
Inferring Function Semantics to Optimize Queries

Mitch Cherniack
Brown University

Providence, RI 029 12
mfc@cs.brown.edu

Abstract

The goal of the COKO-KOLA project [10, 91 is to ex-
press rules of rule-based optimizers in a manner per-
mitting verification with a theorem prover. In [IO], we
considered query transformations that were too general
to be expressed with rewrite rules. In this paper, we
consider the complementary issue of expressing query
transformations that are too specific for rewrite rules.
Such transformations require rewrite rules to be supple-
mented with semantic conditions to guard rule firing.
This work considers the expression of such transforma-
tions using conditional rewrite rules, and the expression
of inference rules to guide the optimizer in deciding if
semantic conditions hold. This work differs from ex-
isting work in semantic query optimization in that se-
mantic transformations in our framework are verifiable
with a theorem prover. Further, our use of inference
rules to guide semantic reasoning makes our optimizer
extensible in a manner that is complementary to the ex-
tensibility benefits of existing rule-based technology.

1 Introduction

Query optimizers are hard to build. In the past, relational
optimizers have proved to be brittle and error-prone 1171.
The added complexity of objects and hence object queries
makes the task of building object (i.e., object-oriented and
object-relational) database optimizers that much more dif-
ticult.

It is now accepted practice to use software engineer-
ing techniques when building optimizers. For example,
many optimizers are now rule-based [3, 111, and there-
fore express the query-to-query or query-to-plan trunsfor-
mutions that take place during optimization incrementally
with rules. This approach makes optimizers etiensible as
the behavior of an optimizer can be altered by modifying its
rule set. Further, this approach can make optimizers veri-
@zble as the correctness of a rule-based optimizer follows

Permission to copy withoutfee all orpart of this material is grantedpro-
vided thai the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear; and notice is given that copying is by permission of the
Very Olrge Data Base Endowment. To copy otherwise, or to republish,
requires a fee amUor special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

Stan Zdonik
Brown University

Providence, RI 029 12
sbz@cs.brown.edu

from the correctness of the rules it tires.’
Optimizer verification becomes difficult when rules get

expressed with code. Code is hard to reason about, and
therefore rules are best expressed declarutively, as in the
rewrite rules of term rewriting systems. A rewrite rule con-
sists of a pair of patterns: a lhs (left-hand side) pattern that
matches expressions that should be transformed, and a rhs
(right-hand side) pattern that specifies the transformation
of the expression. Rewrite rules are straightforward to ver-
ify with theorem provers as we showed in [lo]. But rewrite
rules lack the expressive power required to express many
real query transformations.

1.1 General Transformations

Some query transformations are too general to be expressed
with rewrite rules. Consider transformations that rewrite
query expressions into syntactically characterizable forms
(normalizations). Typically, normalizations affect large
classes of syntactically varied expressions. For example, a
normalization to transform Boolean expressions into con-
junctive normal form (CNF) must transform expressions
that are conjunctions, disjunctions, negations, quantifica-
tions and simple predicates. CNF cannot be expressed as
a rewrite rule because no pair of patterns is both general
enough to match this variety of expressions and specific
enough to express their CNF equivalents. In short, rewrite
rules depend on syntactic uniformity amongst the expres-
sions they affect. Because normalizations apply to classes
of expressions that lack syntactic uniformity, they defy ex-
pression with rules.

1.2 Semantic Transformations

Some query transformations are too specific to be ex-
pressed with rewrite rules. Consider a relational transfor-
mation to eliminate unnecessary duplicate removal from
the processing of a query that projects on a key attribute.
This transformation (used in many relational systems such
as Starburst [20]) is captured by the rewrite rule below,
such that the patterns shown are SQL patterns, and pattern
variables 2, f, A and p match arbitrary SQL variables, at-
tribute names, relation names and boolean expressions re-

lA query optimizer is correct if it preserves the semantics of queries
that it transforms. The verification of a query optimizer is with respect
to this interpretation of correctness. Note that this says nothing about
whether a query gets evaluated in an appropriate way.

239

spectively.

SELECT DISTINCT ~.f SELECT 2.f
FROM c IN A --t = FROM 2 IN A
WHERE p WHERE p

The rewrite rule above must be additionally qualified by the
restrictions that any attribute matching f be a key, and any
collection matching A be a set. Any query that matches
the initial pattern but does not satisfy these additional con-
ditions would have its semantics (specifically, its element
counts) changed as a result of rewriting. Semantic condi-
tions such as those identifying f as a key and A as a set
cannot be expressed with patterns. Therefore, transforma-
tions whose validity depends on semantic conditions such
as these cannot be expressed solely with rewrite rules.

Existing rule-based systems address the expressivity is-
sues above by replacing or supplementing rewrite rules
with code. General transformations are expressed as rules
supplemented with code in the rule’s rhs to manipulate
matched expressions in ways that cannot be expressed
with patterns. For example, CNF would be expressed in
Cascades [12] as a “function rule” whose firing invokes
user-defined code. Semantic transformations are expressed
with rules supplemented with code in the rule’s lhs to
test semantic conditions of expressions that successfully
matched the head pattern. For example, the SQL trans-
formation above that eliminates duplicate removal would
be expressed in Starburst [20] with C code that examined
annotations of the underlying query representation (QGM)
to decide if a matched attribute was a key and if a matched
collection was a set.

As we argued in [lo], code-based rules are difficult to
verify. We seek an alternative means of expressing both
general and semantic transformations that enables their ver-
ification with a theorem prover. In [S], we proposed a new
language (COKO) for expressing general transformations
in terms of sets of declarative rewrite rules and an algo-
rithm to control their firing (spring algorithm). This pa-
per proposes a complementary technique for expressing se-
mantic transformations. As with COKO, this work builds
upon our KOLA [lo] foundation which used a combinator-
based (i.e., variable-free) query algebra to express rewrite
rules without code. To express semantic transformations,
we propose the addition of two alternative kinds of rules
for rule-based optimizers:

l Conditionul rewrite rules, and
0 Inference rules.

Conditional rewrite rules are like (unconditional) rewrite
rules, except that when they are fired, the matching of
the rule’s head pattern to a query expression is followed
by analysis to see if certain conditions hold of identified
subexpressions. Inference rules tell the optimizer how to
decide if the conditions of conditional rewrite rules hold.

The contributions of this work are as follows:

1. Verifiable Semantic Transformations: In keeping with

our goal, all transformations specifiable with inference
and conditional rewrite rules are verifiable with a theorem
prover.
2. Use of Inference Rules to Infer Query Semantics: Our
work is unique in its use of inference rules to specify se-
mantic conditions. This technique separates the rules that
depend on semantic conditions (conditional rewrite rules)
from the decision making process that decides if these se-
mantic conditions hold. This distinguishes our approach
from that of existing rule-based systems that embed deci-
sion making code within the rule that may or may not fire
as a result.

The use of inference rules to specify semantic condi-
tions makes optimizers extensible in ways that standard
rule-based optimizers are not. By modifying the set of
inference rules defining a given semantic condition, one
changes the circumstances under which that rule (and any
other rule using the same condition) gets fired. This pro-
vides a complementary form of extensibility to that which
comes from expressing query transformations with rewrite
rules, the modification of which changes the set of possible
queries and plans that can be output.

The rest of this paper proceeds as follows. Section 2 pro-
vides a review of KOLA and COKO, giving the context for
the work introduced in this paper. In Section 3, we demon-
strate how conditional rewrite rules and inference rules are
integrated within the COKO-KOLA framework by present-
ing the specification of two example transformations. We
also discuss the extensibility and verifiability benefits of
our approach with respect to these examples. In Section 4
we present the implementation of our optimizer that pro-
cesses inference and conditional rewrite rules. We com-
pare our work with related work in Section 5 and conclude
in Section 6.

2 Background

This section reviews the COKO-KOLA approach to ex-
pressing query transformations. In the interest of space, we
review just what is required for this paper. More in-depth
treatments can be found in [lo] (for KOLA) and [9] (for
CQKO).

2.1 KOLA

KOLA is a combinator-based query representation. As
such, queries are built out of other functions using special
combinators or formers. The expression of a query (or any
other function or predicate)2 contains no variables. This
makes it straightforward to use a theorem prover to verify
rewrite rules.

KOLA is designed to be easy to manipulate by the op-
timizer as opposed to being easy to read. Users write
queries in a language such as OQL [4], and those queries
are translated into KOLA. Our OQL-to-KOLA translator is
described in [73.

‘In KOLA, functions and predicates are separated and invoked differ-
ently (“!” for functions; “?” for predicates).

240

KOLA

id

r1
“2

<att>

to)
X

Kf

-.Q-
eq
1t
cti
&
I

id!z = 2
7r] ! [x, yl = 2
n2 ! Lx, yl = y
<att> ! 1: = z.<att>
(f 0 g) ! x = f ! (g ! x)

(f, g) ! x = rf ! 2, g ! ;cl
; [f ! 2, 9 ! Yl

2

eq ? [R:, y] = 2 == y

li ? [2, y] = x<y

‘t;“&j : ;
= p ? (f ! x)

‘” ‘(J i E
= (p ? 2) A (q ? 2)
= (p ? 2) v (q ? z)
= 1 (p?x)

K&)?z = b
c, (P, x) ? y = p ? tx, Yl

Table 1: KOLA Function and Predicate Semantics

set ! A = {x 1 xi E A}
iterate (p, f) ! A = {(f ! z)” 1 zi E A, p ? ZD

join (p, f) ! [A, Bl =
{(f ! tx, yl)“j Izi E A, yj E B, p ? [z, yl]

exists (p) ? A = 3 2, j (zj E A A p ? X)
forall (p) ? A = V x, j (xj E A 3 p ? z)

Table 2: KOLA Query Formers

KOLA’s operators are defined in Tables 1 and 2. These
definitions assume that f and g denote arbitrary functions,
p and q denote arbitrary predicates, A and B denote ar-
bitrary collections (i.e., sets and multisets), and z and y
denote arbitrary values or objects. The primitive func-
tions presented in this table include identity (id) and pro-
jection functions on pairs (rl and x2), as well as schema-
based primitive attributes (denoted by <att>) such as an
name attribute for Cities. KOLA’s general function form-
ers include composition (o), function pairing (()j, pair-
wise function application (x), constant functions (Kf) and
curried functions (Cf). Primitive predicates include equal-
ity (eq), and ordering predicates such as “less than” (It).
KOLA’s predicate formers includepredicate/function com-
bination (@), the logic-inspired formers conjunction (&),
disjunction ()) and negation (-), and the constant (I$,) and
curried predicate formers (C,).

Table 2 shows KOLA primitives and formers for gener-
ating functions or predicates on collections (queries). We
use set comprehensions in describing set semantics, and the
following notation in describing multiset semantics:

l “xi E A” (for i > 0) indicates that there are exactly i
copies of x in the multiset, A.

l “{f(~)~(~)) xi E A, p(x)D” denotes a multiset that

is formed by inserting g(i) copies of f(x) for ev-
ery x that satisfies p and that has i copies in A.
More precisely, for any element ZI and k > 0,
vk E {f(~)g(~) (zi E A, p(z)1 iff

k= c g(i).
z’EA,p(s),f(z) == TJ

KOLA’s query primitives and formers include:

l set: a function on collections to remove duplicates,

l iterate (p, f): a query former resembling SQL’s
select-from-where construct. Generated func-
tions apply function f to every element of the argu-
ment collection that satisfies predicate p.

l join (p, f): a query former that accepts a binary
predicate p and a binary function f to produce a func-
tion on pairs of collections, [A, Bl . The resulting
function joins A and B by applying f to pairs of ele-
ments, 1 a, b I , that are drawn respectively from A and
B and that satisfy p.

l exists (p)/forall (p): query formers that accept a
predicate p to produce existential (universal) quanti-
fier predicates on collections A that return true if
some (all) elements of A satisfy p.

There is no conceptual difference between the form-
ers of Table 1 and those of Table 2; all create com-
plex functions and predicates from simpler ones. KGLA
queries are first-class functions and predicates. This makes
queries straightforward to understand and reason about. We
demonstrated this by formally specifying a set-based ver-
sion of KOLA with the Larch algebraic specification lan-
guage LSL [15] and by verifying well over 300 KOLA
rewrite rules with the Larch theorem prover (LP). This
work is discussed in [8].

2.2 COKO

COKO [9] is our language for expressing general trans-
formations. A COKO transformation consists of a set of
KOLA rewrite rules and a firing algorithm to control their
tiring. Because all query modification performed by a
COKO transformation is by rule tiring, a COKO uansfor-
mation can be verified by verifying the rules it fires. There-
fore like KOLA rewrite rules, COKO transformations can
be verified with a theorem prover.

3 Adding Semantic Capabilities to COKO

In this section, we motivate and illustrate our semantic ex-
tensions to COKO. The example transformations used to
demonstrate these extensions are not new. But by compar-
ing their expression in other systems with their expression
in our framework, we demonstrate the verification and ex-
tensibility benefits of our approach. This section concludes
with a discussion of these benefits as well as the advantage
of using KOLA to implement these extensions.

241

L!3z!.c
State

City

Senator

Mayor

Party

Attributes
name
senator
capital
cities
name
mayor
popn
name
reps
party

String
Senator
Citv {city}
String
Mayor
Integer
String
State
Party

terms Integer
name String
reps City
party party
name String
leader Senator
mayors {Mayor}

from x in S
from d in x.reps.cities)

(b)
Figure 1: The “Capitals” (a) and “Mayors” (b) Queries

3.1 A Motivating Example

Table 3 shows an object database schema assumed for the
examples in this paper. This schema models a country’s
political structure and includes type definitions for States,
Cities, Senators, Mayors and (Political) Parties. A state’s
attributes include its name (name), senator (senator),
capital city (capital) and the set of cities it includes
(cities). A city’s attributes include its name (name),
mayor (mayor) and population (popn). Senators and may-
ors have names (name), a state/city that he/she represents
(reps) and a party affiliation (party). A senator also has
served some number of terms (terms). A party has a name
(name), a leader (leader) and a set of mayors who be-
long to the party (mayors). For simplicity, we assume
that names form primary keys for all types listed. How-
ever, each type has its own secondary keys that include
senator, capital and cities (for states), mayor (for
cities), reps (for senators and mayors), and leader and
mayors (for parties).

Figures la and lb show OQL queries over this po-
litical database. The “Capitals Query” (Figure la)
queries a set of senators (S) applying the path expression,
x. reps. capital, to each. The result of this query is the
collection of capital cities of states represented by the sen-
ators in S (with duplicate cities removed). The “Mayors

Key?
Primary
Secondary
Secondary
Secondary
Primary
Secondary
No
Primary
Secondary
No
No
Primary
Secondary
No
Primary
Secondary
Secondary

Table 3: An Object Database Schema

select distinct x.reps.capital
from x in S

(a>

select distinct (select d.mayor

select x.reps. capital
from x in S

(a>

select (select d.mayor
from d in x.reps.cities)

from x in S
@I

Figure 2: The Queries of Figure 1 After Transformation

Query” (Figure lb) also queries a set of senators. For each
senator, this query returns the mayors of cities in the state
that the senator represents (this time, with duplicate mayor
collections removed from the result).

The “Capitals Query” and the “Mayors Query” can be
evaluated in similar ways: first retrieving senators in S,
then applying their datafunctions (i.e., the expressions in
their SELECT clauses) to each and storing the results in an
intermediate collection, and finally eliminating duplicates
from this stored collection. Duplicate elimination requires
an initial sort or hash of the contents of the intermediate
collections followed by a scan of the result for equal, con-
secutive elements. For the “Capitals Query” duplicates are
cities with the same name. For the “Mayors Query” dupli-
cates are collections with the same members.

Duplicate elimination is expensive but unnecessary in
the case of both queries. Because of the semanrics of their
data functions, both queries generate intermediate collec-
tions that already are free of duplicates. No state is repre-
sented by more than one senator, and no city is a capital
for more than one state. Therefore, the “Capitals Query”
inserts a distinct city into its intermediate result for each
distinct senator. As S has no duplicates, neither will this
collection of cities. Similarly, every state has a unique col-
lection of cities and every city has a unique mayor. There-
fore, the collections of mayors generated as an intermediate
result of the “Mayors Query” also will not require duplicate
elimination.

Transformed versions of both queries that do not per-
form duplicate elimination are shown in Figure 2a and
2b. The transformation resulting in these queries is simi-
lar to the relational query transformation presented in Sec-
tion 1.2. However, this transformation is more general in
that it can be applied to queries that cannot be expressed
as relational queries (such as object queries with path ex-
pressions or subqueries as data functions). This requires
more sophisticated analysis of query semantics than was
required in the relational case. Specifically, for this trans-
formation to be valid for an object query, its data functions
need not be key attributes but any injective function (of
which keys comprise a special case). A relational query op-
timizer need only consult metadata files (e.g., the database
schema) to determine whether a query’s data function is a
key. But there can be far more cases to consider in the case
of object queries. The number of injective path expressions
alone might be very large and even infinite. (Aside from
X. reps. capital, other injectivepath expressions on sen-

242

la. set ! (iterate (KP (true), in) ! S)
s.t.: u = capital 0 reps

lb. set ! (iterate (K, (true), fl) ! S)
st.: u = iterate (KP (true), mayor) o cities o reps

2a. iterate (K, (true), c) ! S
s.t.: u = capital 0 reps

2b. iterate (K, (true), u) ! S
s.t.: c =iterate (KP (true), mayor) o cities o reps

Figure 3: KOLA Translations of Figures la, lb, 2a and 2b

ators include x. name, x. reps, x . reps. capital. name,
x.reps.capital.mayor.party.leader and SO on.)
Thus, it is unlikely that metadata tiles can be scaled to keep
track of all data functions that make this transformation
valid, and inference of conditions that make the transfor-
mation valid is required instead.

3.2 Conditional Rules and Inference Rules in COKO

In keeping with the spirit established by KOLA and pre-
served by COKO, we express semantic transformations
with two kinds of declarative rules:

Conditional Rewrite Rules resemble (unconditional)
rewrite rules, but can include semantic preconditions on
subexpressions of matched query expressions. Such con-
ditions can, for example, indicate that a given KOLA func-
tion must be injective or that a given KOLA collection must
be a set. Like unconditional rules, conditional rewrite rules
can be tired by COKO transformations.

Inference Rules specify how semantic conditions can be
inferred of KOLA functions, predicates, objects and col-
lections The inference rules used to define semantic con-
ditions are compiled by our COKO compiler into decision
making algorithms invoked during rule firing.

3.2.1 Inference Rules in COKO

To perform the query transformation described earlier, an
optimizer must determine that a query’s data function is in-
jective and that a collection is a set. Like most semantic
properties of functions, injectivity is undecidable in gen-
eral. But, inferring injectivity in some cases is better than
not inferring it at all for at least in those cases optimization
might improve the evaluation of the query. Therefore, we
care about soundness and not about completeness in infer-
ring semantic properties.

Figure 3 shows KOLA equivalents of the “Capitals
Query” and “Mayors Query” both before and after the ap-
plication of the transformation to remove duplicate elimi-
nation (set). The KOLA translations of the data functions
(a) for these two queries are:

l capital o reps, equivalent to the “Capitals Query”
path expression, x. reps. capital, and

0 iterate (I$ (true), mayor) 0 cities 0 reps,
equivalent to the “Mayors Query” subquery,

select d .mayor
from d in x.reps.cities.

An optimizer constructed within our framework could infer
that these functions are injective according to the specitica-
tions of the inference rules of Figure 4a. These rules have
the form,

body ==G- head

(or just head which states a fact that is unconditionally
true). The head of a rule names a condition (e.g., in j (f))
to infer. A condition is an uninterpreted logical relation
whose arguments can be either KOLA expressions or pat-
tern variables (such as f) that implicitly are universally
quantified.

The body of a rule is a logical sentence (i.e., consisting
of conjunctions (A), disjunctions (V) and/or negations (7)
of terms), whose terms are conditions that must be satis-
fied to infer the head condition. To illustrate, the rules of
Figure 4a should be interpreted as follows:

1. the identity (id) function is injective,

2. a KOLA function is injective if it is a key,

3. KOLA function f o g is injective if both f and g are
injective,

4. KOLA function (f, g) is injective if either f and g are
injective, and

5. KQLA query function iterate (KP (true), f) is in-
jective if f is injective.

Provided that an optimizer can discern from metadata that
reps and capital are keys and thetype ofS is set (7’) for
some type, T, rules 2,3 and 5 of Figure 4a are sufficient to
decide that the “Capitals Query” and “Mayors Query” can
be transformed safely.

Figure 4b shows some of the inference rules an opti-
mizer might use to decide if collections are sets. These
rules state that (1) the result of invoking the function, set,
on any collection is a set (the “don’t care” expression (--)
indicates that the argument to set is irrelevant), (2) a col-
lection is a set if its declared type is a set, (3) the Cartesian
product of two sets is a set, (4) the intersection of any two
collections (of which one is a set) is a set, and (5) taking
the difference of any collection from a set returns a set.

3.2.2 Conditional Rewrite Rules in COKO

Conditional rewrite rules have the form:
c : : LZR

such that L and R are patterns of KOLA expressions (i.e.,
L 2 R is an unconditional rewrite rule), and CY is a set of se-
mantic conditions that must hold of various subexpressions
of query expressions that match L. A conditional rewrite

243

is-inj (id). is-set (set ! -).
is-key(f) =+ is-inj (f) is-type (A, set(--)) j is-set (A).
is-inj (f) A is-inj (g) * is-inj (f 0 g) (3) is-set (A) A is-set(B)+is-set (A x B). (3)
is-inj (f) V is-inj (g) * is-inj ((f? g)). (4) is-set (A) V is-set(B)+is-set (A n R). (4)
is-inj (f) * is-inj (iterate (Kp (true), f)) (5) is-set (A) j is-set (A - B). (5)

(4 (b)

Figure 4: Inference Rules for Inferring that Functions are Injective (a) and Collections are Sets (b)

rule that specifies the transformation used for the “Capitals
Query” and the “Mayors Query” is shown below.

is-inj (f), is-set (A) ::
set ! (iterate (p, f) ! A) 2 iterate (p, f) ! A.

The Ihs rule pattern matches queries that remove dupli-
cates (with set) from the results of select-project (iterate)
queries. The rhs rule pattern shows the same query as the
11~s but with the invocation of set removed. The conditions
(which use the same names as the conditions defined by
inference rules) state that this rule is valid provided that
the data function, f, is injective and the collection, A, is
a set. Therefore, conditional rewrite rules specify transfor-
mations that should only be fired if certain conditions hold.

A second conditional rewrite rule conditioned on the in-
jectivity of a function is shown below:

is-inj (f) ::
iterate (y, f) ! (A n R) 2
(iterate (p, f) ! A) f~ (iterate (p, f) ! I?).

Intersection is typically implemented with joins. Thus, this
rule effectively pushes selections (p) and projections (f)
past joins. f must be injective for the rewrite to be cor-
rect for if it is not, then the query that results from firing
this rule might return more answers than the original query.
(For example, if f is the noninjective squaring function, A
contains 3 but not -3, and B contains -3 but not 3, then the
query resulting from firing this rule may include 9 in its
result whereas the original query will not.)

If S and S’ are collections of senators, then this rule
could be used with the inference rules described earlier to
transform a query that returns the capital cities of all states
represented by senators in both S and S’ who have served
at least 5 terms,

iterate (C, (It, 5) @ terms, capital 0 reps) ! (S n S')

into the equivalent query,

(iterate (C, (It, 5) @ terms, capital 0 reps) ! S)
r-l

(iterate (C, (It, 5) @ t erms, capital 0 reps) ! S’).

The initial query first takes a potentially expensive intersec-
tion of collections of senators before filtering the result for
those who have served more than 5 terms. The transformed
version of this query filters the collections of senators for
their senior members before performing the intersection of
the presumably smaller collections that result.

3.3 Another Example: Predicate Strength

Predicate strength is unlike injectivity in that it holds of
two predicates rather than of individual functions. As
with the previous example, the transformations presented
here are not new - many are implemented in commercial
database systems and some were proposed in the context
of relations by Levy et. al. in [19]. What is new is their
expression with declarative rules that simplifies their veri-
fication and extension.

A predicate p is “stronger” than a predicate q
(is-stronger (p, q)) ifp always implies q. More for-
mally, for any predicates p and q over objects of type T,

is-strongertp, q) U
Q x:T (p ? x + q ? x).

Predicate strength is used as a condition for two kinds of
rewrite rules:

l If p is stronger than q and a query requires that both p
and q be invoked on some object, 2, then the query can
be transformed to only invoke y. This is advantageous
in certain circumstances because it saves the cost of
invoking q.

l If y is stronger than q and a query requires that p be in-
voked on some object, 2, then the query can be trans-
formed to invoke both p and q. This is advantageous
in cases where q is cheaper to invoke than p, and there-
fore invoking q before invoking p limits the objects on
which y must be invoked.

3.3.1 Rules for Predicate Strength

Figure 5 shows inference rules for inferring predicate
strength. Rule (1) states that any predicate is stronger than
itself. Rule (2) states that if f ! 2 == g ! y, and predicate
p is known to be true off ! z, then p must also be true of
g ! y. Rule (3) similarly infers that p is true off ! 2 from
theknowledgethatpistrueofg ! yandf ! z==g ! y.
Rule (4) states that equality of partial path expressions im-
plies equality on full path expressions. That is:

X.al..... ai = y.al..... ai z=+
X.al..... ai a, = y.al..... ai a,.

Rules (5) and (6) show how predicate strength can be in-
ferred of predicate conjuncts. Rule (7) uses the injectivity
property described earlier to say that equality of keys im-
plies equality of all other attributes.

Figure 6 shows rewrite rules conditioned on predicate
strength. Rule (1) says that if p is stronger than q, then the

244

is-stronger(p,p). (1)
is-stronger ((eq @ (f x 9)) 6c (p cfi f CE TI), p @ g tB ~2.). (‘2)
is-stronger((eq 63 (f X 9)) & (p @ 9 @ r2),p cf, f CR KI).
is-stronger (eq 43 (.f x f), eq @ ((9 0 f) x (9 0 f))). N
is-stronger(p, q) A isstronger(p', q’) j isstronger(p & p’,q & 4’). (5)
is-stronger(p, T) V isstronger(q, r) * is-stronger(p & q, r).
is-inj (f) ==3 is-stronger (es Cs, (f x f), eq $ (g x 9)).

Figure 5: Inference Rules for Inferring Predicate Strength

conjunction of p and q can be rewritten to p. It is some-
times advantageous to add a predicate to an existing query
rather than remove one (we show an example of this later)
and therefore rule (2) is the inverse of rule (1). Rules (3),
(4) and (5) state that quantification with a weaker predicate
over the result of filtering a collection with a stronger pred-
icate can be simplified to avoid traversing the collection at
all (rules (3) and (5)) or to quantify over an unfiltered col-
lection (rule (4)).

3.3.2 Example Uses of Predicate Strength

Example 1: The OQL predicate expression below applies a
universally quantified predicate to the result of a subquery.
The subquery performs a join of senator collections, S and
S’ returning a collection of pairs that agree on their party
affiliations. For al 1 returns true if the senators paired by
this subquery all agree on the leaders of their party.

for all y in
(select struct (one: sl, two : s2)
from sl in S, s2 in S’
where sl .party == s2. party) :

y.one.party.leader == y.two.party.leader

Because all pairs of senators resulting from the subquery
agree on their party affiliations, all pairs will also agree
on the leaders of the parties with which they are affiliated.
Therefore, this complex expression can be transformed into
the constant, true.

The inference rules of Figure 5 and conditional rewrite
rules of Figure 6 justify the transformation of the KOLA
equivalent of the expression above,

forall (eq 8? ((leader o party) x (leader o party))) ?
join (eq 83 (party x party), id) ! [S, S’]

leader, rule (4) of Figure 5 estab-
lishes p = eq $ (party x party) to be stronger than
q = eq CE ((1 ea d er o party) x (leader o party)).
Rule (5) of Figure 6 then uses these bindings of p and q to
rewrite this expression to true.

into the constant, true. By setting f to party and g to

The OQL query below joins senators from collections S
and S’ who have served the same number of terms such that
the senator from S has served more than 5 terms. As this
query stands, it likely would be evaluated by first filtering
senators in S to include only those who have served more
than 5 terms, and then joining this result with S’.

select *
from sl in S, s2 in S'
where sl.terms > 5 AND

sl.terms == s2 .terms

A better form of this query introduces a new predicate
(s2 ” terms > 5) on senators in S’:

select *
from sl in S, s2 in S'
where sl. terms > 5 AND

sl.terms == s2.terms AND
s2.terms > 5

The addition of this predicate does not change the seman-
tics of the query, as any senators from S’ that appear in the
original query result will have served more than 5 terms
because they will have served the same number of terms
as some senator in S who has served more than 5 terms.
Put another way, this transformation is justified because the
predicate,

sl.terms > 5 AND sl.terms == s2.terms

is stronger than the predicate, s2 . terms > 5 . This
transformation is advantageous as it makes it likely that
both S and S’ will be filtered for their senior senators, be-
fore being submitted as inputs to the join.

The KOLA equivalents of these two queries are shown
below. The first query would be expressed in KOLA as,
join (p, id) ! [S, S’l such thatpis:

Example 2: Whereas the previous example used predicate
strength to avoid invoking predicates unnecessarily, the fol-
lowing examples add predicates to queries to make them
more efficient to evaluate. These examples evoke the spirit
of the “predicate move-around” transformations of [191.

(eq & (terms x terms)) & (C, (It, 5) cii terms @ ~1).

The second query is join (p & T, id) ! [S, S’l such that
7 is: (cp (It, 5) $ terms $ ~2). The transformation of
p to p & T is justified by rewrite rule (2) of Figure 6 with p
set to p and q set to T. That p is stronger than q is justified
by inference rule (2) of Figure 5 (setting p to C, (It, 5) and
f and g to terms.)

Example 3: Predicate strength rules can be used to gener-
ate new predicates and not just to duplicate existing ones

245

is-stronger (p,q) :: (p & q) 2 p
is-stronger (p,q) :: p 2 (p & q)
is-stronger (p, q) ::

forall (q) ? (iterate (p, id) ! -) 2 true
is-stronger (p, q) ::

(1)
(‘2)

(3)

exists (q) ? (iterate (p, id) ! A) 2 exists (p) ? A (4)
is-stronger (p, q) ::

forall (q) ? (join (p, id) ! [--, --I) 2 true (5)
Figure 6: Rewrite Rules Conditioned on Predicate Strength

as the following example shows. The query below pairs
senators in S who represent states whose capital cities have
more than 100 000 people, with mayors in M who are may-
ors of those cities:

select *
from s in S, m in I4
where s .reps. capital.popn > 100K AND

s . reps. capital == m. reps

The KOLA equivalent
to this query is, join ((p @ y CC ?rl) & 7, id) ! [S, Ml
such that

p = C, (It, IOOK) cff popn,
y = capital o reps, and
7- = eq cff (y x reps).

Rule (2) of Figure 5 can be used to generate a new pred-
icate that can filter the mayors that participate in the join.
Specifically, by setting f to y, g to reps and p to p, the new
predicate,

C, (It, IOOK) +Z popn @ reps @ 7rg

can be determined to be weaker than (p CR y @ x1) & r.
Thus, applying rewrite rule (2) of Figure 6 leaves a query
that would be expressed in OQL as:

select *
from s in S, m in M
where s . reps. capital. popn > 10 OK AND

s .reps. capital == m.reps AND
m.reps.popn > 100K

such that m. reps. popn > 10 OK is a new predicate and
not just a copy of a predicate that appeared elsewhere in
the original query. If the number of mayors who serve
cities with populations over 100 000 is small, or if may-
ors are indexed on the populations of their cities, then this
transformation is likely to make the query more efficient to
evaluate.

3.4 Discussion

3.4.1 The Benefits Of Our Approach

The examples of the previous section demonstrate our ap-
proach to expressing semantic query transformations. The

tGinSfOrmatiOn of Section 3.1 that recognizes when dupli-
cate elimination is unnecessary is used in many commercial
relational database systems. It is also presented as one of
the Starburst transformations in [20] performed during the
query rewriting phase of query processing. In Starburst,
this transformation is used as a normalization step before
view merging. Subqueries that perform duplicate elimina-
tion make view merging impossible because duplicate se-
mantics are lost as a result of the merge. Starburst uses this
transformation in order to recognize subqueries that can be
transformed into equivalent queries that perform no dupli-
cate elimination so that view merging can take place there-
after. The transformations of Section 3.3 that use predicate
strength have also been considered elsewhere. Those that
remove quantification from complex predicates (Example
1 of Section 3.3.2) are standard techniques that one can
find in many textbooks. Those that introduce new predi-
cates (Examples 2 and 3 of Section 3.3.2) are similar to the
“predicate move-around” techniques for transforming rela-
tional queries proposed in [191.

What is unique in our work is the use of declarative con-
ditional rewrite rules and inference rules to express these
complex transformations. With our approach we can ver-
ify all of the rules presented in these sections with a the-
orem prover. (See Appendix A for LP theorem prover
scripts for these rules.) Verification of conditional rewrite
rules establishes that query semantics are preserved when
these rules are fired on queries satisfying the rules’ seman-
tic preconditions. Verification of inference rules establishes
that semantic conditions are inferred only when appropriate
(soundness).

The other contribution of this approach concerns ex-
tensibility. [20] and [19] present the transformations dis-
cussed in Sections 3.1 and 3.3 in the context of relational
databases. To simulate their results. we do not need all of
the inference rules of Figure 4a that infer injectivity, nor
do we need all of the inference rules of Figure 5 that infer
predicate strength. For example, to capture the duplicate
elimination transformation presented in [201 for relational
queries, we only need inference rules that establish an at-
tribute to be injective if it is a key (Figure 4a, rule (2)) and
if it is a pair (equivalently, a relational tuple3) containing
a key (Figure 4a, rule (4)). Rule (3) of Figure 4a is not
needed as there is no notion of a composed data function
in the relational data model. But if the relational version
of this transformation were expressed in our framework,
it would be straightforward to extend this transformation
(to work for example, in an object database setting) sim-
ply by adding a verified inference rules such as rule (3)
of Figure 4a. Note that the addition of this one inference
rule makes the rewrite rules conditioned on injectivity fired
in a greater variety of contexts (e.g., when queries include
path expressions with keys, or tuples with fields containing
path expressions with keys etc.). By similar reasoning, not
all of the predicate strength inference rules of Figure 5 are

3 Our translator translates all tuple expressions into (potentially nested)
KOLA pairs.

246

required to express the transformations of [191 when con-
fined to relations (e.g., rule (4) of Figure 5 is unnecessary
because of its use of function composition). Again, rules
such as this one can be added to simply extend a relational
optimizer to work robustly in an object setting.

3.42 The Advantage of KOLA

In [IO], we showed that the KOLA’s combinator style
makes it easier to formulate declarative (unconditional)
rewrite rules to express query transformations. Query rep-
resentations that include variables make it difficult to ex-
press rewrite rules without code supplements because rep-
resentations can include subexpressions with free variables.
The meaning of these subexpressions is context-dependent
(dependent for example, on how free variables were de-
clared in their surrounding expressions). Because rewrite
rules ident@ and move query subexpressions into new ex-
pressions, code supplements to rules are required to an-
alyze the context of subexpressions to determine if they
should be identified, and to massage subexpressions so mat
their meaning does not change as a result of their being
moved into a new query.

The combinator flavor of KOLA makes declarative
rewrite rules easier to express because the meaning of a
KOLA subexpression is context-independent. Therefore,
code supplements are not required to distinguish between
subexpressions that look the same but have different mean-
ings. Nor are code supplements required to massage subex-
pressions so that their meaning is preserved when trans-
planted into a different expression.

The advantage of combinators extends to the formula-
tion of conditional rewrite rules and inference rules. Con-
ditional rewrite rules must identify subexpressions upon
which to express conditions. Inference rules must iden-
tify subexpressions because conditions tend to be inferred
from conditions held of subexpressions (e.g., the injectivity
of complex functions can be inferred from the injectivity of
their subfunctions.) Again, variables in a query representa-
tion complicate the identification of these subexpressions.

Consider as an example, the data functions appearing in
the “Capitals Query” and the “Mayors Query”. The KOLA
forms of these functions are:

capital o reps, and
iterate (Kp (true), mayor) o cities o reps.

These two functions are both injective by similar reasoning:
they are compositions of other functions which are also in-
jective. Inferring injectivity of the OQL forms of these data
functions,

x. reps. capital, and

select distinct d.mayor
from d in x. reps. cities

is more complicated. The identification of both of these
data functions as being compositions of other functions
requires machinery beyond what can be expressed with

Query Plan &I Evaluator

t
D&l

Figure 7: A Typical Rule-Based Optimizer Architecture

rewrite rules. Specifically, determining exactly what are the
subfunctions of these functions requires reversing the pro-
cess of substituting expressions for variables. This requires
factoring the complex expressions denoting the functions
into two expressions for which the substitution of one for
a variable in the other reproduces the original expression.
For the path expression, x . reps. capital, these subfunc-
tions are x. reps and x. capital (as substituting the first
of these expressions for x in the second expression repro-
duces the original path expression). For the subquery, the
subfunctions are, x . reps. tit ies and

select distinct d.mayor
from d in x

as again, substituting the first expression for x in the second
expression results in the original expression. The decom-
position required to identify subfunctions is inexpressible
with declarative rewrite rules and instead requires calls to
supplemental code.

4 Implementation

In the previous section, we showed that declarative infer-
ence rules could be used to guide a query optimizer to infer
semantic conditions that hold of functions, and conditional
rewrite rules could exploit these semantic conditions to per-
form query transformations. In this section, we show how
both kinds of rules are processed in our implementation.

4.1 Implementation Overview

A rule-based optimizer receives a query to process, and
then selects rules to fire on the query. Rule selection and
firing is performed repeatedly until an equivalent query is
constructed that is amenable to efficient plan generation.
This query is then submitted to the plan generator (which
can be rule-based also). This architecture is illustrated in
Figure 7.

One of the key components of the rule-based optimizer
is the rule jirer, which accepts representations of a query
and a rule as inputs and produces a new query representa-
tion (resulting from firing the rule) as a result. This compo-
nent is labeled (A) in Figure 7. We implemented the ideas
discussed in this paper by extending t.he operation of the

247

Conditional
Rewrite Rule

“--.;yyzE$q Rule Firer

L&v

4
Query

Figure 8: A Conditional Rewrite Rule Firer

rule firer. The new rule firer, illustrated in Figure 8, ex-
tends the original firer in two ways:

!@rence: The new rule firer can consult an inference en-
gine to infer conditions relevant to the firing of conditional
rewrite rules. The rule firer makes a request of the inference
engine by issuing inference queries such as:

l is the function, capital o reps injective?, or

l can any predicate be generated that is weaker than:

(C, (It, 5) @ terms @ “1) & (eq @ (terms X terms))?

The inference engine answers queries with a simple yes or
no (as in the first inference query above) or with KOLA ex-
pressions that satisfy the inference query (as in the second
inference query above)

Conditional Rule Firing: The new rule firer accepts con-
ditional rewrite rules (as well as unconditional rules) as in-
puts. When such rules are fired, inference queries are posed
to the inference engine and the answers interpreted.

Section 4.2 presents the inference engine component of
our optimizer. Section 4.3 describes the operation of our
rule firer in the presence of conditional functions.

4.2 The Inference Engine

Our inference engine is the Sicstus Prolog interpreter [21].
Using Prolog as an inference engine makes our implemen-
tation a prototype rather than one of commercial quality.
We envision replacing the Prolog interpreter with special-
ized unification routines that operate directly on KOLA
queries as future work.

The interpreter’s inputs are Prolog programs that are:

l built-in facts and rules describing aspects of the data
model that are invariant (e.g., rules for inferring sub-
typing, type information for KOLA operators etc.),

l facts and rules generated from inference rules, and

l facts generated from metadata information specific to
a given database instance, such as types contained in
the schema, signatures of attributes, types of persistent
data, and attributes that are keys.

Presently, metadata based rules are generated manually.
However, Prolog facts and rules are generated automati-
cally by compiling sets of inference rules. The mapping

of inference rules into Prolog facts and rules is straight-
forward. To illustrate, inference rules (l), (3) and (5) of
Figure 4a are translated respectively into the Prolog rules:

pis-inj (id).
pis-inj (compose (Vf, Vg)) :-

pis-inj (Vf) , pis-inj (Vg) .
pis-inj (pairing (Vf, Vg)) :-

pis-inj (Vf) ; pis-inj (Vg) .

The following observations about translation can be made
from this example:

0

.

l

l

l

.

4.3

KOLA primitives (e.g., id) are translated into unique
Prolog constants (e.g., id).

Variables that denote arbitrary KOLA expressions
(e.g., f and g) are translated into Prolog variables by
prepending a capital ‘V’ (Vf and Vg). (Prolog vari-
ables are required to be capitalized).

Formed KOLA expressions (e.g., f o g) are trans-
lated into prefix notation (e.g., compose (Vf,
Vg)). (Prolog terms must be expressed in prefix nota-
tion.)

Names of conditions (e.g., is-inj) are prepended
with a lower-case ‘p’ (pis-inj). {Prolog relations
must begin with lower-case letters.)

Inference facts (e.g., rule (1) of Figure 4a) are trans-
lated into Prolog facts.

Inference rules are translated into Prolog rules. Tails
of inference rules that include conjunctions (disjunc-
tions) translate into Prolog rules whose body terms are
separated by commas (semi-colons).

Integrating Inference and Rule Firing

Below we illustrate the steps that are performed when a
conditional rewrite rule is fired on a query. We demonstrate
these steps by tracing the firing of the rule,

is-inj (f), is-set (A) ::
set ! (iterate (p, f) ! A) 2 iterate (p, f) ! A

with pattern variables p, f and A, on the KOLA version of
the “Capitals Query” (Figure 3: la).

1. The lhs pattern of the rule above is matched with the
“Capitals Query” generating an environmenr of bind-
ings for pattern variables: p (bound to K, (true)), f
(bound to capital o reps) and A (bound to S).

2. A Prolog query is generated. First, Prolog sub-
queries of the form, Vi = Ti are generated for
each variable, Vi appearing in the lhs pattern @,
f and A). For a given variable Vi, Ti is the
Prolog translation of the subexpression bound to
Vi. In the case of the “Capitals Query”, the

248

3

4.

5.

5

generated subqueries are: Vp = const (true),
Vf = compose (fcapital, freps), and
VA = OS. (Note that global names (such as S) are
prepended with a lower-case ‘0’ in their translation
into Prolog, and attributes (such as reps) are simi-
larly prepended with a lower-case ‘ f ‘.) These Prolog
subqueries are then added to a Prolog subquery gen-
erated by translating the conditions of the conditional
rewrite rule. The Prolog query generated from firing
the conditional rewrite rule on the “Capitals Query” is

?- Vp = const(true), VA = OS,
Vf = compose (fcapital, freps),
pis-inj (Vf) , pi%set (VA) .

. The generated Prolog query is issued to the Prolog in-
terpreter with the built-in rules described earlier, and
the relevant Prolog facts and rules generated from in-
ference rules and metadata. In the case of the “Capi-
tals Query”, the relevant Prolog rules would be those
resulting from the compilation of the inference rules
of Figure 4a and 4b, and the metadata facts: pi s-key
(freps), pis-key (fcapital) and ptype
(OS, set (senator)).

The Prolog query is posed to the Prolog interpreter
and the results interpreted. If the results include new
variable bindings to KOLA expressions expressed as
Prolog terms, these terms are parsed back into KOLA
expressions and added to the environment of (vari-
able, subexpression) bindings generated in Step (1).
For the “Capitals Query”, the Prolog interpreter uses
the translations of inference rules (2) and (3) (Fig-
ure 4a) and (2) (Figure 4b) to reduce the inference
query generated in step (2) to the simpler queries,
pis-key (fcapital),pis-key (freps) and
pis-type (OS, set (-)). These simpler
queries all are satisfied by facts generated from meta-
data.

The environment generated in steps (1) and (4) is used
to instantiate the pattern variables appearing in the rhs
pattern of the conditional rewrite rule. The instanti-
ated pattern is then returned as the output of rule tiring.
In the case of the “Capitals Query”, the returned query
is: iterate (KP (true), capital o reps) ! S.

Related Work

The contribution of our work is in the expression of seman-
tic transformations in a manner supporting verification and
extensibility. This work contrasts with existing rule-based
systems (e.g., [20], [3, 13, 121) that use code to express se-
mantic conditions (thereby compromising verifiability) and
that embed this code within rewrite rules (thereby compro-
mising extensibility).

Our approach could be used to express, verify and ex-
tend semantic transformations from many sources. This in-
cludes semantic transformations used in relational systems

(aside from those mentioned here, these primarily involve
the use of integrity constraints as discussed in [161, 1181 and
[5]). But our approach also permits expression of seman-
tic transformations that depend on the semantics of queries
(i.e., functions) and not just data.

The semantic transformations that appear in the litera-
ture can be classified into three categories: (1) those that
neither do inference nor have conditional rules but that ex-
press operator-specific rules, (2) those that have conditional
rules but that perform no inference, and (3) those that have
both conditional rules and inference. As we move from the
first to the third category, we get more general making the
approach more scalable.

Chaudhuri and Shim’s work [6] involves optimizations
of SQL queries that contain foreign functions. They incor-
porate rewrite rules over foreign functions to express equiv-
alent expressions. Each equivalence must be captured in a
separate rule. These rules are always valid given that they
are specific to particular operators. Therefore they perform
no inference nor conditional rewriting (Category (1)).

More recent work in the context of object models has
looked at semantic optimization in the presence of meth-
ods. [l] considers semantic optimization over methods
based on equivalences derived from method semantics.
This semantics comes from the schema and is then trans-
lated by hand into rules that can be applied to expressions
written in their algebra. As with [6], these rewrites are un-
conditional and there is no inference (Category (1)).

Grant et al [14] employ a Da&log-based scheme
for object-oriented databases that infers new integrity
constraints from old explicitly declared constraints plus
schema-related information about functions (methods).
This work employs inference, but only of new integrity
constraints (i.e., conditions that hold of data) and not con-
ditions that hold of functions. Function conditions can be
stated but not inferred, and can be used only to infer new
integrity constraints (and not for example, to guard the tir-
ing of a rewrite rule). Therefore, this work comes close to
falling in Category (3) because it includes both conditional
rules and inference, but falls short because inference is not
over function conditions.

Beeri and Kornatsky [2] describe a combinator-based al-
gebra for representing queries and they even present sev-
eral rewrite rules that are conditioned on function condi-
tions. For example, they have several rules that only apply
to expressions that contain an idempotent function. But
whereas they introduce the idea of having rewrites that are
conditioned on function conditions, they do not include any
mechanism to reason about how these conditions can be in-
ferred (Category (2)).

6 Conclusions

Query optimizers are difficult to build. The emergence of
object databases has further complicated the task, introduc-
ing more complex data and hence more complex queries
and making optimizers even more error-prone than before.

249

Rule-based optimizers apply software engineering tech-
niques to query optimizer development. By modularizing
the process that maps queries to plans, rules make optimiz-
ers extensible and verifiable. But rules that get expressed
with code are difficult to verify. On the other hand, rewrite
rules without code have limited expressive power.

This paper presents our approach to extending the ex-
pressive power of rewrite rules without compromising the
ease with which they can be verified. The techniques pro-
posed here target the expression of query transformations
that are too specific to be captured with rewrite rules. (Ex-
pression of transformations that are too general to be ex-
pressed with rewrite rules is addressed in [9].) This work
builds upon the foundation laid with the combinator-based
algebra, KOLA. We extend KOLA’s rewrite rules by in-
troducing conditional rewrite rules; rewrite rules whose
firing depends on the satisfaction of semantic conditions
of matched expressions. We then use inference rules to
instruct the optimizer on how to decide if these seman-
tic conditions hold. In the spirit of KOLA, both condi-
tional rewrite rules and inference rules are expressed with-
out code.

This work contributes to the extensibility and verifiabil-
ity of rule-based optimizers. With respect to verification,
the declarative flavor of both forms of rules makes them
amenable to verification with a theorem prover. This is in
stark contrast to the code-based rules of existing rule-based
systems such as Starburst [20] and Cascades [121 which ex-
press conditions and condition-checking with code. With
respect to extensibility, the separation of a condition’s in-
ference rules from the rewrite rules that depend on them
achieves a different form of extensibility than was provided
by rewrite rules alone. Whereas rewrite rules make opti-
mizers extensible by making it simple to change the po-
tential actions taken by an optimizer, inference rules make
optimizers extensible by making it simple to change the
contexts under which these actions take place.

While our implementation vehicles (e.g., Prolog) could
be improved in a real implementation, our prototype is
highly suggestive of what would be required and how these
pieces would have to fit together. Experience with our pro-
totype implementation has shown that the overhead of per-
forming inference during rule firing is not prohibitive; the
Prolog programs tend to be small and their execution times
are manageable.

A Rewrite and Inference Rule Proof Scripts
Seeftp : //ftp.cs.brown.edu/u/rnfc/vldbscripts.lp.

References
[l] K. Aberer and G. Fischer. Semantic query optimization for methods

in object-oriented database systems. In P. S. Yu and A. L. P. Chen,
editors, Proceedings of the I Ith International Conference on Dam
Engineering, pages 10-79, Taipei, Taiwan, 1995.

[2] C. Beeri and Y. Kornatzky. Algebraic optimization of object-
oriented query languages. In S. Abiteboul and P. C. Kanel-
lakis, editors, Proceedings of the Third Inlernational Conference
on Database Theory, number 470 in Lecture Notes in Computer

131

141

[51

161

I71

[81

[91

Uol

r111

1121

1131

D41

[I51

U61

1171

H81

D91

[201

Science, pages 72-88, Paris, France, December 1990. EATCS,
Springer-Verlag.

M. J. Carey, D. J. Dewitt. G. Graefe, D. M. Haight, J. E. Richard-
son, D. T. Schuh, E. J. Shekita, and S. L. Vandenberg. The EXO-
DUS extensible DBMS project: An overview. In S. i Zdonik and
D. Maier, editors, Readings in Objec&Oriented Database Systems,
pages 474-l99. Morgan Kaufmann Publishers, Inc., Los Altos, Cal-
ifornia, 1990.

R. Cattell, editor. The Object Database Standard: ODMG-93.
Morgan-Kaufman, 1993.

U. Chakravathy, J. Grant, and J. Minker. Semantic query optimiza-
tion: Additional constraints and control strategies. In Proceedingsof
Expert Database Systems Conference, pages 259-269, Charleston,
SC, April 1986.

S. Chaudhuri and K. Shim. Query optimization in the presence of
foreign functions. In Proceedings of the 19th VLDB Conference,
pages 529-542, Dublin, Ireland, August 1993.

M. Cherniack. Translating queries into combinators. Technical re-
port, Brown University Department of Computer Science, Septem-
ber 1996.

M. Cherniack. Building query optimizers with combinators. Tech-
nical report, Brown University Department of Computer Science,
December 1997. Dissertation proposal.

M. Cherniack and S. Zdonik. Changing the rules: Transformations
for rule-based optimizers. In Proc. ACM SIGMOD Inr’l Conference
on ManagetnentofDafa, Seattle, WA, June 1998.

M. Cherniack and S. B. Zdonik. Rule languages and internal alge-
bras for rule-based optimizers. In Proc. ACM SIGMOD Int’l Con-
ference on Management of Data, MontrBal, Qukbec, Canada, June
1996.

J. C. Freytag. A rule-based view of query optimization. In U. Dayal
and I. Traiger, editors, Proceedings of the SIGMOD International
ConferenceonManagementofData, pages 173-180,San Francisco,
California, May 1987. ACM Special Interest Group on Management
of Data, ACM Press.

G. Graefe. ‘I%e Cascades framework for query optimization. Data
Engineering Bulletin, 18(3):19-29, September 1995.

G. Graefe and W. J. McKenna. Ilhe Volcano optimizer generator:
Extensibility and efficient search. In Proceedings of the Ninth Inter-
national Conference on Dam Engineering, pages 209-218, Vienna,
Austria, April 1993. IEEE.

J. Grant, J. Gryz, J. Minker, and L. Raschid. Semantic query op-
timization for object databases. In Proceedings of the 13th ICDE
Conference, pages 444-454, Birmingham, UK, April 1997.

J. Guttag, J. Hornung, S. Garland, K. Jones, A. Modet, and J. Wing.
Larch: Languages and Tools for Fowl Specifications. Springer-
Verlag, 1992.

M. Hammer and S. B. Zdonik. Knowledge-based query processing.
In Proceedings of the 6th International Conference on Very Large
Databases, Montreal, Canada, October 1980. Morgan-Kaufman.

W. Kim. On optimizing an SQL-like nested query. ACM Transac-
tions on Database Systems, 7(3):4434169, September 1982.

J. King. A system for semantic query optimization in relational
databases. In Proceedings of the 7th International Conference on
Very Large Databases, pages 510-517, September 1981.

A. Y. Levy, I. S. Mumick, and Y. Sagiv. Query optimization by pred-
icate move-around. In Proceedings of the 20th VIDB Conference,
pages 96-107, Santiago, Chile, September 1994.

H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule based
query rewrite optimization in Starburst. In Proc. ACM SIGMOD
Int’l Conference on Management of Dakz, pages 3948, San Diego,
CA, June 1992.

[21] Swedish Institute Of Computer Science. SIC&IS prolog user’s man-
ual. Release 3, # 5, 1996.

250

