
TOPAZ: a Cost-Based, Rule-Driven, Multi-Phase Parallelizer

Clara Nippl Bernhard Mitschang
nippl@in.tum.de mitsch@in.tum.de

Technische Universittit Miinchen, lnstitut fiir Informatik, D - 80290 Munich, Germany

Abstract

Currently the key problems of query optimization
are extensibility imposed by object-relational
technology, as well as query complexity caused
by forthcoming applications, such as OLAP. We
propose a generic approach to parallelization,
called TOPAZ. Different forms of parallelism are
exploited to obtain maximum speedup combined
with lowest resource consumption. The necessary
abstractions w.r.t. operator characteristics and
system architecture are provided by rules that are
used by a cost-based, top-down search engine. A
multi-phase pruning based on a global analysis of
the plan efficiently guides the search process,
thus considerably reducing complexity and
achieving optimization performance. Since
TOPAZ solely relies on the widespread concepts
of iterators and data rivers common to (parallel)
execution models, it fits as an enabling technol-
ogy into most state-of-the-art (object-) relational
systems.

1 Introduction

The MIDAS project [BJ+96] concentrates on optimiza-
tion, parallelization and execution aspects of queries com-
ing from areas such as OLAP, DSS, and document
management systems [CJ+97]. Generally, the responsibil-
ity for query parallelization is taken over by the so-called
parallelizer. Its task is to come up, without incurring too
much overhead, with a parallel query execution plan
(PQEP) that exploits various forms of parallelism, thereby
achieving maximum speedup combined with lowest

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear; and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

resource consumption. Among the most important require-
ments to be fulfilled by modern parallelizer technology are
the following ones:

Extensibility: This requirement is stressed by forthcom-
ing application scenarios. Necessary SQL extensions are
dealt with using concepts like user-defined functions
[JM98] or designated (internal) operators [NJM97].
Similar issues are treated in the context of (parallel)
object-relational database systems [SM96].

Performance: To conquer the complexity of the parallel
search space [GHK92], [LVZ93], accurate pruning tech-
niques are necessary.

Granularity of Parallelism: A QEP consists of operators
showing significantly dissimilar processing costs. Cur-
rently, cost models as well as parallelization strategies
only deal with high-cost operators (also called coarse-
grain operators [GGS96] , [GI97]), as the performance
speedup by means of parallelization is most profitable
for this kind of operators. However, low-cost operators.
if not treated the right way, can deteriorate query execu-
tion performance considerably. Hence, a flexible granu-
larity of parallelism that provides a comprehensive
treatment of low-cost and high-cost operators is neces-
sary.

Economical Resource Allocation: The maximum
speedup obtainable is delimited by the critical path of
the best execution schedule for the PQEP. Hence, to
limit resource contention, no resources should be allo-
cated to subplans that cannot reduce this measure. This
demand is particularly important in the case of queries
that run over longer periods of time (e.g. DSS queries)
and in multi-user environments.

Comprehensiveness: In order to generate PQEPs of
acceptable quality for all query types it is necessary to
take into account all forms of intra-query parallelism.

Adaptability: Hybrid (or hierarchical) system architec-
tures are gaining popularity. However, the development
of optimization techniques to exploit their full potential
is still an open problem [Gr95], [BFV96].

Obviously, numerous techniques have to be devised and
combined in order to meet all of the above listed require-
ments. As rule-driven optimizers [Lo88], [Gra95] have
already proved to be extensible and efficient, we rely on
that technology also for parallelization and propose a solu-
tion based on a top-down search strategy, called TOPAZ

251

(Top-down PAralleliZer). TOPAZ relies on a fully cost-
based decision making. To reduce complexity, it splits par-
allelization into subsequent phases, each phase concentrat-
ing on particular aspects of parallel query execution.
Moreover, by means of a global pre-analysis of the
sequential plan first cost measures are derived that are
used to guide and restrict the search process. TOPAZ com-
bines high-cost as well as low-cost operators into so-called
blocks that are subject to coarse-grain parallelism. This
cost-based block building achieves economical and effi-
cient resource utilization. The rule-driven approach pro-
vides for the necessary abstraction to support different
architecture types, including hybrid ones. Since TOPAZ
solely relies on the widespread concepts of iterators and
data rivers common to (parallel) execution models, it fits
as an enabling technology into most state-of-the-art
(object-) relational systems. This is additionally supported
by the fact that TOPAZ builds upon the Cascades Opti-
mizer Framework [Gra95], which is also the basis of some
commercial optimizers, like Microsoft’s SQL Server
[Gra96] and Tandem’s Serverware SQL [Ce96].
In this paper, we analyze the possibilities of integrating
parallelization into established query optimization search
engines and point out limitations of the heuristics used in
state-of-the art parallelizers. A discussion of related
work is given in Section 2. Section 3 describes the archi-
tectural embedding of TOPAZ into our testbed parallel
database prototype MIDAS and a sample query taken from
the TPC-D benchmark is introduced as a running example.
The design of TOPAZ in terms of basic parallelization
strategies as well as internal optimization and control mea-
sures is detailed in Section 4. In Section 5 the main phases
of the parallelization task are described. An analysis and
evaluation of the technology incorporated into TOPAZ is
provided in Section 6. Finally, in Section 7 a conclusion
and an outlook to future work completes the paper.

2 Review of Parallel Query Optimization
Techniques

Query optimizers use continuously improved techniques
to simplify the task of extending functionality, making
search strategies more flexible, and increasing efficiency
[HK+97], [PGK97], [ON+95]. In a parallel context, the
search space becomes even more complex as resource uti-
lization has to be considered as well. One way to tackle
this problem is to develop specialized solutions for the
exploration of the parallel search space. The other
approach is to reuse existing sequential optimization tech-
niques and to extend them by special heuristics.

2.1 Specialized Parallelization Techniques

The hue-phase approach uses a traditional search strategy
for optimization and a specialized one for parallelization
of queries. The parallelization task is based in many cases
on heuristics [HS93] or it is restricted to join orderings in
combination with restricted forms of parallelism [Ha95].
As the parallelizer is a separate system, easy reuse of

infrastructure or technology improvements as mentioned
above is prohibited. In addition, extensibility, as required
by object-relational extensions, is limited.
Other approaches propose an integration of the optimiza-
tion and parallelization, but are still highly specialized for
specific architectures or certain operator types. Some
research concentrated on scheduling of joins that maxi-
mizes the effect of specific forms of parallelism. Thus con-
cepts as right-deep [SD90], segmented right-deep
[LC+93], zig-zag [ZZS93] and bushy trees [WFA95] have
been elaborated. Although these strategies have achieved
good performance for specific scenarios [STY93], they
rely on the hash-join execution model and thus cannot be
applied in a straightforward way to complex queries hold-
ing any kind of operators.

2.2 Parallelization Using Traditional Sequential Opti-
mization Techniques

If the optimizer and the parallelizer are integrated, they
both use the same search strategy. However, they differ in
exploration of the search space and the size of the portion
explored. Due to its exponential complexity, exhaustive
search is only feasible for very simple queries and is
implemented in few research DBMSs, mainly for perfor-
mance comparison purposes. Randomized algorithms
have been mainly tested for join orderings in both the par-
allel and sequential context [LVZ93], [KD96], showing
efficiency only for a high number of base tables. The best-
known polynomial algorithm, the greedy paradigm
[LST91], explores only a small portion of the search
space, often ignoring some forms of parallelism. Thus, it is
likely to fail the regions of good physical operator trees.
The bottom-up (dynamic programming) algorithm works
iteratively over the number of base tables, constructing an
optimal physical operator tree based on the expansion of
optimal subtrees involving a smaller number of tables. To
handle exponential complexity, a pruning function is intro-
duced to realize a branch and bound strategy, i.e. it reduces
the number of trees to be expanded in the remaining of the
search algorithm. Pruning is achieved by comparing all
subtrees which join the same set of relations with respect
to an equivalence criteria and then discarding all trees of
non-optima1 cost. In order to tackle the even higher com-
plexity of a parallel context, many PDBMSs use beside
dynamic programming pruning also other simplifying
heuristics. Thus, in DB2 Parallel Edition [BF+95],
[JMP97], the degree of parallelism (DOP) of the operators
is mainly determined by the partitioning of the inputs. In
Teradata and Oracle’s Parallel Query Option [BF97],
[Or981 it even remains the same for the whole plan.
In top-down optimizers, such as Volcano [Gra94], Cas-
cades [Gra95] and Columbia [SM+98], the complexity
explosion is also controlled by pruning. These optimizers
compute costs for high-level plans before some lower-
level plans are examined. These cost limits are then passed
down to optimization of incrementally constructed QEPs
and can thus prune plans whose predicted total costs
exceed this limit. Some investigations [KD96] have
yielded poor performance for top-down optimizers. How-

252

ever, these results referred to the Volcano search strategy,
that meanwhile got improved in the new generation of top-
down optimizers, especially concerning pruning tech-
niques [Gra95], [SM+98].
W.r.t. parallelization, in Volcano the best sequential plan
found is divided into several segments bracketed by so-
called Exchange operators. Please note that in this way
parallelization, i.e. the computation of the degree of intra-
operator parallelism or the determination of the segment
boundaries, is done with another search strategy than that
of the Volcano optimizer. Although top-down optimizers
are used in other PDBMSs [Ce96] as well, we do not know
of any publicly available report on how to decide on paral-
lelization using this type of search engine.
To overcome the shortcomings of each optimization strat-
egy in combination with certain query types, also hybrid
optimizers have been proposed [ON+95], [MB+96].
As optimizers based on bottom-up [Zou97], [HK+97],
[JMP97] and top-down [Ce96], [Gra96] search strategies
are both extensible [Lo88], [Gra95] and in addition the
most frequently used in commercial DBMSs, we have
concentrated our research on the suitability of these two
techniques for parallel query optimization.
Generally, some crucial decisions in the parallel context

refer to physical properties, as e.g. partitioning, degrees of
parallelism and usage of resources, that have to be chosen
in a way to guarantee overall efficiency and to minimize
resource contention. Given the above, an advantage of the
top-down search strategy is that it comes up very early
with physical tree solutions, whose cost estimates can be
used to perform a global plan analysis and to guide further
parallel search space exploration. More details on this
topic can be found in [NM98]. Thus, beside the quality of
the plans also the performance of the parallelization task
itself can be improved considerably. For the MIDAS
project, it was important to first concentrate on the strate-
gies needed to achieve these goals. Hence, for a first ver-
sion of TOPAZ we decided to have as input a complete
sequential plan that is generated by a top-down sequential
optimizer. Thus, optimizer and parallelizer use the same
(top-down) search strategy, i.e. Cascades, but explore dif-
ferent search space regions with different rule sets. In the
following, we assume that the top-down optimization tech-
nique is well understood and thus concentrate only on the
parallelization effort.

3 Architectural Embedding of TOPAZ into
MIDAS

In this section, we shortly present some of the underlying
concepts of parallel query execution in MIDAS as far as it
is necessary for further understanding.

3.1 System Environment

MIDAS [BJ+96] is a prototype of a parallel database sys-
tem running on a hybrid architecture comprising several
SMP nodes combined in a shared-disk manner. To provide
the necessary abstraction, it is important to decouple opti-

a) Iterators strung together
to a sequential QEP

b) A logical view to pipeline
parallelism between blocks B,

c) Execution view to a PQEP:
blocks mapped to execution
units Bij as well as data rivers
D, for communication

Figure 1: From a Sequential QEP to Parallel Execution
Using Blocks and Data Rivers

mization from some scheduling and load balancing
aspects. This is achieved in MIDAS through parameters.
Thus, the goal of TOPAZ is to come up with a parameter-
ized PQEP. Each parameter keeps track of particular plan
properties whose final adjustment has to be made accord-
ing to the run-time system state, e.g. degrees of parallelism
and resource consumption. Since TOPAZ relies on a cost-
based approach, it comes up with reasonable lower and
upper bounds for these parameters. This allows the run-
time component, called Query Execution Control (QEC),
to derive individual PQEPs having fixed parameter values.
Thus, QEC comprises the run-time responsibilities of load
balancing, scheduling, and resource allocation. It performs
a fine-tuning of the PQEP and schedules different portions
of the PQEP to different execution units.
The MIDAS operators are self-contained software objects
designed according to the iterator (or Open-Next-Close)
processing model [GB+96], [Gra94]. In this model queries
are structured by bundling the appropriate operators (itera-
tors) into a QEP (Figure la). In a sequential DBMS, each
QEP is processed by a single execution unit. In the course
of parallelization, this QEP is broken down into several
subplans or blocks [TD93] (Figure lb) that define the
granularity or unit of parallelism [HS93]. A block can be
considered as a single operator whose processing cost is
the sum of the processing costs of the constituting opera-
tors. In order to obtain optimal speedup, TOPAZ performs
a cost-based analysis to identify the optimal granularity
for parallelism, i.e. number of blocks for a given query,
number of operators within a block, and degree of parallel-
ism assigned to a block. The corresponding strategies are
presented in Section 4.
As determined by TOPAZ and at run-time adjusted by the
QEC, a block is assigned to one or several execution units,
according to its degree of parallelism. The flow of tuples
among the various execution units is organized by the con-
cept of data rivers [Gr95] (see Figure lc). If multiple pro-
ducers add records to the same river that is consumed by
consumers, the river consists of several data streams. In

253

SELECT I-orderkey,
sum(l-extendedprice * (l- I-discount))
AS revenue, o-orderdate, o-shippriority

FROM customer, new-order, lineitem

WHERE c-mktsegment = ‘BUILDING’
AND c-custkey = o-custkey
AND l-orderkey = o-orderkey
AND o-orderdate < date ‘ 1995’
AND I-shipdate > date‘1995’

GROUP BY I-orderkey, o-orderdate,
o-shippriority

ORDER BY revenue desc, o-orderdate

I) SQL representation of query Q3 b) Sequential QEP & c) Parallel QEP

Figure 2: Parallelization of Query Q3 of the TPC-D Benchmark

this way, parallelism is transparent for operators applying
the iterator processing model, as they still operate sequen-
tially on these data streams that constitute the data river. In
MIDAS, the data river paradigm is realized by means of
two new communication operators: send and receive.
These follow the same iterator concept as all the other
operators and are implemented to write respectively read
from a data stream. Thus send and receive realize all com-
munication patterns necessary for intra-query parallelism:
pipelining, replication, partitioning (a single flow of tuples
into several data streams), merging (several data streams
into a single flow of tuples) and repartitioning. Hence the
execution model of TOPAZ only relies on the two basic
concepts: data rivers and iterators. Thus, the approach is
applicable to all engines that refer to the same model. To
our knowledge, the iterator protocol is used in many
(object-) relational DBMSs [GB+96], [Zou97]. Our com-
munication operators implementing the data river concept
are similar to other approaches as well, e.g. the send/
receive operators in DB2 PE [JMP97], the split/merge
operators in Gamma [De+90], or the Exchange operator in
Informix Online XPS and Volcano [Gra94], [Zou97].

3.2 Running Example

We will exemplify the parallelization using query Q3 from
the TPC-D benchmark [TPC95], whose SQL representa-
tion is given in Figure 2a. The sequential execution plan of
this query that serves as input for TOPAZ is depicted in
Figure 2b. Essentially, it consists of a 3-way join (per-
formed by 2 hash joins on the tables CUSTOMER,
NEW-ORDER, and LINEITEM) followed by a complex aggre-
gation. Some operators, e.g. the sort and the send, show
certain parameters defining memory allocation, buffer
management etc. These parameters are set by the parallel-
izer according to the cost model, but can be adjusted by
QEC at run-time according to the system state. In this sce-
nario we further assume that the tables are physically par-
titioned across 4 disks in a round-robin manner. The

resulting PQEP can be found in Figure 2c. Please note that
in this representation, the operators bracketed by send and
receive (recv) nodes are bundled together to a block.
Between send and recv nodes there are data rivers consist-
ing of several data streams that are for simplification rea-
sons not depicted in the PQEP visualization.

4 TOPAZ Strategies

In the following, we describe in detail some of the core
strategies of TOPAZ. The PQEP in Figure 2c already
shows some of the intrinsic characteristics resulting from
our parallelizer that are quite different to the ones known
from other approaches already mentioned in Section 2:

l usage of all possible communication patterns to realize
efficient intra-query parallelism

l cost-related degrees of parallelism and adjusted block
sizes, saving scarce resources

l parameters allowing a fine-tuning of the execution plan
to different application scenarios.

4.1 Control of the Search Space

Exponential complexity [OL90] has forced optimizers to
use different techniques to restrict the search space and to
improve performance. One of these techniques is to prune
expressions that cannot participate in the final, best plan.
However, traditional optimization metrics are not suffi-
cient for parallel search spaces [GHK92], because, con-
trary to sequential optimization, physical resources,
partitioning strategies, and scheduling play a vital role. A
pruning strategy that doesn’t take into account these
aspects risks to miss the best parallel plan. Heuristic solu-
tions, as extending the traditional pruning criteria by
“interesting partitionings” are also insufficient, as shown
in [NM98]. The solutions proposed in [GHK92] and
[LVZ93] refer to extensions of the optimization metric that
account also for resource utilization. Thus, the costs for a

254

single QEP fill up a vector, and a multidimensional “less-
than” is needed to prune the search space. The problem
with these approaches is that dynamic programming prun-
ing techniques become generally ineffective and optimiza-
tion effort explodes in terms of time and memory
consumption, as it becomes comparable to exhaustive
search. Recent work [GGS96], [GI97] propose a more
relaxed cost metric that is based on approximations taking
into account some global parameters as critical path length
or average work per processing site. To our knowledge,
there exists no published work on how to incorporate these
cost metrics into existing search engines.
Our solution to these problems comprise the following
extensions to top-down optimization:
1. Cost Model The strategies proposed in [GHK92],
[LVZ93] are known to assure correct pruning. Based on
these results, our cost model comprises besides CPU-costs
also communication costs, memory usage, disk accesses,
and blocking boundaries’. In addition, rather than extend-
ing the search space to explore alternative plans holding
different degrees of parallelism, these degrees are also
incorporated into the cost model. Thus, the global process-
ing costs of an operator, i.e. the sum of the costs of its
inputs plus the operator’s local processing costs, are calcu-
lated for different degrees of parallelism and maintained in
an array (see Section 4.4).
2. Phases To overcome the drawback of poor optimization
performance due to inefficient pruning, parallelization is
split into different phases, each phase concentrating on
particular aspects of parallel execution. The first phases
focus on global optimization of the entire plan w.r.t. data-
flow, execution time, and resource utilization. This allows
the parallelizer to take global dependencies into account,
detecting those locations in the plan where the benefit in
exploiting some forms of parallelism is maximized. In the
subsequent phases decisions are based on a local view of
the QEP, i.e. a view restricted to only one operator or a
block of operators and the costs involved in their execu-
tion. Another way to express this strategy is that each
phase uses as a starting point the result of the previous one
to expand a specific region of the search space. These
regions do not overlap, since they are expanded using dif-
ferent transformations, i.e. different rule sets. However,
the size of the explored search space regions decreases in
each phase, as they refer to successively refined aspects of
parallel query execution. The final refinement is made by
the QEC; it can further adjust certain parameters, like
memory usage, degree of parallelism etc. according to the
run-time environment. Thus the overall approach to han-
dling the huge search space for parallelization in MIDAS
is neither enumeration nor randomization but a cost-based
multi-phase pruning. This strategy is detailed in Section 5.
3. Pruning Package (ParPrune) Global parameters
[GGS96], [GI97] are incorporated in TOPAZ by means of
an additional pruning strategy. Pm-Prune further limits the
complexity in each phase, as it guides the search only

I. These refer to particular locations within query execu-
tion, where the complete intermediate result table has
to be derived before the next operation can start.

towards promising regions of the search space. It works in
combination with the top-down search engine and consists
of two parts: first, in the course of a pre-analysis different
global measures are calculated: critical path length,
expected memory usage, average costs per CPU, average
operator costs etc. Second, these measures serve as con-
straints (i.e. conditions for rule activations) for all subse-
quent parallelization phases. Apart of the fact that this
strategy reduces the optimization effort itself, it can in
some cases influence also the quality of the final plans, as
e.g. the global pre-analysis permits a better estimation on
the search space regions that are worthwhile to be
explored in more detail.

4.2 Control of the Granularity of Parallelism

Prior work on parallel execution and cost models as well
as scheduling rely on the assumption that the QEP is
coarse-grain, i.e. the parallelization overhead for each
operator exceeds only up to a specific factor the total
amount of work performed during the execution of the
operator [GI97], [GGS96], [DG92]. However, this require-
ment is not always assured by practical database execution
plans. An example coming from traditional QEPs is a
restriction evaluating only a low-cost predicate. Some
PDBMSs have solved this problem using heuristics, as e.g.
parallelizing these operators always together with their
predecessors. However, in PORDBMSs this is not possible
if e.g. a user-defined predicate or low-cost aggregation
requires a special partitioning strategy. It is an open prob-
lem how to deal with these operators. Parallelizing them
separately causes obviously too much overhead, while a
sequential execution can cause bottlenecks at several
places of the PQEP and thus suboptimal performance.
This is confirmed also by the measurements presented in
Section 6.
Our response to this problem is cost-bused block building.
This strategy accounts for operator costs, selectivities, and
intermediate result sizes to construct coarse-grain blocks,
i.e. to perform several operators within a single execution
unit. Moreover, these can be used for further block-build-
ing in order to achieve mutually adjusted processing rates
among communicating, i.e. neighboring blocks. If the rate
at which tuples are sent to an execution unit is much
higher than the rate at which tuples can be processed, the
communication buffer can overflow, forcing the sender to
block. On the other hand, if the rate at which tuples are
received is much lower than the highest possible process-
ing rate, the corresponding execution unit will frequently
be idle and will waste non-preemptive system resources,
as e.g. memory. Hence, mutually adjusted processing rates
are prerequisite to efficient pipelining [MD95]. Addition-
ally, through block construction intermediate result mate-
rialization and inter-process communication between
operators can be avoided. This implies savings in main
memory or even I/O costs.
Intra-block parallelism is analogous to intra-operator par-
allelism and requires to execute several instances of the
complete block by different execution units. Each instance
has to work on different sets of data, i.e. the processing

255

within one instance of the block is independent from all
the other instances of this block. In the PQEP shown in
Figure 2c, the largest block is formed by the sort, projec-
tion (proj), group, and hash-join (hj,i,) operators having a
DOP of 5.
The necessary conditions to bundle operators within a
block are: same degrees of parallelism and same parti-
tioning strategies. Thus, in order to achieve efficient block
building, a flexible control of these properties is necessary,
as described in the following sections. However, these
conditions are not sufficient. A cost-based analysis has to
decide if a specific block construction also leads to a
decrease of the overall processing costs.

4.3 Control of Partitioning Strategies

In order to have the necessary degrees of freedom TOPAZ
distinguishes between logical and physical data partition-
ing. The strategies for physical data partitioning imple-
mented in MIDAS are round-robin, hash and range
partitioning. We are in the process of implementing user-
dejined partitionings as well. Which of the above men-
tioned techniques is used depends on the type of the opera-
tor that has to be parallelized. In many cases, the
partitioning has to keep track of the attribute values, like in
the case of hash- or range-based partitioning. For instance,
in Figure 2c the send operator highlighted by an exclama-
tion mark performs a hash partitioning on the first attribute
into 5 partitions as indicated in the operator description by
the parameter H[5] [I]. However, TOPAZ differentiates
only between the following logical partitionings:

Any: This parameter indicates that the parallelized oper-
ator (or block) doesn’t necessarily need a specific parti-
tioning (as e.g. the sort operator).

Attr: If an operator needs a value-based partitioning on
certain attributes (as e.g. in the case of certain aggrega-
tions), the corresponding send operator is extended by
the Attr parameter together with the identifiers of the
required partitioning attributes.

Thus, if a block construction becomes necessary in the
course of parallelization, TOPAZ can change a less strict
partitioning (like Any) into a stricter one (like Attr). This
can be done easily, only by taking into consideration the
required physical properties. At the end of the paralleliza-
tion. when block construction is finalized, these logical
parameters are mapped to one of the above mentioned
physical partitioning strategies.

4.4 Control of the Degrees of Parallelism

Consider a QEP having two adjacent high-cost operators.
In Figure 3 (left), these are the final phase of a sort (merg-
ing of sorted runs) and an aggregation operator (group).
As both of them are coarse-grain, both are processed using
intra-operator parallelism. Suppose that by taking into
account only the local costs of the operators and the inter-
mediate result sizes, the best degree of parallelism for the
sort operator results to 3 and that for the aggregation is 2.
Due to the different degrees of parallelism, a repartitioning
of the intermediate results of the sort operator is necessary,

Figure 3: Adjusting the DOP for Block Construction

implicating high communication costs.
If the degree of parallelism of the group is increased to 3,
pipelining between the two operators becomes possible.
This reduces communication costs, but increases the num-
ber of execution units from 5 to 6. Actually, the optimal
execution for the two operators would be within the same
block, but with an increased degree of parallelism accord-
ing to the higher block processing costs, as shown in Fig-
ure 3 (right). This implies less execution units and less
communication costs, as only the aggregated result of the
group has to be transmitted. A plan with similar response
time but reduced resource consumption is also more suit-
able for a multi-query environment.
Considering e.g. a bottom-up optimizer, it first optimizes
the sort, finding the best degree of parallelism of 3 and
prunes all the other plans, as they are (locally) more
expensive. At the next level, when optimizing the group,
the search engine cannot find the best plan shown in Fig-
ure 3 (right), because the search space doesn’t contain the
plan and costs for the sort operator in combination with a
degree of parallelism of 4. However, keeping the plan
alternatives for all possible DOPs is also an impractical
solution with regard to optimizer performance.
We have elaborated the following solution to this problem:
To keep the degrees of parallelism flexible, TOPAZ incor-
porates this aspect only in the cost model, without explic-
itly extending the search space with alternative plans that
differ only in the degrees of parallelism. If an operator gets
parallelized by partitioning its inputs, the corresponding
send operator doesn’t hold any specific information on the
number of partitions. A parameter like “Attr[2] I” in the
course of the parallelization only means that this send
operator performs a value-based partitioning on the first
attribute and that the number of partitions is greater or
equal 2. At the same time the costs of the operator are cal-
culated for all possible degrees of parallelism, storing
them in an array. This cost calculation is propagated
upwards. The global processing costs of the successor can
also be calculated correctly for different DOPs, since its
local processing costs are known and the processing costs
of its input are available for every considered DOP. Thus,
e.g. the decision on combining two blocks can be taken on
the basis of the lowest value in the cost array of the top-
most operator. In the example, this is the group and the
entry in its cost array corresponding to the minimal global
processing costs will be found for a DOP of 4.
In Section 2, we have already mentioned some heuristics
used in practice, as e.g. choosing the same DOP for the

256

whole PQEP or limiting the considered degrees to a few
alternatives [BF97], [Or98], [JMP97]. New query types, as
e.g. DSS and object-relational ones, make the usage of
CPU-intensive operators and UDFs more and more popu-
lar. In these scenarios, the operator costs in a QEP can dif-
fer significantly. We believe that the degree of parallelism
for these operators can rely only on cost-based decisions,
as in TOPAZ, whereas using only restricted heuristics like
the ones mentioned above can lead to truly suboptimal
parallel plans.

5 Multi-Phase Parallelization

In the following we describe the parallelization phases that
exploit the strategies described in the previous section,
using as example the TPC-D query Q3 (Figure 2a). Please
note that the PQEPs presented in each phase are complete
physical trees, having specific data partitionings and
degrees of parallelism, although we mentioned before that
these aspects are kept flexible. In TOPAZ each phase can
be separately turned on or off. Thus the following exam-
ples rather reflect the physical trees that are obtained if the
phases are turned on successively, starting with the
sequential one (Figure 2b). We accentuate that this is only
for illustration purposes, as the final parallel plan is the
result of all constituting phases that explore different
regions of the parallel search space.
As each phase is characterized by a separate rule set,
examples of representative rules and of rule applications
will be provided as well. Since the send and receive opera-
tors appear always in pairs, they are internally considered
as a single operator, called S/R, holding the parameters for
the respective send (S...) and receive (R...) part. However,
in a physical plan, they are represented separately at the
end and at the beginning of neighboring blocks, constitut-
ing a data river.

5.1 Phase 1: Inter-Operator Parallelism and Refine-
ment of Global Costs

This phase starts from the sequential plan and analyzes the
possibility of reducing the critical path length through
inter-operator parallelism. An additional goal is to achieve
a mutually adjusted processing rate over all blocks in the
QEP thus considerably reducing query execution over-
head, as described in Section 4.2. The transformations
considered in this phase expand a search space region con-
taining alternative plans that exploit only pipelining and
independent parallelism. The decision criteria comprise
sizes of intermediate results, expected resource consump-
tion, processing costs of the emerging blocks as well as
blocking operators.
A naive strategy would be to define a single rule for inser-
tion of S/R nodes and let the search engine find the optimal
places for inter-operator parallelism according to the cost
model. But this increases unnecessarily the parallelization
effort, since alternatives that are unlikely to lead to the best
plan are explored as well. For example, pipelining
shouldn’t be considered in combination with subplans that
are not on the critical path. This naive strategy would lead

a) Rule Example

b) Intermediate Result After Phase 1

Figure 4: Inter-Operator Parallelism

already for this first phase to an unacceptable perfor-
mance. Hence, the considered alternatives are restricted by
ParPrune. In this phase it accounts for the relative costs of
the operators and the critical path length computed during
the pre-analysis. Thus, inter-operation parallelism is con-
sidered only in combination with certain subplans and
operators that are reasonable from a global point of view.
In Figure 4a, a rule for the insertion of pipelining S/R
nodes below a binary operator is presented. The condition
for the consideration of this transformation within a QEP
is that both inputs TO and Tl exceed certain cost limits.
Our example query resulting from this phase is presented
in Figure 4b. As shown by the interrupted dashed arrows,
the left inputs of the join operators are blocking, since they
are used to build the hash tables. Hence, efficient pipelin-
ing is only possible in the segment marked by the continu-
ous dashed arrow at the right side of the figure. In this
segment, the group is recognized as a costly operator due
to the size of the intermediate result and the (high) local
processing cost. Thus only one pipelining edge has been
identified, defining two blocks with similar processing
rates. Please note that the goal of this phase is not to come
up with the final set of edges for inter-operator parallelism.
Due to modified cost proportions in the next phases, some
of these edges may be replaced by neighboring ones. The
result of this phase are refined cost limits that have been
established w.r.t. critical path length and average block
processing costs. These refined costs are exploited by the
subsequent phases.

257

a) Parallelization rul
for the hash-join
operator

Operators within the dashed area define a
parallelized block bracketed by S/R nodes

b) Parallelization of high-cost operators

Figure 5: Intra-Operator Parallelism

5.2 Phase 2: Intra-Operator Parallelism applied to
High-Cost Operators

The result of the previous phase is now used to span a new
search space region, exploring the possibility of further
reducing the critical path length and block processing
costs by controlled introduction of intra-operator parallel-
ism. Therefore operators that already meet the coarse-
grain demand are individually parallelized, bracketing
them with send-receive nodes.
Depending on the type of the operator, one or both inputs
have to be partitioned. Hence, partitioning send nodes are
inserted such that each operator instance processes one
partition. The intermediate results produced by these
instances are collected by a receive node that is placed at
the output of the operator. For each operator separate par-
allelization rules have been defined, considering the opera-
tors’ characteristics, as e.g. some operator types admit

more alternatives. As shown in Figure 5a, e.g. a hash-join
can be parallelized by partitioning both inputs or only one
input combined with a replication of the other. The solu-
tion chosen by TOPAZ depends on the cost distribution in
the QEP. For instance, if one of the inputs is replicated,
there exists no requirement concerning the partitioning
strategy of the other. Thus repartitioning can be omitted,
an aspect that is especially beneficial if this input has a
high cardinality. The S/R node parameters only indicate
logical partitionings (Am or Any) without specifying any
concrete degrees of parallelism or physical partitioning
strategies (see Section 4.3).
Global execution performance and critical path length are
mostly influenced by nodes having high local processing
costs. The effect of ParPrune in this phase is to take into
account the average costs per operator computed during
the pre-analysis and to consider only those operators that
beside the coarse-grain requirement, also exceed a mini-
mal cost limit.
In Figure 5b the result for our example query is shown, if
parallelization is stopped at this stage. Thus it includes
also tasks that are usually performed only after the last
phase, like mapping from logical to physical partitioning
strategies and setting of concrete DOPs. These have been
chosen according to intermediate result sizes, local pro-
cessing costs, and disk partitioning. The parallelized oper-
ators are the group (DOP=5), the two joins (DOP=4 and
DOP=3), and the scan of the LINEITEM table (rrscan:
round-robin scan) with DOP=4. The group requires a par-
titioning on the 5th attribute, as indicated by the parameter
(H[S] IS]...) of the corresponding send operator, identify-
ing a hash partitioning of attribute 5 into 5 buckets. In con-
trast to shared-disk or shared-everything architectures, in a
shared-nothing environment the parallelization of the rela-
tion scans in this phase is restricted by the given physical
disk partitioning strategies. This constraint can be mod-
eled as an additional required physical property.
As a result of this phase simple blocks that hold one paral-
lelized operator show up. The parallelization of these
driver nodes impose certain physical properties, like data
partitioning, degree of parallelism, and sort order that will
bias the parallelization of the remaining operators.

5.3 Phase 3: Block Expansion and Treatment of Low-
Cost Operators

Phase 3 analyzes the possibility of expanding the one-
operator blocks obtained in the previous phase. The result-
ing blocks incorporate also operators that individually
don’t meet the coarse-grain requirement or have low pro-
cessing costs. As shown in Section 4.2 this achieves a min-
imization of the resources needed to process the given set
of operators and avoids bottlenecks. The DOPs are
adjusted according to the block processing costs (see Sec-
tion 4.4).
The corresponding search space region is expanded by
transformations that slide the S/R operators towards not
yet parallelized operators, thus including them into exist-
ing blocks. If in the course of this sliding two S/R nodes
meet, they are transformed into a single repartitioning

258

j a) Examples of

applications

_ - . Operators within the dashed area define a
parallelized block bracketed by S/R nodes

rule

b) Effect of block expansion

in the example query

Figure 6: Block Expansion
node. In Figure 6a, a situation is shown where the nested-
loop operator (NL) has been parallelized in Phase 2 by
repartitioning an input and replicating the other. In Phase
3, one of the S/R nodes is pushed up. As a result, the Sort
operator becomes part of the block taking over the paral-
lelization decisions and properties of that block. The other
S/R node is pushed downwards, thus parallelizing the rela-
tion scan (Rel operator). This transformation is specific to
shared-disk and shared-everything architectures, express-
ing an additional degree of freedom compared to shared-
nothing environments. As stated before, in the latter case
the scans have to be parallelized in Phase 4, accounting
also for physical disk partitionings. The result of the two
transformations is a block consisting of the 4 operators,
having the same DOP and the same partitioning strategy.
The rrscan operator, a parallel scan, reads different parti-
tions of the first input table in each block instance. The Rel
operator reads the entire second input table and replicates
it to all block instances.
All of the above mentioned transformations, e.g. pushing
an S/R node through an operator, merging of two neigh-

boring S/R nodes into a single repartitioning node etc., are
defined as rules, the resulting plans being added to the
search space and maintained according to cost-based deci-
sions. To reduce the number of worthless transformations,
ParPrune for instance checks in advance if a given parti-
tioning strategy can be taken over by a candidate operator.
In our example query (Figure 6b), the parallelization of the
lower hash join has been extended downwards, paralleliz-
ing also the scan of the NEW-ORDER table and adjusting
the DOP of the block from 3 to 4. The parallelization of
the LINEITEM scan and the group have been extended
upwards. Due to low processing costs, the scan of the CUS-
TOMER table is done sequentially, however replicating the
result for further parallel processing.

5.4 Phase 4: Block Combination Further Decreasing
Parallelization Overhead

As described in Section 4.2, bundling coarse-grain blocks
can lead to a further reduction of resource utilization and
intra-query communication, thus contributing even to the
decrease of the critical path length. Therefore, the last par-
allelization phase analyzes the possibility of combining
adjacent blocks with comparable partitioning strategies.
Phase 4 operates with a single rule for the elimination of
repartitioning nodes between two adjacent blocks. This is
only possible if the partitioning strategy of the candidate
blocks is equal or comparable. As shown in Section 4.3,
this condition is satisfied if e.g. the logical partitioning of
at least one block is Any. For the final plan shown in Figure
2c, the group block has been bundled together with the
upper hush join block adjusting the DOP to 5. The
required partitioning imposed by the group has been taken
into consideration by modifying the partitioning of the
join block from round-robin (send(RR[4]...)) to hash
(send(H[S] [Il...)), as highlighted by the exclamation
mark. Hence, repartitioning has been pushed down to be
performed before the join operator, where it is more bene-
ficial w.r.t. intermediate result sizes. This proves again that
TOPAZ keeps track of all cost factors also on a global
level.

6 Performance Investigation

The TOPAZ data and cost models have been implemented
using the Cascades Optimizer Framework [Gra95]. The
current version has approximately 80 rules, divided into 4
categories, one for each parallelization phase. We have
validated our approach by using different applications,
such as OLAP, DSS, and digital libraries. In this section,
we report on the performance of TOPAZ by using a series
of TPC-D queries performed in a single-user environment
on a 100 MB database, running on a cluster of 4 SUN-
ULTRA1 workstations with 143 MHz Ultra SPARC pro-
cessors, connected via a Fast Ethernet network. In order to
perform a detailed analysis of the separate parallelization
phases, we took the result of each plan and executed it on
our cluster. Figure 7 shows the average speedups obtained
after each phase for all queries of the test series, parallel-
ized for the 4 workstations; the speedup obtained by our

259

12 3 4
Phases

Figure 7: Speedups After
Each Phase

Table 1: Speedups for the
16 Test Queries

ear speedup (4.5 to 13)

ear speedup (4)

running example TPC-D query Q3 is illustrated in a sepa-
rate curve. We would like to remind that this is for demon-
stration purposes, since parallelization is made up of all
phases, the actual result being that obtained after Phase 4.
The first two are only preparatory phases that result into
the insertion of different forms of parallelism according to
a global cost-based analysis (see Section 4.1). These are
carried over in subsequent phases to the rest of the QEP,
considering also physical properties in the top-down paral-
lelization, as e.g. partitioning and sort orders (see Sections
5.3 and 5.4). These are the phases where the real speedups
are achieved. In Phase 2 coarse-grain operators that signif-
icantly contribute to the critical path are parallelized sepa-
rately. The negative speedup demonstrates quite
dramatically our statement (Section 4.2) that ignoring non-
coarse-grain operators causes bottlenecks in parallel exe-
cution, thus influencing negatively performance. The dif-
ference between Phase 2 and 3, respectively Phase 3 and 4
shows the importance of block construction, optimal set-
ting of degrees of parallelism, and other TOPAZ strategies
as described in Section 4.
Please note that in some cases, as e.g. for query 43, we
obtained superlinear speedup (see also Table 1). This is
due to the fact that scaleup refers not only to CPUs, but
also to other resources. Hence, if a query is parallelized
correctly it can benefit also from parallel I/O facilities and
from the increased database cache that can reduce disk
spoolings. The results show the importance of incorporat-
ing these aspects into the cost model, as proposed by
TOPAZ. Of course, this situation can change in a multi-
user environment, due to general resource contention.
Table 1 shows also some sublinear speedups. As men-
tioned before, the implemented base version of TOPAZ
gets as an input a complete sequential tree, produced by a
sequential optimizer. As TOPAZ doesn’t perform any
rewrites, this can influence the quality of the final parallel
plan. We observed that the suboptimal speedups are
mostly related to queries containing a correlation, with this
property preventing an efficient parallelization. However,
we have never observed a deterioration w.r.t. the (sequen-
tial) performance, as all TOPAZ strategies account for par-
allelization overhead and thus introduce parallelism only
where it is truly beneficial.
W.r.t. the importance of a global view in the parallelization
process, we have parallelized and executed the queries
with and without the ParPrune technique that can be eas-
ily switched on or off in our prototype. As described in
Section 4.1, ParPrune is used to provide an additional

Table 1: Effect of Pruning and Global View on Execution
and Parallelization

Resource and response time
metrics

Average execution time for
modified queries (ms)

ParPrune ParPrune
off on

25943 23717

Average number of execution
units for modified queries

11.125 8.25

Overall average parallelization
time (ms)

884 703

guidance throughout the parallelization phases. This is to
reduce optimization complexity. However, as a side-effect,
ParPrune can also improve the quality of the final plan as
the global pre-analysis permits a better estimation on the
search space regions that are worthwhile to be explored. In
the test series, ParPrune modified the final plan in 50% of
the test cases. As can be seen in Table 2, for these queries
an additional performance improvement has been
achieved. An interesting aspect is that this performance
gain has been achieved with explicitly less resource con-
sumption. We have only listed here the number of execu-
tion units, that in this way has been reduced by 34%. But
even where ParPrune didn’t come up with a more efficient
plan, the best plan has been found with clearly less effort.
This can be seen already by comparing the average paral-
lelization times in the last row of Table 2. However, these
numbers also include some organization overhead, as e.g.
the time necessary to copy the QEPs into and out of the
Cascades memory structure. Please note that the numbers
are comparable to sequential optimization efforts. Internal
program optimization will reduce this overhead further.
To evaluate only the search complexity, we have used as
measures the number of expressions generated, the num-
ber of tasks and the number of rule applications in the
course of the parallelization. Tasks are one of the basic
mechanisms used by the Cascades search engine [Gra95].
They are used to perform a particular optimization objec-
tive, as e.g optimizing a single expression or group of
expressions.
In Figure 8a, b, and c the average number of rules, tasks,
and expressions participating in the each phase of the par-
allelization are compared. As can be seen, by using Par-
Prune, these numbers could be drastically reduced as
compared to a non-pruned parallelization attempt. In order
to get a better understanding, a summarization is given in
Figure 8d, showing for each phase the reductions (in per-
cent) achieved for these measures. Thus, e.g. the number
of applied rules in the first phase is reduced drastically, by
54%. Generally, the impact of ParPrune is the highest in
the first two phases, as these are the ones that participate
most in the determination of the final character of the
PQEP. It is here that a guidance given by a pruning strat-
egy can help the most in finding the right regions of the
search space. Later on only a gradual refinement of the
parallel plan takes place that translates to a search only

260

:~~i~~

1 2 3 4 1 2 3 4
Phases Phases

a) Rules b) Tasks

around the regions found in the earlier phases. Thus, in
these last phases pruning can only contribute to the reduc-
tion of unnecessary transformations and this impact is not
so visible.

7 Conclusions and Future Work

In this paper we have shown that our approach, called
TOPAZ, fulfills all basic requirements of a modern paral-
lelizer. Its ‘rule-driven’ property guarantees for the neces-
sary extensibility. Both language extensions and
extensions to the database engine itself, as well as changes
to the parallel system architecture can be accomplished by
means of respective rules. Its ‘multi-phase’ property real-
izes an overall strategy that considers all forms of parallel-
ism. It splits the parallelization task into subsequent
phases, with each phase concentrating on particular
aspects of an efficient parallel execution. In addition, this
property turned out to be a major concept to handle the
inherent complexity of parallelization. Its ‘cost-based’
property guarantees that all decisions w.r.t. investigating
the parallel search space are cost-based. Hence, promising
search space regions are explored to derive the best paral-
lel plan. The concept of blocks enables (coarse-grain) par-
allelism to low-cost as well as high-cost operators. It
further guarantees economical and efficient resource con-
sumption. A prerequisite to optimization performance is
pruning. The strategy developed for TOPAZ, called Pur-
Prune, is exploited throughout the parallelization phases,
within each focusing on valuable search space regions.
A thorough performance analysis and evaluation of our
parallelizer technology clearly showed that the complex
parallelization task can be conducted by TOPAZ’s under-
lying parallelization strategies as well as internal optimiza-
tion and control measures such as ParPrune. These
measurements further indicate that the parallel plans cre-
ated by TOPAZ are executable by state-of-the-art parallel
database engines showing linear speedup. Our approach,
i.e. TOPAZ embedded into MIDAS, has been validated
also by other applications, such as OLAP and digital
libraries, yielding similar speedup results even for very
complex queries. In summary, our investigations mani-
fested that these results can only be achieved by the inte-
gration of all beforementioned parallelizer properties.
For the implementation, we have used the Cascades Opti-
mizer Framework. The running first version of TOPAZ
uses the same top-down search engine for the optimizer
and the parallelizer, but different models, one for the

130

120

110

100

90

60

70
1 2 3 4 1 2 3 4

Phases Phases

c) Expressions d) Differences in Percent

60 Rules +

Figure 8: Influence of ParPrune (PP) on Rules, Tasks and Expressions Participating in Each Phase

sequential execution space and one for the parallel one. As
with the implementation and validation of TOPAZ this
first phase of elaborating suitable parallelization strategies
is finalized, we will further concentrate on analyzing and
extending them to other scenarios as well. The primary
focus is to integrate the models for optimization and paral-
lelization. In our opinion, a combined approach, i.e. an
optimizer taking into account some parallel aspects, fol-
lowed by a detailed parallelization as described in this
paper, will be the most suitable for forthcoming query sce-
narios. Another possibility is to use TOPAZ for hybrid
optimizer solutions as well, e.g. to map logical trees,
obtained by a bottom-up search strategy, to physical ones,
similar to the NEAT0 optimizer [MB+96]. Here, the bot-
tom-up search strategy is used to enumerate all join orders
and the top-down strategy is used to perform the mapping
from logical to physical operators in a parallel environ-
ment. Although only joins have been considered, optimi-
zation time was dominated by the mapping phase, due to
the high number of possible mappings from logical opera-
tors to physical solutions in a parallel DBMS. We believe
that the mapping problem becomes even more complex
when new operator types, as e.g. UDFs, have to be consid-
ered as well.

Acknowledgments

The cooperation of the whole MIDAS project staff (esp.
M. Jaedicke, M. Fleischhauer, and S. Zimmermann) is
gratefully acknowledged as well as the support from Giitz
Graefe and from Leonard Shapiro and his research group.

References

[BJ+96] G. Bozas, M. Jaedicke et al: On Transforming a Se-
quential SQL-DBMS into a Parallel One: First Results
and Experiences of the MIDAS Project, In: Proceecl-
ings of the EUROPAR ConjI, 1996.

[BF+95] C. K. Baru, G. Fecteau et al: DB2 Parallel Edition, In:
IBM Sytems Journal, Vol 34, No 2, 1995.

[BF97] C. Ballinger, R. Fryer: Born to be Parallel, In: Data En-
gineering Bulletin, 20(2). 1997.

[BFV96] L. Bouganim, D. Florescu, P. Valduriez: Dynamic
Load Balancing in Hierarchical Parallel Database Sys-
tems, In: Proc. VLDB Conf, India, 1996.

[Ce96] P. Celis: The Query Optimizer in Tandem’s new Serv-
erWare SQL Product, In: Proc. VLDB ConJ, India,
1996.

261

[CJ+97] A. Clausnitzer, M. Jaedicke et al: On the Application
of Parallel Database Technology for Large Scale Docu-
ment Management Systems, Proc. IDEAS Conf, Mon-
treal, 1997.

[De+901 D. Dewitt et al: The Gamma Database Machine
Project, In: TKDE 2(1), March 1990.

[DC921 D. Dewitt, J. Gray: Parallel Database Systems: The Fu-
ture of High Performance Database Systems, In:
CACM, Vol.35, No.6, pp.8598, 1992.

[GHK92] S. Ganguly, W. Hasan, R. Krishnamurty: Query Opti-
mization for Parallel Execution, In: Proc. SIGMOD
Conf, San Diego, California, USA, 1992.

[GI97] M. Garofalakis, Y. Ioannidis: Parallel Query Schedul-
ing and Optimization with Time- and Space-Shared Re-
sources, In: Proceedings of the 23rd VLDB Conference,
Athens, Greece, 1997.

[Gra94] G. Graefe: Volcano-An Extensible and Parallel Query
Execution System, In: TKDE, 6(l), 1994.

[Gra95] G. Graefe: The Cascades Framework for Query Opti-
mization, In: DE Bulletin, 18(3), 1995.

[Gra96] Cl. Graefe: Relational Engine and Query Processing in
Microsoft SQL Server, In: Proc. of the Intl. Conf on
Datn Engineering, New Orleans, 1996.

[Gr95] Gray, J.: A Survey of Parallel Database Techniques and
Systems, In: Tutorial Handout at the Int. Conf on Very
Large Databases, Zurich, 1995.

[GB+96] J. Gray, A. Bosworth et al: Data Cube: A Relational
Aggregation Operator Generalizing Group-by, Cross-
Tab, and Sub Totals, In: Proc. Intl. Conf on Data En-
gineering, New Orleans, 1996.

[GGS96] S. Ganguly, A. Goel, A. Silberschatz: Efficient and Ac-
curate Cost Models for Parallel Query Optimization, In:
Proc. SIGACT-SIGMOD-SIGART Syrnp. on Principles
of DB Systems, Montreal, 1996.

[Ha951 W. Hasan: Optimization of SQL Queries for Parallel
Machines, PhD Thesis, Stanford Univ., 1995.

HK+97] L. Haas, D. Kossmann et al: Optimizing Queries across
Diverse Data Sources, In: Proc. of the 23rd VLDB
Co& Athens, Greece, 1997.

[HS93] W. Hong, M. Stonebraker: Optimization of Parallel
Query Execution Plans in XPRS, In: Distributed and

Parallel Databases, pp. 9-32, 1993.

[JMP97] A. Jhingran, T. Malkemus, S. Padmanabhan: Query
Optimization in DB2 Parallel Edition, In: Data Engi-
neering Bulletin, 20(2), 1997.

[JM98] M. Jaedicke, B. Mitschang: A Framework for Parallel
Processing of Aggregate and Scalar Functions in Ob-
ject-Relational DBMS, Proc. SIGMOD Conf, Seattle,
1998.

[KD96] N. Kabra, D. Dewitt: OPT++: An Object-Oriented Im-
plementation for Extensible Database Query Optimiza-
tion, Proc. ACM SIGMOD Conf , 1996.

[Lo881 G. Lohman: Grammar-like Functional Rules for Repre-
senting Query Optimization Alternatives, In: Proc. of
the ACM SIGMOD Conf , Chicago, 1988.

[LC+93] M.-L. Lo, M.-S. Chen et al: On Optimal Processor Al-

location to Support Pipelined Hash Joins, In: Proc.
SIGMOD Co&, Washington D. C., 1993.

[LST91] H. Lu, M. Shan, K. L. Tan: Optimization of Multi-Way
Join Queries for Parallel Execution, In: Proc. VLDB
Con&, San Mateo, USA, 199 I.

[LVZ93] R. Lanzelotte, P. Valduriez, M. Zait: On the Effective-
ness of Optimization Search Strategies for Parallel Ex-
ecution Spaces, In: Proc. VLDB Co&, Dublin, 1993.

[MB+961 W. McKenna, L. Burger et al: EROC: A Toolkit for
Building NEAT0 Query Optimizers, In: Proc. of the
22nd VLDB Conf., Mumbai, India, 1996.

[MD951 M. Mehta, D. Dewitt: Managing Intra-operator Paral-
lelism in Parallel Database Systems, In: Proc. VLDB

Conference, Zurich, , 1995.

[NJM97] C. Nippl, M. Jaedicke, B. Mitschang: Accelerating Pro-
filing Services by Parallel Database Technology, In:
Proc. PDPTA Conf, Las Vegas, 1997.

[NM981 C. Nippl, B. Mitschang: TOPAZ: a Cost-Based, Rule-
Driven, Multi-Phase Parallelizer, TR, Technische Uni-
versitat Mtinchen, 1998.

[Or981 Oracle8 Parallel Server Concepts, Oracle Corp.

[OL90] K. Ono, G.M. Lohman: Measuring the Complexity of
Join Enumeration in Query Optimization, In: Proc. Intl.
Conf on VLDB, Brisbane, 1990.

[ON+951 F. Ozcan, S. Nural et al: A Region Based Query Opti-
mizer through Cascades Optimizer Framework, In: DE
Bulletin 18(3), Sept 1995.

[PGK97] A. Pellenkoft, C. Galindo-Legaria, M. Kersten: The
Complexity of Transformation-Based Join Enumera-
tion, In: Proc. VLDB Conf., Athens, 1997.

[Sch97] D. Schneider: The Ins and Outs of Data Warehousing,
In: Tutorial on the VLDB Conference, Athens, 1997.

[SD901 D. Schneider, D. Dewitt: Tradeoffs in Processing
Complex Join Queries via Hashing in Multi-processor
Database Machines, In: Proc. of the Intl. VLDB Confer-
ence, Melbourne, Australia, 1990.

[SM+98] L. Shapiro, D. Maier et al: Group Pruning in the Colum-
bia Query Optimizer, http:://www.cs.pdx.edu/-len.

[STY931 E. Shekita, K. L. Tan, H. Young: Multi-Join Optimiza-
tion for Symmetric Multiprocessors, In: Proc. VLDB
Conf, Dublin, 1993.

[SM96] M. Stonebraker, D. Moore: ORDBMS -The next Great
Wave, Morgan Kaufman Publishers, 1996.

[TD93] 1. Thomas, S. Dessloch: A Plan-Operator Concept for
Client-Based Knowledge Processing, Proc. 19th VLDB
Conference, Dublin, 1993.

[TPC95] Transaction Processing Performance Council. TPC
Benchmark D, Stand. Spec,, Rev. I .O, 1995.

[WFA95] A. Wilschut, J. Flokstra, P. Apers: Parallel Evaluation
of Multi-Join Queries, In: Proc. ACM SIGMOD

Con&, 1995.
[Zou97] C. Zou: XPS: A High Performance Parallel Database

Server, In: DE Bulletin 20(2), 1997.
[ZZS93] M. Ziane, M. Zait, B. Salamet: Parallel Query Process-

ing with Zigzag Trees, In: Very Large Databases Jour-
nal, 2(3), March 1993.

262

