
Filtering with Approximate Predicates*
Narayanan Shivakumar, Hector Garcia-Molina, Chandra S. Chekuri

Department of Computer Science, Stanford, CA 94305.
{ shiva, hector, chekuri} @cs.stanford. edu

Abstract

Approximate predicates can be used to re-
duce the number of comparisons made by ex-
pensive, complex predicates. For example,
to check if a point is within a region (ex-
pensive predicate) we can first check if the
point is within a bounding rectangle (approx-
imate predicate). In general, approximate
predicates may have false positive and false
negative errors. In this paper we study the
problem of selecting and structuring approx-
imate predicates in order to reduce the cost
of processing a user query, while keeping er-
rors within user-specified bounds. We model
different types of approximate predicates and
their dependencies, we derive expressions for
the errors of compound predicates, and we
develop query optimization strategies. We
also study the complexity of our optimiza-
tion strategies under various scenarios, and
we present an experimental case study that
illustrates the potential gains achieved by op-
timizing queries with approximate predicates.

1 Introduction
As database systems are used in wider classes of ap-
plications, there arises a need for evaluating complex
predicates. Such predicates can, for example, compare
images in the database to some reference image, can
identify “similar” text in a document database, can
check for containment of points within regions, or can
search for certain trading patterns in a stock market
database. Because these predicates are often expen-
sive to evaluate, application designers design cheaper

*This work was partially supported by the Community
Management Staff’s Massive Digital Data Systems Program,
NSF grants IRI-94-11306, IRI-96-31952, IBM Faculty Part-
nership Award, NSF Young Investigator Award CCR-9357849,
DARPA, NASA, the industrial partners of the Stanford Digi-
tal Libraries Proiect. and grants of IBM. Hitachi Corp. Mit-
subishi, Schlumberger Foundation, Shell Foundation, and Xerox
Corporation.

Permission to copy without fee all or part of this material is
wanted orovided that the copies are not made or distributed for
krect commercial advantage, the VLDB copyright notice &d
the title of the publication and its date appear, and notice is
given that-copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

approximate predicates to cut down the number of data
elements that must be analyzed by the original or ideal
predicate. For example, to check if a point is contained
inside a complex region, we can first check if the point
is within the region’s bounding rectangle. One expects
that most database points will not be in the rectangle,
so the ideal containment test need only be run on a
much smaller subset of points.

The bounding rectangle approximate predicate has
false-positiue errors, i.e., some data points satisfy the
approximate predicate but not the ideal predicate.
Other approximate predicates may have false-negative
errors, where data values are incorrectly rejected; some
predicates may have both types of errors. End users
may be willing to tolerate limited errors in their re-
sults, in order to improve performance significantly.

Given a user query and a set of approximate pred-
icates for some of the ideal predicates in the query,
there are many ways in which the predicates can be
combined to improve performance and to keep errors
low. For instance, the output of one approximate pred-
icate can be routed to another predicate; this could be
useful if the first is a cheap predicate but has high
false-positives, while the second predicate is more ex-
pensive but will remove the false-positives. Two pred-
icates could be evaluated “in parallel” and their out-
puts combined, in order to reduce false-negative errors.

In this paper we study the problem of selecting
and structuring approximate predicates in order to im-
prove the performance of a given user query. More
specifically, our contributions are as follows:

We present a model for approximate predicates,
including their selectivities, costs and errors.

We derive formulae for the selectivities, costs and
errors for logical combinations of approximate
predicates.

We show how approximate predicates can be com-
bined to answer Select-Project-Join queries con-
taining expensive, user-defined predicates. We
concentrate only on the case the Where clause of
the query consists of a conjunction of built-in and
expensive predicates. We defer processing arbi-
trary Boolean queries for future work.

We suggest metrics for optimizing queries involv-
ing approximate predicates. We present optimiza-
tion strategies for various scenarios of interest.
For some scenarios, our strategies yield provably
optimal plans; for others the strategies are heuris-
tic ones. For some of the heuristic strategies, we
develop approximation ratios that bound how far

263

a solution can be from the optimal one. In all sce-
narios, we discuss the complexity of our strategies.

l We discuss how our strategies can be incorporated
into existing query optimizers for extensible sys-
tems (that can handle complex predicates), and
evaluate these strategies empirically to show the
potential performance gains.

The rest of the paper is organized as follows. In
Section 1.1 we present some motivating examples of
complex, data-intensive applications where the use of
approximate predicates may lead to significant cost
savings. In Section 1.2 we consider related work. In
Section 2 we formally characterize predicates, and out-
line the modifications required in a system catalog to
maintain meta-data for these predicates. In Section 3
we characterize the space of query plans that must be
considered. In Section 4 we propose a brute-force opti-
mizer, followed by more efficient ones in Sections 5, 6
and 7. In Section 8 we evaluate our techniques and
show the performance benefits in using approximate
predicates.

1.1 Motivating applications

In the QBIC system, color histogram matching is an
important way of computing similarity measures be-
tween images. This matching is based on a 256-
dimensional color histogram and requires a 256 matrix-
vector multiplication. However, QBIC employs a much
faster “pre-computation” in 3D space to filter input to
the more expensive histogram matching phase. Only
images that pass the fast test are given to the his-
togram test, and only the ones that pass both tests
are shown to the end user. This filtering saves sub-
stantial computational effort [ea95].

In our own case, we were motivated to study ap-
proximate predicates while implementing the Stanford
Copy Analysis Mechanism (SCAM) [Ros96, SGM96].
SCAM is a prototype of a copyright violation detection
system [SGM95, SGM96] that allows digital authors to
find illegal copies (or fragments) of their documents in
a digital library such as the web. For this, SCAM gets
a feed of web documents from the Stanford BackRub
webcrawler, and then stores and indexes these docu-
ments. SCAM can compute the set of documents with
potential overlaps to a query document by finding the
maximal common subsequences between each docu-
ment and the query document. However this is ex-
pensive, since even if comparing two documents takes
about a milli-second, checking one document against
the 60 million estimated documents’ in the web will
take about 20 hours.

To be computationally tractable, SCAM adopts
a filtering strategy: it uses some of its approxi-
mate predicates (based on word and sentence similar-
ity [SGM96]) to compute a set of candidate documents
with “potential significant overlap” with the query

‘This is the current estimated number of pages in popular
search engines such as Excite and AltaVista.

document. These documents are subsequently checked
by the pair-wise ideal test. This filtering strategy re-
duces the time to check a document to typically less
than a minute (rather than 20 hours) on a SUN Ultra-
Spare machine. SCAM’s approximate predicates may
have false positives and false negative errors. How-
ever, these errors appear to be tolerable when one is
detecting copyright violations [SGM95, SGMSG].

There are many other motivating applications such
as data scrubbing [ME971 and search problems. For
instance, approximation algorithms with bounded er-
rors have been developed for many NP-hard problems
such as the minimum-cost traveling sales-person prob-
lem (TSP) [Aro96], and for approximate searches in
high-dimensional spaces [IM97]. Hence if a user can
tolerate errors, these approximations can be used as a
filter to complex ideal predicates, or to even replace
the ideal predicates.

1.2 Related Work

Recently, there have been several proposals to op-
timize queries with expensive, user-defined predi-
cates for extensible databases. The LDL project at
MCC [CGK89] and the Papyrus project at HP Lab-
oratories [CS93] proposed viewing expensive predi-
cates as relations and using the System R dynamic
programming algorithm for join and expensive predi-
cate enumeration. Hellerstein and Stonebraker [HS93]
proposed predicate migration as a way of interleav-
ing join and selection predicates. Chaudhuri and
Shim [CS96, CS97] recently proposed an algorithm
to optimize the placement of expensive predicates
in a query plan, in a System-R style query opti-
mizer [SAC+79]. These optimizers do not consider
approximate predicates and errors. The focus in our
paper is on approximate predicates, and how to select
the “right” subset of approximate predicates to filter
input to the more expensive user-defined predicates,
depending on the user’s tolerance for errors.

The trade-off between quality of result versus time
spent in computing result has been explored in the
past in different contexts in relational databases. In
sampling-based selectivity estimation [HNSSSG, YI95],
sizes of query results are estimated by sampling proce-
dures; better estimates are obtained by spending more
time on sampling. Several researchers in the past
have exploited filtering as a tool improve specific pro-
cesses such as spatial joins [PD96], magic rewriting for
OLAP style queries [Sea96], image retrieval [ea95] and
in approximating Datalog [CK94]. However the tech-
niques we discuss in this paper are on a “meta-level;”
we discuss how to compose a set of several approximate
filters, such as the above, to optimize a user query.

2 Characterizing predicates

We now define different types of predicates, and how to
characterize them in terms of expense, selectivity, and
errors. We distinguish between two kinds of predicates
based on how they can be evaluated.

264

Access predicate: These predicates select and
stream out tuples in a given relation, using some
index access method. For instance, consider an
index that identifies every image in the database
based on its dominant color components. An ac-
cess predicate to find all images with substantial
yellow components can use this index, and stream
out the corresponding “yellow” images.

Restriction predicate: These predicates are
directly evaluated on a given tuple, rather than
on a relation. For example, consider a predicate
to check if a given image (tuple) has a substantial
yellow component. We can implement a restric-
tion predicate to compute the color histogram of
the image, and check if the yellow component ex-
ceeds some threshold.

LetI={11,1z,... , Im} be a set of ideal predicates.
For each Ii, 1 5 i < m, we have a set of approximate
predicates Ai (= { Ai,j }) that can filter 1i. Let A =
~i”a=~Ai.

We now define the important characteristics of re-
striction predicate Ai,j that approximates its corre-
sponding ideal predicate Ii. Let selectivity Sif =
P(Ai,j) be the probability that some given tuple satis-
fies Ai,j. It is then expected that for any input stream
of t tuples, t * si,.j tuples satisfy Aij. Another im-
portant characteristic of Ai,j is ei,j, the expense of
evaluating the predicate for each tuple, expressed in
units-per-tuple (upts). We quantify Aij’s false nega-
tive error as ni,j = P(lAi,jlIi), which is the condi-
tional probability that a tuple does not satisfy Ai.,j,
given that the tuple satisfies Ii. Similarly we quantify
Aij’s false positive error as pi,j = P(Ai,jJ-Ii), which
is the conditional probability that a tuple satisfies Aif,
given that the tuple does not satisfy Ii.

Access predicates have characteristics similar to re-
striction predicates. We define for access predicate
Ai,j the expense ei,j to be the expense of finding
and streaming out tuples satisfying the predicate, nor-
malized with respect to the number of tuples in the
database. For instance, if an index on a database with
2000 images charges 1000 units to search and retrieve
images with substantial yellow component, we define
ei,j = IOOO/ZOOO = 0.5 upts. We define the selectivity
P(Ai,j) = si,j to be the fraction of output tuples to the
total number of tuples in the relation. Similarly, we
define pi,j to be P(Ai,j(‘Ii) and ni,j to be P(‘Ai,j(Ii).

Ideal predicates have expense and selectivity char-
acteristics. In particular, we define si to be P(li), and
the expense of evaluating the predicate ei. By de%
nition, ideal predicates do not have false positive or
negative errors.

EXAMPLE 2.1 Consider a relation with 1000 tu-
ples. Out of all the tuples in the relation, 10 tuples
satisfy ideal predicate 11, i.e., si = lO/lOOO = 0.01.
Say the expense of running II on one tuple is 10,000
units.

Consider restriction predicate Al,1 which has a per-
tuple expense of 50 upts. Out of all the tuples in the

relation, 107 tuples satisfy Al,l. Out of these, 8 tuples
also satisfy 11. We can compute sl,l = 107/1000 =
0.107, pl,l = P(A+Il) = (107 - S)/(lOOO - 10) =
0.1, and n1,1 = P(~A1,1(11) = (10 - 8)/10 = 0.2.

Next consider access predicate Al,2 which costs
5000 units to execute using an index: 50 tuples satisfy
A1,2. Out of these, 9 tuples also satisfy 11. We can
compute eij = 5000/1000 = 5, Si,j = 50/1000 = 0.05,
p1,2 = P(Al,ll~li) = (50 - 9)/(1000 - 10) = 0.04, and
n1,2 = (10 - 9)/10 = 0.1. 0

3 Space of query plans
Conventional query optimizers evaluate a variety of

query plans for each user query (in terms of predicate
placement, join orderings and index selections) before
choosing the “best” plan to execute. With approxi-
mate predicates, the optimizer has to consider a much
larger space of plans, since each user query can now
be replaced with one of several alternate queries with
approximate predicates. The query optimizer now has
to choose the “best” plan among the set of original
and alternate plans.

We now illustrate the space of plans possible in an
extensible database that supports ideal and approxi-
mate predicates. Consider an example database with
ten tuples. Consider the catalog information in Ta-
ble 1, with meta-data about expensive predicates II
and 12 along with their approximate predicates Al,l,
A1,2, Al,3 and A~,J. The values listed in the table are
“made-up” so as to make exposition clear, and should
not be interpreted in any special way.

We use a standard query tree representation [UllSS]
to show the logical query plans for our examples in this
section. The tree has relations at its leaves; selections,
joins, projections and cross-products are placed at the
tree’s internal nodes [U1188]. In some cases, the trees
may be annotated with other implementation details
such as indices selected and interesting orders, but we
will not use such annotations in our examples below
for simplicity.

EXAMPLE 3.1 Consider the following simple
SELECT query issued by the user: Find all tuples from
table R satisfying predicate 11.

We present in Figure 1 query trees for alternate
queries along with their expenses (e) , and overall false
positive (p) and negative (n) errors. (In the next sec-
tion, we show how to compute or estimate these values
for any given query plan.)

Plan (a) is the tree for the user query that applies
predicate Ii on all tuples in table R. Plans (b) and (c)
are examples of filtering input to 11 by checking Al,3
or Al,2 on tuples in R before checking for 11. Plans (d)
and (e) show how approximate predicates can be com-
posed using conjuncts (ANDs or “A”) and disjuncts
(ORs or “V”) to filter input to Ii. Observe that by
composing approximate predicates, we managed to (1)
reduce the execution expense from 2500 in Plan (c) to
2400 in Plan (d), and (2) reduce the false negative er-
ror from 0.1 in Plan (c) to 0.01 in Plan (e). Plans (f)

265

] Char. / Predicate Type Expense (upts) Selectivity False Positive False Negative
I1 Restriction 1000 0.1 0 0

41 Access 10 0.9 0.25 0.1
Al,2 Access 50 0.2 0.1 0.1
43

I2

A2,1

Restriction 100 I 0.3 I 0.1 I I 0.2
Restriction 2(100 I 0.2 I I 0 I 0 II

Restriction 500 0.5 0.2 0.1 n

Table 1: Example database catalog.
and (g) show how a restriction predicate such as Al,3
can be “sequenced” (SQN or +) on top of composed
access predicates, to reduce the expense of Plans (c)
and (e), at the cost of increased n errors. The SQN
operator is similar to AND operator in terms of er-
rors and selectivity, but differs in terms of expense.
For instance, Al,1 A Al,: will have a higher expense
than Al,1 + Al,! since m the former, Al,3 is applied
on all tuples while in the latter it is applied only to
tuples that satisfy Al,l. Plans (h) and (i) are similar
to Plans (d) and (g) except they do not check (expen-
sive) 11 on the tuples: these plans have lower expected
expense at the cost of potential false positives (p > 0).

The set of query trees we present in Figure 1 is
clearly not complete, but gives the reader a flavor for
the space of plans for filtering simple predicates. 0

EXAMPLE 3.2 Consider a JOIN query that per-
forms an equi-join between two relations RI and R2
as shown in Plan (a) of Figure 2.

We present some possible query trees in Figure 2
along with expenses and false positive and negative
errors incurred in executing each plan.

Plan (b) reduces the execution expense by filtering
11 with A1,2. Plan (c) is a more complex alternate
query that filters tuples in RI and R2 using some ap-
proximate predicates and finally performing 11 after
the equi-join. Note that this plan never checks tuples
with 12 and therefore p > 0. Clearly we can see that
this set of alternate queries is not complete: in fact any
of the alternate queries in Example 3.1 can be used
to filter 11, and similarly for 12. Also we can push
ideal and approximate predicates to several places in
the query tree, both with respect to the equality join
predicate, as well as to each other (as in expensive
predicate placement [CS96, HS93]). The example set
of alternate queries we present however do illustrate
the increased set of plans to be considered by a query
optimizer. 0

From the examples we see that a query optimizer
should consider alternate queries where approximate
predicates are composed using operators such as V,
A, 1 and +. In our execution model, we define well-
formed query plans to be ones where the following com-
postions cannot be executed:

1. Negated access predicates: This corresponds
to accessing an index to find tuples that satisfy
a given predicate, and returning the rest of the
tuples in the relation.

2. Sequenced access predicates: This corre-
sponds to accessing an index to find tuples that
satisfy a given predicate, sequencing these tuples
to another index and computing a smaller set of
tuples that satisfy both predicates.

Note that the second assumption does not preclude
“index intersection;” our execution model does allow
tuples to be retrieved from two sets of indices inde-
pendently, and subsequently intersected using the A
operator.

A query optimizer that needs to consider the space
of well-formed plans becomes more complex than tra-
ditional query optimizers due to the increased number
of plans. However we also see from the same examples
that the potential payoffs are huge (we show this us-
ing experiments in Section 8). Hence we believe the
increased complexity in building a query optimizer is
a worthwhile price to pay for the potential payoffs in
query execution.

3.1 Minimization measures

In this subsection we define measures to evaluate query
plans for alternate queries, so an optimizer can choose
the best plan to execute the given user query. In clas-
sical query optimization, the goal is to choose query
plans, for a given query, with minimal query execu-
tion expense. In extensible databases with approx-
imate predicates, two natural measures to minimize
when evaluating different query plans are:

1. Expense (MIN-EXP): This measure selects the
query plan with the least execution cost, irre-
spective of the errors, among the possible alter-
nate queries and their physical implementations.
This metric is useful when approximate predi-
cates, that make no false negative errors, stream
candidate tuples to be checked by the ideal pred-
icate. In this case, all query plans yield correct
results, so cost is the way to compare plans. This
measure could also be useful in other cases, for
example, if we know that all approximate pred-
icates have acceptably low false negative errors,
or if ideal predicates are replaced by approximate
ones with acceptably low false positive rates. In
these cases, errors are assumed to be low enough,
and we can select plans baaed on cost only.

2. Expense
subject to (p, n) constraint ((p, n)-MN-EXP):

266

e=lOOOO e=4OCQ
p=o p=o
n=O n = 0.2

t7-:
7

e=2500 e=2dOO e=9800
u=o o=o o=o

R

(d)

R R

(0 (9)

e=1300 e = 4520
p=o p=o
n = 0.28 ” = 0.2

yY.3

y1.2 v A1,1

R

(i)

e= 1520
p = 0.03
n = 0.2

Figure 1: Some query plans for Example 3.1.
In many applications, the user would like to con-
trol the quality of results returned by specifying
acceptable bounds for false positive and negative
errors. In such scenarios, the minimization func-
tion is expense subject to the constraint that the
query plan has error estimates tolerable to the
user.

Of course, MIN-EXP is one instance of
(p, n)-MIN-EXP with p and n set to zero, but
we will see that we can construct more efficient
query optimizers for the MIN-EXP measure than for
(p, n)-MIN-EXP; h ence we retain MIN-EXP as a min-
imization measure in its own right.

4 General query optimization

A query optimizer that supports approximate pred-
icates has to choose from the space of plans illus-
trated in the previous section. There are a variety
of approaches for this. We now present the approach
we advocate in this paper, and defer a discussion of
its advantages and drawbacks until after we explain
the scheme. Our approach incorporates a traditional
query optimizer (T&O), as a component. Given a log-
ical query, the T&O performs traditional query opti-
mization tasks such as plan enumeration, evaluating
join orderings, index selections and predicate place-
ment [U1188, CS96, HSSS]. Current T&OS of course do
not understand the special semantics of approximate
predicates. If the T&O gets a query with approximate
predicates, it treats these predicates as any other user-
defined predicate. The T&O returns the best physical
plan for implementing the given query, along with its
estimate of the cost of executing that plan.

With our approach, we build a wrapper that under-
stands approximate predicates, around the T&O. The
wrapper is given a user query containing only ideal

I
Da
/\

/I ‘\;

R1 R2

I
w’
/

*I3 h

*1,2 ,A *1,1 y

R1 R2

64 (b) @I

e=35OQO
p=o
n=O

e = 27500
p=o
n = 0.2

e= 11780
p=O.l
” = 0.2

Figure 2: Some query plans for Example 3.2.

predicates, and information on the available approxi-
mate predicates. The wrapper extends the user query
by composing some subset of approximate and ideal
predicates into the query, so that the extended query
has errors tolerable to the user. The wrapper then
feeds this extended query to the TQO, which performs
its tasks and returns the cost of executing the opti-
mized version of the extended query. The wrapper
iterates through alternate extended queries, and then
chooses the alternate query whose optimized version
costs the minimum to execute.

We now study this wrapper approach in more detail.
The wrapper we present here is clearly not efficient,
and hence we call it the Naive Wrapper. More efficient
versions will be presented in latter sections. To keep
our discussion brief, we focus on the optimization of
the query [CJ, (R1)]W13 [am,], which is a join of two
relations RI and Rz with ideal predicates II and Iz
to be applied on RI and Rz, and Is being the join
predicate. (Generalizing to more complex queries is
straightforward.)

Figure 3 shows pseudo-code for the Naive Wrapper
for this class of join queries. The wrapper first con-
siders all subsets of predicates in Ai U {Ii}, 1 5 i 5.3,
(Step [l]), and constructs alternate extended queries
using A,V,- (Steps [2], [3]). Next, the wrapper com-
putes the expected false and positive errors for each
alternate query; the techniques for this will be covered
in Sections 5 and 6. If the alternate query so pro-
duced has a tolerable error (Step [4]), it is handed to
the T&O (Step [5]). (If we are using a simple MIN-
EXP metric, then all such queries are handed to the
optimizer.) The optimizer computes the cost of each
alternate query, and the wrapper selects the alternate
query with the minimum overall cost of execution.

Notice that the TQO may rearrange the predi-
cates in order to reduce costs. For example, if Cl is

267

Algorithm 4.1 Naive Wrapper for (p, n)-MIN-EXP
Inp A: Approximate predicates; [up, a,,]: Acceptable errors
Procedure

[0] BestPlan := Dummy plan with infinite cost
[ll For each VI C [Al U {II}], Uz G [AZ U {~z}], U3 C [A3 U {Z3}]

[2] For each composition 9, Cz, C3 of predicates in Ui , UZ and Us
with V, A, and 7 such that the compositions are well-formed

Ii]
Construct extended query Q as gcl,-,ca,-,c3(R1 x Rz).
If false positive and negative errors of Q are less than a.p and a,

[ii
Q’ := Q optimized using TQO
If cost(Q’) < cost(BestPlan)

[71 BestPlan := Q’
[8] Return BestPlan.

Al.1 A Al.2 A II, the op%mizer may &&,d,% e$ecuxe
Fi ure 3. Naive w a in an quer o timizer f I

&t&e resear& k’ ni)-yzN-E?p. t a itiona query optimization. we
them in some sequence (i.e., introdncing the SQN op-
erator into the tree). It is important to note that such
restructuring does not change the errors of an alternate
query. Thus, a query that was deemed acceptable in
Step [4] will continue to be acceptable after the op-
timizer restructures it to reduce costs. This property
makes it possible to cleanly separate the wrapper from
the optimizer, and we use this property again in the
wrappers that we present in the following sections.

The naive wrapper in Figure 3 exhaustively enu-
merates all possible alternate queries, and hence is not
practical: the number of Boolean functions on n vari-
ables is 22” when these variables are composed using
A, V and 7. So, given IAl approximate predicates, the
number o%,;\ternate queries produced in Steps [l] and

[2] is O(2). As we mentioned earlier, in later sec-
tions we present much more efficient wrappers, at least
for certain classes of queries.

The main advantage of the wrapper approach is its
modularity. One can build upon existing optimizers,
that codify decades of experience. Thus, to optimize
queries with approximate predicates, we do not have
to re-invent well known techniques for access path se-
lections, join ordering, hash joins, and so on.

On the other hand, modularity may be a poten-
tial problem because current TQOs (such as those
discussed in Section 1.2) assume that predicates are
uncorrelated while making optimization decisions, es-
pecially during predicate placement [CS96, HS93].
Clearly this assumption is not valid in our case since
approximate predicates are correlated with the ideal
predicate, and may be correlated with each other.

Of course, we can still use T&OS even if predicates
are correlated, except that the resulting plans may be
sub-optimal. However, in our experiments (Section 8),
we observed that incorporating approximate predi-
cates with the wrapping approach leads to significant
performance improvements, despite using sub-optimal
T&OS. Notice that with the wrapper approach, predi-
cate dependencies are still handled correctly when cre-
ating alternate queries and when estimating their false
positive and negative errors. Also when new TQOs are
developed to correctly handle predicate correlations by

can easily incorporate them immediately using our ap-
preach .

The alternative to wrappers involves the tight cou-
pling of the enumeration of alternate plans with the
optimization phase, so that alternate queries can be
automatically pruned when their costs exceed the cost
of another candidate alternate query. This may lead
to a more efficient optimization phase, but involves
modifying an existing optimizer significantly, so that
error computations are incorporated into the plan eval-
uation process. Tight integration does not solve the
predicate-interdependence issue. Thus, we would still
produce sub-optimal plans, unless the optimizer is also
modified to take correlations into account, which has
not yet been addressed by research in query optimiza-
tion.

In summary, with the wrapper approach we can
immediately incorporate approximate predicates into
any current query optimizer that supports user-defined
predicates. For this modularity, we pay the penalty of
inefficient query optimizers that do not tightly couple
alternate query generation with cost-based optimiza-
tion. Also, the underlying query optimizer may pro-
duce sub-optimal physical plans due to assumptions of
predicate independence. However, we have observed
experimentally (Section 8) that the execution time for
queries drops dramatically when we incorporate ap-
proximate predicates to filter expensive predicates, de-
spite sub-optimal physical plans.

In the next few sections, we consider how to im-
prove the alternate query generation process, so we do
not evaluate a doubly exponential number of alternate
queries. In Section 5 we focus on the MIN-EXP mea-
sure and simple Select queries. In Section 6 we ex-
tend the ideas from Section 5, and develop an efficient
wrapper for SPJ queries under the MIN-EXP measure.
We subsequently show in Section 7 why optimizing for
the (p, n)-MIN-EXP measure is hard, and then present
heuristics for the (p, n)-MZN-EXP measure (based on
our provably good wrappers for MZN-EXP).

268

5 Optimizing simple SELECT queries
for MIN-EXP measure

In this section we consider how to build a good filter for
a simple Select query ur, (RI) for the MIN-EXP mea-
sure. To do this, we first need to model how approxi-
mate predicates affect each other, i.e., what is the value
of an approximate predicate checking a tuple that has
already been checked by another approximate predi-
cate. In Section 5.1 we propose two models of com-
mon predicate dependencies. We then show how to
construct good filters in Section 5.3.

5.1 Modeling predicate dependencies

While there are many possible ways in which pred-
icates can depend on each other, we now consider
two cases we have found common among approximate
predicates in SCAM and QBIC.

1. Local Independence (LI): We assume that
all predicates in Ai are pairwise independent but
dependent on Ii. That is, P(A~, jcA,Ai,j) =
II A, j,A,P(Ad Th is is a common assumption
in extensible and relational databases. This mod-
els approximate predicates that consider different
attributes of incoming tuples and therefore filter
tuples independent of each other.

2. Local Conditional Independence (LCI): We
assume that all predicates in Ai are pair-
wise independent conditionally on Ii. That is,
P(A,, jcA,A,jlIi) = HA, ,,A,P(Ai,jlIi). This
assumption is strictly weaker than LI: if LI holds,
LCI also holds, but the converse is not true. Un-
der LCI, the selectivities of approximate predi-
cates are not independent. For example, if we
sequence Al,1 + AI,~, the selectivity of this filter
is not 61,1 * 61,~. This may be, for instance, be-
cause both Al,1 and Al,2 are approximating (us-
ing different techniques) the ideal predicate. So, if
Al,1 has already detected a document to be a po-
tential copy in SCAM (using say sentence chunk-
ing [SGM96]), that document is much more likely
to be found to be a potential copy by Al,2 (which
may use word chunking [SGMSG]). However, un-
der LCI we assume that approximate predicates
make positive and negative errors independent of
each other for any incoming tuple. That is, the
probability that Al,2 incorrectly identifies a doc-
ument to be a copy does not depend on whether
Al,1 earlier correctly or incorrectly identified it as
a potential copy. This is because the predicates
are using different mechanisms that may fail in
unrelated ways.

Under the above assumptions, we compute the char-
acteristics for arbitrary predicate compositions in Sec-
tion 5.2.

5.2 Propagating characteristics in a simple
Select query

Consider the select query q,[R1]. We consider al-
ternate queries of the form u~,(u~,[Rl]), where Fj is
some filter to Ii composed only of predicates in A;.
(Including Ii in the alternate query ensures we make
no positive errors, as discussed in Section 3.1.) If we
trust the approximate predicates to make small false-
positive errors, we could leave out the ideal predi-
cates, but this simple variation is not discussed here.)
We now show how to compute the expense, selectiv-
ity and error characteristics of the filter Fi, which we
call qnew, ~i,,,~~, pi,,,, and ni,new. Following that
we compute the characteristics of the complete filtered
ideal query. It is important to note that the following
expressions are for both access predicates, as well as
for restriction predicates.
Filter for an ideal predicate: We summarize in
Table 2 the characteristics of filters assuming LI pred-
icates. We derive analogous entries for LCI predi-
cates in Ref. [SGMC98]. The AND and OR op-
erators consider a set {Ai,jl,Ai,j,, . . .,Ai,jk} E Ai,
while the S&N operator considers an ordered list
A,j, + A,j, 7 . . .y + A,j, where Ai,j, E Ai, 1 5 j _< k.
The NOT operator considers a predicate Ai,j.

For example, selectivity of filter V:,, Ai,j, (second
row, last column of Table 2) is

= 1 - I$=,(1 - P(AQ,))

= 1 - lIf=i (1 - S;,j,)

The other table entries for selectivities and errors
are similarly derived.

The entries for filter costs are derived as follows.
The cost of a SQN filter is simply the cost of streaming
the tuples through the predicates. The cost of the
NOT filter is simply that of its restriction predicate
Ai,j because the same work must be performed (with
reversed decisions).

The cost model for unioning or intersecting streams
of tuples is trickier, since it depends on the application
and how the data is stored. For this paper, we assume
the cost of unioning or intersecting streams to be negli-
gible. This is the case, for example, if the access predi-
cates generate sorted streams (sorted by say tuple-id).
(The index used by Ai,j may yield sorted tuples, or
the tuples may be sorted dynamically, in which case
the sort cost is included in ei,j .) Note that information
retrieval (IR) systems process unions and intersections
in this fashion, and indeed the cost of the union and
intersection of “inverted lists” (the sorted tuple ids) is
typically negligible relative to the cost of accessing the
index [SBSS]. 0th er applications that use the same
cost model include mediators that integrate a set of
heterogeneous, remote databases - mediators typically
assume the cost of performing unions and intersections
locally at the mediator is negligible, compared to the

269

Operator/ NOT SQN AND OR
Characteristics

qnew
%,new
ni,new
Pi,new

ei,j CL (ei,j, * nili”i,jq) CL ei,5 CL ei,A
1 - Si,j Tl-lS,,j, II!=, Si,j, 1 -IIf=,(l - Si,j,)

1 - nij l-IIf=i(l-ni j,) 1 - II:=, (1 - nj,j,) II:=, njj,
1 - pi,j nk,,Pi,j, nf,1Pi,j, 1 - II;=, (1 - pj,j,)

Table 2: Characteristics of filters constructed with LI approximate predicates.
cost of accessing and streaming back tuples from the
remote sites [CGMP96, LYGM98, Vas98, VP97].

Of course, in some cases union and intersection
costs may be significant. For example, if tuples are
not sorted, we may have to use hashing to essentially
execute a join. However for the rest of the paper, we
continue to assume the cost of performing unions and
intersections is the cumulative cost of executing the
access predicates. We present an alternate cost model
based on hashing, and we discuss its impact on the
algorithms presented in the paper in Ref. citeotTech.
Filtered ideal query: Let e:, s:, n: and pi be the
characteristics of the filtered ideal predicate. We then
have e: = ei,new+Bi,new*eir n: = ni,new, pi = 0. Also,
we have

5.3 Conjunctive filters

The number of alternate queries for a simple Select
query is doubly exponential, since restriction predi-
cates can be composed using V, A, 1 and +, and access
predicates can be composed using V and A. In this sec-
tion we restrict the operators used to compose predi-
cates without losing optimality for the MIN-EXP mea-
sure, using the following observations (proofs are in
Ref. [SGMC98]):

Observation 1 (Composing a set of access pred-
icates)

1. Access predicates should not be composed using
OR.

2. Access predicates can be composed using the
AND operator in case there is potential benefit,
independent of predicate dependencies (such as &T
or LCI).

Observation 2 (Composing a set of restriction
predicates) Restriction predicates should be composed
only using the SQN operator, independent of predicate
dependencies. 0

Based on Observations 1 and 2 we can safely re-
strict the set of query plans we need to consider to
conjunctive filters.

Algorithm 5.1 Conjunctive Wrapper
Inp 1i: Ideal pred.; Ai: Set of approximate preds.
Procedure

[O] . . .
[l] For each U, C Ai

Ii]
Compose Cl = &eu,[a].
Construct alternate query UI, (ucl [RI]).

[4] - [8] . *.

Figure 4: ConjunctiveWrapper for simple Select
query for MIN-EXP.

Definition 5.1 (Conjunctive Filters) Given a set
of access and restriction predicates, a conjunctive fil-
ter is produced by first composing the access predi-
cates with the AND operator to form an AND-filter.
Then the restriction predicates are composed using the
SQN operator to form a SQN-filter. Fina.lly, the con-
junctive filter is formed by composing the AND-filter
with the SQN-filter using a SQN operator. 0

Figure 4 presents an Conjunctive Wrapper that only
considers conjunctive filters. This wrapper is optimal
for Select queries under the MIN-EXP measure. We
only present the Steps that are modified from Figure 3.
In Step [l] we consider all possible subsets of predi-
cates that can be part of ii’s filter. In Step [2] we
compose all the chosen predicates using AND. Notice
that restriction predicates should be composed using
SQN; however, they are composed with the AND for
simplicity, since the underlying optimizer will anyway
sequence the restriction predicates to minimize cost.
Step [3] constructs the alternate query with the cho-
sen predicates.

From Step [2] we see that the number of conjunc-
tive filters is still exponential since we can choose any
subset of access and restriction predicates to build a
conjunctive filter. While this is significantly more ef-
ficient than the doubly exponential naive algorithm of
Section 4, this approach may still be unacceptable for
some applications. In the next subsection, we pro-
pose heuristics for efficient filter construction with a
polynomial number of calls to the optimizer, for the
MZN-EXP measure. These heuristics will give us prov-
ably good filters for LI predicates, but may give us
sub-optimal plans for LCI predicates.

270

5.4 Conjunctive filters computable in polyno-
mial time

We first consider how to compute a good conjunctive
filter by computing good SQN filters for an expensive
predicate. (The proofs of the following theorems are
in Ref. [SGMC98].)

Theorem 5.1 (Choosing right subset of restric-
tion predicates)

To choose the best subset of restriction predicates to
filter ideal predicate 1i for the MIN-EXP measure, it
sufices to choose all restriction predicates with mnk
* < ei. 0

Theorem 5.2 (Choosing right subset of access
predicates)
Suppose we construct an AND-filter as follows. First

we rank the available access predicates by increasing
value of (rank =) *. Then, we construct the

AND-filter greedily: Let the AND-filter contain the
k-highest ranked predicates, k between 0 and the num-
ber of access predicates. If adding the (k + l)th-highest
ranked predicate into the AND-filter reduces the ex-
pense of executing the alternate query, add the predi-
cate to the AND-filter. If the expense increases, the
AND-filter with the k-highest ranked predicates is the
AND-filter required. The filter so constructed is guar-
anteed to have expense no worse than twice that of op-
timal for MIN-EXP. cl

Using the results of Theorems 5.1 and 5.2, we
present in Figure 5 the Linear-Wrapper for a simple
Select query (we only present the modifications over
Figure 3). LinearWrapper calls the underlying opti-
mizer m times, where m is the number of access predi-
cates. (If there are no access predicates, the optimizer
is called once.)

Recall that Naive Wrapper and Conjunctive Wrap-
per assumed the optimizer returns estimates of the
execution cost of the optimized version of any given
alternate query, and also assumed they had access to
system catalogs to lookup error estimates of various
approximate predicates. Linear Wrapper in addition
to these assumptions assumes the wrapper has access
to system catalogs to lookup expense and selectivity
characteristics of predicates.

LinearWrapper is more efficient than the doubly-
exponential Naive Wrapper and the singly-exponential
Conjunctive Wrapper since it is linear in the number of
approximate predicates. However it is only a heuristic:
it is provably good for LI-dependent approximate pred-
icates under the first cost model, but may not produce
optimal filters for LCI-dependent predicates. As we
show in Ref. [SGMC98], the problem of producing op-
timal filters for LCI-dependent predicates is NP-hard,
and hence we cannot hope to find optimal, polynomial
algorithms for LCI-dependent predicates.

6 Optimizing SPJ queries for MIN-EXP

Our Conjunctive Wrapper and Linear Wrapper can eas-
ily be extended to deal with more general join queries,
under the MIN-EXP measure. To illustrate, consider
the query Q := [cr, (Ri)]W,, [us,], where Ii, 1z and
13 are independent ideal predicates. The key idea is
to treat this query, for selection of approximate predi-
cates, as Q := [c~~,,-,~~,,~~(Ri x Rz)]. This is equivalent
to having the single predicate 11 A Is A 13 evaluated over
relation RI x R2. (Note that this is just a conceptual
way of looking at joins so we can compute the error
characteristics - we are not physically implementing a
cross-product!) Each approximate predicate for Ii, 12
and 13 can be considered approximates for II A 12 A 13.
Thus, our problem is again the selection of a good
subset of approximate predicates for the single ideal
predicate I, A I2 A Is.

Notice that the cost and selectivity for each approx-
imate predicate still hold under the new ideal predi-
cate II A I2 A 13. For instance, consider an approx-
imate predicate Al,j for Ii. Its selectivity over RI,
si,j, is the same as the selectivity over RI x R2. The
false negative errors are also unchanged. For example,
ni,j = P(yA;,j(Il) is identical to P(lAl,jlIl A 12 A 13)
because Al,j is independent of I2 and IS. However, the
false positive errors are changed, but can be computed
from the parameters we already know. In particular,
one can show that

p; = p1j * (1 - Sl) * s2 * s3 + Slj * (1 - s2 * s3)
93 (1 - si * sz * s3)

,

where pi j is the new error under II A I2 A I3 and pl,j
is the original error under Ii. We can compute false
positive errors for approximate predicates of Iz, 13 in
a similar fashion. If two predicates for Ii were LI (or
LCI), they will continue to be LI (or LCI) under 11 A
12 A 13. The Ii predicates are all LI with respect to
the I2, I3 predicates.

Once we have all the parameters for the approxi-
mate predicates, we can run Conjunctive Wrapper or
LinearWmpper just as before. (Keep in mind that
the wrappers only select approximate predicates to in-
clude; the underlying optimizer actually selects the
join method and places the approximate and ideal
predicates either before or after the join, in the or-
der that minimizes costs, as in [CS96].) Similarly, if
we wish to estimate the errors of a particular alternate
query (to report to the user), we can use the expres-
sions of Section 5.2.

7 Minimizing (p, n)-MIN-EXP

In this section we consider how to minimize the
(p, n)-MIN-EXP measure. Unfortunately, the optimal
plan may no longer be a conjunctive filter in this case.
We present two examples to illustrate this.

EXAMPLE 7.1 (OR Filters): Reconsider Exam-
ple 3.1 from Section 3. If the maximum allowable

271

Algorithm 5.2 Linear Wrapper for simple Select query for MIN-EXP
Inp Ai: Set of approximate predicates
Procedure

[0] BestPlan := Dummy plan with infinite cost.
[l] Compute GR;, a set of of ail “good” approximate restriction predicates

for Ii, such that (rank =) $$$ < e;.
Compute GA,, an ordered list of approximate access predicates for
Ii, sorted in increasing order of (rank =) -h.

[la] Dl = bEGR.[gr]

[z] For each Dz = A~~*EGA, [sak], 1 < k I .i, 1 < j L IGAil

[31 Construct alternate query ar,(ag,,,~~[R1]).

;z;
Q’ := Q optimized using underlying query optimizer
If cost(Q’) < cost(BestPlan)

IF]
BestPlan := Q’

Else Return BestPlan
[8] Return BestPlan.

*3,1 *3,3 *3,5

t4p-p-@

5 j

---)
‘... w

‘..

0

x ‘...
‘.. / 1

(p, 71) is (0, l%), a gooFdi~E2ii~~et?Z5~~r!Z~ opti-
for simple Select query for MN-EXP.

mum) would be’ Plan (e). This plan is however hot
a conjunctive filter becasue it contains OR operators.
In general, filters using OR operators reduce false neg-
ative errors and hence this space could contain good
plans especially when the user can tolerate few false
negatives. 0

EXAMPLE 7.2 (S awtooth Filters): In Figure 6
we present an example of what we call a sawtooth fil-
ter. That filter is for an ideal test 13, and uses restric-
tion predicates such as A3,1 through As,~. In the figure
we denote tuples that are rejected by a predicate using
dotted outgoing links, while tuples that satisfy a pred-
icate how through the unbroken outgoing link. We see
that tuples flowing through the dotted outgoing link
of As,1 are sequenced through A3,2. The tuples that
satisfy As,2 are then combined with those that satisfy
As,1 to be tested by As,~. Similarly for tests As,3 and
As,~. Again, notice that these filters are not conjunc-
tive.

I
*3,2 *3,4

4 __------------------~

A plan such as the one in Figure 6 may be useful in
the following scenario. Say many tuples in a database
are expected to satisfy 1s. Say A3,1 is cheap, has high
selectivity, few false positives but many false negatives,
while As,2 is more expensive and has low false negative
errors. In this case, A3 1 acts as a fast filter to the ideal
test and A3 2 “protects? the filter by checking the A3 1
rejects. Similarly for A~,J and A3,4. b

Even though conjunctive filters may be suboptimal,

Figure 6: Example of a sawtooth filter.
vious wrappers as heuristics. For instance, the
LinearWrapper can be modified as follows for the
(p, n)-MN-EXP measure: greedily insert restriction
and access predicates based on their respective ranks,
as long as the errors of the extended plan are tolera-
ble. The extended plans that have tolerable errrors,
will be passed to the underlying query optimizer for
evaluation. The Conjunctive Wrapper can be similarly
modified. These heuristic wrappers can be further ex-
tended so they consider a few promising OR filters,
such as a simple OR of the predicates, or a sawtooth
filter where high error predicates are protected. We
are currently exploring and evaluating such options,
but cannot report on them here due to space limita-
tions.

it may still be useful to select the best conjunctive fil-
ter under the (p, n)-MM-EXP measure. However, op-
timizing for (p, n)-MN-EXP for conjunctive filters is
NP-Hard for both LI and LCI dependent predicates
(as we show in Appendix C). For some cases, we have
some FPTAS (fully polynomial time approximation so-
lutions [GJ79]) lg th a ori ms based on dynamic program-
ming that can compute solutions with AR = (1 + 6).
However these are only of theoretical interest and can-
not be used in real systems.

In Table 3 we summarize the various wrappers
we proposed in the paper, along with their com-
plexity and some comments on their performance for
MIN-EXP and (p, n)-MN-EXP measures.

8 Experimental Results

Even though finding the best conjunctive filter
is hard, we can still use the strategies of our pre-

To understand the performance of our wrappers and
the quality of the plans they generate, we conducted a
variety of experiments. Some of the experiments used
real approximate filters (approximating the location of
an address by its zip code or area code, as opposed to
a precise distance computation). Other experiments

272

considered simulated queries and predicates, to evalu-
ate performance over wider ranges of parameters. Be-
cause of space limitations, here we only summarize one
of the simulator experiments. The remaining results
also confirm that our scheme works very well, yield-
ing excellent plans with relatively little effort. Read-
ers are encouraged to read the full version of this pa-
per [SGMC98] f or more comprehensive performance
results.

The goal of this one experiment was to under-
stand how our wrappers perform when there are mul-
tiple ideal and approximate predicates. In this setup
we consider a single SPJ query on randomly gener-
ated relations Ri, R%. The query involves three ideal
predicates, II on RI, 12 on R2, and a join predi-
cate Is. We assume that each ideal predicate has a
number of LI approximate predicates; this number is
varied in our experiments. The expense of our ideal
predicates was randomly chosen between 10,000 and
20,000 units. We represent this uniform distribution
by U(10000,20000). If an approximate predicate is an
access one, its cost follows the U(100, 1000) distribu-
tion. If it is a restriction predicate, its distribution is
U (10,50). The selectivity of all our predicates follows
U(O.01,l.O). The false positive and negative errors of
approximate predicates follow U(O.O1,0.25).

In this experiment we evaluated the normalized cost
of query plans generated by our wrappers. The nor-
malized cost of a plan is defined as the execution cost
of the plan divided by the cost of the plan that uses
no approximate predicates. To compute the cost of a
plan, we built a simple query optimizer (T&O) based
on predicate placement [CS96] - our optimizer consid-
ered only sort-merge and hash-partitioned joins. We
expect that as more approximate predicates become
available, normalized costs will drop. In our experi-
ments, we required solutions to have zero false-positive
errors (we performed experiments for other values of
false-positives, but do not report them here due to
space constraints). We ran the following simulations
25 times, and report the average of our results.

In Figure 7 we show the normalized cost of solu-
tions computed by our Conjunctive Wrapper (Conj),
and by the greedy extension to LinearWrapper pro-
posed in Section 7 (Linear), as the number of approxi-
mate predicates per ideal predicate varies. In Figure 8
we plot the number of alternate query plans fed by
the wrapper to the underlying query optimizer. We
see in Figure 7 that as we increase the number of ap
proximate predicates (per ideal predicate), the normal-
ized costs drops dramatically, especially as the user is
willing to accept more errors. (Notice that the ver-

tical axis &-log scale.) Also observe that while the
Linear wrapper yields higher cost solutions compared
to Conj wrapper, the difference is rather small. On
the other hand, we see that the number of alternate
query plans handed to the optimizer under Conj is
much larger than the equivalent number for Linear.
Thus, we see that even though LinearWrapper was de-
veloped for MIN-EXP (which is not the metric used
in this experiment), it still performed quite well un-
der the (p, n)-MIN-EXP measure, with a much lower
running time.

9 Conclusion

Several applications require complex and expensive
predicates that may be too expensive to run on large
relations. Application designers often provide sim-
pler and computationally cheaper predicates to ap-
proximate the complex predicates. In this paper we
proposed a general framework for expressing and ana-
lyzing approximate predicates, and we described how
to construct alternate query plans that effectively use
the approximate predicates. Our optimization strate-
gies are provably good in some scenarios, and serve
as good heuristics for other scenarios where the opti-
mization problem is NP-hard. We also showed how to
incorporate our strategies into existing query optimiz-
ers for extensible databases. Finally, we also presented
experimental results that illustrate the potential per-
formance gains, and that show LinearWrapper to be a
very good scheme, even for the (p, n)-MZN-EXP metric
where optimization is very hard.

In the future, we plan to consider several of
the problems we identified in Section 5.4, and also
some additional classes of promising filters for the
cPT+ytyxp problem such as OR-filters and saw-

. As we mentioned in Section 8 these
classes could complement well the conjunctive filters
we considered in detail in this paper. Also we plan
to perform a rigorous performance study of our wrap-
pers in the context of more general Boolean queries.
We also would like to extend our techniques for more
general boolean expressions. As mentioned earlier,
another important challenge is to extend traditional
query optimizers (TQOs), on which our scheme builds,
so they do not assume pair-wise independence of ex-
pensive predicates.

References
[Aro96] S. Arora. Polynomial time approximation schemes

for Euclidean TSP and other geometric problems. In
Proceedings of 37th Conference on Foundations of

273

0.001 ’ I
kmber 2 of 3 4 5 6

approximate predicates per
ideal 7 predicate 6

5 , .$L. _.__. -.-*-‘- - &/- .;,/*h--
.~--*~- -~* .- 2 1

2 1 2 3 4 5 6 7 6
Number of approximate predicates per ideal predicate

Figure 7: Quality of solutions with number of approximate Figure 8: Number of plans with number of approximate pred- ~.
icates (p = 0.0). predicates (p = 0.0).

Computer Science, Burlington, Vermont, October
1996.

[CGK89] D. Chime&i, Fl. Gamboa, and R. Krishnamurthy.
Towards an open architecture for LDL. In Proceed-
ings of the 15th International Conference on Very
Large Databases (VLDB’89), pages 195 - 203, AU-
gust 1989.

[CGMP96] C. K. Chang, H. Garcia-Molina, and A. Paepcke.
Boolean query mapping across heterogeneous infor-
mation sources. IEEE Transactions on Knowledge
and Data Engineering, S(4), August 1996.

[CK94]

[CS93]

[CS96]

[CS97]

[ea95]

[G 5791

[HNSS96]

[HS93]

[IM97]

[LYGM98]

S. Chaudhuri and P.G. Kolaitis. Can Datalog be
approximated? In Principlea of Database Systems
(PODS), pages 86 - 96, 1994.

S. Chaudhuri and K. Shim. Query optimization
in the presence of Foreign Functions. In Pro-
ceedings of 19th International Conference on Very
Large Databases (VLDB’gJ), Dublin, Ireland, Au-
gust 1993.

S. Chaudhuri and K. Shim. Optimization of pred-
icates with user-defined predicates. In Proceed-
ings of 2Jrd International Conference on Very
Large Databases (VLDB’96), Mumbai, India, Au-
gust 1996.

S. Chaudhuri and K. Shim. Optimization of pred-
icates with user-defined predicates. Microsoft Re-
search Tech. Report: MSR-TR-97-03, March 1997.

M. Flickner et al. Query by Image and Video Con-
tent: The QBIC System. IEEE Computer, pages 23
- 31, September 1995.

M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New
York, New York, 1979.

P.J. Haas, J.F. Naughton, S. Seshadri, and A.N.
Swami. Selectivity and cost estimation for joins
based on random sampling. Journal of Computer
and System Sciences, 52(3):550 - 569, June 1996.

J. M. Hellerstein and M. Stonebraker. Predicate Mi-
gration: Optimizing Queries With Expensive Predi-
cates. In Proceedings of ACM International Confer-
ence on Management of Data (SIGMOD’gJ), May
1993.
P. Indyk and R. Motwani. Approximate Nearest
Neighbors: Towards removing the curse of dimen-
sionality. In Stanford Clniveraity, Tech Report.,
April 1997.

W. Labio, R. Yerneni, and H. Garcia-Molina. Capa-
bility sensitive query processing on internet sources.
In Stanford DBGroup Technical Report, November
1998.

[ME971

[PD96]

[Ros96]

[SAC+ 791

[SBSS]

[Sea961

[SGM95]

[SGM96]

[SGMC98]

[UllSS]

[Vas98]

[VP971

[Yw

A. Mange and C. Elkan. An efficient domain-
independent algorithm for detecting approximately
duplicate database records. In Proceedings of SIG-
MOD 1997 Workshop on Research Issues on Data
Mining and Knowledge Discovery (DMKD’97),
May 1997.

J.M. Pate1 and D.J. Dewitt. Partition Based
Spatial-Merge Join. In Proceedings of ACM Inter-
national Conference on Management of Data (SIG-
MOD’96), May 1996.

P. E. Ross. Cops versus robbers in cyberspace.
r;$?s Magazine, pages 134 - 139, September 9

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selec-
tion in a relational database mana ement system.
In P. A. Bernstein, editor, d sigma , pages 23-34,
Boston, MA, 1979. acm.

G. Salton and C. Buckley. Term-weighting ap-
proaches in automatic text retrieval. Information
Processing and Management, 24(5), 1988.

P. Seshadri and et al. Cost-based optimization for
Magic: Algebra and implementation. In Proceed-
ings of ACM SIGMOD International Conference on
Management of Data (SIGMOD’96), May 1996.

N. Shivakumar and H. Garcia-Molina. SCAM: A
copy detection mechanism for digital documents.
In Proceedings of 2nd International Conference in
Theory and Practice of Digital Libraries (DL’95),
Austin, Texas, June 1995.

N. Shivakumar and H. Garcia-Molina. Building a
scalable and accurate copy detection mechanism. In
Proceedings of fat ACM Conference on Digital Li-
braries (DL’96), Bethesda, Maryland, March 1996.

N. Shivakumar, H. GarcibMolina, and C.S.
Chekuri. Filtering with Approximate Predicates.
http://ws-db,stanford.edu/ shivs/Pubs/filter-full.ps
Technical report, February 1998.

J.D. Ullman. Principles of Database and
Knowledge-Bose Systems (Volume 1). Computer
Science Press, 1988.

V. Vassalos. In Personal Communication, February
1998.
V. Vassalos and Y. Papakonstantinou. Describ-
ing and using query capabilities of heterogeneous
sources. In Proceedings of Very Large Databases
(VLDB 97), August 1997.

V. Poosala Y.E. Ioannidis. Histogram-based solu-
tions to diverse database estimation problems. Data
Engineering Bulletin, 18(3):10 - 18, 1995.

274

