (LI): We assume that 
all predicates in Ai are pairwise independent but 
dependent on Ii. That is, P(A~, jcA,Ai,j) = 
II A, j,A,P(Ad Th is is a common assumption 
in extensible and relational databases. This mod- 
els approximate predicates that consider different 
attributes of incoming tuples and therefore filter 
tuples independent of each other. 

2. Local Conditional Independence (LCI): We 
assume that all predicates in Ai are pair- 
wise independent conditionally on Ii. That is, 
P(A,, jcA,A,jlIi) = HA, ,,A,P(Ai,jlIi). This 
assumption is strictly weaker than LI: if LI holds, 
LCI also holds, but the converse is not true. Un- 
der LCI, the selectivities of approximate predi- 
cates are not independent. For example, if we 
sequence Al,1 + AI,~, the selectivity of this filter 
is not 61,1 * 61,~. This may be, for instance, be- 
cause both Al,1 and Al,2 are approximating (us- 
ing different techniques) the ideal predicate. So, if 
Al,1 has already detected a document to be a po- 
tential copy in SCAM (using say sentence chunk- 
ing [SGM96]), that document is much more likely 
to be found to be a potential copy by Al,2 (which 
may use word chunking [SGMSG]). However, un- 
der LCI we assume that approximate predicates 
make positive and negative errors independent of 
each other for any incoming tuple. That is, the 
probability that Al,2 incorrectly identifies a doc- 
ument to be a copy does not depend on whether 
Al,1 earlier correctly or incorrectly identified it as 
a potential copy. This is because the predicates 
are using different mechanisms that may fail in 
unrelated ways. 

Under the above assumptions, we compute the char- 
acteristics for arbitrary predicate compositions in Sec- 
tion 5.2. 

5.2 Propagating characteristics in a simple 
Select query 

Consider the select query q,[R1]. We consider al- 
ternate queries of the form u~,(u~,[Rl]), where Fj is 
some filter to Ii composed only of predicates in A;. 
(Including Ii in the alternate query ensures we make 
no positive errors, as discussed in Section 3.1.) If we 
trust the approximate predicates to make small false- 
positive errors, we could leave out the ideal predi- 
cates, but this simple variation is not discussed here.) 
We now show how to compute the expense, selectiv- 
ity and error characteristics of the filter Fi, which we 
call qnew, ~i,,,~~, pi,,,, and ni,new. Following that 
we compute the characteristics of the complete filtered 
ideal query. It is important to note that the following 
expressions are for both access predicates, as well as 
for restriction predicates. 
Filter for an ideal predicate: We summarize in 
Table 2 the characteristics of filters assuming LI pred- 
icates. We derive analogous entries for LCI predi- 
cates in Ref. [SGMC98]. The AND and OR op- 
erators consider a set {Ai,jl,Ai,j,, . . .,Ai,jk} E Ai, 
while the S&N operator considers an ordered list 
A,j, + A,j, 7 . . .y + A,j, where Ai,j, E Ai, 1 5 j _< k. 
The NOT operator considers a predicate Ai,j. 

For example, selectivity of filter V:,, Ai,j, (second 
row, last column of Table 2) is 

= 1 - I$=,(1 - P(AQ,)) 

= 1 - lIf=i (1 - S;,j,) 

The other table entries for selectivities and errors 
are similarly derived. 

The entries for filter costs are derived as follows. 
The cost of a SQN filter is simply the cost of streaming 
the tuples through the predicates. The cost of the 
NOT filter is simply that of its restriction predicate 
Ai,j because the same work must be performed (with 
reversed decisions). 

The cost model for unioning or intersecting streams 
of tuples is trickier, since it depends on the application 
and how the data is stored. For this paper, we assume 
the cost of unioning or intersecting streams to be negli- 
gible. This is the case, for example, if the access predi- 
cates generate sorted streams (sorted by say tuple-id). 
(The index used by Ai,j may yield sorted tuples, or 
the tuples may be sorted dynamically, in which case 
the sort cost is included in ei,j .) Note that information 
retrieval (IR) systems process unions and intersections 
in this fashion, and indeed the cost of the union and 
intersection of “inverted lists” (the sorted tuple ids) is 
typically negligible relative to the cost of accessing the 
index [SBSS]. 0th er applications that use the same 
cost model include mediators that integrate a set of 
heterogeneous, remote databases - mediators typically 
assume the cost of performing unions and intersections 
locally at the mediator is negligible, compared to the 
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Operator/ NOT SQN AND OR 
Characteristics 

qnew 
%,new 
ni,new 
Pi,new 

ei,j CL (ei,j, * nili”i,jq) CL ei,5 CL ei,A 
1 - Si,j Tl-lS,,j, II!=, Si,j, 1 -IIf=,(l - Si,j,) 

1 - nij l-IIf=i(l-ni j,) 1 - II:=, (1 - nj,j,) II:=, njj, 
1 - pi,j nk,,Pi,j, nf,1Pi,j, 1 - II;=, (1 - pj,j,) 

Table 2: Characteristics of filters constructed with LI approximate predicates. 
cost of accessing and streaming back tuples from the 
remote sites [CGMP96, LYGM98, Vas98, VP97]. 

Of course, in some cases union and intersection 
costs may be significant. For example, if tuples are 
not sorted, we may have to use hashing to essentially 
execute a join. However for the rest of the paper, we 
continue to assume the cost of performing unions and 
intersections is the cumulative cost of executing the 
access predicates. We present an alternate cost model 
based on hashing, and we discuss its impact on the 
algorithms presented in the paper in Ref. citeotTech. 
Filtered ideal query: Let e:, s:, n: and pi be the 
characteristics of the filtered ideal predicate. We then 
have e: = ei,new+Bi,new*eir n: = ni,new, pi = 0. Also, 
we have 

5.3 Conjunctive filters 

The number of alternate queries for a simple Select 
query is doubly exponential, since restriction predi- 
cates can be composed using V, A, 1 and +, and access 
predicates can be composed using V and A. In this sec- 
tion we restrict the operators used to compose predi- 
cates without losing optimality for the MIN-EXP mea- 
sure, using the following observations (proofs are in 
Ref. [SGMC98]): 

Observation 1 (Composing a set of access pred- 
icates) 

1. Access predicates should not be composed using 
OR. 

2. Access predicates can be composed using the 
AND operator in case there is potential benefit, 
independent of predicate dependencies (such as &T 
or LCI). 

Observation 2 (Composing a set of restriction 
predicates) Restriction predicates should be composed 
only using the SQN operator, independent of predicate 
dependencies. 0 

Based on Observations 1 and 2 we can safely re- 
strict the set of query plans we need to consider to 
conjunctive filters. 

Algorithm 5.1 Conjunctive Wrapper 
Inp 1i: Ideal pred.; Ai: Set of approximate preds. 
Procedure 

[O] . . . 
[l] For each U, C Ai 

Ii] 
Compose Cl = &eu,[a]. 
Construct alternate query UI, (ucl [RI]). 

[4] - [8] . *. 

Figure 4: ConjunctiveWrapper for simple Select 
query for MIN-EXP. 

Definition 5.1 (Conjunctive Filters) Given a set 
of access and restriction predicates, a conjunctive fil- 
ter is produced by first composing the access predi- 
cates with the AND operator to form an AND-filter. 
Then the restriction predicates are composed using the 
SQN operator to form a SQN-filter. Fina.lly, the con- 
junctive filter is formed by composing the AND-filter 
with the SQN-filter using a SQN operator. 0 

Figure 4 presents an Conjunctive Wrapper that only 
considers conjunctive filters. This wrapper is optimal 
for Select queries under the MIN-EXP measure. We 
only present the Steps that are modified from Figure 3. 
In Step [l] we consider all possible subsets of predi- 
cates that can be part of ii’s filter. In Step [2] we 
compose all the chosen predicates using AND. Notice 
that restriction predicates should be composed using 
SQN; however, they are composed with the AND for 
simplicity, since the underlying optimizer will anyway 
sequence the restriction predicates to minimize cost. 
Step [3] constructs the alternate query with the cho- 
sen predicates. 

From Step [2] we see that the number of conjunc- 
tive filters is still exponential since we can choose any 
subset of access and restriction predicates to build a 
conjunctive filter. While this is significantly more ef- 
ficient than the doubly exponential naive algorithm of 
Section 4, this approach may still be unacceptable for 
some applications. In the next subsection, we pro- 
pose heuristics for efficient filter construction with a 
polynomial number of calls to the optimizer, for the 
MZN-EXP measure. These heuristics will give us prov- 
ably good filters for LI predicates, but may give us 
sub-optimal plans for LCI predicates. 
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5.4 Conjunctive filters computable in polyno- 
mial time 

We first consider how to compute a good conjunctive 
filter by computing good SQN filters for an expensive 
predicate. (The proofs of the following theorems are 
in Ref. [SGMC98].) 

Theorem 5.1 (Choosing right subset of restric- 
tion predicates) 

To choose the best subset of restriction predicates to 
filter ideal predicate 1i for the MIN-EXP measure, it 
sufices to choose all restriction predicates with mnk 
* < ei. 0 

Theorem 5.2 (Choosing right subset of access 
predicates) 
Suppose we construct an AND-filter as follows. First 

we rank the available access predicates by increasing 
value of (rank = ) *. Then, we construct the 

AND-filter greedily: Let the AND-filter contain the 
k-highest ranked predicates, k between 0 and the num- 
ber of access predicates. If adding the (k + l)th-highest 
ranked predicate into the AND-filter reduces the ex- 
pense of executing the alternate query, add the predi- 
cate to the AND-filter. If the expense increases, the 
AND-filter with the k-highest ranked predicates is the 
AND-filter required. The filter so constructed is guar- 
anteed to have expense no worse than twice that of op- 
timal for MIN-EXP. cl 

Using the results of Theorems 5.1 and 5.2, we 
present in Figure 5 the Linear-Wrapper for a simple 
Select query (we only present the modifications over 
Figure 3). LinearWrapper calls the underlying opti- 
mizer m times, where m is the number of access predi- 
cates. (If there are no access predicates, the optimizer 
is called once.) 

Recall that Naive Wrapper and Conjunctive Wrap- 
per assumed the optimizer returns estimates of the 
execution cost of the optimized version of any given 
alternate query, and also assumed they had access to 
system catalogs to lookup error estimates of various 
approximate predicates. Linear Wrapper in addition 
to these assumptions assumes the wrapper has access 
to system catalogs to lookup expense and selectivity 
characteristics of predicates. 

LinearWrapper is more efficient than the doubly- 
exponential Naive Wrapper and the singly-exponential 
Conjunctive Wrapper since it is linear in the number of 
approximate predicates. However it is only a heuristic: 
it is provably good for LI-dependent approximate pred- 
icates under the first cost model, but may not produce 
optimal filters for LCI-dependent predicates. As we 
show in Ref. [SGMC98], the problem of producing op- 
timal filters for LCI-dependent predicates is NP-hard, 
and hence we cannot hope to find optimal, polynomial 
algorithms for LCI-dependent predicates. 

6 Optimizing SPJ queries for MIN-EXP 

Our Conjunctive Wrapper and Linear Wrapper can eas- 
ily be extended to deal with more general join queries, 
under the MIN-EXP measure. To illustrate, consider 
the query Q := [cr, (Ri)]W,, [us,], where Ii, 1z and 
13 are independent ideal predicates. The key idea is 
to treat this query, for selection of approximate predi- 
cates, as Q := [c~~,,-,~~,,~~(Ri x Rz)]. This is equivalent 
to having the single predicate 11 A Is A 13 evaluated over 
relation RI x R2. (Note that this is just a conceptual 
way of looking at joins so we can compute the error 
characteristics - we are not physically implementing a 
cross-product!) Each approximate predicate for Ii, 12 
and 13 can be considered approximates for II A 12 A 13. 
Thus, our problem is again the selection of a good 
subset of approximate predicates for the single ideal 
predicate I, A I2 A Is. 

Notice that the cost and selectivity for each approx- 
imate predicate still hold under the new ideal predi- 
cate II A I2 A 13. For instance, consider an approx- 
imate predicate Al,j for Ii. Its selectivity over RI, 
si,j, is the same as the selectivity over RI x R2. The 
false negative errors are also unchanged. For example, 
ni,j = P(yA;,j(Il) is identical to P(lAl,jlIl A 12 A 13) 
because Al,j is independent of I2 and IS. However, the 
false positive errors are changed, but can be computed 
from the parameters we already know. In particular, 
one can show that 

p; = p1j * (1 - Sl) * s2 * s3 + Slj * (1 - s2 * s3) 
93 (1 - si * sz * s3) 

, 

where pi j is the new error under II A I2 A I3 and pl,j 
is the original error under Ii. We can compute false 
positive errors for approximate predicates of Iz, 13 in 
a similar fashion. If two predicates for Ii were LI (or 
LCI), they will continue to be LI (or LCI) under 11 A 
12 A 13. The Ii predicates are all LI with respect to 
the I2, I3 predicates. 

Once we have all the parameters for the approxi- 
mate predicates, we can run Conjunctive Wrapper or 
LinearWmpper just as before. (Keep in mind that 
the wrappers only select approximate predicates to in- 
clude; the underlying optimizer actually selects the 
join method and places the approximate and ideal 
predicates either before or after the join, in the or- 
der that minimizes costs, as in [CS96].) Similarly, if 
we wish to estimate the errors of a particular alternate 
query (to report to the user), we can use the expres- 
sions of Section 5.2. 

7 Minimizing (p, n)-MIN-EXP 

In this section we consider how to minimize the 
(p, n)-MIN-EXP measure. Unfortunately, the optimal 
plan may no longer be a conjunctive filter in this case. 
We present two examples to illustrate this. 

EXAMPLE 7.1 (OR Filters): Reconsider Exam- 
ple 3.1 from Section 3. If the maximum allowable 
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Algorithm 5.2 Linear Wrapper for simple Select query for MIN-EXP 
Inp Ai: Set of approximate predicates 
Procedure 

[0] BestPlan := Dummy plan with infinite cost. 
[l] Compute GR;, a set of of ail “good” approximate restriction predicates 

for Ii, such that (rank = ) $$$ < e;. 
Compute GA,, an ordered list of approximate access predicates for 
Ii, sorted in increasing order of (rank =) -h. 

[la] Dl = bEGR.[gr] 

[z] For each Dz = A~~*EGA, [sak], 1 < k I .i, 1 < j L IGAil 

[31 Construct alternate query ar,(ag,,,~~[R1]). 

;z; 
Q’ := Q optimized using underlying query optimizer 
If cost(Q’) < cost(BestPlan) 

IF] 
BestPlan := Q’ 

Else Return BestPlan 
[8] Return BestPlan. 

*3,1 *3,3 *3,5 

t4p-p-@ 

5 j 

---) 
‘... w 

‘.. 

0 

x ‘... 
‘.. / 1 

(p, 71) is (0, l%), a gooFdi~E2ii~~et?Z5~~r!Z~ opti- 
for simple Select query for MN-EXP. 

mum) would be’ Plan (e). This plan is however hot 
a conjunctive filter becasue it contains OR operators. 
In general, filters using OR operators reduce false neg- 
ative errors and hence this space could contain good 
plans especially when the user can tolerate few false 
negatives. 0 

EXAMPLE 7.2 (S awtooth Filters): In Figure 6 
we present an example of what we call a sawtooth fil- 
ter. That filter is for an ideal test 13, and uses restric- 
tion predicates such as A3,1 through As,~. In the figure 
we denote tuples that are rejected by a predicate using 
dotted outgoing links, while tuples that satisfy a pred- 
icate how through the unbroken outgoing link. We see 
that tuples flowing through the dotted outgoing link 
of As,1 are sequenced through A3,2. The tuples that 
satisfy As,2 are then combined with those that satisfy 
As,1 to be tested by As,~. Similarly for tests As,3 and 
As,~. Again, notice that these filters are not conjunc- 
tive. 

I 
*3,2 *3,4 

4 ________________________________________------------------~ 

A plan such as the one in Figure 6 may be useful in 
the following scenario. Say many tuples in a database 
are expected to satisfy 1s. Say A3,1 is cheap, has high 
selectivity, few false positives but many false negatives, 
while As,2 is more expensive and has low false negative 
errors. In this case, A3 1 acts as a fast filter to the ideal 
test and A3 2 “protects? the filter by checking the A3 1 
rejects. Similarly for A~,J and A3,4. b 

Even though conjunctive filters may be suboptimal, 

Figure 6: Example of a sawtooth filter. 
vious wrappers as heuristics. For instance, the 
LinearWrapper can be modified as follows for the 
(p, n)-MN-EXP measure: greedily insert restriction 
and access predicates based on their respective ranks, 
as long as the errors of the extended plan are tolera- 
ble. The extended plans that have tolerable errrors, 
will be passed to the underlying query optimizer for 
evaluation. The Conjunctive Wrapper can be similarly 
modified. These heuristic wrappers can be further ex- 
tended so they consider a few promising OR filters, 
such as a simple OR of the predicates, or a sawtooth 
filter where high error predicates are protected. We 
are currently exploring and evaluating such options, 
but cannot report on them here due to space limita- 
tions. 

it may still be useful to select the best conjunctive fil- 
ter under the (p, n)-MM-EXP measure. However, op- 
timizing for (p, n)-MN-EXP for conjunctive filters is 
NP-Hard for both LI and LCI dependent predicates 
(as we show in Appendix C). For some cases, we have 
some FPTAS (fully polynomial time approximation so- 
lutions [GJ79]) lg th a ori ms based on dynamic program- 
ming that can compute solutions with AR = (1 + 6). 
However these are only of theoretical interest and can- 
not be used in real systems. 

In Table 3 we summarize the various wrappers 
we proposed in the paper, along with their com- 
plexity and some comments on their performance for 
MIN-EXP and (p, n)-MN-EXP measures. 

8 Experimental Results 

Even though finding the best conjunctive filter 
is hard, we can still use the strategies of our pre- 

To understand the performance of our wrappers and 
the quality of the plans they generate, we conducted a 
variety of experiments. Some of the experiments used 
real approximate filters (approximating the location of 
an address by its zip code or area code, as opposed to 
a precise distance computation). Other experiments 
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considered simulated queries and predicates, to evalu- 
ate performance over wider ranges of parameters. Be- 
cause of space limitations, here we only summarize one 
of the simulator experiments. The remaining results 
also confirm that our scheme works very well, yield- 
ing excellent plans with relatively little effort. Read- 
ers are encouraged to read the full version of this pa- 
per [SGMC98] f or more comprehensive performance 
results. 

The goal of this one experiment was to under- 
stand how our wrappers perform when there are mul- 
tiple ideal and approximate predicates. In this setup 
we consider a single SPJ query on randomly gener- 
ated relations Ri, R%. The query involves three ideal 
predicates, II on RI, 12 on R2, and a join predi- 
cate Is. We assume that each ideal predicate has a 
number of LI approximate predicates; this number is 
varied in our experiments. The expense of our ideal 
predicates was randomly chosen between 10,000 and 
20,000 units. We represent this uniform distribution 
by U( 10000,20000). If an approximate predicate is an 
access one, its cost follows the U(100, 1000) distribu- 
tion. If it is a restriction predicate, its distribution is 
U (10,50). The selectivity of all our predicates follows 
U(O.01,l.O). The false positive and negative errors of 
approximate predicates follow U(O.O1,0.25). 

In this experiment we evaluated the normalized cost 
of query plans generated by our wrappers. The nor- 
malized cost of a plan is defined as the execution cost 
of the plan divided by the cost of the plan that uses 
no approximate predicates. To compute the cost of a 
plan, we built a simple query optimizer (T&O) based 
on predicate placement [CS96] - our optimizer consid- 
ered only sort-merge and hash-partitioned joins. We 
expect that as more approximate predicates become 
available, normalized costs will drop. In our experi- 
ments, we required solutions to have zero false-positive 
errors (we performed experiments for other values of 
false-positives, but do not report them here due to 
space constraints). We ran the following simulations 
25 times, and report the average of our results. 

In Figure 7 we show the normalized cost of solu- 
tions computed by our Conjunctive Wrapper (Conj), 
and by the greedy extension to LinearWrapper pro- 
posed in Section 7 (Linear), as the number of approxi- 
mate predicates per ideal predicate varies. In Figure 8 
we plot the number of alternate query plans fed by 
the wrapper to the underlying query optimizer. We 
see in Figure 7 that as we increase the number of ap 
proximate predicates (per ideal predicate), the normal- 
ized costs drops dramatically, especially as the user is 
willing to accept more errors. (Notice that the ver- 

tical axis &-log scale.) Also observe that while the 
Linear wrapper yields higher cost solutions compared 
to Conj wrapper, the difference is rather small. On 
the other hand, we see that the number of alternate 
query plans handed to the optimizer under Conj is 
much larger than the equivalent number for Linear. 
Thus, we see that even though LinearWrapper was de- 
veloped for MIN-EXP (which is not the metric used 
in this experiment), it still performed quite well un- 
der the (p, n)-MIN-EXP measure, with a much lower 
running time. 

9 Conclusion 

Several applications require complex and expensive 
predicates that may be too expensive to run on large 
relations. Application designers often provide sim- 
pler and computationally cheaper predicates to ap- 
proximate the complex predicates. In this paper we 
proposed a general framework for expressing and ana- 
lyzing approximate predicates, and we described how 
to construct alternate query plans that effectively use 
the approximate predicates. Our optimization strate- 
gies are provably good in some scenarios, and serve 
as good heuristics for other scenarios where the opti- 
mization problem is NP-hard. We also showed how to 
incorporate our strategies into existing query optimiz- 
ers for extensible databases. Finally, we also presented 
experimental results that illustrate the potential per- 
formance gains, and that show LinearWrapper to be a 
very good scheme, even for the (p, n)-MZN-EXP metric 
where optimization is very hard. 

In the future, we plan to consider several of 
the problems we identified in Section 5.4, and also 
some additional classes of promising filters for the 
cPT+ytyxp problem such as OR-filters and saw- 

. As we mentioned in Section 8 these 
classes could complement well the conjunctive filters 
we considered in detail in this paper. Also we plan 
to perform a rigorous performance study of our wrap- 
pers in the context of more general Boolean queries. 
We also would like to extend our techniques for more 
general boolean expressions. As mentioned earlier, 
another important challenge is to extend traditional 
query optimizers (TQOs), on which our scheme builds, 
so they do not assume pair-wise independence of ex- 
pensive predicates. 
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