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Abstract 

Currently the key problems of query optimization 
are extensibility imposed by object-relational 
technology, as well as query complexity caused 
by forthcoming applications, such as OLAP. We 
propose a generic approach to parallelization, 
called TOPAZ. Different forms of parallelism are 
exploited to obtain maximum speedup combined 
with lowest resource consumption. The necessary 
abstractions w.r.t. operator characteristics and 
system architecture are provided by rules that are 
used by a cost-based, top-down search engine. A 
multi-phase pruning based on a global analysis of 
the plan efficiently guides the search process, 
thus considerably reducing complexity and 
achieving optimization performance. Since 
TOPAZ solely relies on the widespread concepts 
of iterators and data rivers common to (parallel) 
execution models, it fits as an enabling technol- 
ogy into most state-of-the-art (object-) relational 
systems. 

1 Introduction 

The MIDAS project [BJ+96] concentrates on optimiza- 
tion, parallelization and execution aspects of queries com- 
ing from areas such as OLAP, DSS, and document 
management systems [CJ+97]. Generally, the responsibil- 
ity for query parallelization is taken over by the so-called 
parallelizer. Its task is to come up, without incurring too 
much overhead, with a parallel query execution plan 
(PQEP) that exploits various forms of parallelism, thereby 
achieving maximum speedup combined with lowest 
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resource consumption. Among the most important require- 
ments to be fulfilled by modern parallelizer technology are 
the following ones: 

Extensibility: This requirement is stressed by forthcom- 
ing application scenarios. Necessary SQL extensions are 
dealt with using concepts like user-defined functions 
[JM98] or designated (internal) operators [NJM97]. 
Similar issues are treated in the context of (parallel) 
object-relational database systems [SM96]. 

Performance: To conquer the complexity of the parallel 
search space [GHK92], [LVZ93], accurate pruning tech- 
niques are necessary. 

Granularity of Parallelism: A QEP consists of operators 
showing significantly dissimilar processing costs. Cur- 
rently, cost models as well as parallelization strategies 
only deal with high-cost operators (also called coarse- 
grain operators [GGS96] , [GI97] ), as the performance 
speedup by means of parallelization is most profitable 
for this kind of operators. However, low-cost operators. 
if not treated the right way, can deteriorate query execu- 
tion performance considerably. Hence, a flexible granu- 
larity of parallelism that provides a comprehensive 
treatment of low-cost and high-cost operators is neces- 
sary. 

Economical Resource Allocation: The maximum 
speedup obtainable is delimited by the critical path of 
the best execution schedule for the PQEP. Hence, to 
limit resource contention, no resources should be allo- 
cated to subplans that cannot reduce this measure. This 
demand is particularly important in the case of queries 
that run over longer periods of time (e.g. DSS queries) 
and in multi-user environments. 

Comprehensiveness: In order to generate PQEPs of 
acceptable quality for all query types it is necessary to 
take into account all forms of intra-query parallelism. 

Adaptability: Hybrid (or hierarchical) system architec- 
tures are gaining popularity. However, the development 
of optimization techniques to exploit their full potential 
is still an open problem [Gr95], [BFV96]. 

Obviously, numerous techniques have to be devised and 
combined in order to meet all of the above listed require- 
ments. As rule-driven optimizers [Lo88], [Gra95] have 
already proved to be extensible and efficient, we rely on 
that technology also for parallelization and propose a solu- 
tion based on a top-down search strategy, called TOPAZ 
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(Top-down PAralleliZer). TOPAZ relies on a fully cost- 
based decision making. To reduce complexity, it splits par- 
allelization into subsequent phases, each phase concentrat- 
ing on particular aspects of parallel query execution. 
Moreover, by means of a global pre-analysis of the 
sequential plan first cost measures are derived that are 
used to guide and restrict the search process. TOPAZ com- 
bines high-cost as well as low-cost operators into so-called 
blocks that are subject to coarse-grain parallelism. This 
cost-based block building achieves economical and effi- 
cient resource utilization. The rule-driven approach pro- 
vides for the necessary abstraction to support different 
architecture types, including hybrid ones. Since TOPAZ 
solely relies on the widespread concepts of iterators and 
data rivers common to (parallel) execution models, it fits 
as an enabling technology into most state-of-the-art 
(object-) relational systems. This is additionally supported 
by the fact that TOPAZ builds upon the Cascades Opti- 
mizer Framework [Gra95], which is also the basis of some 
commercial optimizers, like Microsoft’s SQL Server 
[Gra96] and Tandem’s Serverware SQL [Ce96]. 
In this paper, we analyze the possibilities of integrating 
parallelization into established query optimization search 
engines and point out limitations of the heuristics used in 
state-of-the art parallelizers. A discussion of related 
work is given in Section 2. Section 3 describes the archi- 
tectural embedding of TOPAZ into our testbed parallel 
database prototype MIDAS and a sample query taken from 
the TPC-D benchmark is introduced as a running example. 
The design of TOPAZ in terms of basic parallelization 
strategies as well as internal optimization and control mea- 
sures is detailed in Section 4. In Section 5 the main phases 
of the parallelization task are described. An analysis and 
evaluation of the technology incorporated into TOPAZ is 
provided in Section 6. Finally, in Section 7 a conclusion 
and an outlook to future work completes the paper. 

2 Review of Parallel Query Optimization 
Techniques 

Query optimizers use continuously improved techniques 
to simplify the task of extending functionality, making 
search strategies more flexible, and increasing efficiency 
[HK+97], [PGK97], [ON+95]. In a parallel context, the 
search space becomes even more complex as resource uti- 
lization has to be considered as well. One way to tackle 
this problem is to develop specialized solutions for the 
exploration of the parallel search space. The other 
approach is to reuse existing sequential optimization tech- 
niques and to extend them by special heuristics. 

2.1 Specialized Parallelization Techniques 

The hue-phase approach uses a traditional search strategy 
for optimization and a specialized one for parallelization 
of queries. The parallelization task is based in many cases 
on heuristics [HS93] or it is restricted to join orderings in 
combination with restricted forms of parallelism [Ha95]. 
As the parallelizer is a separate system, easy reuse of 

infrastructure or technology improvements as mentioned 
above is prohibited. In addition, extensibility, as required 
by object-relational extensions, is limited. 
Other approaches propose an integration of the optimiza- 
tion and parallelization, but are still highly specialized for 
specific architectures or certain operator types. Some 
research concentrated on scheduling of joins that maxi- 
mizes the effect of specific forms of parallelism. Thus con- 
cepts as right-deep [SD90], segmented right-deep 
[LC+93], zig-zag [ZZS93] and bushy trees [WFA95] have 
been elaborated. Although these strategies have achieved 
good performance for specific scenarios [STY93], they 
rely on the hash-join execution model and thus cannot be 
applied in a straightforward way to complex queries hold- 
ing any kind of operators. 

2.2 Parallelization Using Traditional Sequential Opti- 
mization Techniques 

If the optimizer and the parallelizer are integrated, they 
both use the same search strategy. However, they differ in 
exploration of the search space and the size of the portion 
explored. Due to its exponential complexity, exhaustive 
search is only feasible for very simple queries and is 
implemented in few research DBMSs, mainly for perfor- 
mance comparison purposes. Randomized algorithms 
have been mainly tested for join orderings in both the par- 
allel and sequential context [LVZ93], [KD96], showing 
efficiency only for a high number of base tables. The best- 
known polynomial algorithm, the greedy paradigm 
[LST91], explores only a small portion of the search 
space, often ignoring some forms of parallelism. Thus, it is 
likely to fail the regions of good physical operator trees. 
The bottom-up (dynamic programming) algorithm works 
iteratively over the number of base tables, constructing an 
optimal physical operator tree based on the expansion of 
optimal subtrees involving a smaller number of tables. To 
handle exponential complexity, a pruning function is intro- 
duced to realize a branch and bound strategy, i.e. it reduces 
the number of trees to be expanded in the remaining of the 
search algorithm. Pruning is achieved by comparing all 
subtrees which join the same set of relations with respect 
to an equivalence criteria and then discarding all trees of 
non-optima1 cost. In order to tackle the even higher com- 
plexity of a parallel context, many PDBMSs use beside 
dynamic programming pruning also other simplifying 
heuristics. Thus, in DB2 Parallel Edition [BF+95], 
[JMP97], the degree of parallelism (DOP) of the operators 
is mainly determined by the partitioning of the inputs. In 
Teradata and Oracle’s Parallel Query Option [BF97], 
[Or981 it even remains the same for the whole plan. 
In top-down optimizers, such as Volcano [Gra94], Cas- 
cades [Gra95] and Columbia [SM+98], the complexity 
explosion is also controlled by pruning. These optimizers 
compute costs for high-level plans before some lower- 
level plans are examined. These cost limits are then passed 
down to optimization of incrementally constructed QEPs 
and can thus prune plans whose predicted total costs 
exceed this limit. Some investigations [KD96] have 
yielded poor performance for top-down optimizers. How- 
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ever, these results referred to the Volcano search strategy, 
that meanwhile got improved in the new generation of top- 
down optimizers, especially concerning pruning tech- 
niques [Gra95], [SM+98]. 
W.r.t. parallelization, in Volcano the best sequential plan 
found is divided into several segments bracketed by so- 
called Exchange operators. Please note that in this way 
parallelization, i.e. the computation of the degree of intra- 
operator parallelism or the determination of the segment 
boundaries, is done with another search strategy than that 
of the Volcano optimizer. Although top-down optimizers 
are used in other PDBMSs [Ce96] as well, we do not know 
of any publicly available report on how to decide on paral- 
lelization using this type of search engine. 
To overcome the shortcomings of each optimization strat- 
egy in combination with certain query types, also hybrid 
optimizers have been proposed [ON+95], [MB+96]. 
As optimizers based on bottom-up [Zou97], [HK+97], 
[JMP97] and top-down [Ce96], [Gra96] search strategies 
are both extensible [Lo88], [Gra95] and in addition the 
most frequently used in commercial DBMSs, we have 
concentrated our research on the suitability of these two 
techniques for parallel query optimization. 
Generally, some crucial decisions in the parallel context 

refer to physical properties, as e.g. partitioning, degrees of 
parallelism and usage of resources, that have to be chosen 
in a way to guarantee overall efficiency and to minimize 
resource contention. Given the above, an advantage of the 
top-down search strategy is that it comes up very early 
with physical tree solutions, whose cost estimates can be 
used to perform a global plan analysis and to guide further 
parallel search space exploration. More details on this 
topic can be found in [NM98]. Thus, beside the quality of 
the plans also the performance of the parallelization task 
itself can be improved considerably. For the MIDAS 
project, it was important to first concentrate on the strate- 
gies needed to achieve these goals. Hence, for a first ver- 
sion of TOPAZ we decided to have as input a complete 
sequential plan that is generated by a top-down sequential 
optimizer. Thus, optimizer and parallelizer use the same 
(top-down) search strategy, i.e. Cascades, but explore dif- 
ferent search space regions with different rule sets. In the 
following, we assume that the top-down optimization tech- 
nique is well understood and thus concentrate only on the 
parallelization effort. 

3 Architectural Embedding of TOPAZ into 
MIDAS 

In this section, we shortly present some of the underlying 
concepts of parallel query execution in MIDAS as far as it 
is necessary for further understanding. 

3.1 System Environment 

MIDAS [BJ+96] is a prototype of a parallel database sys- 
tem running on a hybrid architecture comprising several 
SMP nodes combined in a shared-disk manner. To provide 
the necessary abstraction, it is important to decouple opti- 

a) Iterators strung together 
to a sequential QEP 

b) A logical view to pipeline 
parallelism between blocks B, 

c) Execution view to a PQEP: 
blocks mapped to execution 
units Bij as well as data rivers 
D, for communication 

Figure 1: From a Sequential QEP to Parallel Execution 
Using Blocks and Data Rivers 

mization from some scheduling and load balancing 
aspects. This is achieved in MIDAS through parameters. 
Thus, the goal of TOPAZ is to come up with a parameter- 
ized PQEP. Each parameter keeps track of particular plan 
properties whose final adjustment has to be made accord- 
ing to the run-time system state, e.g. degrees of parallelism 
and resource consumption. Since TOPAZ relies on a cost- 
based approach, it comes up with reasonable lower and 
upper bounds for these parameters. This allows the run- 
time component, called Query Execution Control (QEC), 
to derive individual PQEPs having fixed parameter values. 
Thus, QEC comprises the run-time responsibilities of load 
balancing, scheduling, and resource allocation. It performs 
a fine-tuning of the PQEP and schedules different portions 
of the PQEP to different execution units. 
The MIDAS operators are self-contained software objects 
designed according to the iterator (or Open-Next-Close) 
processing model [GB+96], [Gra94]. In this model queries 
are structured by bundling the appropriate operators (itera- 
tors) into a QEP (Figure la). In a sequential DBMS, each 
QEP is processed by a single execution unit. In the course 
of parallelization, this QEP is broken down into several 
subplans or blocks [TD93] (Figure lb) that define the 
granularity or unit of parallelism [HS93]. A block can be 
considered as a single operator whose processing cost is 
the sum of the processing costs of the constituting opera- 
tors. In order to obtain optimal speedup, TOPAZ performs 
a cost-based analysis to identify the optimal granularity 
for parallelism, i.e. number of blocks for a given query, 
number of operators within a block, and degree of parallel- 
ism assigned to a block. The corresponding strategies are 
presented in Section 4. 
As determined by TOPAZ and at run-time adjusted by the 
QEC, a block is assigned to one or several execution units, 
according to its degree of parallelism. The flow of tuples 
among the various execution units is organized by the con- 
cept of data rivers [Gr95] (see Figure lc). If multiple pro- 
ducers add records to the same river that is consumed by 
consumers, the river consists of several data streams. In 
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SELECT I-orderkey, 
sum(l-extendedprice * (l- I-discount)) 
AS revenue, o-orderdate, o-shippriority 

FROM customer, new-order, lineitem 

WHERE c-mktsegment = ‘BUILDING’ 
AND c-custkey = o-custkey 
AND l-orderkey = o-orderkey 
AND o-orderdate < date ‘ 1995’ 
AND I-shipdate > date‘1995’ 

GROUP BY I-orderkey, o-orderdate, 
o-shippriority 

ORDER BY revenue desc, o-orderdate 

I) SQL representation of query Q3 b) Sequential QEP & c) Parallel QEP 

Figure 2: Parallelization of Query Q3 of the TPC-D Benchmark 

this way, parallelism is transparent for operators applying 
the iterator processing model, as they still operate sequen- 
tially on these data streams that constitute the data river. In 
MIDAS, the data river paradigm is realized by means of 
two new communication operators: send and receive. 
These follow the same iterator concept as all the other 
operators and are implemented to write respectively read 
from a data stream. Thus send and receive realize all com- 
munication patterns necessary for intra-query parallelism: 
pipelining, replication, partitioning (a single flow of tuples 
into several data streams), merging (several data streams 
into a single flow of tuples) and repartitioning. Hence the 
execution model of TOPAZ only relies on the two basic 
concepts: data rivers and iterators. Thus, the approach is 
applicable to all engines that refer to the same model. To 
our knowledge, the iterator protocol is used in many 
(object-) relational DBMSs [GB+96], [Zou97]. Our com- 
munication operators implementing the data river concept 
are similar to other approaches as well, e.g. the send/ 
receive operators in DB2 PE [JMP97], the split/merge 
operators in Gamma [De+90], or the Exchange operator in 
Informix Online XPS and Volcano [Gra94], [Zou97]. 

3.2 Running Example 

We will exemplify the parallelization using query Q3 from 
the TPC-D benchmark [TPC95], whose SQL representa- 
tion is given in Figure 2a. The sequential execution plan of 
this query that serves as input for TOPAZ is depicted in 
Figure 2b. Essentially, it consists of a 3-way join (per- 
formed by 2 hash joins on the tables CUSTOMER, 
NEW-ORDER, and LINEITEM) followed by a complex aggre- 
gation. Some operators, e.g. the sort and the send, show 
certain parameters defining memory allocation, buffer 
management etc. These parameters are set by the parallel- 
izer according to the cost model, but can be adjusted by 
QEC at run-time according to the system state. In this sce- 
nario we further assume that the tables are physically par- 
titioned across 4 disks in a round-robin manner. The 

resulting PQEP can be found in Figure 2c. Please note that 
in this representation, the operators bracketed by send and 
receive (recv) nodes are bundled together to a block. 
Between send and recv nodes there are data rivers consist- 
ing of several data streams that are for simplification rea- 
sons not depicted in the PQEP visualization. 

4 TOPAZ Strategies 

In the following, we describe in detail some of the core 
strategies of TOPAZ. The PQEP in Figure 2c already 
shows some of the intrinsic characteristics resulting from 
our parallelizer that are quite different to the ones known 
from other approaches already mentioned in Section 2: 

l usage of all possible communication patterns to realize 
efficient intra-query parallelism 

l cost-related degrees of parallelism and adjusted block 
sizes, saving scarce resources 

l parameters allowing a fine-tuning of the execution plan 
to different application scenarios. 

4.1 Control of the Search Space 

Exponential complexity [OL90] has forced optimizers to 
use different techniques to restrict the search space and to 
improve performance. One of these techniques is to prune 
expressions that cannot participate in the final, best plan. 
However, traditional optimization metrics are not suffi- 
cient for parallel search spaces [GHK92], because, con- 
trary to sequential optimization, physical resources, 
partitioning strategies, and scheduling play a vital role. A 
pruning strategy that doesn’t take into account these 
aspects risks to miss the best parallel plan. Heuristic solu- 
tions, as extending the traditional pruning criteria by 
“interesting partitionings” are also insufficient, as shown 
in [NM98]. The solutions proposed in [GHK92] and 
[LVZ93] refer to extensions of the optimization metric that 
account also for resource utilization. Thus, the costs for a 
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single QEP fill up a vector, and a multidimensional “less- 
than” is needed to prune the search space. The problem 
with these approaches is that dynamic programming prun- 
ing techniques become generally ineffective and optimiza- 
tion effort explodes in terms of time and memory 
consumption, as it becomes comparable to exhaustive 
search. Recent work [GGS96], [GI97] propose a more 
relaxed cost metric that is based on approximations taking 
into account some global parameters as critical path length 
or average work per processing site. To our knowledge, 
there exists no published work on how to incorporate these 
cost metrics into existing search engines. 
Our solution to these problems comprise the following 
extensions to top-down optimization: 
1. Cost Model The strategies proposed in [GHK92], 
[LVZ93] are known to assure correct pruning. Based on 
these results, our cost model comprises besides CPU-costs 
also communication costs, memory usage, disk accesses, 
and blocking boundaries’. In addition, rather than extend- 
ing the search space to explore alternative plans holding 
different degrees of parallelism, these degrees are also 
incorporated into the cost model. Thus, the global process- 
ing costs of an operator, i.e. the sum of the costs of its 
inputs plus the operator’s local processing costs, are calcu- 
lated for different degrees of parallelism and maintained in 
an array (see Section 4.4). 
2. Phases To overcome the drawback of poor optimization 
performance due to inefficient pruning, parallelization is 
split into different phases, each phase concentrating on 
particular aspects of parallel execution. The first phases 
focus on global optimization of the entire plan w.r.t. data- 
flow, execution time, and resource utilization. This allows 
the parallelizer to take global dependencies into account, 
detecting those locations in the plan where the benefit in 
exploiting some forms of parallelism is maximized. In the 
subsequent phases decisions are based on a local view of 
the QEP, i.e. a view restricted to only one operator or a 
block of operators and the costs involved in their execu- 
tion. Another way to express this strategy is that each 
phase uses as a starting point the result of the previous one 
to expand a specific region of the search space. These 
regions do not overlap, since they are expanded using dif- 
ferent transformations, i.e. different rule sets. However, 
the size of the explored search space regions decreases in 
each phase, as they refer to successively refined aspects of 
parallel query execution. The final refinement is made by 
the QEC; it can further adjust certain parameters, like 
memory usage, degree of parallelism etc. according to the 
run-time environment. Thus the overall approach to han- 
dling the huge search space for parallelization in MIDAS 
is neither enumeration nor randomization but a cost-based 
multi-phase pruning. This strategy is detailed in Section 5. 
3. Pruning Package (ParPrune) Global parameters 
[GGS96], [GI97] are incorporated in TOPAZ by means of 
an additional pruning strategy. Pm-Prune further limits the 
complexity in each phase, as it guides the search only 

I. These refer to particular locations within query execu- 
tion, where the complete intermediate result table has 
to be derived before the next operation can start. 

towards promising regions of the search space. It works in 
combination with the top-down search engine and consists 
of two parts: first, in the course of a pre-analysis different 
global measures are calculated: critical path length, 
expected memory usage, average costs per CPU, average 
operator costs etc. Second, these measures serve as con- 
straints (i.e. conditions for rule activations) for all subse- 
quent parallelization phases. Apart of the fact that this 
strategy reduces the optimization effort itself, it can in 
some cases influence also the quality of the final plans, as 
e.g. the global pre-analysis permits a better estimation on 
the search space regions that are worthwhile to be 
explored in more detail. 

4.2 Control of the Granularity of Parallelism 

Prior work on parallel execution and cost models as well 
as scheduling rely on the assumption that the QEP is 
coarse-grain, i.e. the parallelization overhead for each 
operator exceeds only up to a specific factor the total 
amount of work performed during the execution of the 
operator [GI97], [GGS96], [DG92]. However, this require- 
ment is not always assured by practical database execution 
plans. An example coming from traditional QEPs is a 
restriction evaluating only a low-cost predicate. Some 
PDBMSs have solved this problem using heuristics, as e.g. 
parallelizing these operators always together with their 
predecessors. However, in PORDBMSs this is not possible 
if e.g. a user-defined predicate or low-cost aggregation 
requires a special partitioning strategy. It is an open prob- 
lem how to deal with these operators. Parallelizing them 
separately causes obviously too much overhead, while a 
sequential execution can cause bottlenecks at several 
places of the PQEP and thus suboptimal performance. 
This is confirmed also by the measurements presented in 
Section 6. 
Our response to this problem is cost-bused block building. 
This strategy accounts for operator costs, selectivities, and 
intermediate result sizes to construct coarse-grain blocks, 
i.e. to perform several operators within a single execution 
unit. Moreover, these can be used for further block-build- 
ing in order to achieve mutually adjusted processing rates 
among communicating, i.e. neighboring blocks. If the rate 
at which tuples are sent to an execution unit is much 
higher than the rate at which tuples can be processed, the 
communication buffer can overflow, forcing the sender to 
block. On the other hand, if the rate at which tuples are 
received is much lower than the highest possible process- 
ing rate, the corresponding execution unit will frequently 
be idle and will waste non-preemptive system resources, 
as e.g. memory. Hence, mutually adjusted processing rates 
are prerequisite to efficient pipelining [MD95]. Addition- 
ally, through block construction intermediate result mate- 
rialization and inter-process communication between 
operators can be avoided. This implies savings in main 
memory or even I/O costs. 
Intra-block parallelism is analogous to intra-operator par- 
allelism and requires to execute several instances of the 
complete block by different execution units. Each instance 
has to work on different sets of data, i.e. the processing 
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within one instance of the block is independent from all 
the other instances of this block. In the PQEP shown in 
Figure 2c, the largest block is formed by the sort, projec- 
tion (proj), group, and hash-join (hj,i,) operators having a 
DOP of 5. 
The necessary conditions to bundle operators within a 
block are: same degrees of parallelism and same parti- 
tioning strategies. Thus, in order to achieve efficient block 
building, a flexible control of these properties is necessary, 
as described in the following sections. However, these 
conditions are not sufficient. A cost-based analysis has to 
decide if a specific block construction also leads to a 
decrease of the overall processing costs. 

4.3 Control of Partitioning Strategies 

In order to have the necessary degrees of freedom TOPAZ 
distinguishes between logical and physical data partition- 
ing. The strategies for physical data partitioning imple- 
mented in MIDAS are round-robin, hash and range 
partitioning. We are in the process of implementing user- 
dejined partitionings as well. Which of the above men- 
tioned techniques is used depends on the type of the opera- 
tor that has to be parallelized. In many cases, the 
partitioning has to keep track of the attribute values, like in 
the case of hash- or range-based partitioning. For instance, 
in Figure 2c the send operator highlighted by an exclama- 
tion mark performs a hash partitioning on the first attribute 
into 5 partitions as indicated in the operator description by 
the parameter H[5] [I]. However, TOPAZ differentiates 
only between the following logical partitionings: 

Any: This parameter indicates that the parallelized oper- 
ator (or block) doesn’t necessarily need a specific parti- 
tioning (as e.g. the sort operator). 

Attr: If an operator needs a value-based partitioning on 
certain attributes (as e.g. in the case of certain aggrega- 
tions), the corresponding send operator is extended by 
the Attr parameter together with the identifiers of the 
required partitioning attributes. 

Thus, if a block construction becomes necessary in the 
course of parallelization, TOPAZ can change a less strict 
partitioning (like Any) into a stricter one (like Attr). This 
can be done easily, only by taking into consideration the 
required physical properties. At the end of the paralleliza- 
tion. when block construction is finalized, these logical 
parameters are mapped to one of the above mentioned 
physical partitioning strategies. 

4.4 Control of the Degrees of Parallelism 

Consider a QEP having two adjacent high-cost operators. 
In Figure 3 (left), these are the final phase of a sort (merg- 
ing of sorted runs) and an aggregation operator (group). 
As both of them are coarse-grain, both are processed using 
intra-operator parallelism. Suppose that by taking into 
account only the local costs of the operators and the inter- 
mediate result sizes, the best degree of parallelism for the 
sort operator results to 3 and that for the aggregation is 2. 
Due to the different degrees of parallelism, a repartitioning 
of the intermediate results of the sort operator is necessary, 

Figure 3: Adjusting the DOP for Block Construction 

implicating high communication costs. 
If the degree of parallelism of the group is increased to 3, 
pipelining between the two operators becomes possible. 
This reduces communication costs, but increases the num- 
ber of execution units from 5 to 6. Actually, the optimal 
execution for the two operators would be within the same 
block, but with an increased degree of parallelism accord- 
ing to the higher block processing costs, as shown in Fig- 
ure 3 (right). This implies less execution units and less 
communication costs, as only the aggregated result of the 
group has to be transmitted. A plan with similar response 
time but reduced resource consumption is also more suit- 
able for a multi-query environment. 
Considering e.g. a bottom-up optimizer, it first optimizes 
the sort, finding the best degree of parallelism of 3 and 
prunes all the other plans, as they are (locally) more 
expensive. At the next level, when optimizing the group, 
the search engine cannot find the best plan shown in Fig- 
ure 3 (right), because the search space doesn’t contain the 
plan and costs for the sort operator in combination with a 
degree of parallelism of 4. However, keeping the plan 
alternatives for all possible DOPs is also an impractical 
solution with regard to optimizer performance. 
We have elaborated the following solution to this problem: 
To keep the degrees of parallelism flexible, TOPAZ incor- 
porates this aspect only in the cost model, without explic- 
itly extending the search space with alternative plans that 
differ only in the degrees of parallelism. If an operator gets 
parallelized by partitioning its inputs, the corresponding 
send operator doesn’t hold any specific information on the 
number of partitions. A parameter like “Attr[2] I” in the 
course of the parallelization only means that this send 
operator performs a value-based partitioning on the first 
attribute and that the number of partitions is greater or 
equal 2. At the same time the costs of the operator are cal- 
culated for all possible degrees of parallelism, storing 
them in an array. This cost calculation is propagated 
upwards. The global processing costs of the successor can 
also be calculated correctly for different DOPs, since its 
local processing costs are known and the processing costs 
of its input are available for every considered DOP. Thus, 
e.g. the decision on combining two blocks can be taken on 
the basis of the lowest value in the cost array of the top- 
most operator. In the example, this is the group and the 
entry in its cost array corresponding to the minimal global 
processing costs will be found for a DOP of 4. 
In Section 2, we have already mentioned some heuristics 
used in practice, as e.g. choosing the same DOP for the 
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whole PQEP or limiting the considered degrees to a few 
alternatives [BF97], [Or98], [JMP97]. New query types, as 
e.g. DSS and object-relational ones, make the usage of 
CPU-intensive operators and UDFs more and more popu- 
lar. In these scenarios, the operator costs in a QEP can dif- 
fer significantly. We believe that the degree of parallelism 
for these operators can rely only on cost-based decisions, 
as in TOPAZ, whereas using only restricted heuristics like 
the ones mentioned above can lead to truly suboptimal 
parallel plans. 

5 Multi-Phase Parallelization 

In the following we describe the parallelization phases that 
exploit the strategies described in the previous section, 
using as example the TPC-D query Q3 (Figure 2a). Please 
note that the PQEPs presented in each phase are complete 
physical trees, having specific data partitionings and 
degrees of parallelism, although we mentioned before that 
these aspects are kept flexible. In TOPAZ each phase can 
be separately turned on or off. Thus the following exam- 
ples rather reflect the physical trees that are obtained if the 
phases are turned on successively, starting with the 
sequential one (Figure 2b). We accentuate that this is only 
for illustration purposes, as the final parallel plan is the 
result of all constituting phases that explore different 
regions of the parallel search space. 
As each phase is characterized by a separate rule set, 
examples of representative rules and of rule applications 
will be provided as well. Since the send and receive opera- 
tors appear always in pairs, they are internally considered 
as a single operator, called S/R, holding the parameters for 
the respective send (S...) and receive (R...) part. However, 
in a physical plan, they are represented separately at the 
end and at the beginning of neighboring blocks, constitut- 
ing a data river. 

5.1 Phase 1: Inter-Operator Parallelism and Refine- 
ment of Global Costs 

This phase starts from the sequential plan and analyzes the 
possibility of reducing the critical path length through 
inter-operator parallelism. An additional goal is to achieve 
a mutually adjusted processing rate over all blocks in the 
QEP thus considerably reducing query execution over- 
head, as described in Section 4.2. The transformations 
considered in this phase expand a search space region con- 
taining alternative plans that exploit only pipelining and 
independent parallelism. The decision criteria comprise 
sizes of intermediate results, expected resource consump- 
tion, processing costs of the emerging blocks as well as 
blocking operators. 
A naive strategy would be to define a single rule for inser- 
tion of S/R nodes and let the search engine find the optimal 
places for inter-operator parallelism according to the cost 
model. But this increases unnecessarily the parallelization 
effort, since alternatives that are unlikely to lead to the best 
plan are explored as well. For example, pipelining 
shouldn’t be considered in combination with subplans that 
are not on the critical path. This naive strategy would lead 

a) Rule Example 

b) Intermediate Result After Phase 1 

Figure 4: Inter-Operator Parallelism 

already for this first phase to an unacceptable perfor- 
mance. Hence, the considered alternatives are restricted by 
ParPrune. In this phase it accounts for the relative costs of 
the operators and the critical path length computed during 
the pre-analysis. Thus, inter-operation parallelism is con- 
sidered only in combination with certain subplans and 
operators that are reasonable from a global point of view. 
In Figure 4a, a rule for the insertion of pipelining S/R 
nodes below a binary operator is presented. The condition 
for the consideration of this transformation within a QEP 
is that both inputs TO and Tl exceed certain cost limits. 
Our example query resulting from this phase is presented 
in Figure 4b. As shown by the interrupted dashed arrows, 
the left inputs of the join operators are blocking, since they 
are used to build the hash tables. Hence, efficient pipelin- 
ing is only possible in the segment marked by the continu- 
ous dashed arrow at the right side of the figure. In this 
segment, the group is recognized as a costly operator due 
to the size of the intermediate result and the (high) local 
processing cost. Thus only one pipelining edge has been 
identified, defining two blocks with similar processing 
rates. Please note that the goal of this phase is not to come 
up with the final set of edges for inter-operator parallelism. 
Due to modified cost proportions in the next phases, some 
of these edges may be replaced by neighboring ones. The 
result of this phase are refined cost limits that have been 
established w.r.t. critical path length and average block 
processing costs. These refined costs are exploited by the 
subsequent phases. 
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a) Parallelization rul 
for the hash-join 
operator 

Operators within the dashed area define a 
parallelized block bracketed by S/R nodes 

b) Parallelization of high-cost operators 

Figure 5: Intra-Operator Parallelism 

5.2 Phase 2: Intra-Operator Parallelism applied to 
High-Cost Operators 

The result of the previous phase is now used to span a new 
search space region, exploring the possibility of further 
reducing the critical path length and block processing 
costs by controlled introduction of intra-operator parallel- 
ism. Therefore operators that already meet the coarse- 
grain demand are individually parallelized, bracketing 
them with send-receive nodes. 
Depending on the type of the operator, one or both inputs 
have to be partitioned. Hence, partitioning send nodes are 
inserted such that each operator instance processes one 
partition. The intermediate results produced by these 
instances are collected by a receive node that is placed at 
the output of the operator. For each operator separate par- 
allelization rules have been defined, considering the opera- 
tors’ characteristics, as e.g. some operator types admit 

more alternatives. As shown in Figure 5a, e.g. a hash-join 
can be parallelized by partitioning both inputs or only one 
input combined with a replication of the other. The solu- 
tion chosen by TOPAZ depends on the cost distribution in 
the QEP. For instance, if one of the inputs is replicated, 
there exists no requirement concerning the partitioning 
strategy of the other. Thus repartitioning can be omitted, 
an aspect that is especially beneficial if this input has a 
high cardinality. The S/R node parameters only indicate 
logical partitionings (Am or Any) without specifying any 
concrete degrees of parallelism or physical partitioning 
strategies (see Section 4.3). 
Global execution performance and critical path length are 
mostly influenced by nodes having high local processing 
costs. The effect of ParPrune in this phase is to take into 
account the average costs per operator computed during 
the pre-analysis and to consider only those operators that 
beside the coarse-grain requirement, also exceed a mini- 
mal cost limit. 
In Figure 5b the result for our example query is shown, if 
parallelization is stopped at this stage. Thus it includes 
also tasks that are usually performed only after the last 
phase, like mapping from logical to physical partitioning 
strategies and setting of concrete DOPs. These have been 
chosen according to intermediate result sizes, local pro- 
cessing costs, and disk partitioning. The parallelized oper- 
ators are the group (DOP=5), the two joins (DOP=4 and 
DOP=3), and the scan of the LINEITEM table (rrscan: 
round-robin scan) with DOP=4. The group requires a par- 
titioning on the 5th attribute, as indicated by the parameter 
(H[S] IS]...) of the corresponding send operator, identify- 
ing a hash partitioning of attribute 5 into 5 buckets. In con- 
trast to shared-disk or shared-everything architectures, in a 
shared-nothing environment the parallelization of the rela- 
tion scans in this phase is restricted by the given physical 
disk partitioning strategies. This constraint can be mod- 
eled as an additional required physical property. 
As a result of this phase simple blocks that hold one paral- 
lelized operator show up. The parallelization of these 
driver nodes impose certain physical properties, like data 
partitioning, degree of parallelism, and sort order that will 
bias the parallelization of the remaining operators. 

5.3 Phase 3: Block Expansion and Treatment of Low- 
Cost Operators 

Phase 3 analyzes the possibility of expanding the one- 
operator blocks obtained in the previous phase. The result- 
ing blocks incorporate also operators that individually 
don’t meet the coarse-grain requirement or have low pro- 
cessing costs. As shown in Section 4.2 this achieves a min- 
imization of the resources needed to process the given set 
of operators and avoids bottlenecks. The DOPs are 
adjusted according to the block processing costs (see Sec- 
tion 4.4). 
The corresponding search space region is expanded by 
transformations that slide the S/R operators towards not 
yet parallelized operators, thus including them into exist- 
ing blocks. If in the course of this sliding two S/R nodes 
meet, they are transformed into a single repartitioning 
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j a) Examples of 

applications 

_ - . Operators within the dashed area define a 
parallelized block bracketed by S/R nodes 

rule 

b) Effect of block expansion 

in the example query 

Figure 6: Block Expansion 
node. In Figure 6a, a situation is shown where the nested- 
loop operator (NL) has been parallelized in Phase 2 by 
repartitioning an input and replicating the other. In Phase 
3, one of the S/R nodes is pushed up. As a result, the Sort 
operator becomes part of the block taking over the paral- 
lelization decisions and properties of that block. The other 
S/R node is pushed downwards, thus parallelizing the rela- 
tion scan (Rel operator). This transformation is specific to 
shared-disk and shared-everything architectures, express- 
ing an additional degree of freedom compared to shared- 
nothing environments. As stated before, in the latter case 
the scans have to be parallelized in Phase 4, accounting 
also for physical disk partitionings. The result of the two 
transformations is a block consisting of the 4 operators, 
having the same DOP and the same partitioning strategy. 
The rrscan operator, a parallel scan, reads different parti- 
tions of the first input table in each block instance. The Rel 
operator reads the entire second input table and replicates 
it to all block instances. 
All of the above mentioned transformations, e.g. pushing 
an S/R node through an operator, merging of two neigh- 

boring S/R nodes into a single repartitioning node etc., are 
defined as rules, the resulting plans being added to the 
search space and maintained according to cost-based deci- 
sions. To reduce the number of worthless transformations, 
ParPrune for instance checks in advance if a given parti- 
tioning strategy can be taken over by a candidate operator. 
In our example query (Figure 6b), the parallelization of the 
lower hash join has been extended downwards, paralleliz- 
ing also the scan of the NEW-ORDER table and adjusting 
the DOP of the block from 3 to 4. The parallelization of 
the LINEITEM scan and the group have been extended 
upwards. Due to low processing costs, the scan of the CUS- 
TOMER table is done sequentially, however replicating the 
result for further parallel processing. 

5.4 Phase 4: Block Combination Further Decreasing 
Parallelization Overhead 

As described in Section 4.2, bundling coarse-grain blocks 
can lead to a further reduction of resource utilization and 
intra-query communication, thus contributing even to the 
decrease of the critical path length. Therefore, the last par- 
allelization phase analyzes the possibility of combining 
adjacent blocks with comparable partitioning strategies. 
Phase 4 operates with a single rule for the elimination of 
repartitioning nodes between two adjacent blocks. This is 
only possible if the partitioning strategy of the candidate 
blocks is equal or comparable. As shown in Section 4.3, 
this condition is satisfied if e.g. the logical partitioning of 
at least one block is Any. For the final plan shown in Figure 
2c, the group block has been bundled together with the 
upper hush join block adjusting the DOP to 5. The 
required partitioning imposed by the group has been taken 
into consideration by modifying the partitioning of the 
join block from round-robin (send(RR[4]...)) to hash 
(send(H[S] [Il...)), as highlighted by the exclamation 
mark. Hence, repartitioning has been pushed down to be 
performed before the join operator, where it is more bene- 
ficial w.r.t. intermediate result sizes. This proves again that 
TOPAZ keeps track of all cost factors also on a global 
level. 

6 Performance Investigation 

The TOPAZ data and cost models have been implemented 
using the Cascades Optimizer Framework [Gra95]. The 
current version has approximately 80 rules, divided into 4 
categories, one for each parallelization phase. We have 
validated our approach by using different applications, 
such as OLAP, DSS, and digital libraries. In this section, 
we report on the performance of TOPAZ by using a series 
of TPC-D queries performed in a single-user environment 
on a 100 MB database, running on a cluster of 4 SUN- 
ULTRA1 workstations with 143 MHz Ultra SPARC pro- 
cessors, connected via a Fast Ethernet network. In order to 
perform a detailed analysis of the separate parallelization 
phases, we took the result of each plan and executed it on 
our cluster. Figure 7 shows the average speedups obtained 
after each phase for all queries of the test series, parallel- 
ized for the 4 workstations; the speedup obtained by our 
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Phases 

Figure 7: Speedups After 
Each Phase 

Table 1: Speedups for the 
16 Test Queries 

ear speedup (4.5 to 13) 

ear speedup (4) 

running example TPC-D query Q3 is illustrated in a sepa- 
rate curve. We would like to remind that this is for demon- 
stration purposes, since parallelization is made up of all 
phases, the actual result being that obtained after Phase 4. 
The first two are only preparatory phases that result into 
the insertion of different forms of parallelism according to 
a global cost-based analysis (see Section 4.1). These are 
carried over in subsequent phases to the rest of the QEP, 
considering also physical properties in the top-down paral- 
lelization, as e.g. partitioning and sort orders (see Sections 
5.3 and 5.4). These are the phases where the real speedups 
are achieved. In Phase 2 coarse-grain operators that signif- 
icantly contribute to the critical path are parallelized sepa- 
rately. The negative speedup demonstrates quite 
dramatically our statement (Section 4.2) that ignoring non- 
coarse-grain operators causes bottlenecks in parallel exe- 
cution, thus influencing negatively performance. The dif- 
ference between Phase 2 and 3, respectively Phase 3 and 4 
shows the importance of block construction, optimal set- 
ting of degrees of parallelism, and other TOPAZ strategies 
as described in Section 4. 
Please note that in some cases, as e.g. for query 43, we 
obtained superlinear speedup (see also Table 1). This is 
due to the fact that scaleup refers not only to CPUs, but 
also to other resources. Hence, if a query is parallelized 
correctly it can benefit also from parallel I/O facilities and 
from the increased database cache that can reduce disk 
spoolings. The results show the importance of incorporat- 
ing these aspects into the cost model, as proposed by 
TOPAZ. Of course, this situation can change in a multi- 
user environment, due to general resource contention. 
Table 1 shows also some sublinear speedups. As men- 
tioned before, the implemented base version of TOPAZ 
gets as an input a complete sequential tree, produced by a 
sequential optimizer. As TOPAZ doesn’t perform any 
rewrites, this can influence the quality of the final parallel 
plan. We observed that the suboptimal speedups are 
mostly related to queries containing a correlation, with this 
property preventing an efficient parallelization. However, 
we have never observed a deterioration w.r.t. the (sequen- 
tial) performance, as all TOPAZ strategies account for par- 
allelization overhead and thus introduce parallelism only 
where it is truly beneficial. 
W.r.t. the importance of a global view in the parallelization 
process, we have parallelized and executed the queries 
with and without the ParPrune technique that can be eas- 
ily switched on or off in our prototype. As described in 
Section 4.1, ParPrune is used to provide an additional 

Table 1: Effect of Pruning and Global View on Execution 
and Parallelization 

Resource and response time 
metrics 

Average execution time for 
modified queries (ms) 

ParPrune ParPrune 
off on 

25943 23717 

Average number of execution 
units for modified queries 

11.125 8.25 

Overall average parallelization 
time (ms) 

884 703 

guidance throughout the parallelization phases. This is to 
reduce optimization complexity. However, as a side-effect, 
ParPrune can also improve the quality of the final plan as 
the global pre-analysis permits a better estimation on the 
search space regions that are worthwhile to be explored. In 
the test series, ParPrune modified the final plan in 50% of 
the test cases. As can be seen in Table 2, for these queries 
an additional performance improvement has been 
achieved. An interesting aspect is that this performance 
gain has been achieved with explicitly less resource con- 
sumption. We have only listed here the number of execu- 
tion units, that in this way has been reduced by 34%. But 
even where ParPrune didn’t come up with a more efficient 
plan, the best plan has been found with clearly less effort. 
This can be seen already by comparing the average paral- 
lelization times in the last row of Table 2. However, these 
numbers also include some organization overhead, as e.g. 
the time necessary to copy the QEPs into and out of the 
Cascades memory structure. Please note that the numbers 
are comparable to sequential optimization efforts. Internal 
program optimization will reduce this overhead further. 
To evaluate only the search complexity, we have used as 
measures the number of expressions generated, the num- 
ber of tasks and the number of rule applications in the 
course of the parallelization. Tasks are one of the basic 
mechanisms used by the Cascades search engine [Gra95]. 
They are used to perform a particular optimization objec- 
tive, as e.g optimizing a single expression or group of 
expressions. 
In Figure 8a, b, and c the average number of rules, tasks, 
and expressions participating in the each phase of the par- 
allelization are compared. As can be seen, by using Par- 
Prune, these numbers could be drastically reduced as 
compared to a non-pruned parallelization attempt. In order 
to get a better understanding, a summarization is given in 
Figure 8d, showing for each phase the reductions (in per- 
cent) achieved for these measures. Thus, e.g. the number 
of applied rules in the first phase is reduced drastically, by 
54%. Generally, the impact of ParPrune is the highest in 
the first two phases, as these are the ones that participate 
most in the determination of the final character of the 
PQEP. It is here that a guidance given by a pruning strat- 
egy can help the most in finding the right regions of the 
search space. Later on only a gradual refinement of the 
parallel plan takes place that translates to a search only 
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around the regions found in the earlier phases. Thus, in 
these last phases pruning can only contribute to the reduc- 
tion of unnecessary transformations and this impact is not 
so visible. 

7 Conclusions and Future Work 

In this paper we have shown that our approach, called 
TOPAZ, fulfills all basic requirements of a modern paral- 
lelizer. Its ‘rule-driven’ property guarantees for the neces- 
sary extensibility. Both language extensions and 
extensions to the database engine itself, as well as changes 
to the parallel system architecture can be accomplished by 
means of respective rules. Its ‘multi-phase’ property real- 
izes an overall strategy that considers all forms of parallel- 
ism. It splits the parallelization task into subsequent 
phases, with each phase concentrating on particular 
aspects of an efficient parallel execution. In addition, this 
property turned out to be a major concept to handle the 
inherent complexity of parallelization. Its ‘cost-based’ 
property guarantees that all decisions w.r.t. investigating 
the parallel search space are cost-based. Hence, promising 
search space regions are explored to derive the best paral- 
lel plan. The concept of blocks enables (coarse-grain) par- 
allelism to low-cost as well as high-cost operators. It 
further guarantees economical and efficient resource con- 
sumption. A prerequisite to optimization performance is 
pruning. The strategy developed for TOPAZ, called Pur- 
Prune, is exploited throughout the parallelization phases, 
within each focusing on valuable search space regions. 
A thorough performance analysis and evaluation of our 
parallelizer technology clearly showed that the complex 
parallelization task can be conducted by TOPAZ’s under- 
lying parallelization strategies as well as internal optimiza- 
tion and control measures such as ParPrune. These 
measurements further indicate that the parallel plans cre- 
ated by TOPAZ are executable by state-of-the-art parallel 
database engines showing linear speedup. Our approach, 
i.e. TOPAZ embedded into MIDAS, has been validated 
also by other applications, such as OLAP and digital 
libraries, yielding similar speedup results even for very 
complex queries. In summary, our investigations mani- 
fested that these results can only be achieved by the inte- 
gration of all beforementioned parallelizer properties. 
For the implementation, we have used the Cascades Opti- 
mizer Framework. The running first version of TOPAZ 
uses the same top-down search engine for the optimizer 
and the parallelizer, but different models, one for the 
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Figure 8: Influence of ParPrune (PP) on Rules, Tasks and Expressions Participating in Each Phase 

sequential execution space and one for the parallel one. As 
with the implementation and validation of TOPAZ this 
first phase of elaborating suitable parallelization strategies 
is finalized, we will further concentrate on analyzing and 
extending them to other scenarios as well. The primary 
focus is to integrate the models for optimization and paral- 
lelization. In our opinion, a combined approach, i.e. an 
optimizer taking into account some parallel aspects, fol- 
lowed by a detailed parallelization as described in this 
paper, will be the most suitable for forthcoming query sce- 
narios. Another possibility is to use TOPAZ for hybrid 
optimizer solutions as well, e.g. to map logical trees, 
obtained by a bottom-up search strategy, to physical ones, 
similar to the NEAT0 optimizer [MB+96]. Here, the bot- 
tom-up search strategy is used to enumerate all join orders 
and the top-down strategy is used to perform the mapping 
from logical to physical operators in a parallel environ- 
ment. Although only joins have been considered, optimi- 
zation time was dominated by the mapping phase, due to 
the high number of possible mappings from logical opera- 
tors to physical solutions in a parallel DBMS. We believe 
that the mapping problem becomes even more complex 
when new operator types, as e.g. UDFs, have to be consid- 
ered as well. 
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