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Abstract 

Query optimizers normally compile queries 
into one optimal plan by assuming complete 
knowledge of all cost parameters such as selec- 
tivity and resource availability. The execution 
of such plans could be sub-optimal when cost 
parameters are either unknown at compile 
time or change significantly between compile 
time and runtime [Loh89, GrW89]. Paramet- 
ric query optimization [INS+92, CG94, GK94] 
optimizes a query into a number of candidate 
plans, each optimal for some region of the pa- 
rameter space. In this paper, we present para- 
metric query optimization algorithms. Our 
approach is based on the property that for 
linear cost functions, each parametric optimal 
plan is optimal in a convex polyhedral region 
of the parameter space. This property is used 
to optimize linear and non-linear cost func- 
tions. We also analyze the expected sizes of 
the parametric optimal set of plans and the 
number of plans produced by the Cole and 
Graefe algorithm [CG94]. 

1 Introduction 

Database queries are optimized based on cost mod- 
els that calculate costs for query plans. The cost 
of a query plan depends on parameters such as base 
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and intermediate relation cardinalities, predicate selec- 
tivities, available memory, disk bandwidth, processor 
speeds and existence of access paths. The values of 
some of these parameters may change over time be- 
cause of change in the database state, access paths 
and the execution environment. Moreover, estimat- 
ing parameters for queries containing unbound vari- 
ables is often not possible. The compilation of a 
query into a single “static” plan [GrW89] could re- 
sult in significantly sub-optimal executions. This is- 
sue has been pointed out by Lohman [Loh89], Graefe 
and Ward [GrW89]. Approaches towards this prob- 
lem have been presented by Ioannidii etal. [INS+92], 
Cole and Graefe [CG94], Antoshenkov [Ant931 and by 
Krishnamurthy and this author [GK94]. 

1.1 The Parametric Query Optimization 
Problem 

Let sr,sz,..., 8, denote n parameters, where each si 
quantifies some cost parameter, such as selectivity, ta- 
ble sizes, available memory etc. The cost of a plan p 
chosen from the space of feasible plans for the query 
is a function of the n parameters and is denoted by 
GJ,~l,~zr~~~,~n). For every legal value of the pa- 
rameters, there is some plan that is optimal for that 
value. Given a query and n parameters, the parrmetric 
optimal set of plans is the set of plans, each member of 
which is optimal for some point in the n-dimensional 
parameter space. Mathematically, the parametric op- 
timal set may be defined as 

(p 1 p is optimal for a point in parameter space } 

For every legal value of the parameters 81,. . . , s,, 
there is a plan in the parametric optimal set that is 
optimal for that value and vice-versa. The region of 
optima& for a plan p is denoted by R(p) and is the 
set defined as 

{h,. . . , s,)] p is optimal at (81,. . . , s,)} 
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The problem of parametric query optimization is to 
find the parametric optimal set of plans and the region 
of optimality for each parametric optimal plan. 

1.2 Review of Existing Solutions 

Three techniques [CG94, INS+92 GK94J with vary- 
ing degrees of generality have been proposed to solve 
the parametric query optimization problem. The most 
general technique is due to Cole and Graefe [CG94] to 
which we refer as the CG technique. In this approach, 
the cost of a plan p is modeled as an interval [ I(p), 
u(p) 1, where I(p) is the lowest cost of p over the pa- 
rameter space and u(p) is the highest cost of p over the 
parameter space. A partial order <CG is defined over 
the set of plans as follows. For plans p and q, p <CC q, 
if the cost interval of p lies to the left of the cost in- 
terval of q, that is u(p) < 1(q). The CG technique 
computes the set of least plans with respect to <CO, 
that is {p 1 for all plans q, l(q < p)}. There are two 
problems with the CG algorithm. First, it computes 
a superset of the parametric optimal set. As shown in 
Section 9.3, the expected number of plans generated 
by this technique could be much larger than the ex- 
pected size of the parametric optimal set (for e.g., CG 
may yield fi or more plans when the expected size 
of the parametric optimal set is R In N, where N is 
the cardinality of the plan space). The second problem 
with the CG technique is that it does not include any 
mechanism to find the regions of optimality. 

Krishnamurthy and thii author present an algo- 
rithm to compute the parametric optimal set for the 
specific case when the parameter is the ratio s of the 
load factors of two sites in a distributed database sys- 
tem. The cost of a plan is modeled as Wi + s . Wz, 
where Wr and WZ quantify the work done by the plan 
at each of the two sites. Thii algorithm generates ex- 
actly the parametric optimal set together with the re 
gions of optimality. An alternative formulation of this 
algorithm is presented in Section 4. 

Ioannidis, Ng, Shim and Sellis [INS+921 present a 
randomization approach to this problem. Thii ap- 
preach does not give guarantees about producing all 
parametric optimal plans nor does it give any bounds 
on deviations from optimality. 

1.3 Linear and Non-linear Cost functions 

The cost of a plan as a function of the n parameters 
Ch51,82, . . . ,a,) depends on the cost model followed 
by the optimizer. Consider a query in which the selec- 
tivity of a single predicate is unknown. Using a simple 
cost model based on a uniform distribution assumption 
of data values ([SAC+79]), C(p,s) may be expressed 
as C(p, s) = x0(p) + xl(p) - s, where 

l 

If a 

x0(p) is the cost of that portion of p that is inde- 
pendent of a. 

xl(p) . s is the cost of that portion of p that is 
linearly dependent on 8. 

query is the union of two subqueries, such that _ _ 
in each subquery, there is a predicate with unknown 
selectivity, then the cost function of a simple optimizer 
may be of the form 

Consider a query in which two predicates with un- 
known selectivities (si and sz respectively) are con- 
nected by an “and” operator, Then, the cost function 
may be expressed as (under simplifying conditions) 

C(p,Sl,S2) =xo(P)+x~(p)~s+x2(p)~t+x~(p)~s~t 

where 

X&J) is the cost of that portion of p that is does 
not depend on either selectivities, 

xi(p) . s is the cost of that portion of p that de- 
pends only on 8, 

22 (p).t is the cost of that portion of p that depends 
only on t, and, 

x3(p) . s . t is the cost of that portion of the plan 
that depends on both s and t. 

Thii shows that non-linear functions arise naturally 
even in simple cost models. The cost function when 
memory is a parameter could be expected to be a piece- 
wise linear functions. 

1.4 Summary of Paper 

This paper presents a solution technique for the para- 
metric query optimization problem by considering the 
structure of the regions of optimality. First, it is 
shown that, for the n-parameter linear cost functions, 
the parameter space can be decomposed into polyhe- 
drons, each polyhedron being the region of optimality 
for some plan in the parametric optimal set and vice 
versa. We then consider the problem of computing the 
parametric optimal plans for single parameter (unary) 
and two parameter (binary) linear cost functions. 

The algorithm for binary linear cost functions tra- 
verses the edges of each optimal region (convex poly- 
gons) in a counterclockwise order. This traversal is fa- 
cilitated by two routines neighbor and corder. Given a 
vertex of a polygon representing a region of optimality, 
and the direction of an edge, neighbor yields the next 
vertex and the set of plan(s) optimal there. Given a 
set of equally optimal plans at a vertex, corder orders 
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these plans according to the sequence in which their 
regions would be encountered if we rotate a vector of 
very small magnitude in a clockwise direction starting 
along a specific direction. Solutions for non-linear cost 
functions is illustrated by embedding non-linear curves 
within the regions of optimality of a generalized linear 
cost function. We also present a probabilistic analy- 
sis of the expected sizes of the parametric optimal set. 
Thii section shows that for one and two parameters 
(a) the expected sizes of the parametric optimal set of 
plans is not very large and (b) the general approach 
of Cole and Graefe may give a large number of non- 
optimal plans. 

1.5 Organization 

The paper is organized as follows. Section 2 presents 
notations for cost functions. Section 3 discusses the 
structure of the regions of optimality and the sub- 
routine ccor&r. Section 4 discusses an algorithm for 
unary linear cost functions. Section 5 presents the 
neighbor subroutine and Section 6 discusses an algo- 
rithm for binary linear cost functions. Section 7 dii- 
cusses an approach for non-linear cost functions by 
embedding curves or surfaces in a generalized linear 
space. Section 8 sketches an algorithm for specific 
unary non-linear cost functions. Section 9 is concerned 
with probabilistic analysis of the size of the parametric 
optimal set. Finally, we conclude in Section 10. 

2 Structure of Parameter Space for 
Linear cost functions 

In thii section, we study some structural properties of 
the regions of optimality of parametric optimal plans. 
We also discuss the concepts of isocost planes for pairs 
of plans and is&optimal set of plans. Finally we con- 
sider the problem of angular ordering of plans at a 
vertex of an optimal region and present an algorithm 
for solving it. 

The region of optimality of a parametric optimal 
plan p for an nary cost function parameterized by 
s = sr,sz,. . . , s,, is denoted by R(p) and is defined as 
{sip is optimal at 8) 

2.1 Polyhedral decomposition of Parameter 
value space 

Consider linear nary cost functions. The following 
lemma expresses a simple property of linear cost func- 
tions. 

Lemma 1 Let plan p be optimal with respect to an 
n-ary linear coat finction at points u and v of the n- 
dimensional pammeter apace. Then p is optimal for 
each point w that lies on the line segment joining u 
with v. 

The above lemma immediately implies the following 
theorem. 

Theorem 2 Let p be a parametric optimal plan with 
respect to an n-ary linear coat function. Then the re- 
gion of optima& for a plan p is a convex polyhedron. 

Theorem 2 argues that the parameter value space is 
partitioned into convex polyhedrons, each polyhedron 
being the region of optimality of a parametric optimal 
plan. The parametric query optimization problem for 
linear cost functions may be equivalently viewed as 
finding the polyhedral decomposition of the parameter 
apace induced by the pammetric optimal plans. 

2.2 Iso-cost planes, A-optimal plans and re- 
strictions of cost functions 

Consider nary linear cost functions. For any plans p 
and Q, the set of points u in the n-dimensional param- 
eter space such that p and Q have the same cost at u is 
a plane and is called as the p, q iso-coat plane. To see 
this, consider the equation C(p, u) = C(q,u). Since 
C is a linear function in U, the equation represents a 
plane in n-dimensions. 

Let us consider unary linear cost function with 
c(P9 u> =xr+yr.aandC(q,u)=xz+yz.u. The 
equation C(p,u) = C(q,u) can be solved to give a 
point U = (x1 - XZ)/(~Z - ~1). The p,q isocost plane 
for unary linear cost functions is a point and is called 
the p, q iso-cost point, or even more simply as the p, q 
isopoint. Similarly, the p, q iso-cost plane for binary 
linear cost functions is a line and is referred to as the 
p, q isocost line or as the p, q iso-line. 

Multiple plans could be equally optimal at a point. 
For example, at each vertex of the polyhedral decom- 
position which lies in the interior of the admissible pa- 
rameter space, multiple plans have the same cost and 
are optimal. Such plans are called isooptimal plans. 

Consider an nary linear cost function of the form 

C(p,81,82,... ,an)=xs(p)+xr(p).8r+...+xn(p).an 

Given a set of plans pI, the function loweat(i,pl) re 
turns the plan(s) with the least value of the ith coor- 
dinate xi. Let u be an n-dimensional vector and d be 
a unit length n-dimensional vector. The set of points 
that can be expressed in the form u + (Y d for (Y 10, 
represents a ray emanating from u in the direction d. 
The cost of a plan p on this ray is a function of a single 
parameter (Y and may be expressed as 

Cu,d($% a) = c@, U) + a * y@WT 

where y(p) = (xl(p), . . . , x,(p)) and . represents the 
vector dot product. The function C&d is said to be 
the restriction of the original cost function C to the 
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given ray defmed by u and d. Given a set of plans pl, 
the function lotuest(i, u, d,pl) returns the plan(s) with 
the least value in the it” coordinate of C,,,&,a). 

2.3 Angular Ordering of Iso-optimal plans at 
a vertex 

Consider binary linear cost functions and the as- 
sociated convex polygonal decomposition of the 2- 
dimensional parameter value space. Let v be a ver- 
tex of a polygon corresponding to R(p) for some p in 
the parametric optimal set. Thus v is the intersec- 
tion point of the optimal region of possibly more than 
one plan. Let pZ be the set of plans is&optimal at V. 
Choose a vector 1 of a very small magnitude 6, with 
one end fixed at v and initially aligned along a given 
direction d. If we rotate 1 clockwise a full circle, then 
the other end of 1 successively passes through the opti- 
mal regions of plans in pZ. Thii circular order of plans 
so obtained is called the clockwise ordering of the plan8 
that are iso-optimal at v with reference to d. Analo- 
gously, one can define the clockwise ordering. The idea 
is illustrated in Figure 1. 

Clockwise Ordering 

Figure 1: Angular ordering of iso-optimal plans in 2- 
dimensional parameter space 

2.4 Computing the clockwise ordering of iso- 
optimal plans 

Consider binary linear cost functions with parameters 
8 and t. Given a direction d, a vertex v and the set 
of isooptimal plans pu at v, we design an algorithm 
to compute the ordering of plans in pu with reference 
to d. In addition, we assume that we are also given 
pl E pu which is the first plan in the clockwise order- 
ing. Consider the pr , q iso-line for any q E pZ, q # pl. 
This line makes an angle 0 with d measured clockwise 
from d. The plan pz that makes the least angle is the 
second plan in the clockwise ordering. The procedure 
can be repeated with pz assuming the role of pl and 
considering plans in the set pZ - (pl,pz} and so on. 

The angle that an isoline makes with a direction 
vector d is computed using simple vector algebra. 
First, the equation of the iso-line is found. Let p 
and q be plans with cost coordinates (zi, 91, ei) and 

(zz, ~2, ~2) respectively. The equation of the p, q iso 
line is zi - z2 + 8 - (~1 - 92) + t - (zl - 22) = 0. We 
then find the angle that the line makes with the given 
direction vector d measured clockwise from d, using 
the following procedure. 

For any line with equation z + ye 8 + z . t = 0, the 
direction of the line is given by the vector e = (z, -%I) 
or its negative (-,z, 8). If e is counterclockwise from 
d, then the angle between the line z + ye o + z. t = 0 
and the vector d is quantified by e.d/ldl. Otherwise, 
the angle is quantified as -e.d/ldl. Here, x and . 
should be interpreted as vector cross and dot product 
operators respectively. 

The procedure for angular (clockwise) ordering of 
iso-optimal plans outlined above also produces the di- 
rections of the edges of the polygonal regions of op- 
timality emanating at v. This procedure is called 
csort(), although we do not show the pseudo-code as 
that would essentially contain elementary vector alge 
bra. Actually, it is not necessary to assume that the 
first plan pi in the clockwise ordering is known. How- 
ever, we do not discuss this issue any further. 

3 Parametric query optimization for 
unary linear cost functions 

In this section, we present an optimization procedure 
for unary cost functions, that is, when the cost of a 
plan p is of the form C@, 8) = z(p) + 8 . y(p). we 
assume that a 5 8 5 b, where a and b are given 
constants. of a single predicate is a parameter etc. 
We assume that a traditional query optimizer func- 
tion optimize(s) returns the set of isooptimal plans 
at 8. 

The procedure used is the following. Let pu and pb 
denote the set of isooptimal plans at a and b respec- 
tively. If pa fl pb is non-empty, say it contains p, then 
p is optimal at points a and b and therefore for each 
point in the interval [a, b], allowing us to terminate. 
Otherwise, let p be the plan Zowest(2, pa) and q be the 
plan Zmest(l,pb). Let 9 be the p,q isopoint and pc 
be the set of isooptimal plans at 8. Now there are two 
cases, (i) either p and q are both in pc or (ii) neither 
p nor q is in pc. If case (i) holds, we terminate the 
search, since p is optimal at a and 8 and therefore in 
the interval [a,~] and analogously, q is optimal in the 
interval [a, b]. If case (ii) holds, we partition [a, b] into 
intervals [a, s] and [s, b] and we recursively use this pro 
cedure on these intervals. The procedure is presented 
in Figure 2, where it is called as fin&all-segments. 
The algorithm is an alternative and easier formulation 
of the algorithm presented in [GK94]. 

The complexity of the algorithm is dominated by 
the calls to the optimize routine. If the number of 
parametric optimal plans is h, then the number of calls 
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to optimize is maz(2h - 1,2) [GK94]. 

procedure find-all-segments(a, b) { 
Input: Parameter 3 lies in [a, b]. 
Output: Parametric optimal plans in [a, b] 
and their regions of optima&y expressed as 
segments [U, v]. 
1. pa := optimize(a); 

/* find optimal plan at left end */ 
2. pb := optimize(b); 

/* find optimal plan at right, end */ 
3. if(panpb# 44 
4. return [a, b],pa fl pb; 

/* every plan in pa fl pb is optimal 
for the entire range [a, !J] 

5. p := lowest(2,pa); 
/* if cost = x + 8.9, then p is 
the plan in pa with lowest cost on 21 */‘ 

6. q := Zowest(l,pb); 
/* q is the plan in pa with lowest 
cost on 2 */ 

7. return find-segments (a,p, b, q); 
8. } /* end of procedure find-all-segments */ 

procedure find-segments (u,p, v, q) { 
/* u 5 v, p = lawest(2, optimize(u)) and 

q = huest(1, optimize(v)) */ 
1. 8 := is0 - point(p, q); 

/* find the p, q isopoint */ 
2. pc := optimize(s); 
3. ifpEpc 
4. return ([a, sl,p> 0 0, % 4; 

/* o is the list concatenation operator*/ 
5. rx := lowest(l,pc); 
6. ry := Zawest(2,pc); 
7. return 

find-segments (u,p, s, TX) o 
find-segments (s, ry, v, q); 

8. } /* end of procedure find-segments */ 

Figure 2: Parametric query optimization algorithm for 
unary linear cost functions 

64 (b) (4 

Figure 3: Examples of neighbors 

4 Computing neighboring plans along 
a direction for binary linear cost 
functions 

Suppose that cost function for a plan p has the form 
C(p) = x(p) + s - y(p) + t * z(p). We first define the 
set, of neighboring plans along a direction. We then 
present an algorithm to compute this set. 

4.1 Neighbors along a direction 

Consider the convex polygonal partitioning of the pa- 
rameter space induced by the parametric optimal set. 
Let p be a parametric optimal plan and let R(p) de- 
note the polygon which is the region of optimality for 
p. Let u be a point in R(p) and let, d be a direction 
vector designating a ray emanating from U, as shown 
in Figure 3. 

The neighbors of p along d starting at u is the set of 
plans q such that the regions of optima&y R(p), R(q) 
and the ray u + Q * d, for scalar (Y > 0 intersect at, a 
single point. By definition, neighbor of p also includes 
p. Figure 3 illustrates the three types of neighbors 
possible. In (a), the neighbor of p along d from u is 
the set, {p,q}. In (b), the neighbor is the set of plans 
i.rhql,q2,q3). 1 n c , neighbor is the singleton set {p}. ( 1 
The function neighbor&u, d, p) is used to denote the 
set of plans q such that R(p),R(q) and the directed 
line segment u + cx - d, for 0 < (Y 5 p intersects at, a 
single point. Again, by definition, neighbor(p, u, d, /3) 
includes p. 

An alternative equivalent formulation of neighbor is 
the following. The line segment u+wd, for 0 5 a 5 p 
is a segment of the aflke set,. The parametric optimal 
set, for the unary linear cost function &,d, defined in 
Section 2, is a sequence of plans p = pl ,pz, . . . , ph and 
a sequence of values 80 = 0 < 81 < 82 < . . . < sh = p 
such that pi is optimal for the interval [sin , si]. In this 
interpretation, neighbor@, u, d, B) is the set of plans 
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that are optimal at a = 81 in the affine set or equiv- 
alently, at u + 81 . d in the 2-dimensional parameter 
space. This formulation is used to design an algorithm 
for computing the neighbor function in Section 5.2. 

4.2 Algorithm to compute neighbors 

In this section, we present an algorithm to compute 
neighbor(p, u,d, ,8). We modify the procedure for 
finding the parametric optimal set for linear unary cost 
functions with two basic differences. First, the cost 
function for a plan p is given by cud(p, a). Thus, the 
notion of iso-point is defined with respect to the afline 
cost function. Secondly, in the find-segments proce+ 
dure (Figure 2) the input interval [u, w] is partitioned 
into two segments [u, s] and [s, v], and the procedure is 
recursively invoked on both segments. For the neigh- 
bor function, it is only necessary to recursively descend 
along the left partition [u, s]. 

The algorithm for neighbr@,u, d, p) is given in 
Figure 4. The procedure uses a traditional optimizer 
function optimize(v), where v is a two-dimensional 
point, to return the plan(s) that are equally optimal at 
v. The function isopht(u, d,p, q) returns the point 
u + d + a where cud(p, cu) = CQd(q, a). 

procedure neighbor@, u, d, p) 
Input: u and d are 2 dimensional vectors. p = 
Zmuest(2, u, d, optimize(u)). 
Output: Find neighbor along u + d - a, 
0 < cy 5 0. It returns the neighboring set of plans and 
the neighboring point. 

1. pb := optimize(u + d/9); 
2. ifpEporeturn (pa,u+d-p); 
3. q := lowest(1, u, d,pb); 
4. return neighbor-segment(p, u, d, q); 

5. 1 

procedure neighbor-segment(p, u, d, q) { 
1. v := isogdnt(u, d,p, q); 
2. pc := optimize(v); 
3. if p E pc return (PC, v); 
4. rz := Zowest(l,u,d,pc); 
5. return neighbor-segment (p, u, d, rs); 

6. 1 

Figure 4: An algorithm to compute the neighbor func- 
tion 

The complexity of neighbr(p, u, d,P) is derived 
from calls to the optimize function. Suppose that there 
are h optimal regions in the parametric optimal set 
for Cud for 0 < cr I & corresponding to the segment 
boundary points 0 = 80 < s1 < a2 < . . . < 8h = p. At 

each call to neighbor-segment, a segment [sin, si] is 
chosen. If we assume that the probability of choosing 
any of the h segments is identical, then the expected 
number of calls to optimize is I&l?&? + 2, where Hk 
is the kth harmonic number. The expected value of 
h is O(Zn N) (see Section 9), where N is the num- 
ber of plans in the plan space. In this case, it can 
be proved that the expected number of calls that the 
routine neighbor makes to the routine optimize is 
O(Zn(Zn IV)). 

5 Computing parametric optimal 
plans for binary linear cost functions 

In this section, we describe an algorithm that solves 
the parametric query optimization problem when any 
plan p has the cost function of the form z(p) + v(p) + 
s + z(p) . t. The set of values that s and t can take 
is assumed to be defined by a convex polygon whose 
boundary B is specified by a list of edges in counter- 
clockwise order. For example, the boundary B could 
define a rectangle in many practical cases. The two 
main subroutines used by the algorithm are csort and 
neighbor discussed in Sections 3 yd 5 respectively. 

9 
1 m nl2 
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(1) 

I \ \ I 
0 1 5 10 
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Figure 5: Illustrating the basic ideas in the find-all- 
regions procedure 

5.1 Basic idea of the algorithm 

The algorithm starts by traversing along the first edge 
of the boundary B. In general, it traverses the edges 
of the regions of optimality in a counterclockwise di- 
rection. Each region of optimality is completely tra- 
versed before another region is considered. During this 
traversal, new parametric optimal plans may be dii- 
covered and their regions are subsequently traversed. 
The regions of plans are considered in brecldth-first or- 
der and the procedure terminates when the queue of 
plans corresponding to the breadth-first traversal is 
aPtYe 

Suppose we are given a vertex u of the polygonal 
partitioning and a unit vector d parallel to an edge 
(u,v) of a polygon. Further, we are given plans p and 
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procedure find-all-regions(B) 
Input: B defines the boundary of the 2 dimensional 
legal parameter space. 
Output: Parametric optimal plans and their regions of 
optimality. 
Initial State: Queue is empty. Edgelists of all plans 
are empty. 

1. 
2. 
3. 
4. 
5. 
6. 

v := first vertex of B; 
d := direction of first edge of B; 
p := least(2, v, d, optimize(v)) : 
insert@, Visited); 
enqueue( 
insertpath@.edgelist, 

new edge(v, UNKNOWN, 
d, NULLPLAN)) ; 

7. q := dequeue(); 
8. while (q # NULL) { 
9. find-region(q, B); 
10. q := dequeue(); 
11. } /* end while */ 
12. } /* end of procedure find-all-regions */ 

Figure 6: Algorithm for the parametric query opti- 
mization problem for binary linear cost functions 
q, such that their regions of optimality, R(p) and R(q) 
lie to the left and right respectively as we traverse from 
u along direction d (See Figure 5(a)). Using neighbor, 
we can find the coordinates of VJ and the plans that are 
isooptimal at V, that is, plans whose regions of opti- 
mality share a vertex at v. Using csort, we can find 
the direction vectors of each of the edges at v. The 
leftmost turn at v with respect to the incoming direc- 
tion d or equivalently, the first edge in clockwise order 
with respect to the direction -d gives us the an edge 
direction of R(p) which follows the edge direction d in 
the counterclockwise traversal of the edges of R(p). 

Therefore, given a vertex u of an optimal region 
R(p) and an edge direction, we can traverse the edges 
of R(p) in a counterclockwise order (i.e., by keeping 
the interior of R(p) to the left). Each vertex is vis- 
ited exactly once. The algorithm when applied to the 
polygonal partitioning shown in Figure 5(b) discovers 
vertices in the breadth4rst order as numbered in the 
figure. It is assumed that we start at vertex numbered 
0 and initially move along the edge O-10. 

The following property of breadth-first search is 
used by the algorithm to avoid visiting a vertex twice. 
Suppose a set of edges of the boundary of R(p) 
el,e2, . . . , ek is visited before we start traversing R(p) 
(i.e., before p comes to the head of the queue). Then, 
thii set of edges forms a path although the sequence of 
edges in the path may not be identical to the sequence 

in which the edges have been visited. The algorithm 
is presented in Figure 6. Thii procedure uses an auxil- 
iary procedure find-wyion that traverses the region of 
optimality of a given plan. Thii procedure is presented 
in Figure 7. 

5.2 Detailed Description of the Algorithm 

A plan p is represented by its cost coordinates 
(z(p), u(p), z(p)). For each parametric plan p, a list 
of edges el is kept such that el traversed in sequence is 
a path and when traversed keeps the interior of R(p) 
to its left. The @,er) pairs are kept in a global data 
structure. Each member of el models an edge and is a 
record with schema (JbmVertex, To Vertex, Direction, 
Rplan). When a vertex is discovered, the ToVertex 
field is unknown, although, the Direction is known 
(this information is obtained from csort). Rplan is 
the plan whose region of optimality lies to the right 
if we traverse the edge. The plan to the left of the 
edge is p itself and so is not stored. Rplan defaults to 
NULLPLAN if the edge is on the admissible space 
boundary B. 

The second global data structure kept is that of a 
queue of plans to implement breadth-first traversal. A 
set Visited of plans is also kept to remember if a plan 
was discovered earlier. 

The function find-all-regions returns the set of 
(p,el) pairs that identifies the parametric optimal 
plans and their optimal regions. The auxiliary func- 
tion find-region(p, B) returns the sequence of edges 
that define the region of optimality R(p). 

The following simple functions are used by the 
procedure. Given a list I, Z.first() and l.last() re 
turn the first and last member of 1. The function 
insert-puth(el,e) inserts an edge e either at the be- 
ginning of the path el or at the end of the path el, 
such that after insertion, el still remains a path. Due 
to a property of breadth-first traversal as mentioned 
in the previous section, the set of edges traversed for 
any plan is always a path. 

Given points f, t and a direction d, the function 
coZZinear(f, t, d) is true if the vector (t - f) is parallel 
to d (i.e., (t - f) x d = 0 and (t - f) . d = 1). Given 
a sequence of boundary edges B and a ray emanating 
from v in the direction d, find-intersection (B, v, d, k) 
finds the index of the edge in B that the ray intersects 
using a sequential search algorithm. The parameter k 
specifies that the sequential search starts the check at 
edge Ic, proceeds along the list by wrapping around if 
necessary. 

The following invariant is maintained when find- 
wgion(p, B) is called. Let (cv, nextv, d,rp) be the 
last edge in the edge list of p. Then nextv is UN- 
KNOWN and cv and d are known. For every other 
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procedure find-region(p, B) 
Input: p is a parametric optimal plan. B defines the 
boundary of the legal parameter space. A list of edges 
called p.edgelist is associated with p. 
Output: Finds the boundary of the convex polygonal 
region for which p is optimal. This boundary is traced 
in counterclockwise order. 

1. el = p.edgelist; 
2. (’ -) = eZ.first(); 

;“rt1;6ds for don’t care value; 
iv is initial vertex */ 

3. (cv, -, d, rplan) = eZ.last(); 
/* cv is current (i.e., last known ) vertex */ 
4. en0 := 0; 
5. while (cdinear(cv, iv, d) = FALSE) { 

/* iv is not along d from cv*/ 
6. (eno, dist) := 

find-intersection(B, cv, d, eno); 
7. (nv,pl) := 

neighbor(p, cv, d, dist); 
/* new vertex nv is discovered */ 

8. update el set 
el.Zast().ToVertex = nv; 

9. if (rplan # NULLPLAN) 
10. insert-path( 

rplan.edgelist, new edge ( 
nv, cv, NOTNEEDED,p); 
11. m := pZ.Zength(); 

/* number of plans in pZ */ 
12. pa := pl.planarray(); 

/* list of plans in pZ */ 
13. csMm,pa,db -4ph 
14. 
15. 
16. 

pa[m] := NULLPLAN; 
for i := 1 to m - 1 do { 

if (IsVisited(pa[i]) = FALSE) { 
/* pali] not yet visited */ 

17. enqueue(pa[i]); 
/* put in rear of queue */ 

18. initialize p.edgelist to 
(nv, UNKNOWN, dl[i],pa[i + 11); 
19. insert(pu[i], Visited); 

/* mark the plan as visited */ 
20. } /*endofif... */ 
21. } /* end of for . . . */ 
22. cv *= nv* 
23. rpin := Ipa[l]; 
24. } /* end of while . . . . */ 
25. } /* end of procedure find-region */ 

Figure 7: Algorithm to find the region of a parametric 
optimal plan for binary linear cost functions 

&se (up v, d! p9 in the edge list of p, all the above 
four attributes are known. Of course, if the direction 
dOdefines an edge along the boundary, then p”is set 
to NULLPLAN. 

6 Structure of parametric optimal set 
for non-linear cost functions 

Non-linear cost functions arise naturally in parametric 
query optimization. For example, let s and t be the 
unknown selectivities of two predicates in a conjunc- 
tive query. Then, a plan p has a cost function of the 
form 

C(p,s,t)=xCp)+y(p).s+z(p)~t+ur(p).s.t 
where x(p) is the cost of that portion of p that is does 
not depend on either selectivities, g(p) . s is the cost of 
that portion of p that depends only on a, z(p). t is the 
cost of that portion of p that depends only on t and 
w(p) . s . t is the cost of that portion of the plan that 
depends on both s and t. 

In order to avoid working in three or higher dimen- 
sions, we study the structure of parametric optimal set 
of plans when the cost function of a plan p is of the 
form: 

aP7 3) = w + l4.P) * 3 + 4P> * f(s) 
where f is any smooth function of s. Generalizations 
to higher dimensions will be easy to see. 

The definition of the region of optimality for a para- 
metric optimal plan p is R(p) = {s] p is optimal at s}. 
However, R(p) may not be a convex set. We adopt the 
following approach for non-linear cost functions. Let t 
be an artificial parameter. Consider the cost function 

Since C(2) is a binary linear function, the regions of 
optimality for parametric optimal plans for Cc21 are 
convex polygons. The polygons for Ct2) in the s, t 
space that intersect with the curve t = f(s) correspond 
to the parametric optimal regions for the function C. 

Thii is illustrated in Figure 8. In this figure, pi is 
optimal for the segment of the curve from 0 to a, pz 
is optimal for the segment from a to b, ps is optimal 
from b to c, p4 from c to d and finally pi again (due to 
non-convexity) is optimal from d to e. 

The structure of the parametric optimal set for 
piece-wise linear functions which arises when memory 
is a parameter is not explored in the paper and is left 
for future work. 

7 Computing parametric optimal set 
for non-linear cost functions 

In this section, we sketch an algorithm that computes 
the parametric optimal set and regions for unary cost 
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Figure 8: Embedding non-linear cost functions in a 
larger linear space 
functions of the form C(p, s) = z(p) + B + g(p) + f(s) . 
z(p). We assume that f is a smooth convex curve 
(e.g., f(s) = s2). We first conceptually embed the 
curve t = f(s) in the polygonal partitioning induced 
by the parametric optimal set for the generalized linear 
function C(2)(p,s,t) = z(p)+s.g(p)+t.z(p) (fore.g., 
see Figure 9). 

We will illustrate the idea informally by using Fig- 
ure 9. Suppose we start at origin 0 in Figure 9. Let 
p be the optimal plan at 0 along the direction of the 
tangent at 0. If we now invoke the subroutine neighbor 
along the direction of the tangent to the curve at 0, 
then we arrive at point numbered 1, which is the first 
cross over point along the tangential direction. We 
take the leftmost turn at 1, using a variant of the sub- 
routine csort and call neighbor again to obtain point 
2. We repeat thii process until for some i, the line 
segment joining points i and i - 1 intersect the curve. 
Since the curve is assumed to be convex, an intersec- 
tion point must exist. This gives us the intersection 
point 3 in Figure 9. We then restart the process by 
navigating along the tangential direction at 3. The 
path traced out by successive iterations of this proce- 
dure is shown in Figure 9. 

The following details have been not been specified 
for sake of brevity. The line segment joining points i 
and i - 1 may intersect the curve in more than one 
point. Secondly, a point on the curve may also be a 
vertex of the polygonal partitioning of Cc2). All these 
issues can be satisfactorily handled. 

8 Expected Sizes 

In this section, we analyze the expected sizes of the 
parametric optimal set of plans under simple proba- 
bility distributions. The following notation is used in 
thii section. The size of the set of all the plans for a 
given query is denoted by N. For any natural number 
n, H,., denotes the nth harmonic number defined as 
CL1 l/i. For large n, H,, M In n+r+C(l/n), where 

C 

Figure 9: Illustration of algorithm used to compute 
the parametric optimal set for non-linear functions 
7 is Euler’s constant and is equal to 0.577.... The size 
of the parametric optimal set is denoted by h. The 
expected size of the parametric optimal set is denoted 
by E(h). 

We first consider the problem of determining E(h) 
under simple probability distributions for the case of 
unary linear functions. Most results in this area are ei- 
ther known from mathematics or from computational 
geometry. We then consider the same problem for bi- 
nary non-linear functions, of the kind that would be 
expected when the parameters are unknown predicate 
selectivities. The results in this area are not available 
in the literature (to the best of the knowledge of this 
author). We then consider the problem of determining 
the expected size of set of plans produced by the Cole 
and Graefe algorithm. The section concludes with a 
discussion. 

8.1 Unary Linear cost functions 

The cost of a plan p is given by a function C(p, s) = 
z(p) + s *g(p), and equivalently, the cost of a plan may 
be thought of as a point (z(p), g(p)) in twodimensional 
space. 

Theorem 3 If the cost of N plans are chosen uni- 
forml~~ and randomly from a rectangle, then E(h) = 
O(Zn N) 

E(h) < ;HN+2+0 f 
( > 

The above result is attributed to RBnyi and Sulanke 
@S63]. 

Theorem 4 If the cost of N plans are chosen inde- 
pendently from a 2-dimensional normal distribution, 
then E(h) = O(m). Furthermore 

E(h) < 2+m+O 

236 



This result is originally due to Raynaud [Ray’lO]. 

Theorem 5 If the cost of N plans are chosen in- 
dependently from any set of continuous distributions, 
then E(h) < HN/~. 

The above result is a specific case of a general the- 
orem by Bentley, Kung, Schkolnick and Thompson 
[BKS+78]. 

8.2 Non-linear cost function in two variables 

Assume that the cost function for a plan p is of the 
form 

C(p,s,t)=z(p)+s.y(p)+t.z(p)+s.t.w(p) 

The cost of each plan may be thought of as a point 
(dP)l Y@MGd.P)) in a four-dimensional space. 

Theorem 6 If the cost of N plans are chosen in- 
dependently from a four dimensional hypercube, then 
E(h) = O((ln N)2). 

Theorem ‘7 If the cost of N plans are chosen inde- 
pendently from a four dimensional normal distribu- 
tion, then E(h) = O(ln N). 

8.3 Analysis of the Cole and Graefe algorithm 

Let g represent the number of plans produced by the 
Cole and Graefe algorithm, that is the number of least 
plans with respect to the partial order <oG. The ex- 
pected value of g is denoted by E(g). Consider unary 
linear cost functions (i.e., C@, s) = z(p)+s.y(p)). The 
cost of each plan is described as a point (z(p), y(p)) in 
two dimensional space. 

Theorem 0 If the coat of N plans avz chosen uni- 
form18 and randomly within a rectangle, then E(g) = 
( N7r/2)lj2. 

Theorem 9 If the cost of N plans are chosen inde- 
pendently from continuous distributions , then E(g) 2 
(N7r/2)‘/“. 

Theorem 10 There exist normal distributions smh 

that if the cost of N plans are chosen indepen- 
dently from these distributions, then E(g) > N - 
O((N/Zn N)‘i2). 

8.4 Discussion 

Theorems 3 through 7 depict the values of E(h) under 
various assumptions and show that it is not extremely 
large. For comparison purposes, let N be 1 billion. 
This gives HN x 21. For single parameter linear cost 
functions, E(h) varies between 14 and 22 under the 

various probability distribution assumptions. Theo- 
rems 6 and 7 consider binary non-linear cost functions 
of the form likely to arise when the selectivities if two 
predicates are treated as parameters. Note that for 
uniform distributions, E(h) is O((ln N)2) although 
points are uniformly distributed in a four dimensional 
space. The constant for the leading order term is small 
(less than l/10). For N = 1 billion, E(h) can be cal- 
culated to be less than 40. 

Theorems 8,9 and 10 diicuss the expected number 
of plans E(g) produced by the Cole and Graefe tech- 
nique under assumptions similar to those made in The- 
orems 3 through 6. The values of E(g) lie in the range 
from fi to nearly N, whereas the value of E(h) lies 
in the range from m to In N. This shows that the 
Cole and Graefe technique could produce a large num- 
ber of plans that are not members of the parametric 
optimal set of plans. 

9 Conclusions 

The paper discusses parametric query optimization al- 
gorithms for unary and binary linear cost functions 
and for simple unary non-linear cost functions. The 
approach is based on the property that the regions 
of optimality for linear cost functions are polyhedral. 
The query optimization algorithms proposed traverse 
along the boundaries of the polyhedron. Simple prob- 
abilistic models are used to convince the reader that 
the size of the parametric optimal set is not large for 
one or two parameters. 

The paper raises several issues. Extensions of this 
idea to three and higher dimensions is an immediate 
one and may be found in [Gan98]. Another issue is 
to study the problem for piecewise linear cost func- 
tions that arise naturally when available memory is 
considered as a parameter. A third question is to ex- 
plore the approximate version of the parametric query 
optimization problem in which a set of approximate 
optimal plans are generated, such that for each value 
in the parameter space, there is at least one plan in 
the approximate set whose cost is within a given factor 
(1 + E) of the cost of the optimal plan at that value. 
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