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Abstract 

Users often can not easily express their 
queries. For example, in a multimedia/image 
by content setting, the user might want pho- 
tographs with sunsets; in current systems, 
like QBIC, the user has to give a sample 
query, and to specify the relative importance 
of color, shape and texture. Even worse, 
the user might want correlations between at- 
tributes, like, for example, in a traditional, 
medical record database, a medical researcher 
might want to find “mildly overweight pa- 
tients”, where the implied query would be 
“weight/height M 4 lb/inch”. 

Our goal is to provide a user-friendly, but 
theoretically solid method, to handle such 
queries. We allow the user to give several 
examples, and, optionally, their ‘goodness’ 
scores, and we propose a novel method to 
“guess” which attributes are important, which 
correlations are important, and with what 
weight. 

Our contributions are twofold: (a) we formal- 
ize the problem as a minimization problem 
and show how to solve for the optimal solu- 
tion, completely avoiding the ad-hoc heuris- 

t Part of this work was done while this author was vising Uni- 
versity of Maryland and Carnegie Mellon University. 

$ This work was supported by NSF IRI-9625428. Also, by the 
National Science Foundation, ARPA and NASA under NSF Co- 
operative Agreement No. IRI-9411299. 

Permission to copy without fee all OT part of this material is 
granted provided that the copies are not made OT distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 

given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, OT to republish, requires a fee 
and/or special permission jrom the Endowment. 

Proceedings of the 24th VLDB Conference 
New York, USA, 1998 

tics of the past. (b) Moreover, we are the 
first that can handle ‘diagonal’ queries (like 
the ‘overweight’ query above). Experiments 
on synthetic and real datasets show that our 
method estimates quickly and accurately the 
‘hidden’ distance function in the user’s mind. 

1 Introduction 

In modern database applications, distance-based (or 
similarity-based) queries have gained importance, es- 
pecially in the area of multimedia databases. However, 
it is not an easy task for a database user to express his 
or her queries appropriately in terms of the provided 
features (like color histogram, shape, etc.). There exist 
two problems. First, it would be difficult for the user to 
define an appropriate distance function; the user may 
not have a clear definition of the distance function he 
imperfectly has in mind. Second, the user’s require- 
ment for data changes time to time so that even if 
the user can define a good distance function for some 
cases, the function is not necessarily good for different 
cases. 

As an example, consider content-based retrieval in 
image databases. Suppose that a user simply needs 
sunset images. Many existing image database system, 
such as QBIC (Query By Image Content) [FBF+94] 
and Virage [Vir], provide query mechanisms based on 
multiple image features. To ease user’s query formu- 
lation, such image database systems support Query by 
(Visual) &ample [HK92] queries and interfaces (e.g., 
sliding bars) to obtain user’s preferences for the fea- 
tures. In this case, the user would provide sample sun- 
set images or sketches and assign high importance on 
the color feature and medium importance on the shape 
feature by using sliding bars. For other features (e.g., 
texture), minimal importance would be assigned. Un- 
fortunately, this query formulation scenario only holds 
for simple queries; for example, assume that the user 
wants to find “red circles in blue background.” It is 
not clear how to assign relative importance to shape 
and color features. 

A similar situation appears even in traditional 
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databases. For example, the VAGUE system [Mot881 
built upon a relational database system supports vague 
queries by incorporating the concept of data metrics 
on attribute domains and allowing “similar-to” opera- 
tor to compare attribute values. If we have a method 
to derive the implied distance function, we can ap- 
ply it to vague query processing. As an example, let 
us consider an example-based query in a traditional 
medical record database. Suppose that a user want 
to retrieve ‘mildly overweight people’ and gives some 
sample records to the database system. The implied 
condition would be, e.g., weight/height M 4lblinch. 
This is illustrated in Fig. 1, where the user has speci- 
fied some desirable points with check-marks. Multiple 
check-marks for a single point indicate that this point 
is an extremely good example of what the user wants. 
Formally, single check marks and double check marks 
mean examples with importance (“goodness”) level 1 
and 2, respectively. Clearly, the desirable points are 
along a diagonal strip, with slope 4 (lb/inch). What 
we want is the system to “guess” the user’s need from 
these example points and somehow approximate the 
implied query. 

Figure 1 illustrates two important concepts that we 
want to introduce: 

l diagonal queries: these are queries like the 
“overweight” query, where the qualifying elements 
are along some diagonal in the address space. 

l multi-level goodness scores: the ideal system 
should allow the user to specify how good an ex- 
ample is for his needs. 

I 

Height 

J : Importance Level = 1 

d : Importance Level = 2 

Figure 1: Example-based Query (e.g., “mildly over- 
weight”): double check-marks indicate extremely good 
examples. 

This is exactly the focus of this paper. We want a 
method that will “guess” the user’s query, by combin- 
ing multiple data examples and automatically deter- 
mining the importance of each attribute (e.g., ‘weight’ 
and ‘height’ in the ‘overweight example’), as well as 
the importance of correlations between attributes. 

Such a method will be useful in many settings: 

multimedia systems and digital libraries that han- 
dle mixed media (e.g., Informedia [CKM+95, 
WKS961): fi d ‘d n vi eos with J.F. Kennedy (either 
by face matching or voice matching, or both). 

general approximate matching or nearest neigh- 
bor queries, in traditional databases. We men- 
tioned the VAGUE system earlier. Nearest neigh- 
bor queries are attracting increasing attention not 
only by researchers but also by vendors: see, for 
example, the proposed ‘STOP AFTER’ keyword 
of SQL [CK97], 

time sequences: find stocks similar to, e.g., IBM’s 
stock. Different users have different notions of dis- 
tance/similarity: One user might be interested in 
the average over the year; another user might be 
interested in the trend; a third one might be inter- 
ested in the standard deviation (M volatily) as a 
measure of similarity. Although feasible to trans- 
late all these notions into distance functions that 
involve the DFT coefficients of the stock prices, it 
is very cumbersome for the average user to do so. 

spatial databases: find gas stations close to the 
I-270 interstate highway, between exit #15 and 
#20. 

Next we describe our solution, as well as experi- 
ments with the prototype (‘MindReader’) that we im- 
plemented. The structure of the paper is as follows: 
Section 2 surveys the related work. Section 3 describes 
the proposed method and the related theorems. Sec- 
tion 4 gives experimental results. Section 5 discusses 
implementation and user-interface issues. Section 6 
gives the conclusions. 

2 Related Work 

Algorithms to guess the user’s desires from a set of 
examples have attracted a lot of interest. 

The underlying assumption is that the user has an 
ideal point {that he is looking for (e.g., the feature 
vector of his ideal sunset photograph); we try to guess 
the ideal point, as well as the importance of the axis 
(e.g., color versus shape versus texture, or, even more 
detailed: amount of red, versus blue, versus green). 

The methods in the literature use one or both of the 
following ideas: (a) query-point movement and (b) axis 
re-weighting. Notice that the two ideas are orthogonal 
and can be combined, although not all past methods 
have done so. 

2.1 Query-point movement 

Here, a method tries to improve the estimate of the 
‘ideal query point’ by by moving it towards ‘good’ ex- 
ample points (and away from ‘bad’ example points). 
This concept of example-based query refinement is of- 
ten found in the information retrieval field as relevance 
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feedback techniques [Har92, SL96]. For example, the 
Rocchio’s formula [Roc71], that is based on the vector 
space model, is given as follows: 

,,=,,+/3g-yg$ (1) 
i=l i=l 

(in [Har92] th’ f IS ormula is called Standard Rocchio), 
where Qs is the vector for the initial query, Ri is 
the vector for relevant document i, Si is the vec- 
tor for nonrelevant document i, ni is the number of 
relevant documents, and n2 is the number of non- 
relevant documents. In the vector space model, co- 
sine similarity is typically used to calculate similar- 
ity values between documents. Query-point move- 
ment was also used in one of the methods proposed 
by MARS (Multimedia Analysis and Retrieval Sys- 
tem) [RHM97, RHM98] for image retrieval. In the 
method called tf x idf (“term frequency - inverse doc- 
ument frequency”), they generated pseudo-document 
vectors from image feature vectors then directly ap- 
plied the Rocchio’s formula. Although the above tech- 
niques are based on similarity-based query processing, 
we can easily transform similarity values to straight 
Euclidean distances (see [FL951 or Eq. (13) (shown 
later)) and apply distance-based query processing. 

2.2 Re-weighting 

The second approach is based on re-weighting. For ex- 
ample, the MARS system mentioned above, proposes 
another refinement method based on re-weighting, 
which we call standard deviation method. The idea 
is very intuitive: if the variance of the good examples 
is high along, say, the j-th axis, apparently any value 
on the j-axis is acceptable to the user, and therefore 
the j-th axis should have a low weight wj. Therefore, 
the inverse of the standard deviation of the j-th fea- 
ture values in the feature matrix is used as the weight 
wj for the feature j, namely, wj = l/oj. The resulting 
weights wj (1 5 j 5 n) are used to calculate new sim- 
ilarity values for images. The paper gives no justifica- 
tion about this specific choice: any decreasing function 
of uj would be a good candidate for the weight, like 
l/6, or l/log(aj). 

As we show later, our proposed method includes 
both the above types of query refinement as special 
cases. Moreover, 

(a) it does not use ad-hoc heuristics (such as /3 and y 
in the Rocchio’s formula), 

(b) it can handle multiple-level scores, and, most im- 
portantly 

(c) it is the only one that can handle “diagonal 
queries”. 

Next, we give the details of our method. 

3 Proposed Method 

Intuitively, the problem is as follows: The user inspects 
some records (objects, e.g., images, video-clips, em- 
ployee records) 

l given the user’s scores (O/l or multi-level), on 
multiple examples 

l “guess” the implied distance function, and issue 
the appropriate query 

3.1 Basic Idea 

Our major proposal is to use a distance function that 
allows not only for different weights of each attribute, 
but also for correlations. For example, see Figure 2: 
the straight Euclidean distance has circles for isosur- 
faces; a weighted Euclidean distance, like MARS, has 
ellipses, whose major axis is aligned with the coordi- 
nate axis. Our proposed distance functions result in 
ellipses that are not necessarily aligned with the coor- 
dinate axis. 

9 Cl . 
Euclidean 

a .9 

weighted Euclidean 

t 

9 0 . 
I 

generalized 
ellipsoid distance 

Figure 2: Isosurfaces for Distance Functions 

3.2 Method 

Table 1 gives a list of symbols used in the following 
discussion. The proposed distance function is 

D(S, $) = (Z- #M(?- 3, (2) 

or, equivalently 

i k 

where < = [ql, . . . , qn] T is the “ideal” point, an n-d 
query vector and 2 = [xi,. . , z,]~ is a feature vec- 
tor that corresponds to an entry in a database and ‘T’ 
indicates matrix transposition. All vectors are consid- 
ered as column vectors. An n x n matrix M = [mjk] 
defines a generalized ellipsoid distance. We request 
that M is a symmetric matrix (mjk = mkj). Obvi- 
ously, it includes the straight and weighted Euclidean 
distance as special cases. 

Our goal is to use the user-selected n-d points, to 
“guess” two things: 

l coefficients of the implied distance function 2>(), 
namely the distance matrix M 

220 



Table 1: Symbols and Their Definitions 

Symbol Definition 

n 

N 

if= [xl,...,x,]T 

Zj = [Xil,...,XinlT 

c= [Q1,...,QnlT 

M = [mjkl 

dimension of vectors 
number of examples 
a sample vector 
i-th sample vector 
ideal query point 
matrix that gives a generalized 
ellipsoid distance function 
distance function 
data point matrix 
goodness values for examples 
weighted average of data vectors 
(weighted) covariance matrix of 
sample vectors 
(weighted) variance of j-th 
elements of sample vectors 

w 

x = [Zl , . . . ) &IT 

v’= [V1,...rVN]T 

2= [&..&JT 

c = [Cjkl 

uj” 

l the best query point $ we should use this query 
point c to find data points “similar” to it. 

To calculate the new matrix M and the query point 
{, we need “goodness” information from the user. We 
assume that the user selects “good” items from the 
presented items. Let N be the number of the selected 
items and let Zi = [Zii, . . . , linlT be a vector that 
represents i-th item (i = 1,. . , N . Let X denote an 

d N x R matrix X = [Zi,. . , ZN] Additionally, we 
incorporate user’s ‘goodness’ scores for selected items: 
for each &, the user can specify its goodness value wi 
(the default is vi = 1). Let v’ denote a vector v’ = 
bl,..., UNIT. 

3.3 Theorems 

We postulate that the user has an “ideal” vector c in 
mind, and that the distance of the sample vectors zi 
from this ideal vector <is an generalized ellipsoid dis- 
tance. Our goal is to “guess” q’and M to minimize the 
penalties. Obviously important samples (i.e., samples 
with high goodness scores vi) should have small dis- 
tance from c Thus, the problem is mathematically 
formulated as follows: 

subject to the constraint 

det(M) = 1, (5) 

where det(M) is the determinant of the matrix M 
(without any constraint, the zero matrix would give 
the minimum). 

The minimization problem can be solved with the 
method of Lagrange multipliers. We give the major 
conclusions here: 

Theorem 1 Let the (weighted by v) average of data 
vectors 

T- 

2=[Z1,...,i$JT=- 
&li f 

namely 

zj = CL1 Qxii 
cc, vi 

(j= l,...,rr). 

The optimal value of the new query point q’ is given by 
f= 2. 

Proof. See appendix Appendix A. 
We define the (weighted) covariance matrix of data 

vectors by C = [cjk] with 

Cjk = 2 ‘Ui(xik - ?k)(xij - %‘j). (6) 
i=l 

The following theorem gives the formula of the optimal 
matrix M. 

Theorem 2 If C-l exists, the matriz M that mini- 
mizes Eq. (4) is 

M = (det(C))*C-i. 

Proof. See appendix Appendix B. 
We define the (weighted) variance by 

(7) 

u; = 2 TJi(Xij - i# 
i=l 

(8) 

Here we show that our model includes and improves 
the standard deviation (MARS) method if we restrict 
our methods. 

Theorem 3 If we restrict the matrix M to diagonal 
matrices only, then the solution is given by 

1 
mjj Oc 2’ 

3 
Proof. See appendix Appendix C. 
That is, we have proved that the weighting scheme 
of MARS is optimal, if we restrict M to a diagonal 
matrix. As we show in the experiments, MARS is 
unable to “guess” generalized ellipsoid distances. 

3.4 The Case for Singular Covariance Matrix 

Now we have a seemingly difficult question: what do 
we do if the covariance matrix is singular and non- 
invertible? In our system, this situation happens when 
the number of feedback points is less than the num- 
ber of the feature dimensions (N < n). It turns out 
that we can easily solve the problem by using the 
Moore-Penrose inverse matrix (or pseudo-inverse ma- 
trix) [GV96]. The details are in appendix Appendix 
D. 
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Figure 3: Experiment on Diagonal Query: (a) Data set, (b) Isosurface of “hidden” distance function, (c) Speed 
of convergence: CD metric value vs no. of iteration 

4 Experiments 

Here we describe our experiments on synthetic and real 
data. The questions we want to ask are the following: 

l How quickly and how well can we learn ‘diagonal’ 
queries? How much better than the ‘standard de- 
viation’ method is it? 

l Query movement: How quickly does our method 
estimate the correct ideal query point? 

l How does the method perform on real data? 

Before we answer these questions, we describe the 
measures we used to judge the quality of our approx- 
imation to the hidden distance function. Then, we 
describe our experiments and observations. 

4.1 Definitions and Preliminaries 

In order to evaluate how well our method can find 
the hidden distance function, we need some kind of 
metrics. 

The most obvious metric, the CD-k metric, is de- 
fined by the sum of the actual distance of top k neigh- 
bors. In the experiments, we used k = 20. Specifically, 
we retrieve the top k elements according to our esti- 
mate of the distance (as defined our estimate of M 
and qJ, and then we compute the sum of their actual 
distances, according to the actual matrix Mhidden and 
the actual query point. 

In some cases, two variations of our method gave 
the identical set of top k neighbors. In order to still 
distinguish their relative merits, we use a second met- 
ric. The MN metric is based on the matrix norm con- 
cept and evaluates how small the difference between 
the derived matrix M and the hidden distance matrix 
Mhidden 

IIM - Mhidden((2 (10) 

We also need to describe our experimental set up, 
Goodness score values were automatically generated 
as follows: Let d = 2)( 2, qJ be the actual (= hidden or 
implied) distance of a data vector Z from the ideal vec- 
tor $ Then, the goodness score w is given by Eq. (13) 
and Eq. (15). That is, first we turn the distance d into 
a similarity score s = exp(-$) and this into “good- 
ness” score: v = log A. The choices of the specific 
functions are justified in Appendix Appendix E. We 
refer to this method as ‘infinite levels’ of score values. 

4.2 Diagonal Queries 

As a first experiment, we used a twsdimensional 
Gaussian distribution of points shown in Fig. 3(a). 
The data points has the mean (0, 0) and standard 
deviation 1. The purpose of this experiment is (i) 
to examine how fast our method can find the hidden 
distance function and (ii) to show the difference from 
the “standard deviation” (MARS) method. In this ex- 
periment, we used O/l scores. Figure 3(b) shows an 
isosurface of the hidden distance function (shown by 
a dotted ellipse) along with top 10 nearest neighbors 
for our method ( marked by ‘*‘) and standard devia- 
tion method (marked by ‘0’). The “ideal” query point 
<= (0, 0) is marked with ‘x’. The result is shown in 
Fig. 3(c). This fig ure plots the values of the CD-k met- 
ric (namely, cumulative distance of top k = 20 points) 
of our method and of the standard deviation method, 
for each iteration. The horizontal line in the bottom of 
the figure represents the global minima of CD metric 
value for the target query, and the upper dotted line 
(marked by ‘0’) shows the standard deviation method. 
Our method is given by ‘*‘. After five iterations, our 
method converged into the hidden distance function. 
On the other hand, the standard deviation method 
cannot find the distance function. 

Figure 4 shows iterative refinement of t,he queries. 
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(b)*iteration #i 
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&eratfon #i 

Figure 4: Iterative Refinement of Queries 

The figure shows the isosurfaces for the “hidden” dis- 
tance function (dotted), for our method (solid), and 
for the standard deviation method (dashed). The ini- 
tial state after the query is issued (iteration #0) is 
shown in Fig. 4(a). Since only one example point was 
given, both methods start with the Euclidean distance 
(that is, with circles for iso-surfaces). However, af- 
ter the goodness scores of two iteration, our method 
starts capturing the hidden function. After six itera- 
tions, the agreement is visually almost perfect. On the 
other hand, the standard deviation method is unable 
to make any improvements, because of its nature. 

4.3 Moving Query Center 

In all our experiments, the “ideal” query point was 
fixed at (0, 0), and the examples were nearby. Figure 5 
illustrates the ability of our method to “move” its es- 
timate of the query point, according to Theorem 1. 
Our first example was the (0.5, 0.5) point. Despite 
its large distance from the “ideal” query point, our 
method managed to locate the correct center in three 
iterations and then to align itself to the target ellipsoid 
distance function (dotted ellipse). 

-I;- 
Figure 5: Moving query center 

4.4 Real Data 

We used the Montgomery County dataset [FK94] with 
end-points of road segments from the Montgomery 
County of Maryland (Fig. 6). The solid box shown 

-,* 
I 

.,L 
.I a, 

(d) Iteration #i 

in the plot is the region of interest. The dataset is 
normalized to the [-1, 11 x [-1, l] square. 

The target query was to find points near the mag- 
nified road segment, namely a portion of the inter- 
state I-270. We started with five samples shown as 
‘x’ on Fig. 7. Notice that even without any iterations, 
our guess for the distance function gives the isosurface 
shown in Fig. 7(a), which engulfs most of the desirable 
points. If we do want iterations, Fig. 7(b) shows the 
isosurface after two iterations. 

5 Implementation Issues 

5.1 User interface 

We envision a very friendly user interface, as follows: 
the user starts browsing (e.g., the thumbnails of im- 
ages, or the keyframes of video clips). He or she clicks 
on the desirable one(s), thus providing as many exam- 
ples as he or she desires. Then, he submits the query 
to MindReader. 

Notice that we can easily allow multi-level scores, 
by allowing the user to click multiple times on the 
desirable data item(s) -- the score vi for the i-th item 
is exactly the count of times that the user clicked on 
it. 

Notice again that MindReader is not necessarily a 
relevance feedback system: The user may give enough 
examples, MindReader will respond, and no itera- 
tion need to take place. As we saw in the Mont- 
gomery County dataset, even at the 0-th iteration, 
MindReader had a very good guess about the distance 
function, just from the five samples. 

5.2 Speed 

As we mentioned, we expect our data items to be rep- 
resented as points in some n-dimensional space (e.g., 
cities on a map, or feature vectors in a multimedia 
application e.t.c.). Typically, n-d data points will be 
stored in a Spatial Access Method (SAM) (e.g., X-tree 
[BKKSG], SR-tree [KS97], R*-tree [BKSSSO]). SAMs 
are carefully constructed and fine-tuned by decades 
of research, so that they can handle very efficiently 
spatial queries (range- and nearest neighbor queries) 
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Figure 6: Montgomery Coun- 
try Dataset Figure 7: Isosurfaces for Road Segment Query: (a) the five starting examples, 

shown with ‘x’, and the resulting isosurface, without any iterations (b) the 
isosurface after two iterations. 

under the Euclidean distance. As it was recently dis- 
covered, all these indices can support generalized el- 
lipsoid distance queries, as well as weighted Euclidean 
distance and “diagonal” queries [SK97], without re- 
quiring any restructuring. That is, given some gener- 
alized ellipsoid distance and a query based on it, SAMs 
will quickly retrieve the qualifying points. 

Thus, MindReader can utilize any and all of the 
fast solutions in [SK97]. Therefore, we do not concern 
ourselves with the speed of searching in this paper any 
more. 

6 Conclusion 

We have focused on the problem of combining multi- 
ple examples, along with their “goodness” scores, to 
try to guess the distance function that the user has in 
mind. This is important, because the user does not 
need to articulate his desires in terms of predicates, 
nor to specify the relative importance of the data at- 
tributes or their correlations. Our proposed method 
does all that au2omalically for him! 

The major contribution that solved all these issues 
is the introduction of quadratic forms as candidate dis- 
tance functions. Specifically 

l we formulated the problem rigorously and showed 
how to find the optimal solution 

l we showed that our formulation is the first one 
that can guess “diagonal queries” 

l we also showed that it includes as special cases 
some older methods, like the method by Roc- 
chio and Salton [Roc71] and the method of stan- 
dard deviation [RHM97, RHM98]. Moreover, our 
method does not need any of the ad-hoc heuristics 
and constants that the above two methods need. 

Additional benefits of our approach include: 

l the ability to handle multiple levels of scores (in 
contrast to the majority of older methods) 

l a very friendly user interface (the user just clicks 
on each good example, one, or more times, in pro- 
portion to the “goodness” of the specific example) 

l fast searching, thanks to recent developments on 
“generalized ellipsoid queries” in spatial access 

‘methods technology [SK971 

We implemented the proposed approach in an op- 
erational system (“MindReader”) and we ran experi- 
ments on real and synthetic data. The conclusions are 
the following: 

l MindReader can easily guess “diagonal queries”, 
while no competitor can do so 

l the number of levels of goodness scores can be 
low, and still give good results 

l Intuitively, the more examples we give, the sooner 
MindReader will converge to the correct distance 
function. In our experiments on the real data 
(the ‘I-270’ query on the Montgomery dataset), 
just five examples are enough to lead to an excel- 
lent first guess, which was only mildly modified 
by subsequent iterations. Thus, MindReader can 
also be used even in “batch-mode”, in addition to 
an interactive mode. 

Directions for future work include the use of Min- 
dReader to search in mixed-media, such as video clips 
with audio tracks, where we want to find video clips 
with, e.g., John F. Kennedy (either his face, or his 
voice, or both). 
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Appendix A Proof of Theorem 1 
From the summation formula in Eq. (4), we get 

N nn 

= 
c (cc Vi (xij - Qj)mjk(xik - qk) . 

i=l j=l k=l 

From the constraint (Eq. (5)), for all k 

e(-l)jtkmjk det(Mjk) = 1 
j=l 

holds. Therefore, 

n n 

7: x(-l)j+‘mjk det(Mjk) = n. 
j=l k=l 

To solve the minimization problem, we use the method 
of Lagrange multipliers. Defining 

F = 5 Vi 9 k(xij - qj)mjk(xik - qk) 

i=l j=l k=l 

- x 9 k(-l)jtkrnjk det(Muljk) - 71 ) (11) 
jr1 k=l 

we obtain 

dF 
-= 
aqt 

2mtt(% - qt) + 2 mtk(xik - qk) 
kc, 
*+t 

n \ 

+ C(xij - qj)mjt ,=I J#f I 
Since M is a symmetric matrix, 

dF 
acr,= -2 5 vi mtt(xit - qt) $ 2 mtk(Xik - qk) 

i=l kc, 
k#t 

N n 

= -2 c vi c mtk(Xik - qk). 

i=l k=l 

Let dF/8ql = 0. Then we get 

mtkxik = 2 vi 2 mtkqk. 
._ . . 

This can be translated as 

btl,.. . , mt,]XT v’ 

CE1 vi 

= [ml, . . , mt,]C. 

Therefore, 
Tv’ 

Z=MC. 
Thus, if M-’ exists, 

XTV- 

holds. The k-th element of {is 

qk = CL1 Oixik 

c;“=,vi 

Namely, qk is a weighted average of k-th elements of 
&‘s. As a special case, if vi = 1 (i = 1,. . , N), qk 
becomes an average: 

0 

Appendix B Proof of Theorem 2 
From Eq. (ll), for some fixed r and s (1 5 r, s 5 n), 
we have 

$ = ~v~(xir-qr)(xiJ-qs)-X(l)‘+Sdet(M,.~), 
?-8 i=l 

where M,, is an (n - 1) x (n - 1) matrix obtained 
by deleting r-th row and s-th column of M. Let 
aF/dm,, = 0. Then we get 

2 vi(Zir - qr)(xiJ - qJ) = X(-l)r+8 det(M,,). 
i=l 

Therefore, 

det(M,,) = CL1 Vi(Xir - !7r)(xis - Qs) 

X(-1)r+s . 

The inverse matrix M-’ = [my:] can be represented 
as 

-1 mjk = 
(-l)j+” det(Mkj) 

det(M) 

= (-l)jtk det(Mkj) 

= (-l)j+k ~~=1 ui(xik - qk)(xij - ‘?j) 

X(-l)k+j 

= c:l ‘%(xik - 9k)(xij - qj). 
). 2=l k=l $=I Ic=, I. 
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Let C = [cjk] be a matrix cjk = CL, vi(~ik--qk)(~dj - 
qj), namely, C = AM-l. Since 

where U is a orthonormal n x n matrix and X = 
diag(al, . . , u,, 0,. . . ,O) is a diagonal n x n matrix. 
Then define 

det(C) = X” det(M-‘) = X” . 1 = X”, c+ = ux+uT, 

we get X = (det(C))i. Therefore M = XC-’ = 
(det(C))iC-‘. 

According to Theorem 1, the new optimal query 
point is given by a= 2. Therefore, the optimal matrix 
C = [cjk] in terms of the new query point is given by 

where X)=+ = diag(l/cr , . . , l/or, 0,. . , 0). The ma- 
trix C+ is called the Moore-Penrose inverse matrix 
(or pseudo-inverse matrix) of C [GV96]. Then we use 
instead of Eq. (7) (i.e., M = (det(C))tC-l), 

Cjk = 5 ?,i(xik - “k)(xij - 5j). 
i=l 

M = oC+, 

where (Y = (cruz . ..up)+. 

0 
Appendix E Conversion from Distance 

Values to Goodness Val- 
ues Appendix C Proof of Theorem 3 

Since this is a special case of Theorem 2, we can easily 
prove that 

M = (det(C))i C-’ 

where C = [cjk] is 

Cjk = 

Now we define 

Uf = eWi(Xij - Zj)2 = Cjj. 

i=l 

Since C is a diagonal matrix, 

det(C) = fi$ 
j=l 

C-l = diag(l/af,...,l/az), 

and we get 

M = fi uf . diag( l/a;, . . , l/a:). 
j=l 

Therefore, we can say that 

1 
mjj 0; 2’ 

3 

0 

(12) 

We formalize the concepts of distance, similarity and 
“goodness” scores, as follows: 

l similarity s: ranges from 0 to 1 (1 is the best 
match) - typically, cosine similarity 

l goodness g: ranges from -oo to $00 (the latter 
is the best match), e.g., user scores 

l distance d: ranges from 0 to $00 (0 is the best) 

We propose the following formulas to translate dis- 
tances to similarities etc: 

(13) 

Thus the similarity corresponds roughly to the likeli- 
hood (pdf) of a Gaussian distribution. Earlier [FL95], 
we used s = cos0 = 1 - d2/2. These two forms ap- 
proximately similar for d << 1. For the goodness, we 
propose the sigmoid function of neural networks: 

exdg) 
‘= l+exp(g)’ 

whose inverse is 

g=log---s--. 
1-S 

(14) 

(15) 

The above formulas are used, whenever we need to 
translate ‘goodness’ scores into distances, similarities 
etc. 

Appendix D The Case for Singular 
Covariance Matrix 

First we calculate the SVD decomposition of the co- 
variance matrix C (C is defined by Eq. (6)). Since C 
is a symmetric matrix, we get 

c = UmJT, 


