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Abstract 

For similarity search in high-dimensional vec- 
tor spaces (or ‘HDVSs’), researchers have pro- 
posed a number of new methods (or adapta- 
tions of existing methods) based, in the main, 
on data-space partitioning. However, the 
performance of these methods generally de- 
grades as dimensionality increases. Although 
this phenomenon-known as the ‘dimensional 
curse’-is well known, little or no quantita- 
tive a.nalysis of the phenomenon is available. 
In this paper, we provide a detailed analy- 
sis of partitioning and clustering techniques 
for similarity search in HDVSs. We show for- 
mally that these methods exhibit linear com- 
plexity at high dimensionality, and that ex- 
isting methods are outperformed on average 
by a simple sequential scan if the number of 
dimensions exceeds around 10. Consequently, 
we come up with an alternative organization 
based on approximations to make the unavoid- 
able sequential scan as fast as possible. We de- 
scribe a simple vector approximation scheme, 
called VA-file, and report on an experimental 
evaluation of this and of two tree-based index 
methods (an R*-tree and an X-tree). 

1 Introduction 

An important paradigm of systems for multimedia, de- 
cision support and data mining is the need for simi- 
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larity search, i.e. the need to find a small set of ob- 
jects which are similar or close to a given query ob- 
ject. Mostly, similarity is not measured on the objects 
directly, but rather on abstractions of objects termed 
features. In many cases, features are points in some 
high-dimensional vector space (or ‘HDVS’), as such 
they are termed feature vectors. The number of di- 
mensions in such feature vectors varies between mod- 
erate, from 4-8 in [19] or 45 in [32], and large, such as 
315 in a recently-proposed color indexing method (131, 
or over 900 in some astronomical indexes [la]. The 
similarity of two objects is then assumed to be propor- 
tional to the similarity of their feature vectors, which 
is measured as the distance between feature vectors. 
As such, similarity search is implemented as a nearest 
neighbor search within the feature space. 

The conventional approach to supporting similar- 
ity searches in HDVSs is to use a multidimensional 
index structure. Space-partitioning methods like grid- 
file [27], K-D-B-tree [28] or quadtree [18] divide the 
data space along predefined or predetermined lines 
regardless of data clusters. Data-partitioning index 
trees such as R-tree [21], Rf-tree [30], R*-tree [a], 
X-tree [7], SR-tree [24], M-tree [lo], TV-tree [25] or 
hB-tree [26] divide the data space according to the 
distribution of data objects inserted or loaded into 
the tree. Bottom-up methods, also called clustering 
methods, aim at identifying clusters embedded in data 
in order to reduce the search to clusters that poten- 
tially contain the nearest neighbor of the query. Sev- 
eral surveys provide background and analysis of these 
methods [l, 3, 15, 291. Although these access methods 
generally work well for low-dimensional spaces, their 
performance is known to degrade as the number of 
dimensions increases-a phenomenon which has been 
termed the dimensional curse. This phenomenon has 
been reported for the R*-tree [7], the X-tree [4] and 
the SR-tree [24], among others. 

In this paper, we study the performance of both 
space- and data-partitioning methods at high dimen- 
sionality from a theoretical and practical point of view. 
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Under the assumptions of uniformity and indepen- 
dence, our contribution is: 

l We establish lower bounds on the average per- 
formance of existing partitioning and clustering 
techniques. We demonstrate that these methods 
are outperformed by a sequential scan whenever 
the dimensionality is above 10. 

l By establishing a general model for clustering and 
partitioning, we formally show that there is no or- 
ganization of HDVS based on clustering or parti- 
tioning which does not degenerate to a sequential 
scan if dimensionality exceeds a certain threshold. 

l We present performance results which support our 
analysis, and demonstrate that the performance 
of a simple, approximation-based scheme called 
vector clppro~cimation file (or ‘VA-file’) offers the 
best, performance in practice whenever the num- 
ber of dimensions is larger than around 6. The 
VA-File is the only method which we have stud- 
ied for which performance can even improve as 
dimensionality increases. 

The remainder of this paper is structured as fol- 
lows. Section 2 introduces our notation, and discusses 
some properties of HDVSs which make them problem- 
atic in practice. Section 3 provides an analysis of near- 
est neighbor similarity search problems at high dimen- 
sionality, and demonstrates that clustering and parti- 
tioning approaches degenerate to a scan through all 
blocks as dimensionality increases. Section 4 sketches 
the VA-File, and provides a performance evaluation of 
four methods. Section 5 concludes. 

Related Work 

There is a considerable amount of existing work on 
cost-model-based analysis in the area of HDVSs. 
Early work in this area did not address the specific 
difficulties of high dimensionality 111, 20, 311. More 
recently, Berchtold et al. [5] have addressed the issue 
of high dimensionality, and, in particular, the bound- 
ary effects which impact the performance of high- 
dimensional access methods. Our use of Minkowski 
Sums, much of our notation, and the structure of 
our analysis for rectangular minimum bounding re- 
gions (or ‘MBRs’) follow their analysis. However, 
Berchtold et al. use their cost model to predict the 
performance of particular index methods, whereas we 
use a similar analysis here to compare the performance 
of broad classes of index methods with simpler scan- 
based methods. Moreover, our analysis extends theirs 
by considering not just rectangular MBRs, but also 
spherical MBRs, and a general class of clustering and 
partitioning methods. 

There exists a considerable number of reduction 
methods such as SVD, eigenvalue decomposition, 
wavelets, or Karhunen-Lo&ve transformation which 

can be used to decrease the effective dimensionality of 
a data set [l]. Faloutsos and Kamel [17] have shown 
that fractal dimensionality is a useful measure of the 
inherent dimensionality of a data set. We will further 
discuss this below. 

The ‘indexability’ results of Hellerstein et al. [22] 
are based on data sets that can be seen as regular 
meshes of extension n in each dimension. For range 
queries, these authors presented a minimum bound on 
the ‘access overhead’ of B1-a, which tends toward B 
as dimensionality d increases (B denotes the size of 
a block). This ‘access overhead’ measures how many 
more blocks actually contain points in the answer set, 
compared to the optimal number of blocks necessary 
to contain the answer set. Their result indicates that, 
for any index method at high dimensionality, there al- 
ways exists a worst, case in which IQ] different blocks 
contain the I&I elements of the answer set (where I&I 
is the size of the answer set for some range-query Q). 
While Hellerstein et al. have established worst-case re- 
sults, ours is an average-case analysis. Moreover, our 
results indicate that, even in the average case, nearest- 
neighbor searches ultimately access all data blocks as 
dimensionality increases. 

The VA-File is based on the idea of object, approx- 
imation, as it has been used in many different, areas 
of computer science. Examples are the Multi-Step ap- 
proach of Brinkhoff et al. [8, 91, which approximates 
object shapes by their minimum bounding box, the 
signature-file for partial match queries in text, docu- 
ments [14, 161, and multi-key hashing schemes [33]. 
Our approach of using geometrical approximation has 
more in common with compressing and quantization 
schemes where the objective is to reduce the amount 
of data without losing too much information. 

2 Basic Definitions and Simple Obser- 
vat ions 

This section describes the assumptions, and discusses 
their relevance to practical similarity-search problems. 
We also introduce our notation, and describe some ba- 
sic and well-known observations concerning similarit,y 
search problems in HDVSs. The goal of this section is 
to illustrate why similarity search at, high dimension- 
ality is more difficult than it is at low dimensionality. 

2.1 Basic Assumptions And Notation 

For simplicity, we focus here on the unit hyper-cube 
and the widely-used Lz metric. However, the st,ructure 
of our analysis might equally be repeated for other 
data spaces (e.g. unit hyper sphere) and ot,her met- 
rics (e.g. L1 or L,). Table 1 summarizes our notat,ion. 

Assumption 1 (Data and Metric) 
A d-dimensional data set D lies within the unit hyper- 
cube R = [O,lld, and we use the L2 metric (Euclidean 
metric) to determine distances. 
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d number of dimensions 
N number of data points 
R = [O, l]d data space 
VCR data set 
WI probability function 
w expectation value 
SP”(G 7-1 d-dim sphere around C with radius T 
k number of NNs to return 
nn(Q) NN to query point Q 
nndzst(Q) NN-distance of query point Q 
nn’p(Q) NN-sphere, spd(Q,nndiSt(Q)) 
E[nndzSt] expected NN-distance 

Table 1: Notational summary 

Assumption 2 (Uniformity and Independence) 
Data and query points are uniformly distributed within 
the data space, and dimensions are independent. 

To eliminate correlations in data sets, we as- 
sume that one of a number of reduction methods- 
such as SVD, eigenvalue decomposition, wavelets or 
Karhunen-Lokve-has been applied [I]. Faloutsos and 
Kamel have shown that the so-called fractal dimen- 
sionality can be a useful measure for predicting the 
performance of data-partitioning access methods [17]. 
Therefore we conjecture that, for d-dimensional data 
sets, the results obtained here under the uniformity 
and independence assumptions generally apply also to 
arbitrary higher-dimensional data sets of fractal di- 
mension d. This conjecture appears reasonable, and 
is supportled by the experimental results of Faloutsos 
and Kamel for the effect of fractal dimensionality on 
the performance of R-trees [17]. 

The nearest neighbor to a query point Q in a d- 
dimensional space is defined as follows: 

Definition 2.1 (NN, NN-distance, NN-sphere) 
Let 2) be a set of d-dimensional points. Then the near- 
est neighbor (NN) to the query point Q is the data 
point rim(Q)) E V, which lies closest to Q in D: 

7174Q) = {P E V ( VP’ E D : IIP - &l/z 5 I/P’ - Qllz} 

where Ilo--*ll~ d enotes Euclidean distance. The near- 
est neighbor distance nndtst & d ‘ts nearest neighbojQ;ny;jle distance between 

a71 2 , i.e nndiSt(Q) = 

b(Q) - &IL and the NN-sphere nnsP(Q) is the 
sphere with center Q apnd radius nndzst (Q). cl 

Analogously, one can define the k-nearest neighbors 
to a given query point Q. Then nndist,k(Q) is the 
distance of the Ic-th nearest neighbor, and nnsP>k(Q) 

is the corresponding NN-sphere. 

2.2 Probability and Volume Computations 

Let Q be a query point, and let spd(Q, r) be the hyper- 
sphere around Q with radius r. Then, under the uni- 

Q=[O. I Id 

L-3 

I/ Q 

(4 (b) 
Figure 1: (a) Data space is sparsely populated; 
(b) Largest range query entirely within the data space. 

formity and independence assumptions, for any point, 
P, the probability that spd(Q, r) contains P is equal 
to the volume of that part of sp”(Q, r) which lies in- 
side the data space. This volume can be obtained by 
integrating a piecewise defined function over 0. 

As dimensionality increases, this integral becomes dif- 
ficult to evaluate. Fortunately, good approximations 
for such integrals can be obtained by the Monte-Carlo 
method, i.e. generating random experiments (points) 
within the space of the integral, summing the values 
of the function for this set of points, and dividing the 
sum by the total number of experiments. 

2.3 The Difficulties of High Dimensionality 

The following basic observations shed some light, on 

the difficulties of dealing with high dimensionality. 

Observation 1 (Number of partitions) 
The most simple partitioning scheme splits the data 
space in each dimension into two halves. With d di- 
mensions, there are 2” partitions. With d 5 10 and N 
on the order of 106, such a partitioning makes sense. 
However, if d is larger, say d = 100, there are arourld 
103’ partitions for only lo6 points-the overwhelming 
majority of the partitions are empty. 

Observation 2 (Data space is sparsely populated) 
Consider a hyper-cube range query with length 1 in 
all dimensions as depicted in Figure 1 (a). The proba- 
bility that a point lies within that range query is given 
by: 

P”[s] = sd 

Figure 2 plots this probability function for some 1 as a 
function of dimensionality. It follows directly from the 
formula above that even very large hyper-cube range 
queries are not likely to contain a point. At d = 100, a 
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Figure 2: The probability function Pd[s]. 

range query with length 0.95 only selects 0.59% of the 
data points. Notice that the hyper cube range can be 
placed anywhere in R. From this we conclude that we 
hardly can find data points in 0, and, hence, that the 
data space is sparsely populated. 

Observation 3 (Spherical range queries) 
The largest spherical query that fits entirely within 
the data space is the query spd(Q,0.5), where Q is 
the centroid of the data space (see Figure l(b)). The 
probability that an arbitrary point R lies within this 
sphere is given by the spheres volume:l 

J’[R E wd(Q, ;,I = 
Wspd(Q, d,, = 47. (f,” 

VoZ(cl) Iy$ + 1) 

(2) 

If d is even, then this probability simplifies to 

P[R E spd(Q, ;,I = 
l/G?. (f)” 

(:I! 
Table 2 shows this probability for various numbers 
of dimensions. The relative volume of the sphere 
shrinks markedly as dimensionality grows, and it in- 
creasingly becomes improbable that any point will be 
found within this sphere at all. 

Observation 4 (Exponentially growing DB size) 
Given equation (2), we can determine the size a data 
set would have to have such that, on average, at least 
one point falls into the sphere spd(Q, 0.5) (for even d): 

($$ 
N(d) = @.(;)d (4) 

Table 2 enumerates this function for various numbers 
of dimensions. The number of points needed explodes 
exponentially, even though the sphere spd(Q,0.5) is 
the largest one contained wholly within the data space. 
At d = 20, a database must contain more than 40 mil- 
lion points in order to ensure, on average, that at least 
one point lies within this sphere. 

‘r(.)isdefinedby: r(a:+l)=z.r(z),r(l)=l,r(~)=J;; 

d J=[R E wd(Q,0.5)1 N(d) 
2 0.785 1.273 
4 0.308 3.242 
10 0.002 401.5 
20 2.461. lo-* 40’631’627 
40 3.278. 1O-21 3.050~10~0 
100 1.868. 1o-7o 5.353. 1o6g 

Table 2: Probability that a point lies within the largest 
range query inside R, and the expected database size. 

Observation 5 (Expected NN-distance) Following 
Berchtold et al. [4], let P[Q, T] be the probability, that 
the NN-distance is at most T (i.e. the probability that 
nn(Q) is contained in spd(Q, r)). This probability dis- 
tribution function is most easily expressed in terms of 
its complement, that is, in terms of the probability 
that all N points lie outside the hyper-sphere: 

P[Q,,] = 1 - (1 - VoZ (spd(Q, T)” R))S (5) 

The expected NN-distance for a query point Q can be 
obtained by integrating over all radii T: 

E[Q, nndtst (6) 

Finally, the expected NN-distance E[n7tdist] for any 
query point in the data space is the average of 
E[Q, wtd’st] over all possible points Q in R: 

E[7dSf ] = /- E[Q,nndast] dQ (7) 
QER 

Based on this formula, we used the Monte-Carlo 
method to estimate NN-distances. Figure 3 shows this 
distance as a function of dimensionality, and Figure 4 
of the number of data points. Notice, that, E[w,““~~] 
can become much larger than the length of the data 
space itself. The main conclusions are: 

1. The NN-distance grows steadily with d, and 

2. Beyond trivially-small data sets 2), NN-distances 
decrease only marginally as the size of D increases. 

As a consequence of the expected large NN-dist,ance, 
objects are widely scattered and, as we shall see, the 
probability of being able to identify a good partitioning 
of the data space diminishes. 

3 Analysis of Nearest-Neighbor Search 
This section establishes a number of analytical re- 
sults as to the average performance of nearest-neighbor 
search in partitioned and clustered organizations of 
vector spaces. The main objective of this analysis is 
to provide formulae that allow us to accurately pre- 
dict the average cost of NN-searches in HDVSs. Based 
on these cost formulae, we show formally, under the 
assumptions of uniformity and independence, that: 
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Figure 3: E[nndist] as a function of the dimensionality. 

l Conventional data- and space-partitioning struc- 
tures are out-performed by a sequential scan al- 
ready at dimensionality of around 10 or higher. 

l There is no organization of HDVS based on par- 
titioning or clustering which does not degenerate 
to a sequential scan if dimensionality exceeds a 
certain threshold. 

We first introduce our general cost model, and show 
that, for practical relevant approaches to space- and 
data-partitioning, nearest-neighbor search degrades to 
a (poor) sequential scan. As an important, quantita- 
tive consequence, these methods are out-performed by 
a sequential scan whenever the dimensionality is higher 
than around 10. Whereas this first result is important 
from a practical point of view, we second investigate 
a general class of indexing schemes from a theoreti- 
cal perspect,ive. Namely, we derive formally that the 
complexity of any partitioning and clustering scheme 
converges to O(N) with increasing dimensionality, and 
that, ultimately, all objects must be accessed in order 
to evaluate a nearest-neighbor query. 

3.1 General Cost Model 

For disk-resident databases, we use the number of 
blocks which must be accessed as a measure of the 
amount of IO which must be performed, and hence 
of the ‘cost’ of a query. A nearest-neighbor search 
algorithm is optimal if the blocks visited during the 
search are exactly those whose minimum bounding re- 
gions (MBR) intersect the NN-sphere. Such an algo- 
rithm has been proposed by Hjaltson and Samet [23], 
and shown to be optimal by Berchtold et al. [5]. This 
algorithm visits blocks in increasing order of their min- 
imal distance to the query point, and stops as soon as 
a point is encountered which lies closer to the query 
point than all remaining blocks. 

Given this optimal algorit,hm, let Mvzsit denote the 
number of blocks visited. Then M,,iszt is equal to 
the number of blocks which intersect the NN-sphere 
nnSP(Q) with, on average, the radius E[nndEst]. To es- 
timate Mvisit, we transform the spherical query into a 

&40 ..L.. 
d=lOO (I 
d=200 * 

- ot 1 
200000 400000 600000 600000 1 I?+06 

Number of data points (N) 

Figure 4: E[nndist] as a function of the database size. 

point query by the technique of Minkowski sum follow- 
ing [5]. The enlarged object MSum (mbri, E[nndist]) 
consists of all points that are contained by mbri or 
have a smaller distance to the surface of mbrl than 
E[r~n~~‘~] (e.g. see in Figure 5, the shaded object on 
the right hand side). The volume of the part of this re- 
gion which is within the data space corresponds to the 
fraction of all possible queries in R whose NN-spheres 
intersect the block. Therefore, the probability that the 
i-th block must be visited is given by: 

P”,s,t[i] = Vol (mum (mbr,, E[nn”“‘]) n R) (8) 

The expected number of blocks which must be visited 
is given by the sum of this probability over all blocks. 
If we assume m objects per block, we arrive at: 

This formula depends upon the geometry of mbr,. 
In the following, we extend this analysis for both 
the case that MBRs are hyper-rectangles (e.g. R*- 
tree and X-tree), and the case that MBRs are hyper- 
spheres (e.g. TV-tree and M-tree). 

In our comparisons, we use a well-tuned sequential 
scan as a benchmark. Under this approach, data is 
organized sequentially on disk, and the entire data set 
is accessed during query processing. In addition to its 
simplicity, a major advantage of this approach is that 
a direct sequential scan of the data can expect a signif- 
icant performance boost from the sequential nature of 
its IO requests. Although a factor of 10 for this phe- 
nomenon is frequently assumed elsewhere (and was ob- 
served in our own PC and workstation environments), 
we assume a more conservative factor of only 5 here. 
Hence, we consider an index structure to work ‘well’ 
if, on average, less than 20% of blocks must be visited, 
and to ‘fail’ if, on average, more than 20% of blocks 
must be visited. 

3.2 Space-Partitioning Methods 

Space-partitioning methods like gridfiles [27], quad 
trees [18] and K-D-B-trees [28] divide the data space 
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I I I I 
spherical query point query 

Figure 5: The transformation of a spherical query into 
a point query (Minkowski sum). 

along predefined or predetermined lines regardless of 
clusters embedded in the data. In this section, we show 
that either the space consumption of these structures 
grows exponentially in the number of dimensions, or 
NN-search results in visiting all partitions. 

Space consumption of index structure: If each 
dimension is split once, the total number of partitions 
is 2”. Assuming B bytes for each directory/tree entry 
of a partition, the space overhead is B 2d, even if 
several partitions are stored together on a single block. 

Visiting all partitions: In order to reduce the 
space overhead, only d’ 5 d dimensions are split such 
that,, on average, m points are assigned to a partition. 
Thus, we obtain an upper bound: 

(10) 

Furthermore, each dimension is split at most once, 
and, since data is distributed uniformly, the split po- 
sition is always at 2. ’ 2 Hence, the MBR of a block has 
d’ sides with a length of i, and d - d’ sides with a 
length of 1. For any block, let l,,,, denote the max- 
imum distance from that block to any point in the 
data space (see Figure 6 for an example). Then l,,,, 
is given by the equation: 

1 7nar = ;xG = f 
J--l 

log, N 
m (11) 

Notice that l,,,, does not depend upon the dimension- 
ality of the data set. Since the expected NN-distance 
steadily grows with increasing dimensionality (Central 
Limit Theorem), it is obvious that, at a certain number 
of dimensions, l,,, becomes smaller than E[nndzSt] 
(given by equation (7)). In that case, if we enlarge 
the MBR by the expected NN-distance according to 
Minkowski sum, the resulting region covers the entire 
data space. The probability of visiting a block is 1. 
Consequently, all blocks must be accessed, and even 
NN-search by an optimal search algorithm degrades 
to a (poor) scan of the entire data set. In Figure 7, 

2Actually, it is not optimal to split in the middle as is shown 
in [6]. However, an unbalanced splitting strategy also fits our 
general case discussed in section 3.4. 

Figure 6: I,,, in R = [0, 113 and d’ = 2 

1 nlaz (for varying d’) is overlayed on the plot of the 
expected NN-distance, as a function of dimensional- 
ity (m = 100). For these configurations, if the dimen- 
sionality exceeds around 60, then the entire data set 
must be accessed, even for very large databases. 

3.3 Data-Partitioning Methods 

Data-partitioning methods like R-tree, X-tree and M- 
tree partition the data space hierarchically in order 
to reduce the search cost from O(N) to O(log(N)). 
Next, we investigate such methods first, with rectangu- 
lar, and then with spherical MBRs. In both cases, we 
establish lower bounds on their average search cost,s. 
Our goal is to show the (im)practicability of existing 
methods for NN-search in HDVSs. In particular, we 
show that a sequential scan out-performs these more 
sophisticated hierarchical methods, even at relatively 
low dimensionality. 

3.3.1 Rectangular MBRs 

Index methods such as R*-tree [2], X-tree [7] and SR.- 
tree [2413 use hyper-cubes to bound the region of a 
block. Usually, splitting a node results in two new, 
equally-full partitions of the data space. As discussed 
in Section 3.2, only d’ < d dimensions arc split at 
high dimensionality (see equation (lo)), and, thus, the 
rectangular MBR has d’ sides with a length of i, and 
d - d’ sides with a length of 1. Following our general 
cost model, the probability of visiting a block during 
NN-search is given by the volume of that part of the 
extended box that lies within the data space. Figure 8 
shows the probability of accessing a block during a NN- 
search for different database sizes, and different values 
of d’. The graphs are only plotted for dimensions above 
the number of split axes, that is 10, 14 and 17 for 
105, lo6 and lo7 data points, respectively. Depending 
upon the database size, the 20% threshold is exceeded 
for dimensionality greater than around d = 15, d = 18, 
and d = 20. Based on our earlier assumption about, the 
performance of scan algorithms, these values provide 
upper bounds on the dimensionality at which any data- 
partitioning method with rectangular MBRs can be 
expected to perform ‘well’. On the other hand, for 
low-dimensional spaces (that is, for d < lo), there is 
considerable scope for data.-partitioning methods to be 

3SR.-tree also uses hyper-spheres. 
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Figure 7: Comparison of 1,,, with E[nndist]. 

effective in pruning the search space for efficient NN- 
search (as is well-known in practice). 

3.3.2 Spherical MBRs 

The analysis above applies to index methods whose 
MBRs are hyper-cubes. There exists another group of 
index &uctures, however, such as the TV-tree [25], M- 
tree [lo] and SR-tree [24], which use MBRs in the form 
of hyper-spheres. In an optimal structure, each block 
consists of the center point C and its m - 1 nearest 
neighbors (where m again denotes the average number 
of data points per block). Therefore, the MBR can be 
described by the NN-sphere nnspJ’-’ (C) whose radius 
is given by nn dist,m-l (C). If we now use a Minkowski 
sum to transform this region, we enlarge the MBR by 
the expected NN-distance E[nndZst]. The result is a 
new hyper-sphere given by 

sp” (c, nndisf~nL-* (C) + E[nnd’st]) 

The probability, that block i must, be visited during a 
NN-search can be formulated as: 

P,;&,t[i] 1 Vol ( ( spd c, nnd’Jt,‘~-‘(C)+E[nndlst 0 4 
Since nndist,i does not decrease as i increases (that 
is, Qj > i : nndist,j 2 nndistli), another lower 
bound for this probability can be obtained by replac- 
ing nndist,m-l by nndist,l = E[nndist]: 

P;$t[i] > V0l (spd (C, 2 E[7md”st]) n 0) (12) 

In order to obtain the probability of accessing a block 
during the search, we average the above probability 
over all center points C E 0: 

Pt::;pvg 2 J’ V0l (spd (C, 2 E[TuI~‘“‘]) n R) dC (13) 

C!ER 

Figure 9 shows that the percentage of blocks vis- 
ited increases rapidly with the dimensionality, and 
reaches 100% with d = 45. This is a similar pat- 
tern to that observed above for hyper-cube MBRs. 
For d = 26, the critical performance threshold of 20% 
is already exceeded, and a sequential scan will perform 
better in practice, on average. 
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Figure 8: Probability of accessing a block with rectan- 
gular MBRs. 

3.4 General Partitioning and Clustering 
Schemes 

The two preceding sections have shown that the per- 
formance of many well-known index methods degrade 
with increased dimensionality. In this section, we now 
show that no partitioning or clustering scheme can of- 
fer efficient NN-search if the number of dimensions be- 
comes large. In particular, we demonstrate that the 
complexity of such methods becomes O(N), and that 
a large portion (up to 100%) of data blocks must be 
read in order to determine the nearest neighbor. 

In this section, we do not differentiate clustering, 
data- and space-partitioning methods. Each of these 
methods collects several data points which form a 
partition/cluster, and stores these points in a single 
block. We do not consider the organization of these 
partitions/clusters since we are only interested in the 
percentage of clusters that must be accessed during 
NN-searches. In the following, the term ‘cluster’ de- 
notes either a partition in a space- or data-partitioning 
scheme, or a cluster in a clustering scheme. In order to 
establish lower bounds on the probability of accessing 
a cluster, we need the following basic assumptions: 

1. A cluster is characterized by a geometrical 
form (MBR) that covers all cluster points, 

2. Each cluster contains at least two points, and 

3. The MBR of a clust,er is convex. 

These basic assumptions are necessary for indexing 
methods in order to allow efficient pruning of t,he 
search space during NN-searches. Given a query point, 
and the MBR of a cluster, the contents of the clus- 
ter can be excluded from the search, if and only if no 
point within its MBR is a candidate for the nearest 
neighbor of the query point. Thus, it must be possi- 
ble to determine bounds on the distance between any 
point within the MBR and the query point. Further, 
assume that the second assumption were not to hold, 
and that only a single point is stored in a cluster, and 
the resulting structure is a sequential file. In a tree 
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Figure 9: Probability of accessing a block with spher- 
ical MBRs. 

structure, as an example, the problem is then simply 
shifted to the next level of the tree. 

Lower Bounds on the Probability of Access- 
ing a Block: Let 1 denote the number of clusters. 
Each cluster Ci is delimited by a geometrical form 
mbr( CZ). Based on the general cost model, we can 
determine the average probability of accessing a clus- 
ter during an NN-search (the function VM(o) is fur- 
ther used as an abbreviation of the volume of the 
Minkowski sum) : 

W!(Z) E Vd (MSum (z, E[wL”“~]) n Cl) (14) 

Since each cluster contains at least two points, we can 
pick two arbitrary data points (say Ai and &) out 
of the cluster and join them by the line line(A,, I?,). 
As mbr( C%) is convex, line(Ai, B,) is contained in 
mbr( C,), and, thus, we can lower bound the volume of 
the extended mbr( Cz) by the volume of the extension 
of line(A,, B,): 

VM (mbr(C,)) 2 VM (line(A,, B,)) (15) 

In order to underestimate the volume of the extended 
lines joining Ai and Bi, we build line clusters with Ai 
that have an optimal (i.e. minimal) minkowski sum, 
and, thus, the probability of accessing these line clus- 
ters becomes minimal. The minkowski sum depends 
on the length and the position of the line. On aver- 
age, we can lower bound the distance between Ai and 
Bi by the expected NN-distance (equation (7)) and 
the optimal line cluster (i.e. the one with the minimal 
minkowski sum) for point Ai is the line line(A,,P,), 
with Pi E surf(nns”(Ai))“, such that there is no other 
point Q E surf (nnsp(A,)) with a smaller minkowski 
sum for line(A,, Q): 

VM (Zine(A,, B,)) 2 VA4 (line(A,, P,)) 

min 
= QEsurf(nnV(A,)) 

VA4 (Zine(A,, Q)) 

with Pi E surf(nnSP(A,)) (16) 

4surf(e) denotes the surface of. 
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Figure 10: Probability of accessing a block in a general 
indexing scheme. 

Equation (16) can easily be verified by assum- 
ing the contrary-i.e. the average Minkowski sum of 
Zine(Ai,Bi) is smaller than the one of line(A,,P,)--- 
and deriving a contradiction. 

Therefore, we can lower bound the average proba- 
bility of accessing a line clusters by determining the 
average volume of minkowski sums over all possible 
pairs A and P(A) in the data space: 

P a”g “lslt = i 2 VM (mbr(C,)) ~/VM (line(A, P(A)))dA 
2=1 AER 

(17) 

with P(A) E surf (nn’p (A)) and minimizing the Mink- 
owski sum analogously to equation (16). In Figure 10, 
this lower bound on Ptzft is plotted which was ob- 
tained by a Monte Carlo simulation of equation (17). 
The graph shows that P,“zft steadily increases and 
finally converges to 1. In other words, all clusters 
must be accessed in order to find the nearest neighbor. 
Based on our assumption about the performance of 
scan algorithms, the 20% threshold is exceeded when 
d 2 610. In other words, no clustering or partitioning 
method can offer better performance, on average, than 
a sequential scan, at dimensionality greater that 610. 
From equation (17) and Figure 10 we draw the follow- 
ing (obvious) conclusions (always having our assump- 
tions in mind): 

Conclusion 1 (Performance) For any clustering 

and partitioning method there is a dimensionality d 
beyond which a simple sequential scan performs better. 
Because equation (17) establishes a crude estimation, 

in practice this threshold d^ will be well below 610. 

Conclusion 2 (Complexity) The complexity of any 
clustering and partitioning methods tends towards 
O(N) as dimensionality increases. 

Conclusion 3 (Degeneration) For every partition- 
ing and clustering method there is a dimensionality d 
such that, on average, all blocks are accessed if the 
number of dimensions exceeds d. 
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Figure 11: Building the VA-File 

4 Object Approximations for Similar- 
ity Search 

We have shown that, as dimensionality increases, the 
performance of partitioning index methods degrades 
to that of a linear scan. In this section, therefore, 
we describe a simple method which accelerates that 
unavoidable scan by using object approximations to 
compress the vector data. The method, the so-called 
vector approximation file (or ‘VA-File’), reduces the 
amount of data that must be read during similarity 
searches. We only sketch the method here, and present 
the most relevant performance measurements. The in- 
terested reader is referred to [34] for more detail. 

4.1 The VA-File 

The vector approximation file (VA-File) divides the 
data space into 2b rectangular cells where b denotes 
a user specified number of bits (e.g. some number of 
bits per dimension). Instead of hierarchically organiz- 
ing these cells like in grid-files or R-trees, the VA-File 
allocates a unique bit-string of length b for each cell, 
and approximates data points that fall into a cell by 
that bit-string. The VA-File itself is simply an array 
of these compact, geometric approximations. Nearest 
neighbor queries are performed by scanning the entire 
approximation file, and by excluding the vast majority 
of vectors from the search (filtering step) based only 
on these approximations. 

Compressing Vector Data: For each dimension 
i, a small number of bits (bi) is assigned (bi is typi- 
cally between 4 and S), and 2b” slices along the dimen- 
sion i are determined in such a way that all slices are 
equally full. These slices are numbered 0, . . , 2b1 - 1 
and are kept constant while inserting, deleting and up- 
dating data points. Let b be the sum of all bi, i.e. 
b = It=, bi. Then, the data space is divided into 2b 
hyper-rectangular cells, each of which can be repre- 
sented by a unique bit-string of length b. Each data 
point is approximated by the bit-string of the cell into 
which it falls. Figure 11 illustrates this for five sample 
points. In addition to the basic vector data and the 
approximations, only the boundary points along each 
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Figure 12: Vector selectivity for the VA-File as a func- 
tion of the database size. bi = 6 for all experiments. 

dimension must be stored. Depending upon the accu- 
racy of the data points and the number of bits chosen, 
the approximation file is 4 to 8 times smaller than the 
vector file. Thus, storage overhead ratio is very small, 
on the order of 0.125 to 0.25. 

Assume that for each dimension a small number of 
bits is allocated (i.e. bi = 1, b = d ’ 1, 1 = 4.. .8), and 
that the slices along each dimension are of equal size. 
Then, the probability that a point lies within a cell is 
proportional to volume of the cell: 

P[“in cell”] = I/ol(cell) = -$ 
( > 

d 

= 2-b (18) 

Given an approximation of a vector, the probability 
that at least one vector shares the same approximation 
is given by: 

P[share] = 1 - (1 - 2-b)P-1 z g (19) 

Assuming N = lo6 M 2”’ and b = 100, the above 
probability is 2Z8’, and it becomes very unlikely that 
several vectors lie in the same cell and share the same 
approximation. Further, the number of cells (2b) is 
much larger than the number of vectors (N) such that 
the vast majority of the cells must be empty (compare 
with observation 1). Consequently, we can use rough 
approximations without risk of collisions. Obviously, 
the VA-File benefits from the sparseness of HDVS as 
opposed to partitioning or clustering methods. 

The Filtering Step: When searching for the near- 
est neighbor, the entire approximation file is scanned 
and upper and lower bounds on the distance to the 
query can easily be determined based on the rectan- 
gular cell represented by the approximation. Assume 
6 is the smallest upper bound found so far. If an ap- 
proximation is encountered such that its lower bound 
exceeds 6, the corresponding object can be eliminated 
since at least one better candidate exists. Analogously, 
we can define a filtering step when the k nearest neigh- 
bor must be retrieved. A critical factor of the search 
performance is the selectivity of this filtering step since 
the remaining data objects are accessed in the vector 
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Figure 13: Block selectivity as a function of dimen- 
sionality. bi = 6 for all experiments. 

file and random IO operations occur. If too many ob- 
jects remain, the performance gain due to the reduced 
volume of approximations is lost. The selectivity ex- 
periments in Figure 12 shows improved vector selec- 
tivity as the number of data points increases (d = 50, 
lc = 10, bi = 6, uniformly distributed data). At 
N = 500’000, less than 0.1% (=500) of the vectors 
remain after this filtering step. Note that in this fig- 
ure, the range of the y-axis is from 0 to 0.2%. 

Accessing the Vectors: After the filtering step, a 
small set of candidates remain. These candidates are 
t,hen visited in increasing order of their lower bound 
on the distance to the query point Q, and the accurate 
distance to Q is determined. However, not all candi- 
dates must be accessed. Rather, if a lower bound is 
encountered that exceeds the (k-th) nearest distance 
seen so far, the VA-file method stops. The result- 
ing number of accesses to the vector file is shown in 
Figure 12 for 10th nearest neighbor searches in a 50- 
dimensional, uniformly distributed data set (bi = 6). 
At N = 50’000, only 19 vectors are visited, while at 
N = 500’000 only 20 vectors are accessed. Hence, 
apart of the answer set (10) only a small number of ad- 
ditional vectors are visited (g-10). Whereas Figure 12 
plots the percentage of vectors visited, Figure 13 shows 
that the percentage of visited blocks in the vector file 
shrinks when dimensionality increases. This graph di- 
rectly reflects the estimated IO cost of the VA-File and 
exhibits that our 20% threshold is not reached by far, 
even if the number of dimensions become very large. 
In that sense, the VA-File overcomes the difficulties of 
high dimensionality. 

4.2 Performance Comparison 

In order to demonstrate experimentally that our anal- 
ysis is realistic, and to demonstrate that the VA-File 
methods is a viable alternative, we performed many 
evaluations based on synthetic as well as real data sets. 
The following four search structures were evaluated: 
The VA-File, the R*-tree, the X-tree and a simple se- 
quential scan. The synthetic data set consisted of uni- 
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Figure 14: Block selectivity of synthetic data. bi = 8 
for all experiments. 
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Figure 15: Block selectivity of real data. bi = 8 for all 
experiments. 

formly distributed data points. The real data set was 
obtained by extracting 45-dimensional feature vectors 
from an image database containing more than 50’000 
images5. The number of nearest neighbor to search 
was always 10 (i.e. k = 10). All experiments were per- 
formed on a Sun SPARCstation 4 with 64 MBytes of 
main memory and all data was stored on its local disk. 
The scan algorithm retrieved data in blocks of 400K. 
The block size of the X-tree, R*-tree and the vector 
file of the VA-File was always 8K. The number of bits 
per dimensions was 8. 

Figure 14 and 15 depicts the percentage of blocks 
visited for the synthetic and the real data set, respec- 
tively, as a function of dimensionality. As predicted 
by our analysis, the tree-methods degenerate to a scan 
through all leaf nodes. In practice, based on our 20% 
threshold, the performance of these data-partitioning 
methods becomes worse than that of a simple scan if 
dimensionality exceeds 10. On the other hand, the VA- 
File improves with dimensionality and outperforms the 

5The color similarity measure described by Stricker and 
Orengo [32] generates g-dimensional feature vect,ors for each im- 
age. A newer approach treats five overlapping parts of images 
separately, and generates a 45-dimensional feature vector for 
each image. Note: this method is not based on color histograms. 
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Figure 16: Wall-clock time for the image database. 
bi = 8 for all experiments. 

tree-methods beyond a dimensionality of 6. 
We further performed timing experiments based on 

the real data set and on a 5-dimensional, uniformly 
distributed data set. In Figure 16, the elapsed time 
for 10th nearest neighbor searches in the real data set 
with varying dimensionality is plotted. Notice that 
the scale of the y-axis is logarithmic in this figure. 
In low-dimensional data spaces, the sequential scan 
(5 2 d 2 6) and the X-tree (d < 5) produce least 
disk operation and execute the nearest neighbor search 
fastest. In high-dimensional data spaces, that is d > 6, 
the VA-File outperforms all other methods. In Fig- 
ure 17, the wall-clock results for the 5-dimensional, 
uniformly distributed data set with growing database 
size is shown (the graph of R*-tree is skipped since 
all values were above 2 seconds). The cost of the X- 
tree method grows linearly with the increasing number 
of points, however, the performance gain compared to 
the VA-File is not overwhelming. In fact, for higher 
dimensional vector spaces (d > 6), the X-tree has lost 
its advantage and the VA-File performs best. 

5 Conclusions 

In this paper we have studied the impact of di- 
mensionality on the nearest-neighbor similarity-search 
in HDVSs from a theoretical and practical point of 
view. Under the assumption of uniformity and in- 
dependence, we have established lower bounds on 
the average performance of NN-search for space- 
and data-partitioning, and clustering structures. We 
have shown that these methods are out-performed by 
a simple sequential scan at moderate dimensional- 
ity (i.e. d = 10). Further, we have shown that any 
partitioning scheme and clustering technique must de- 
generate to a sequential scan through all their blocks 
if the number of dimension is sufficiently large. Exper- 
iments with synthetic and real data have shown that 
the performance of R*-trees and X-trees follows our 
analytical prediction, and that these tree-base struc- 
tures are outperformed by a sequential scan by orders 
of magnitude if dimensionality becomes large. 
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Figure 17: Wall-clock time for a uniformly distributed 
data set (d = 5). bi = 8 for all experiments. 

Although real data sets are not uniformly dis- 
tributed and dimensions may exhibit correlations, our 
practical experiments have shown that multidimen- 
sional index structures are not always the most appro- 
priate approach for NN-search. Our experiments with 
real data (color feature of a large image database) ex- 
hibits the same degeneration as with uniform data if 
the number of dimensions increases. 

Given this analytical and practical basis, we pos- 
tulate that all approaches to nearest-neighbor search 
in HDVSs ultimately become linear at high dimen- 
sionality. Consequently, we have described the VA- 
File, an approximation-based organization for high- 
dimensional data-sets, and have provided performance 
evaluation for this and other methods. At moderate 
and high dimensionality (d > 6), the VA-File method 
can out-perform any other method known to the au- 
thors. We have also shown that performance for this 
method even improves as dimensionality increases 

The simple and flat structure of the VA-File also 
offers a number of important advantages such as 
parallelism, distribution, concurrency and recovery, 
all of which are non-trivial for hierarchical methods. 
Moreover, the VA-File also supports weighted search, 
thereby allowing relevance feedback to be incorpo- 
rated. Relevance feedback can have a significant, im- 
pact on search effectiveness. 

We have implemented an image search engine and 
provide a demo version on about 10’000 images. The 
interested reader is encouraged to try it out. 

http://www-dbs.inf.ethz.ch/weber-cgi/chariot.cgi 
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