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Abstract 

Similarity search and content-based retrieval are 
becoming more and more important for an increas- 
ing number of applications including multimedia, 
medical imaging, 3D molecular and CAD data- 
base systems. As a general similarity model that is 
particularly adaptable to user preferences and, 
therefore, fits the subjective character of similari- 
ty, quadratic form distance functions have been 
successfully employed, e.g. for color histograms 
as well as for 2D and 3D shape histograms. Al- 
though efficient algorithms for processing adapt- 
able similarity queries using multidimensional 
index structures are available, the quadratic nature 
of the distance function strongly affects the CPU 
time which in turn represents a high percentage of 
the overall runtime. The basic idea of our approach 
is to reduce the number of exact distance computa- 
tions by adapting conservative approximation 
techniques to similarity range query processing 
and, in addition, to extend the concepts to k-nearest 
neighbor search. As part of a detailed analysis, we 
show that our methods guarantee no false drops. 
Experiments on synthetic data as well as on a large 
image database containing 112,000 color images 
demonstrate a significant performance gain, and 
the CPU time is improved by a factor of up to 6. 

1 Introduction 
In recent years, a wide range of database applications has 

appeared for which new query types turn out to be useful. In 
particular, similarity search is an essential query type for 
spatial and multimedia databases containing images, video 
audio or 3D-objects [Jag 911 [AFS 931 [GM 931 [FRM 941 
[ALSS 951 [Kor+ 961 [BK 971. The last few years of re- 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed 
for direct commercial advantage, the VLDB copyright notice 
and the title of the publication and its date appear, and notice 
is given that copying is by permission of the Very Large Data 
Base Endowment. To copy otherwise, or to republish, requires 
a fee and/or special permission from the Endowment. 
Proceedings of the 24th VLDB Conference 
New York, USA, 1998 

search have produced several results for efficiently support- 
ing similarity search, and among them, quadratic form dis- 
tance functions have shown their high usefulness. They 
were successfully used for color histogram similarity 
[Fal+ 941 [Haf+ 951 [SK97], 3-D shape similarity 
[KSS 971 [KS 981, pixel-based similarity [AKS 981, and 
several other similarity models [Sei 971. The reason for us- 
ing quadratic forms as distance functions is the observation 
that for many applications, the Euclidean distance is not ad- 
equate due to its fundamental assumption that all dimen- 
sions are independent of each other. Any quadratic form 
distance function dz(x, y) = (X - y) . A (X - y)r is deter- 
mined by a similarity matrix A whose components represent 
the mutual similarities, or correlations, of the dimensions. If 
the matrix A is positive definite, i.e. dj(x, y) > 0 for x # y , 
meaningless negative distance values are avoided. Whereas 
the Euclidean distance produces spherical query regions, 
general quadratic form distance functions represent ellip- 
soids as query regions which give the new query type its 
name, ellipsoid query. In [SK 971, a novel algorithm for ef- 
ficient ellipsoid query processing on multidimensional in- 
dex structures was presented which directly uses the exact 
representation of an ellipsoid as the query region. However, 
we may not rely on the applicability of the exact method for 
the following reasons: 

Legacy Systems. Imagine that you are bound to a legacy 
system that only supports multidimensional window 
queries or sphere queries, and which resists an exten- 
sion, for example, one which is necessary for the algo- 
rithm for exact ellipsoid query processing as proposed in 
[SK 971. In order to provide efficient support for ellip- 
soid queries in spite of this restriction, we investigate the 
adaptability of standard approximation techniques to el- 
lipsoid queries. 
Performance Aspects. Since the evaluation time for an 
ellipsoid function is quadratic in the general case, it may 
bring benefits to use approximations for query process- 
ing. Thus we can achieve a reduction of the time com- 
plexity for calculations on data pages as well as on direc- 
tory pages. In a d-dimensional space, testing whether a 
database object is contained in the query ellipsoid re- 
quires 0(&) time, and testing the intersection of a recti- 
linear box from the index and the query ellipsoid takes 
O(& i) time for a small iteration factor i [SK 971. By 
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using appropriate approximations, these complexities 
may be reduced to linear time. In order to meet this ex- 
pectation, the selected approximations should be simple 
for storage and computational reasons. On the other 
hand, the approximation should have a high quality of 
approximation to the ellipsoid so as to save as many ex- 
act evaluations as possible. ‘Ihe impact of such methods 
on the performance has to be evaluated by experiments 
which require the availability of approximation te&- 
niques that are competitive with the exact ellipsoid que- 
ry processing algorithm. The relevance of reducing the 
number of distance evaluations in comparison with the 
overall runtime will be demonstrated later in this paper. 
In the past, the use of approximation techniques for effi- 

cient query processing was extensively investigated in the 
context of 2-D spatial database systems, in particular to ef- 
ficiently support point and range queries [BIG 931 
[KSB 931 as well as spatial joins [BK 941 [Bri 941. From 
the investigated types, conservative approximations in par- 
ticular meet the requirements of range query processing. 
Since they totally enclose the exact objects, conservative 
approximations guarantee no false drops for range query 
processing. In this paper, we demonstrate how to adapt con- 
servative approximations to ellipsoid range and k-nearest 
neighbor query processing in order to keep the number of 
false hits as low as possible. 

Note that the conservative approximation of a given que- 
ry region itself is a query region. This means that it has a 
boundary and a defined extension similar to the original 
query region. However, this idea does not extend to k-near- 
est neighbor queries, which play an important role for simi- 
larity search [Sei 971 [SK 981. This query type does not cor- 
respond to defined query regions but is based on similarity 
distance functions. We have already become acquainted 
with an approximation technique for distance functions 
which has a similar importance for similarity query pro- 
cessing as the conservative approximations for spatial que- 
ry processing, namely the lower-bounding property 
[FRM 941 [SK 981. 

The paper is organized as follows: In section 2, efficient 
processing of similarity queries is described including the 
improvements to state-of-the-art algorithms for similarity 
search. Section 3 covers three approximation types: The 
minimum bounding box, the minimum bounding sphere 
and the combination of both. In section 4, we present the re- 
sults of our experiments that reveal the performance en- 
hancement. Section 5 concludes the paper. 

2 Efficient Processing of Similarity Queries 
The specific query types that occur in the context of sim- 

ilarity search are range queries, nearest neighbor queries 
and k-nearest neighbor queries. Since in current databases 
strong efficiency requirements have to be met, a fast pro- 
cessing of these complex similarity queries is crucial. As 
mentioned above, the evaluation time of our adaptable sim- 
ilarity distance functions is quadratic and, therefore, con- 
sumes a great deal of CPU-time. In order to reduce the num- 

ber of expensive exact distance evaluations, we propose 
techniques to efficiently process similarity queries by intro- 
ducing approximation-based distance evaluation. The pre- 
sented algorithms work on access methods which manage 
the secondary storage pages by rectilinear hyperboxes, e.g. 
minimum bounding boxes (MBBs), in order to form higher 
level directory pages. 

2.1 Approximation-based Similarity Range Query 

The similarity range query is a fundamental query type 
which can be defined as follows: Let the symbol 0 denote 
the universe of all objects that may occur as database ob- 
jects or query objects. For every type of similarity search, a 
distance function d: 0 x 0 + Sx, has to be provided such 
that d(o,, 02) measures the (dis-)similarity of two objects 
o1 and oz. By DB E 0, let us denote an actual database. We 
specify similarity range queries by a query object q and a 
range value E, and the answer set is defined to contain all 
the objects s from the database that have a distance to the 
query object q of less than or equal to E: 

Definition 1 (Similarity range query). For a query object 
q E 0 and a query range E E ‘%i , the similarity range que- 
ry returns the set: 

sim,(&) = {o E DBI d(o, q) 5 &} 

From a geometric point of view, the given distance func- 
tion and the range value E define a region around the query 
object q. Thus, the similarity range query reports all data 
objects which are contained in this region. Processing range 
queries on a multidimensional access method is performed 
as follows: The search algorithm starts from the root and 
then traverses the tree recursively. At each directory node, 
the entries (MB&) which intersect the query region are 
identified and the search is directed downwards. At data 
nodes, all objects which are contained in the query region 
are finally reported. There are two query-dependent compo- 
nents in this algorithm: The method intersects(box, region) 
returns true if a MBB in a directory node intersects the que- 
ry region, and the method contains(object, region) returns 
true if a data object is located inside the query region. 

In the case of adaptable similarity models based on qua- 
dratic form distance functions, both methods have to deter- 
mine the expensive exact distance of each considered object 
(MBB or data object) to the query region. We observed that 
the time for distance calculation highly affects the CPU 
time which in turn represents a high percentage of the over- 
all runtime. Thus, we are strongly interested in reducing the 
number of exact distance evaluations. The basic idea of our 
approach is to adapt the concept of conservative approxi- 
mations to similarity range queries. Conservative approxi- 
mations of query regions totally enclose the complete query 
region and can efficiently be used in filter steps to generate 
candidates since they guarantee no false drops and ideally 
produce only a small number of false hits. Desired models 
are approximations that are less complex than the original 
region (which is an ellipsoid in our case) and therefore need 
considerably less evaluation time, if possible only linear 
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evaluation time. By introducing conservative approxima- 
tions to similarity range queries, we now can exploit the in- 
clusion of the query region in the approximation to avoid 
unnecessary exact distance evaluations. Thus, the exact dis- 
tance is evaluated only if the approximation of the consid- 
ered object fulfills the query condition. In figure 1 we show 
the code of the improved intersects(box, query, approx) and 
contains(object, query, approx) algorithms. Note that in 
method intersects the intersection test with the exact query 
region could be omitted without affecting correctness. This 
defers the evaluation of exact distances to data nodes which 
could improve or decrease performance. We analyze this is- 
sue later in section 4.2. 

method intersects (DirEntry box, Region query, 
Region approx) + bool; 

1 
if not intersects (box, approx) then return false; 
else if not intersects (box, query) then return false; 

else return true; 

method contains (DataEntry object, Region query, 
Region approx) + bool; 

if not contains (object, approx) then return false; 
else if not contains (object, query) then return false; 

else return true; 

Figure 1: Approximation-based intersection and containment 
evaluation 

In order to show the correctness of our approximation- 
based approach, we prove that the proposed algorithms 
guarantee no false drops. 

Lemma 1. The algorithms of figure 1 produce no false 
drops for conservative approximations. 

Proof. Given a data object obj, a MBB box, a query re- 
gion query = sim,(e) and a region approx. If approx is a 
conservative approximation of query, then approx I> query 
is true and the following implication holds: 

box n approx = 0 
j boxnquery = 0 
ti trobj E box: obj E sim&e) 

Furthermore, for data nodes we have: 
obj +Z approx a obj 6 query A obj e sim,(E) . 0 

Generally, we define the approximation quality Qopprox 

by the ratio of the volume of the approximation to the vol- 
ume of the original region, e.g. 

Q crpprox = 
Vol( approx( region)) 

Vol( region) ’ 
Thus, a larger ratio cor- 

responds to a worse approximation quality. Obviously, the 

higher the quality of the conservative approximation, the 
higher is the performance gain in query processing time. In 
section 3, we will consider several promising conservative 
approximations models. 

2.2 Approximation-based k-Nearest Neighbor Query 

Since similarity distance functions are quite abstract, the 
user must be experienced with typical similarity distances 
in order to specify useful similarity range queries. This is 
the reason why k-nearest neighbor queries are becoming 
more and more important for similarity search in large data- 
bases of complex objects. The k-nearest neighbor query re- 
trieves, for any query object, the k most similar objects from 
the database and can be defined as follows: 

Definition 2 (k-nearest neighbor query). For a query ob- 
ject q E 0 and a query parameter k 2 1, the k-nearest neigh- 
bor query returns the set NN,(k) E DB that exactly con- 
tains k objects from the database for which the following 
condition holds: 

Vo E NN,(k), Vo’ E DB - NN,(k): d(o, q) I d(o’, q) 

Note that possibly several objects in the database exist 
which have the same distance to the query object as the k-th 
object in the answer set. In this case, the k-h object in 
NN,(k) is a non-deterministic selection of one of those 
equally distanced objects. Several approaches to process k- 
nearest neighbor queries are available from the literature 
which are suitable for introducing approximation based dis- 
tance evaluation, for instance [Hen 941 [RKV 951 [HS 951. 
In this paper, we focus on the similarity ranking algorithm 
proposed in [HS 951 which is proven to be optimal with re- 
spect to the number of accessed index pages [BBKK 971 
and can easily be adapted to process k-nearest neighbor 
queries by ranking exactly k data objects. The basic idea of 
this algorithm is to visit nodes in the order of their mindist, 
e.g. the minimum distance from the query object to any pos- 
sible object inside a node. Although the original ranking al- 
gorithm employed the Euclidean distance function, the 
method works for any arbitrary distance function. The algo- 
rithm is generally designed for multidimensional access 
methods that hierarchically manage page regions. There- 
fore, it can be applied to the R-tree [Gut 841, the R+-tree 
[SRF 871, the R*-tree [BKSS 901, the X-tree [BKK 961 
[Ber+ 971 and many others [GG 971. 

Considering the k-nearest neighbor algorithm, we en- 
counter a similar situation as in the standard range query al- 
gorithm: For each considered MBB and data object, the ex- 
act distance to the query object has to be evaluated, which 
again has a quadratic complexity for adaptable similarity 
distance functions. Thus, as in the case of similarity range 
queries, our goal is to reduce the number of expensive dis- 
tance evaluations. Obviously, we cannot adapt the concept 
of conservative approximations to k-nearest neighbor que- 
ries, since this query type does not correspond to delimited 
query regions. Rather, we introduce approximate distance 
functions to the k-nearest neighbor algorithm which are 
lower-bounds to the exact quadratic form distance function. 



Formally, for any lower-bounding distance function dopproX 
of a given object distance function d,,, the following 
holds: V’o, q E 0: dappm(a q) 5 d,,,ct(o, 4). 

We can then exploit the lower-bounding property in the 
following way: When the distance to MBB or a data object 
has to be evaluated, we first calculate the minimum distance 
to the query object with respect to the lower-bounding dis- 
tance function d,p,,,OX. If this distance is less than or equal 
to the distance of the query object to the actual k-th nearest 
neighbor, the exact distance to the query object is evaluated 
using d,,,, . If during the search process no k-th data object 
has been found yet, the exact distance of the query object to 
the k-th nearest neighbor is defined to be some value that is 
greater than any possible distance value in the underlying 
data space. Additionally, we only insert those nodes into the 
priority queue, which have a minimum distance less than or 
equal to the distance of the query object to the actual k-th 
nearest neighbor. In figure 2 we present the code of our pro- 
posed approximation-based k-nearest neighbor algorithm. 

method XTree :: k-ranking (Object query, 
DistFunction dexoc,, DistFunction dapproX, Integer k) 

I 
PriorityQueue queue; II node queue 
SortedList results; I/ objects and distances 

queue.insert(O, root); 
while not queue.isempty() do 

Element first = queue.pop(); 
if first.distance > results[k].dist then break; 
else case first isa 
DirNode: 
foreach child in first do 

ifd appro*(query, child.box) I results[k].dist then 
if de&query, childbox) < results[k].dist then 

queue.insert(d,,,Xquery, child.box), child); 
DataNode: 
foreach obj in first do 

if d oppmx(query, obj) I results]k].dist then 
if de&query, obj) 5 results[k].dist then 

results.insert(d,,Jquery, obj), obj); 
end 

enddo; 
report (results, k); 

1 

Figure 2: Approximation-based k-nearest neighbor algorithm 

The correctness of our approach is shown by the follow- 
ing lemma 2: 

Lemma 2. The algorithm of figure 2 produces no false 
drops for lower-bounding distance functions. 

Proof. Given a data object obj, a directory entry box, a 
query object query and two distance functions d,, and 
d opprox. Let nnk be the actual k-th nearest neighbor of the 

query object query. If dapproX is a lower-bounding distance 
function of d,,, , then for all O,flE 0, 
d at,r,rax(o, q) < dexact(o, q) is true and the following impli- 
cation for directory nodes holds: 

d approx(quev~ W > 4.Awry9 nn,) 

* d,,,(wv9 box) > &&query, nn,> 

+ Vobj E box: d,,( query, obj) > d,,( query, nnJ 

3 Vobj E box: obj G NN,,,,(k) 

Additionally, the following implication holds for data 
nodes: 

d app,(quev~ OW > 4m,,(quev, nnJ 

3 d,,(wev, OW > d,,(quem nn,> 

3 obj +Z NN,,,,(k) . 0 

Obviously, the efficiency of our approach depends on 
the quality of the lower-bounding distance function. Main- 
ly, we are interested in approximation models that yield 
lower-bounding distance functions which are less complex 
to evaluate than the original distance function. Further- 
more, the maximum improvement is achieved with the 
greatest of all lower-bounding distance functions with re- 
spect to the selected approximation model. In the following, 
we propose distance functions which exactly meet these re- 
quirements. 

3 Conservative Approximation Techniques 
Various types of conservative approximation techniques 

have been investigated in the context of Geographic Infor- 
mation Systems and 2-D spatial database systems [BKS 931 
[KSB 931, and we adapted them to our ellipsoid queries in 
d-dimensional spaces. Both the Minimum Bounding Box 
(MBB) and the Minimum Bounding Sphere (MBS) require 
only O(d) space and O(d) time for testing intersections 
and containments. The Convex Hull as well as Minimum 
Bounding n-Corners mismatch the spherical character of 
ellipsoids. In comparison with the MBB, the Rotated Mini- 
mum Bounding Box (RMBB) is not restricted to be rectilin- 
ear which, in general, yields a better approximation quality. 
However, the RMBB requires O(d2) space to represent its 
orientation in the d-dimensional space, and the computation 
of intersections, containments and distances is, at best, per- 
formed by linear programming in O(drd’*l) [PTVF 921 or 
O(d!) [Sei 901 time. Thus, the RMBB is not expected to be 
beneficial when approximating ellipsoids, and we concen- 
trate on the MBB and the MBS as the most promising ap- 
proximation techniques. On top of these basic approxima- 
tions, we demonstrate how to combine them to exploit the 
advantages of both. 

Each technique, MBB and MBS as well as the combined 
approximation, are applied to both similarity range queries 
and k-nearest neighbor queries. For this purpose, we have to 
provide two instances for each model: First, the conserva- 
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tive approximation itself which represents a geometric re- 
gion enclosing the query ellipsoid, and second, an approxi- 
mate distance function that lower-bounds the respective 
quadratic form distance function. Since both instances are 
closely related, we focus mainly on the more general case of 
lower-bounding distance functions. 

Whereas we already defined the ellipsoid distance func- 
tion dj(p, q) to be a quadratic form, we additionally intro- 
duce the symbol ellip(A, q, E) to represent an ellipsoid of 
level E around a query point q as query region: 

ellip(A, q, E) = {p E ‘%‘: di@, q) I E) 

3.1 Minimum Bounding Box Approximation 

The Minimum Bounding Box (MBB) of a spatial object 
is the smallest rectilinear box that totally encloses the ob- 
ject. The MBB is a favorite approximation technique due to 
its compact representation which requires only 2 . d pa- 
rameters in d-dimensional spaces since it suffices to store 
the lower and upper bound in each dimension. It is easy to 
determine and highly compatible to rectilinearly organized 
multidimensional access methods. Figure 3 provides a 2-D 
example. 

Figure 3: Minimum Bounding Box (MBB) of a 2-D ellipsoid 
of level E. 

The MBB(A, q, E) of an ellipsoid ellip(A, q, E) may be 
computed by determining the tangential hyperplanes whose 
normal vectors are parallel to the coordinate axes. Thus, we 
obtain for the i-th component of MBB(A, q, E) : 

MBB(A, 4, E)i = [qi- J-9 qi + Jz] 

We defer the formal derivation of this formula since the 
same result is immediately obtained from the correspond- 
ing lower-bounding box distance function which we derive 
in the following. 

Lower-Bounding Box Distance Function. The generali- 
zation of boxes to distance functions involves a weighted 
maximum norm L, which corresponds to rectilinear rect- 
angular query regions (cf. figure 4). The common case of 
non-square rectangles is represented by involving weight- 
ing factors for the individual dimensions. The following 
definition formalizes the minimum bounding box distance 
function as required for our purpose. 

Figure 4: Greatest lower-bounding box distance function 

Definition 3 (MBB distance function). Let A be a simi- 
larity matrix, and A-’ its inverse. The minimum bounding 
box distancefunction di,,,, of A is defined as follows: 

Note that dhBBo is well-defined since A-’ exists for 
every positive definite matrix A. The following theorem in- 
dicates that the MBB distance function represents a lower 
bound of the original ellipsoid distance function. 

Theorem. For every similarity matrix A and every 
p, q E 9Xd, the MBB distance function dL,,(,, is a lower 
bound of the ellipsoid distance function di : 

dima(Aj(Pt d 5 d;(P, 4) 

Proof. We show that for every p, q E %‘, an intermedi- 
ate point pa exists such that the following formula is true 
which immediately implies the proposition: 

Figure 5 demonstrates the existence of such an auxiliary 
point pa, given as the tangential point of the box and the el- 
lipsoid of which the box is the MBB. This definition implies 

dLB,(,,(p,, q) = di@,, q) . Obviously, pa is located on 

the Same box as P, i.e. d~,acA,@o, q) = d~BB(Aj(P, q) , and 
the ellipsoid of pa is smaller than the ellipsoid on which p 

is located, i.e. di(p,, q) I di(p, q) . From these consider- 
ations, the proposition follows immediately. A formal proof 
is provided in the appendix of this paper. 0 

The fact pt p itself may be the2tangential point pa 
shows that dM9,&h d can reach d,(p, q) . This case in- 
dicates that dMBBCAj represents the greatest of all box- 
shaped lower-bounding distance functions. As a conse- 
quence, dk,, g uarantees the best filtering quality that 
can be achieved for lower-bounding distance functions that 
are based on a weighted maximum norm. 
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Figure 5: The auxiliary point p0 shares its box distance with 
p but is located on a smaller ellipsoid thanp. At?,,, the box and 

ellipsoid distances are equal: di(pa, q) = CIMBBcA+pO, q) 

Geometry of the Minimum Bounding Box. Concluding 
the introduction of MBB approximations, we demonstrate 
how the MBB of an &-ellipsoid is obtained from the MBB 
distance function. Lemma 3 shows that an &-range of the 
MBB distance function actually represents the minimum 
bounding box MBB(A, q, E) of the corresponding ellip- 
soid. 

Lemma 3. For every similarity matrix A, query point q, 
and qange parameter E, the MBB distance range 
{pl dMBBOI@, q) C: E} exactly represents the minimum 
bounding box MBB(A, q, E) of the ellipsoid ellip(A, q, E) . 

Proof. For all p, the following equivalences are true: 

&,,(,,b’~ 4) 5 E * 

w Vi: qi- E.(A )iiIpiSqi+ &.(A )ii C+ J-Y- Jr 

e p E MBB(A, q, E) .o 

3.2 Minimum Bounding Sphere Approximation 

The Minimum Bounding Sphere (MBS) of a spatial ob- 
ject is the smallest sphere that totally encloses the object. 
The MBS requires only d + 1 parameters in d-dimensional 
spaces to store the radius and the d coordinates of the center 
point. For ellipsoids, the center of the MBS coincides with 
the center of the ellipsoid. Figure 6 provides an example in 
the 2-D. 

Lower-Bounding Sphere Distance Function. Also for the 
M2BS approximation model, we provide a distance function 
dy,,+,) that lower-bounds the ellipsoid distance function 
dA . An appropriate generalization of spheres to distance 
functions leads to the Euclidean distance which is scaled by 
a factor that corresponds to the radius of the sphere. 

Definition 4 (MBS distance function). Let A be a simi- 
larity matrix, and ~2” the minimum eigenvalue of A. The 
minimum bounding sphere distance function di,,,, of A 

Figure 6: Minimum Bounding Sphere (MBS) of an ellipsoid 
ellip(A, q, E) . The radius of the MBS depends on the small- 

est eigenvalue ~2, of A, and on the level E. 

is defined to be the scaled and squared Euclidean distance 
function: 

&,s,,@~ 4) = din (P - s12 

Theorem. F;r every similarity matrix A, the MBS dis- 
tance function d,,,@, of A is a lower bound of the ellipsoid 
distance function dA, i.e. for all p, q E 5Rid the following 
holds: 

dims,,@, 4) 5 d:(Pv d 

Proof. Since the matrix A is positive definite, the diago- 
nalization A = V. W. VT exists where V. VT = Id, and 
the diagonal matrix W = diag(wf, . . . . w$ consists of the 
eigenvalues wf, . . ., wi of A. When considering the mini- 
mum wk, of these eigenvalues, we obtain: 

d;(p,q) =(p-q)TW.f.(p-qf = 

= ~;=,w;.(pv-qv); 2 ‘c;,,&“.(PV-qV): = 

= w~,.(P-q).V.VT.(p-q)T = d~,,,,@,q).O 

Note that for a pertain p, d&,&p, q) reaches di(p, q) 
and, therefore, dMssCAj represents the greatest lower- 
bounding distance function of the spherical type. This opti- 
mality criterion ensures the best approximation quality that 
could be achieved for the type of scaled Euclidean distance 
functions. 

Geometry of the Minimum Bounding Sphere. For a giv- 
en center point c and radius r, the;ph;re is represented by the 
function sphere, ,<p) = (p - c) /r , and the inequality: 

sphere, ,(p) I 1 w (p - c)~ 5 r2 

It remains to determine the radius of the minimum cir- 
cumscribing sphere. Observe that the minimum bounding 
sphere in particular touches the ellipsoid, i.e. the ellipsoid 
and its MBS have some points in common. A necessary 
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condition which holds for all touching and smooth surfaces 
is that the normal vectors of the objects at any tangential 
point are linearly dependent, i.e. parallel. The normal vector 
of a surface is equal to the gradient of the corresponding 
surface function. We set the gradient of the centered sphere 
function, p2/r2, in relation to the gradient of the centered 
ellipsoid function, p . A . PT , in order to state the linear de- 
pendency: 

Vellip,&) = h . Vsphere,(p) 

2.p.A = ?v2.p/r2 

p.A = ?h2.p 

BJ means of linear algebra, ;his staiement says that 
h/r is one of the eigenvalues w,, . . ., wd of the matrix A, 
and the tangential point p corresponds to an eigenvector. 
Since we are not yet aware of the value of h, we assume the 
equality of the spherical function and the ellipsoid function 
for every tangential point pt that fulfills the above gradient 
equation: 

ellip,(p,> = sphere,@,) @ pr . A . PT = p?r2 @ 

h/r2.p,.pr = pf/r2 e h = 1. 

Thus, every eigenvalue of the matrix A directly repre- 
sents the reciprocal square of a radius 1 /r2 that belongs to 
the corresponding tangential point. Vice versa, the candi- 
date values for the radius are given by the reciprocal square 
roots of the eigenvalues of A, that is l/w,, . . ., l/wd. 
Since we have to determine the bounding sphere as a con- 
servative approximation of a given ellipsoid region, that is: 
ellip,@,) 5 E , we have to select the maximum radius rmx 
that occurs over all tangential points to obtain the sphere 
p2/r21E m p2<E. r . This requirement immediately 
implies that we have to choose the minimum eigenvalue of 
A for the computation of the desired radius r of the mini- 
mum bounding sphere: 

r 
MBS(A, E’) 

= max($, . . ..$) = $ 

3.3 Combined Conservative Approximations 

Both the MBB and MBS approximation have specific 
characteristics with respect to their approximation quality 
and their potential of improving query processing efficien- 
cy. In order to exploit the advantages of both techniques, it 
is near at hand to look for combinations of these basic ap- 
proximations. In the following, we demonstrate how basic 
conservative approximations are combined to complex ap- 
proximations, and how to combine basic lower-bounding 
distance functions to complex ones. 

Combination of Approximations. Given an ellipsoid 
ellip(A, q, E), let C = { APP(A, q, E)} be a set of conserva- 
tive approximations of ellip, e.g. 
C = (MBB(A, q, E), MBS(A, q, E)} . By the following 
lemma 4 we show that the intersection of the approxima- 

tions of C again is a conservative approximation. For the 
proof, we exploit the property that each of the conservative 
approximations totally encloses the original object, and 
hence, their intersection also encloses the object: 

Lemma 4. Given an ellipsoid ellip(A, q, E), let 
C = { APP(A, q, E)) be a set of conservative approxima- 
tions of dip. Then, the intersection of all APP(A, q, E) is 
again a conservative approximation of ellip: 

n APP(A, q, E) a ellip(A, q, E) 

APPE C 

Proof. Since every APP E C is a conservative approxi- 
mation of ellip, it fulfills the relationship 
APP(A, q, E) z, ellip(A, q, E) which is equivalent to the im- 
plication 

Vp E sd : p E ellip(A, q, E) 3 p E APP(A, q, E) 

This implication is true for all APP E C and, hence, also 
for the intersection of the APPs. Overall, we obtain the fol- 
lowing implication which is equivalent to the proposition as 
it holds for every p E 3’ : 

PE ellip(A,q,&) a p E n APP(A, q, E) 0 
APPE C 

Figure 7 shows a 2-D example for a conservative ap- 
proximation that combines the minimum bounding box 
(MBB) and the minimum bounding sphere (MBS) approxi- 
mation of an ellipsoid. Obviously, the volume of the inter- 
section is smaller than the volumes of the individual com- 
ponents which results in an improved approximation 
quality in comparison with the basic approximations. 

MBB(A,q& n MBS(A,q,d 

Figure 7: Combined approximation (here: MBB and MBS) of 
an ellipsoid of level E. 

Combination of Lower-Bounding Distance Functions. 
Analogously to the approximation techniques mentioned 
above, we present a combination of lower-bounding dis- 
tance functions that again lower-bounds the exact similarity 
distance function. By the subsequent formal proposition, 
we show that the maximum of the component distance 
functions fulfills this requirement. 

Definition 5 (Combined distance function). Let 
C = {df } be a set of distance functions. Then, the com- 
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bined distance function d$ is defined to be the maximum of 
the component functions: 

d2&, q) = max{&p, 411 

Theorem. For every similarity matrix A and2every set of 
lower-bounding distance functions C 7 { dAPPcA,} , i.e. 
d&,PcA,(p, q) 5 di@, q) for all p, q E 32 , the combined 
distance function d, is a lower bound of the ellipsoid dis- 
tance function di , and, for all p, q E 3td it holds that: 

Proof. For all p, q E 5Rd, the following equivalences are 

me: d2&, q) 5 d$p, q) e max{d&(,+, dls &p, d 

ti 
2 

Vd,,(,): d&+&, q) I d:(p, q) . The final inequali- 

ty represents the precondition. 0 
In particular, the maximum distance function is the 

greatest lower-bounding distance function that can be de- 
rived from a set of distance functions since it always returns 
the greatest value of all component functions. This maxi- 
mum property guarantees an optimal selectivity and, there- 
fore, yields the best performance improvement for k-nearest 
neighbor query processing. 

4 Experimental Evaluation 

In the experimental evaluation, we applied our approxi- 
mation techniques to a large image database, containing 
8-D color histograms of 112,000 images as well as to a da- 
tabase of l,OOO,OOO objects that are uniformly distributed in 
the 8-D. The experiments were performed on an HP-735 
under HP-UX 10.20. The approximation techniques will be 
denoted by BOX for box approximation, SPHERE for 
sphere approximation, and COMB for the combination of 
BOX and SPHERE. The symbol NONE stands for the pure 
exact ellipsoid evaluation without using any approxima- 
tion. 

All similarity matrices we applied were derived from our 
color similarity search system. In the context of this system, 
the user can specify the four parameters 6, w,, wg, and wb 
from which the components aii of the similarity matrix A are 
determined by the following formula from [Haf+ 951: 

aij = e 
-a. (d&s c,Vd,,J2 

Thus, d is a positive constant that affects the overall 
shape of the query ellipsoid, and dw(ci, cj) represents the 
weighted Euclidean distance of the basic colors ci and cj 
The weighting factors w = (wr, wg, wg) denote the rela- 
tive weight of the red, green, and blue component in the 
RGB color space. In the following, we specify our similari- 
ty matrices by these four parameters. 

Since the performance aspect is a basic motivation for 
our approach, we first show the high impact of the quadratic 
evaluation time for an ellipsoid function on the total query 
time (cf. figure 8). For this experiment, we used different 

matrices (cf. table 1) to perform 100 different range queries 
as well as 100 different 5-nearest neighbor queries. The 
measured average percentage of the evaluation time for the 
corresponding ellipsoid function compared with the total 
query time was as high as 74%. Such a high percentage of 
the evaluation time clearly underlines the relevance for ef- 
ficiency improvements. 

a) Range Queries b) k-nn Queries 

100% 

80% 

60% 

40% 

20% 

0% 
different similarity matrices 

Figure 8: For adaptable similarity search, CPU time is a high 
percentage of the overall runtime. a) Range queries on Im- 
ageDB, b) k-nn queries (k=5) on ImageDB. 

Table 1: User-defined parameters for the matrices used in 
our experiments 

4.1 Approximation Quality 

In our further experiments, we measured the perfor- 
mance of our approximation algorithms with respect to 
their dependency on different similarity matrices. Since the 
effects and performance of an approximation is mainly in- 
fluenced by the shape of the corresponding ellipsoid, we 
characterize the corresponding ellipsoid through a geomet- 
ric measure instead of user-defined parameters. 

For explaining the quality of the sphere approximation, 
we denote sphericify as the ratio of the volume of the sphere 
divided by the volume of the ellipsoid, which complies with 
the definition of the approximation quality in section 2. 
This means a sphericity of about 1 characterizes a similarity 
matrix almost representing a sphere, whereas a high sphe- 
ricity value indicates that the minimum bounding sphere is 
considerably larger than the ellipsoid. 

To demonstrate the quality of the box approximation, 
two measures seem to be adequate. First, the approximation 
quality of the minimum bounding box can be used for our 
purposes. The disadvantage of this measure is that it does 
not consider the obliqueness of the ellipsoid which obvious- 
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ly affects the approximation quality. Therefore, a second 
possible measure is the volume ratio of the minimum 
bounding box and the rotated minimum bounding box. 

The influence of all these matrices on the parameters is 
reflected in Figure 9. We can ascertain for our different ma- 
trices that matrices with high values of sphericity also have 
high values in the two measures for the minimum bound 
box quality. Similarly, matrices with low values of spheric- 
ity have low values in each measure. In the following, we 
will use the parameter sphericity for describing the matrices 
used in our experiments. 

MBS MB6 isoboxlrotbox 

Figure 9: The relative volume of the approximations (approx- 
imation quality) are used as shape parameters of ellipsoids. 

4.2 Approximations and Exact Evaluations in the 
Directory 

Considering the algorithms of section 2, the question 
emerges if evaluating exact distances solely in data nodes 
but not in directory nodes could be more efficient than our 
approach. Obviously, deferring exact evaluations to data 
nodes results in a reduced evaluation time per directory 
node. However, as directory nodes are not exactly evaluat- 
ed, the effect of this approach is that a larger number of data 
nodes have to be tested. Thus, the decision to evaluate exact 
distances only in data nodes is a trade off between a reduc- 
tion of computation time in the index and an increased num- 
ber of data nodes that are evaluated. To analyze this effect, 
we performed a test of range queries for various query rang- 
es, and the similarity matrix corresponds to an ellipsoid 
with sphericity 1.035. As figure 10 depicts, evaluating the 
exact distance in both directory nodes and data nodes yields 
a better overall time in comparison with restricting the exact 
distance evaluation to data nodes. 

4.3 Dependency on the Similarity Matrix 

For our next experiments, we performed a sample of 
range queries for different similarity matrices correspond- 
ing to ellipsoids having a sphericity of 1.035 up to 2,200. 
On both databases, the image database as well as the uni- 
formly distributed data, the range queries returned between 
1 and 10 results on the average. Figure 11 depicts the per- 

n deferred 
exact 
evaluation 

n imnxlite 
exact 
evaluation 

query ranges 

Figure 10: Comparison of deferred and immediate exact eval- 
uations in the index (example: image database). 

centage of exact ellipsoid evaluations that were saved by 
using the approximation techniques, due to approximation 
based exclusions. For the image database, more than 90% 
of the ellipsoid evaluations are avoided in all of our experi- 
ments. In case of uniformly distributed data, 90% of ellip- 
soid evaluations are avoided only for ellipsoids that are 
quite similar to spheres, and for less spherical ellipsoids, 
still 20% to 60% of the expensive ellipsoid evaluations are 
avoided. Obviously, the combined approximation yields the 
most savings. So we have found out that our approximation 
yields a very high percentage of saved exact evaluations. 
Next, we investigated the result of the savings. 

a) Image b) lhiform 

sphericity of ellipsoid 

Figure 11: Saved evaluations of intersection and containment 
tests for range queries using similarity matrices that corre- 

spond to ellipsoids with different sphericities. 

In figure 12, the impact of avoiding exact ellipsoid eval- 
uations on the elapsed time is illustrated for the same sam- 
ple of range queries as above. For the image database, the 
factor of performance improvement ranges from 2.8 to 6.3, 
depending on the sphericity of the ellipsoid. For the uni- 
formly distributed data, we observed the same improve- 
ment factor of 6 only for almost spherical ellipsoids. For 
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higher sphericity values, the approximation quality is worse 
and in some cases, it would be better off to directly test the 
exact ellipsoid tests without using approximations. An opti- 
mizer could use this information in order to decide which 
approximation should be used, if any, depending on the 
shape of the query ellipsoid. 

a) Image Database 

sphericity of ellipsoid 

b) Uniform Distribution 

0.5 

g 0.4 
k 
Q) 0.3 
E 
-g 0.2 
P) 
a 0.1 
s 
al 0 

Figure 12: Elapsed time for range queries depending on the 
sphericity of the query ellipsoid. 

4.4 Dependency on Query Parameters 

For our next series of experiments, we show the robust- 
ness of our approximation approach concerning different 
query types. Therefore, we performed samples of range 
queries and k-nearest neighbor queries for various query 
ranges and query parameters k. The similarity matrix corre- 
sponds to an ellipsoid with sphericity 1.035. Figure 13 de- 
picts the elapsed time for query processing depending on 
the average number of results that are returned by the range 
queries. On average, the used query ranges return 2.8 to 19 
results from the image database and 5.2 to 50.6 results from 
the uniformly distributed data. In these experiments, the ap- 
proximations outperform the pure ellipsoid evaluation by a 
factor of 2.7 (image database) and 4.2 to 6.3 (uniform distri- 
bution). 

a) Image Database 

v 0.06 
g 0.05 
g 0.04 
-= 0.03 
1 0.02 
e 0.01 
7i 0 

2 El R co 7 co al 
ti i us cd 

average number of results 

b) Uniform Distribution 

0.16 
8 0.14 
8 0.12 

E 0;: 
z 0.06 
g 0.04 
$ 0.02 

0 

M 8 u-i cd G 5 3 
s i% z 

averag;number of results 

Figure 13: Elapsed time for range queries depending on the 
query range. 

In figure 14, we demonstrate the improvement that we 
achieved for k-nearest neighbor queries for a varying value 
of k. For the image database, we achieved a performance 
gain of approximately 40% for the MBS approximation, 
and for the uniform distribution an acceleration of 35% to 
40%. 

5 Conclusions 

In this paper, we investigated the efficiency of adaptable 
similarity search as it occurs in a variety of modern database 
applications including multimedia, molecular biology, 
medical imaging, and CAD/CAM. Based on the observa- 
tion that the exact evaluation of the underlying quadratic 
form distance functions consumes a high percentage of the 
overall search time, we developed an approximation-based 
approach for improving the performance of similarity query 
processing. We adapted the concept of conservative ap- 
proximations in order to accelerate similarity range queries, 
and, in particular, investigated the Minimum Bounding Box 
(MBB), the Minimum Bounding Sphere (MBS), and the 
combination of these two approximations. Additionally, we 
extended the concepts of these approximation types to 
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3 5 7 9 3 5 7 9 
query parameter k 

Figure 14: Elapsed time for k-nearest neighbor queries for 
various values of k. 

k-nearest neighbor queries. These queries are directly based 
on similarity distance functions rather than on geometric 
query regions. For this purpose, we developed greatest low- 
er-bounding distance functions for each of the considered 
approximation types. In a detailed analysis, we proved the 
correctness of our techniques. For our experiments, we used 
an image database containing 112,000 color histograms, 
and a synthetic database containing 1,000,000 uniformly 
distributed 8-D points. The results demonstrate that by us- 
ing the approximation techniques, a high percentage of the 
expensive exact evaluations can be avoided, depending on 
the data, on the similarity matrix, and on the query parame- 
ters. We observed an improvement of the CPU time by fac- 
tors between 2 and 6 for range queries, and between 1.4 and 
1.7 for k-nearest neighbor queries. 

In our future work, we plan to investigate the impact of 
the similarity matrix, i.e. the geometry of the query ellip- 
soid, on the performance of similarity query processing. 
Provided with this knowledge, a query optimizer can be de- 
veloped that is able to select the most efficient execution 
plan that may or may not include approximations for simi- 
larity search. 
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Appendix 

Formal Proof of the MBB Theorem in Section 3.1: 

For every p, q E %2d, we show the existence of an auxil- 
iary point p,, for which the following formula is true: 

Let j be the index of the component of the difference vec- 
tor p - q that has the maximum value. Then, the MBB dis- 
tance function appears as: 

&BB(,4)(PI 4) = - 
(Pj - qj)* 

(A-’ )jj 

Now we introduce the desired intermediate point p0 by 
the following definition where ej denotes the j-th unit vector: 

pa = q+!!dej.A-’ 
(A-’ h 

At this point, we are prepared to establish the left hand 
side equation of (*) that we proposed at the beginning of the 
proof: 

(0 &.~,,q) = (~~-9) .A. (~~-4)~ = 

= (pi-qj) e,, A-l . A. tA-ljT, eT (Pj-qj) -. 
-1 1 .- = 

(A hj ’ (A-‘)jj 

= (Pj-qj). tA-lI,, (Pj-qj) .- = (Pj - qj)* 
-I - = 

(A h I3 (A-‘)jj (A-’ ljj 

In order to prove the estimation on the right hand side of 
(*), let us represent the vectorp by p0 + Ap , and expand the 
ellipsoid distance function as follows: 

(ii)&p,q) = (po-q+Ap).A.(po-q+Ap)T = 

= &po,q)+2.(p,-q).A.ApT+Ap.A.ApT. 

Note that the last term of the sum, Ap . A . ApT , is great- 
er or equal to zero since A is positive definite. In order to 

prove that the overall sum is greater or equal to di(p,, q) , it 

suffices to show that the second term of the sum vanishes: 

2(p,-q).A4pT = 2.T. , (pj-q.i) e,.A-‘.A.ApT 

(A hj 

= 2 (Pj- qj) .- 
(A-* h 

. ~j = 0 since 

Ap. - I - (p-p ). = p,-q.-(pj~qj).(A-‘)jj = () 
01 I I 1 

(A h 

From (i) and (ii), we obtain the overall proposition 
&a(,,@, 4) 5 d;(P, d . 0 
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