
Low-Cost Compensation-Based Query Processing

Oystein Grwlen* Svein-Olaf Hvasshovd
ClustRa Norw. Univ. of Sci. and Tech.

Trondheim, Norway Trondheim, Norway
Oystein.Grovlen@clustra.com Svein-Olaf.Hvasshovd@idi.ntnu.no

Oystein TorbjGrnsen
ClustRa

Trondheim, Norway
Oystein.Torbjornsen@clustra.com

Abstract

Compensation-based query processing has
been proposed in order to avoid lock con-
tention between updating transactions and
ad-hoc queries. This paper presents an algo-
rithm based on undo /no-redo compensation.
A query will read an inconsistent version of
the database, but updates made by concur-
rent transactions are later undone to make the
query result transaction-consistent. By pro-
cessing the database internal log to obtain in-
formation on concurrent updates, queries im-
pose no extra work on updating transactions.
A simulation study shows that response times
for query execution is significantly improved
compared to the earlier compensation-based
algorithms. Compared to executing queries
with no consistency requirements, the algo-
rithm gives only a small increase in query re-
sponse times, while the effects on transaction
response times are negligible.

1 Introduction

A current trend in database management is increased
demand for large and complex queries performed on
near real-time data. Such applications often access

‘Most of this work was performed while the author was at
Norwegian University of Science and Technology. The work was
partially supported by a grant from the Norwegian Research
Council.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
Ihe title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 24th VLDB Conference
New York, USA, 1998

data produced by business-critical real-time transac-
tions. Introducing ad-hoc queries in such systems
present several unsolved problems. One problem is
that long-lived transactions tend to acquire many locks
and hold them for a relatively long time. This prevents
concurrent updates by real-time transactions [6].

In order to avoid that ad-hoc queries slow down
real-time transactions, many organizations keep a sep-
arate copy of the database (e.g., a data warehouse) for
query processing. Maintenance of the copy will have
to be done during low-activity hours (e.g., each night)
in order to avoid lock contention with on-line trans-
actions and with queries [14]. Hence, a problem with
this approach will be data staleness. In addition, due
to increased globalization, many organizations have no
off-peak hours.

Another approach is to run the ad-hoc queries with
reduced degree of consistency. One example is cursor
stability [7], where queries only lock a tuple while it
is actually being read. However, many applications
require that queries see data that is consistent.

This paper proposes a method for running trans-
action-consistent queries’ in an OLTP system with-
out delaying the OLTP transactions. That is, queries
should not hold locks for which transactions would
have to wait. At the same time, the method should
also ensure that all queries get a transaction-consistent
view of the database.

1.1 Compensation-Based Query Processing

Compensation-based query processing has been pro-
posed by Srinivasan and Carey in order to reduce
lock contention when running queries in an OLTP sys-
tern [16]. In the first phase of their two-phased ap-
proach, queries scan the base relations using cursor-
stability locking, and a set of temporary relations is
created. Concurrently, transactions that update the
base relations, append a compensation record for each

‘The term query will in this paper refer to a long-running
read-only transaction.

182

update to an update-list. In the second phase, the com-
pensation records are applied to the temporary rela-
tions making the final result reflect updates made by
concurrent transactions. The information entered in
the update-list can be tailored to each specific query.

The two-phased approach proposed by Srinivasan
and Carey has some drawbacks with respect to query
efficiency. Intermediate storage, possibly on disk, is re-
quired to store the result of the first phase. Also, the
two-phased approach prevents efficient pipelining of
relational algebra operations. No tuples can be emit-
ted from the query before the entire base relations have
been scanned. In addition, the method requires that
the query process must either execute under cursor
stability or wait for the termination of all transactions
that have updated the update-list. This may signif-
icantly increase the response times of queries in the
presence of long transactions.

Another drawback of the method is that it adds
extra work to transactions in order to maintain the
update-list. This could possibly increase transaction
response times. In addition, the method is not appli-
cable to transaction-consistent execution of read-only
transactions that consist of several queries [2].

This paper presents a more efficient method for
compensation-based query processing. In Section 2,
it, is described how the query can use the database
internal log to obtain information about concurrent
updates. Section 3 presents the new method for
compensation-based query processing, and a simula-
tion experiment that evaluates the performance of the
method is presented in Section 4. Related work is dis-
cussed in Section 5, and Section 6 concludes the paper.

2 Log-Oriented Compensation

Compensation-based query processing reduces lock
contention between a query and concurrent transac-
tions without compromising on consistency require-
ments. A query reads inconsistent versions of its
base relations, but returns a transaction-consistent re-
sult by compensating for updates made by concurrent
transactions.

The compensation-based query-processing method
presented in this paper, bases its compensation on the
database internal log. In this way, no extra work is
imposed on transactions in order to inform queries
about concurrent updates. In order to achieve non-
blocking execution of queries with respect to transac-
tions, queries will not set any locks on the tuples they
access. This will give a query an inconsistent view of
the database. However, the log will be used to bring
the query result to a transaction-consistent state. This
is done by redoing and undoing operations recorded in
the log.

A query process performs three main operations: It
(1) scans the base relation(s) of the query, (2) pro-
cesses the log and extracts relevant information from
log records, and (3) performs the necessary undo/redo-
operations before emitting the tuples.

The scan is performed by reading the relation(s)
tuple-by-tuple without setting any read locks. Thus, a
query will not have to wait for transactions to commit
before reading a tuple, and transactions will not have
to wait for the query to finish before updating a tuple.
The equivalent of a latch will be set on each tuple only
while it is being read to protect the read operation
from other operations. The scan does not necessarily
need to be a sequential file-scan; other access methods
(e.g., an index) may be used.

Concurrently with the scan, transactions that up-
date the relations being queried will have entered their
updates into the log. The query process will extract
relevant information from these log records.

For each query, the set of all concurrent transactions
is divided into two disjoint subsets, the BEFORE set
and the AFTER set. The query result will reflect all
updates by transactions in the BEFORE set and no
updates by transactions in the AFTER set. In order
to achieve transaction-consistency, no transaction in
the BEFORE set may be dependent on a transaction in
the AFTER set. The task of the compensation activity
will be to redo operations of members of the BEF0R.E
set and to undo operations performed by members of
the AFTER set.2

Approaches to compensation-based query process-
ing may be classified into three categories based on
which crit,eria is used when establishing the BEFORE
set and the AFTER set:

Undo/No-Redo Transactions that are active during
the scan are included in the AFTER set. Thus,
the query’s view of the database will only include
updates by transactions that committed before
the start of the query.

No-Undo/Redo Transactions that are active during
the scan are included in the BEFORE set. In
addition, transactions that are started after the
end of the scan, may have to be included in the
BEFORE set because other members of the BE-
FORE set may depend on them. Using this ap-
proach, the query’s view will be more up-to-date
than for undo/no-redo compensation. However,
the query process will have to wait for all trans-
actions that are active during the scan to termi-

“Note that the undo and redo-operations are not applied to
the database but to the query result. Hence, the compensation
will not affect the correctness of concurrent transactions and
queries.

183

nate. The method proposed by Srinivasan and
Carey [16] uses this approach.

Undo/Redo The only restriction on the establish-
ment of the BEFORE set and the AFTER set is
that that no transaction in the BEFORE set may
depend on any transaction in the AFTER set.
One way to ensure this is to include all transac-
tions that have committed before a certain point
in time in the BEFORE set, while all transac-
tions committed after that point are included in
the AFTER set.

In this paper, we present an algorithm for trans-
action-consistent execution of queries using undo/no-
redo compensation. It is assumed that the state-
changing operations performed by transactions are re-
stricted to update, insert, and delete. Transactions ex-
ecute using strict two-phase locking (2PL), and log
their state-changing operations using a tuple logging
policy [9]. That is, all log records contain the primary
key and the relation identifier of the corresponding tu-
ple. This is necessary in order to be able to relate
the log records to the tuples read by the scan thread.
Compensation oriented logging is assumed (i.e., undo
operations are logged using compensation log records).
Both partial and complete tuple logging may be used,
however, where not otherwise stated, partial tuple log-
ging can be assumed. 3 It is also assumed that a tuple
is contained within a single data block, and that each
block includes a state identifier that contains the log
sequence number (LSN) of the log record for the most
recent update to the block. Each tuple may also have
its own state identifier.

3 Undo/No-Redo Compensation

One of the main advantages of undo/no-redo compen-
sation is that all log records needed for performing the
compensation on a tuple are already available when
the tuple is read. For each tuple read during scan, the
log records for this tuple can be fetched and the neces-
sary operations undone before the next tuple is read.
By interleaving scanning and compensation in such a
manner, intermediate storage of the scanned tuples,
possibly on disk, is avoided.

This interleaved execution requires direct access to
the log records of a tuple. In order to support such ac-
cess, the log processing activity will enter the relevant
information found in the log records in an update-table
for later use. This update-table will support direct
access (hash-based) on primary key. Relevant infor-
mation from all log records created by members of the
AFTER set (i.e., all transactions that are active after

3That is, only before-images and after-images of attributes
that are modified are recorded in a log record.

Scan thread i Log processing threads

I s.+g
Undo

Compensation i
;
: 7

Log

Figure 1: Undo/no-redo compensation.

the start of the query) must be entered in the update-
table. It will in this paper be assumed that a separate
update-table is maintained for each query, and that
the update-tables are entirely stored in main memory.
Efficient methods for storing update-tables on disk are
presented in [8].

A query process executing using undo/no-redo com-
pensation consists of one scan thread and two log pro-
cessing threads (Figure 1). The scan thread will also
perform the compensation since this will be interleaved
with the scanning. In addition to the log processing
thread that processes log records created during the
scan, a separate thread will be used to process the log
records that have been created by transactions in the
AFTER set before the start of the query.

3.1 The Log Processing Threads

The log processing threads process all log records4 pro-
duced before the end of the scan by transactions in
the AFTER set. When a query starts, its forward log
processing thread (FLP) start processing all new log
records. In order to avoid reading the log records from
disk, FLP should process log records before t,hey are
removed from main memory.

The log records produced by members of the AF-
TER set before the start of the query, must also be
processed. This is done by a backward log processing
thread (BLP). At the start of the query, BLP will insert
into its AFTER set all transactions that are recorded
as active. It will then go backwards in the log process-
ing all log records created by members of this set. The
shaded log records in Figure 2 represent the records
that are processed by the log processing threads.

When a log processing thread processes a log record,

*All log records referring to relations that are accessed by
the query.

184

Active table
Tid CurLSN

End of auerv

Log

<Backward log processingi Forward log processing
=j
i

Figure 2: Backward and forward log processing.

it does a hash-based lookup into the update-table us-
ing the primary key found in the log record. BLP will
enter the before-images of all attributes found in a log
record into the update-table, substituting possible pre-
vious values. FLP will only enter a before-image into
the update-table if no previous value exists for this at-
tribute. BLP and FLP will be executed in parallel.
When BLP is finished, the update-table will contain
the committed values at the start of the query for all
attributes that have so far been changed by members
of the AFTER set.

The entries in the update-table could be of three
different types: write, insert, or delete. Write en-
tries only contain before-images of attributes that have
been changed by members of the AFTER set. During
compensation, these before-images will be substituted
for the attributes read by the scan thread. For delete
entries, the before-images of all relevant5 at,tributes of
the deleted tuple are included in the entry. Delete
entries represent tuples that must be included in the
query result even if they are not read by the scan
thread. Insert entries contain no before-images and
represent tuples that should be ignored by the scan
thread. Details on rules for determining the type of
an entry can be found in [8].

3.2 The Scan Thread

When BLP is finished, the scan thread can start scan-
ning the base relation(s) of the query. How the scan
thread is executed depends on the operations of the
query. Figure 3 shows the basic algorithm for produc-
ing a snapshot of a relation. The scan thread scans
the entire relation, and checks for each tuple the cor-
responding state identifier.6 If the state identifier is
smaller than the LSN of the oldest log record processed
by BLP, the tuple can be emitted as it is since it could
not possibly have been changed by members of the
AFTER. set.

5An attribute is relevant if it is either part of the query’s
projection or is needed for processing the query (e.g., used in
the selection predicate).

GA state identifier could be maintained for each tuple or just
for each block.

SCAN-THREAD(R)

1 for each tuple t in base relation R do
2 Read t
3 if state-identifier[t] < LSN of oldest log rec.

processed by BLP then
4 emit t
5 else
6 Wait for necessary log processing
7 k t UPDATE-TABLE-ENTRY(primkey[t])
8 if k = NIL then
9 emit t

10 else
11 if type[k] # INSERT then
12 t^ t COMPENSATE(t, k)
13 emit t^

Figure 3: Basic algorithm for the scan thread.

Before checking the update-table, the scan thread
must make sure that the necessary log records have
been processed by FLP. This synchronization between
the scan thread and FLP is further described in Sec-
tion 3.3. When the scan thread has made sure that
the necessary information for the current tuple has
been entered in the update-table, it does a hash-based
lookup in the update-table on the primary key of the
current tuple. If an insert entry is found, the tuple
is not emitted. If an update or delete entry is found,
compensation is performed. That is, the values of each
attribute found in the update-table are substituted for
the corresponding attribute values of the tuple. If no
entry is found in the update-table, the tuple is emitted
in the form it was read.

When the entire relation has been read by the scan
thread using the algorithm of Figure 3, the result will
include all tuples of a transaction-consistent snapshot,
except possibly some tuples that have been deleted
during the scan. These tuples could be emitted at
the end of the scan by searching the update-table for
delete entries that have not been visited by the scan
thread. However, query evaluation algorithms often
exploit that the scan sequence is sorted on a combina-
tion of attributes. In Section 3.4 it will be discussed
how the scan order can be preserved in the output of
the query.

In general, queries could be executed by first ob-
taining a transaction-consistent snapshot as described
above, and then run the queries on this copy. However,
queries could be more efficiently executed by integrat-
ing them with the scan thread and the log processing
threads. For example, selection predicates can be eval-
uated by the scan thread after the compensation has
been performed. Aggregation can be performed by
letting the scan thread and the log processing threads
directly update the aggregated result. An in depth

185

discussion on this topic can be found in [8]. smaller sort key than the current tuple have been en-
tered in the priority queue.8

3.3 Synchronizing the Scan Thread and the
Forward Log Processing Thread

Before the scan thread performs compensation, all log
records of operations that are reflected in the current
tuple must have been processed by FLP. If not, the
scan thread will wait for the FLP thread to process
more log records.7

3.5 Space Optimization of the Update-Table

In order to minimize memory usage, the update-table
should be kept as small as possible. The following
optimizations will reduce the size of the update-table:

One way to ensure that sufficient log has been pro-
cessed, is to process all new log records before compen-
sation is performed. However, a less eager strategy can
be used by taking advantage of the state identifiers in-
cluded in each tuple/block. If the state identifier of the
current tuple/block is smaller than the LSN of the last
log record processed by FLP, all operations needed for
doing the compensation are already entered into the
update-table. Thus, no more log records need to be
processed before the compensation is performed. Oth-
erwise, the scan thread is suspended until the neces-
sary log records have been processed. In other words,
line 6 of the algorithm in Figure 3 should be changed
to:

l Only before-images of relevant attributes are en-
tered into the update-table.

l If the scan order is predefined, FLP should, if pos-
sible, check whether the tuple referred in the cur-
rent log record has already been read by the scan
thread. If so, it is not necessary to enter informa-
tion from this log record into the update-table.
In order to be able to decide whether a tuple lies
behind or ahead of the scan thread, the log record
must contain the attributes determining scan or-
der.

while state-ident$er[t] > LSN of last log rec.

Wait
processed by FLP do

Using the synchronization described above instead
of processing all new log records, the amount of log
processing could normally be reduced. However, FLP
should still make sure to process all log records before
they are removed from main memory.

l When the scan thread has finished processing a
tuple, the entry for this tuple in the update-table
can be removed. However, if it is not guaranteed
that FLP will be able to decide whether the tuple
of a later log record lies behind or ahead of the
scan thread, a new entry may be made for this
tuple later. In order to avoid this, only the at-
tribute values are deleted, while the primary key
is kept and the entry is marked processed.

3.6 Complete Tuple Logging

3.4 Preserving Scan Order in the Query Out-

put

Query evaluation algorithms often exploit that the
scan sequence is sorted on a combination of attributes,
the sort key. In order to be able to preserve the scan
order, the log processing threads will also insert the
sort key of deleted tuples into a priority queue to-
gether with a reference to the corresponding entry in
t,he update-table. For each tuple it reads, the scan
thread will check the priority queue for tuples that
should be emitted before the current tuple. If it is
not necessary to preserve the scan order, tuples in the
queue could be emitted at any time during the scan.

So far, it has been assumed that partial tuple logging
is used. If, on the other hand, complete tuple logging
is used, the before-image of the entire tuple is stored in
a log record. This way, the log processing threads will
have access to all attributes of the tuple, and this can
be exploited to optimize query execution. Moreover,
FLP will always be able to decide whether the tuple
of a log record lies behind or ahead of the scan thread
when base relations are scanned in a predefined order.

Complete tuple logging also simplifies the mainte-
nance of the update-table. All attributes of a tuple
will be available in the first log record processed by
one of the log processing threads. Hence, only BLP
needs to process more log records for this tuple.

4 Performance Study
When synchronizing the scan thread and FLP, the This section presents an evaluation of the performance

state identifier of the current block can be used to of compensation-based query processing. The evalu-
check whether all possible deletions of tuples with a ation is based on simulation experiments. The sim-

7Note that if before-images of all relevant attributes are avail-
able in the update-table, the compensation can be done without
synchronizing with the FLP. Processing more log records will in
this caSe never change the entry in the update-table.

sIf a relation is scanned using a secondary index, the state
identifiers of the index blocks must be used. In addition, an
update of the index key must be treated as a delete/insert pair
by the log processing threads.

186

ulation model was implemented in the C-t-t-based
CSIM18 simulation language [ll]. The performance
of the algorithm presented in Section 3 was compared
to the performance of other query algorithms. The
simulation model is briefly described before presenting
experiments and results. A more detailed description
of the model and the experiments can be found in [8].

4.1 Simulation Model

The simulation model presented below is divided into
two main parts, the system model and the applica-
tion model. The first part models the behavior of the
DBMS and its resources, while the latter part models
the database and transaction and query workloads. A
separate section presents the part of the system model
that is related to query execution.

4.1.1 System Model

The system model encapsulates the logical and physi-
cal resources of a DBMS and its underlying operating
system and hardware. The system model consists of
a single CPU, a single disk manager which adminis-
ters several disks, a buffer manager, a checkpoint man-
ager, a lock manager, and a log manager. In addition,
the system has several transaction managers and query
managers, each executing a single transaction or query,
respectively, at a time.

The CPU module models the behavior of the CPU
scheduler. The scheduler is priority-based and non-
preemptive. It is assumed that the DBMS is run as
a collection of light-weight threads in a single process.
The CPU scheduler will assign the CPU to the request-
ing thread with the highest priority. In case of ties in
priorities, the scheduler uses a first-come, first-served
(FCFS) policy. Threads executing queries are given
lower priority than threads executing transactions.

The disk manager will receive requests from the
buffer manager to transfer a certain number of blocks
starting with a given block ID between the disk and
the database buffer. Asynchronous I/O towards raw
disk devices is assumed. The model for the service time
of a disk request is based on [15], and the settings of
the disk parameters are based on the data sheet for
the Seagate Cheetah 4LP disks and on measurements
presented in [18].

The buffer manager handles the database buffer us-
ing an LRU replacement policy. A data page can be
accessed either through the buffer hash table, or the
page holding a particular tuple can be found using a
B-tree index. For simplicity, it is assumed that the
B-tree has a fixed size, and that index pages are never
updated. To avoid that pages from large sequential
scans fill the entire buffer, such pages are inserted at
the front of the LRU list. All flushing of dirty pages to

Table 1: Para
Parameter

1 CPURate
BufSize
DiskBlockSize
DiskMaxLatency
Disk’Fransfer
MaxSeqIO

LogBufSize

DiskPollCPU

TransCommitCPU

eters for the system model.
Description

Instruction rate of CPU
Number of pages in the DB buffer
Disk block size
Maximum rotational delay
Disk transfer rate
Max. number of pages in a se-
quential read/write
Number of pages in log buffer
Max. lifetime for transactions
Overhead for thread switching
Cost for a lookup in the DB buffer
Extra cost for an unsuccessful
lookup in the DB buffer
Cost for an asynch. disk request
Cost to poll for a disk request
Cost to request a lock
Cost to release a lock
Cost to create a log record
Cost to initiate a transaction
Cost to commit a transaction
Cost to abort a transaction
Cost for a read operation
Cost for a write operation
Cost for a delete operation
Cost for an insert operation

disk is normally done by the checkpoint manager which
is activated when the number of dirty pages gets high.

The lock manager implements key range locking in
addition to ordinary tuple-level locking. Transactions
are executed using strict 2PL. No deadlock detection
is implemented. Deadlocks are resolved by the trans-
action managers which abort transactions that have
not terminated within a given time limit.

The log manager maintains a buffer of the most re-
cent log pages. Complete tuple redo/undo logging is
used, and it is assumed that a log record uses twice as
much space as the corresponding tuple. Log records
are flushed to disk either upon request by the check-
point manager or when transactions are committed.
In order to reduce the work associated with log flush-
ing, a group commit policy similar to the method used
by the Oracle DBMS [13] is applied.

The main parameters of the system model are pre-
sented in Table 1.

4.1.2 Query Execution Model

Each query manager runs a single query at a time.
The query manager can use four different algorithms
to execute a query:

UNDO compensation. The algorithm presented in
Section 3. The update-table is assumed to be

187

stored as a hash table in a temporary main mem-
ory buffer separate from the database buffer.
Thus, the size of the update-table will not affect
the hit ratio of the database buffer. Since the sim-
ulation model assumes complete tuple logging, in-
formation is never entered into the update-table
more than once for each tuple during forward log
processing. Where not otherwise stated, the space
optimization techniques presented in Section 3.5
are not applied. A priority queue is used to pre-
serve the scan order for deleted tuples. The pri-
ority queue is implemented as a partially ordered
binary tree.

The implementation of UNDO compensation re-
quires that log records are processed before they
are removed from the log buffer. If a large part of
the log buffer has not been processed, forward log
processing is given transaction priority until the
entire log buffer has been processed. A query is
aborted if an unprocessed log record is removed
from the log buffer. Only backward log processing
will may log records from disk.

REDO Compensation. A slight modification of the
algorithm by Srinivasan and Carey. The update-
list is implemented as a hash table instead of as
a sequential list. This way, sorting the update-
list between the scan phase and the compensa-
tion phase is not necessary. The hash-table will
contain maximum one entry per tuple. In order
to avoid reading uncommitted data, a read lock
is acquired before a tuple is read. The lock is
released before locking the next tuple. Informa-
t,ion on updates made by a transaction is entered
into the update-list at commit time. The only
extra CPU cost, modeled for transactions is the
cost associated with inserting an entry into the
update-list. Neither the cost to access informa-
tion on concurrent queries nor the cost to keep
a list of all updates of transactions until commit
time are modeled.

Two-phased locking. All tuple accesses by queries
are covered by primary-key range locks. Before
accessing a new page, a query extends its key
range lock to cover all tuples of the page. When
the query is finished, the range lock is released.

GO-processing. No locks are waited for or set by the
query, and all tuples are emitted in the form they
are read. In other words, the query result will
not be transaction-consistent. The performance
of GO-processing will be used as a reference to
how much query performance must be sacrificed
in order to achieve transaction-consistency.

Table 2: Query execution parameters.
I Parameter 1 Descrbtion 1

~~

Cost for an insertion into the update-

UpTabOutCPlJ Cost for a lookup in the update-table

The execution of a query involves at least three sep-
arate threads. In addition to the scan thread, a query
will have a read and a write thread. The read thread
reads one batch of pages at a time from disk. When
the scan thread starts processing such a batch, the
read thread will request a new batch from the buffer
manager. The query result is stored in a temporary
buffer, and the write thread writes batches of pages
from the temporary buffer to disk. If UNDO compen-
sation is used, a query process will also contain a for-
ward log processing thread. Backward log processing
is performed by the scan thread. In order to minimize
the effects on transaction processing, a scan thread or
a log processing thread will only process a single tuple
or log record, respectively, each time it is scheduled
for the CPU. The CPU cost parameters used to model
query execution are presented in Table 2.

4.1.3 Application Model

The application model is based on the TPC-B speci-
fication [17], modeling a bank with branches, tellers,
and accounts and reflecting the history of recent trans-
actions. Each transaction contains three updates, one
for each of the Account, Teller, and Branch rela-
tions, and one insert in the History relat,ion. In the
experiments, the database size is fixed (1 million ac-
counts) and not scaled to the transaction load as re-
quired by the TPC-B specification. In order to be able
to support a higher number of concurrent transactions
without scaling the database, the number accounts per
branch was set to 2000. For each transaction, the teller
and account is chosen by a uniform distribution. Each
relation is stored as a clustered B+-tree indexed on
primary key. A sequence number is used as primary
key in the History relation. Thus, the tuples will be
inserted in physical order.

Tuples in the History relation is 50 bytes, all other
tuples are 100 bytes. NumDisks disks is used to store
the Account relation. One disk is used for each of the
other relations, and three additional disks are used for
indexes, temporary tables, and the log.

The workload of the system is modeled as a fixed
set of terminals, each either requesting the execution
of transactions or queries. Each terminal only submits
one job at a time, and a new job is submitted at once

188

Table 3: Application model parameters

Number of disks for the Account relation
Number of transaction terminals

91
Selectivity factor for queries

its previous job has terminated. Queries are executed
by scanning a given fraction, a specified primary key
range, of the Account relation in primary key order.
The selectivity factor of the query determines the size
of the key range.

The parameters of the application model are listed
in Table 3.

4.2 Experiments and Results

Below, the results of the simulation experiments are
presented. The main performance metrics of the ex-
periments are query response time and transaction
throughput.g In addition, the storage needed for the
update-table and the time used for backward log pro-
cessing are studied.

For all measurements, statistical validity was en-
sured by verifying that size of the 90% confidence in-
tervals were, if not otherwise stated, within 1% of its
mean. The confidence intervals were computed using
the replication method for steady-state simulations [l].

The settings of the simulation model parameters for
the experiments are shown in Table 4. The values
for the CPU cost parameters are based on measure-
ments done on the ClustRa DBMS [lo]. The exper-
iments were run over a range of multiprogramming
levels (MPL) and query selectivity factors (SeZ).

4.2.1 Query Response Time

Figure 4 compares the query response times for the dif-
ferent query algorithms used in the experiments. Ex-
ecuting the query using 2PL gives the lowest response
times. However, as will be shown below, using 2PL
also results in a significant lower transaction through-
put. In fact, the reason for the good query perfor-
mance is that the system utilization by transactions is
reduced due to lock contention.

The experiments show that UNDO compensation
only gives a slight increase in response times com-
pared to GO-processing. This increase represent the
work associated with processing the log, maintaining
the update-table, and compensating for concurrent up-
dates. REDO compensation give more than twice as

‘Since for each simulation run transactions are generated by
a constant number of terminals, transaction throughput is re-
ally a meaSure of average transaction response time. The only
difference is that throughput is affected by the abort rate.

Table 4: Parameters settings.
Parameter Setting

CP URate 300 MIPS
BufSize 4096 pages
DiskBlockSize 4 kBytes
DiskMaxLatency 6.0 msec
DiskTransfer 13.7 MBytes/set
MaxSeqIO 32 pages
LogBujSize 40 pages
7bansMaxTime 5 sets
SchedCPU I 150 instr.
BufCPU 1500 instr.
BuffMiss CP U 6000 instr.
DiskXferCPU 50000 instr.
DiskPollCPU 1500 instr.
LockReqCPU 2000 instr.
LockRelCPU 300 instr.
LogCreRecCPU 7000 instr.
TransInitCPU 35000 instr.
TransCommitCPU 40000 instr.
TransAbortCPU 40000 instr.
ReadCP U 8000 instr.
UpdateCPU 15000 instr.
DeleteCPU 6000 instr.
InsertCPU 12000 instr.

VpTabOutCPU

NumDisks
1, 3, 6, 10, 15, 21, 28

2%, 5%, lo%, 25%, 50%, 100%

L

high query response times as UNDO compensation.
This is as expected since the two-phased approach re-
quires intermediate storage of data on disk. For the
compensation-based algorithms, the ratios of their av-
erage query response times to that of GO-processing,
were independent of the selectivity of the query.

Figure 5 compares the performance of UNDO com-
pensation and GO-processing. At low system utiliza-
tion by transactions, the compensation overhead is
small. At higher utilization, the overhead increases up
to about 30% when A4PL is 21 (about 80% CPU uti-
lization by transactions). When MPL was increased
to 28 (about 87% CPU utilization), all queries were
aborted because the log processing thread was not
given enough CPU time to process all log records be-
fore they were removed from the log buffer.

Note that the starvation of the log processing thread
does not imply that UNDO compensation is only prac-
tical for a small number of concurrent transactions.
The limiting factor for log processing is CPU time.

189

90

80
3
- IO
2
g 60

r , I I

f

- GO
- UNDO
- REDO
- 2PL

0 ’ -.
I I I I I I

0 5 10 15 20 25 30

MPL

’ 1 I L
0 5 10 15 20 25 30

MPL

Figure 4: Query response times for various MPL. Figure 6: Transaction throughput when running que-
(Sel = 10%) ries. (Sel = 10%)

There is no limitation on the number of concurrent
transactions as long as the CPU has spare capacity
for log processing.

4.2.2 Transaction Throughput

The reduction in transaction throughput caused by
concurrent execution of queries is small except when
two-phase locking is used (Figure 6). Transaction
throughput is slightly higher for UNDO compensa-
tion than for REDO compensation and GO-processing.
This is mainly a consequence of the non-preemptive
CPU scheduling. Since the log processing thread holds
the CPU for a shorter time period than the scan
thread, the average time transactions have to wait for
the CPU is reduced by introducing the log processing
t,hread.

experiments response times were dominated by disk
access time. In addition, during the compensation
phase queries only access disks holding temporary ta-
bles. Thus, transactions do only have to wait for disk
requests made by queries during the scan phase. Also
note that the transaction throughput of REDO pro-
cessing will be actually somewhat lower since not all
the cost of maintaining the update-list has been mod-
eled.

The extra work imposed on transactions by REDO
compensation did not significantly increase transac-
tion response times. The main reason is that in the

When running queries using UNDO compensation,
the distribution of transaction response times is not
significantly changed. For MPL = 10 and Se1 =
lo%, the response times of transactions in the 90th
percentile increased with only 3%. In other words,
transaction-consistent query execution can be achieved
without any significant effect on concurrent transac-
tion processing.

4.2.3 Size of Update-Table

In order to apply UNDO compensation, the main
memory requirements for the update-table should not
be too large. The storage needed is dependent on both
MPL and the length of the query. Figure 7 shows the
storage requirement for the update-table both when
using and not using the space optimization techniques
presented in Section 3.5. The figure shows that for a
given MPL, the maximum size of the update-table is
proportional to the selectivity (length) of the query.
As long as MPL is low, only a small fraction of the
tuples have entries in the update-table. When MPL
increases, the storage needed for the update-table in-
creases both due to increased update rates and longer
query execution times.

1.05

1 h

I I I I

- GO
- UNDO a

0.95 ’ I I I I
0 5 10 15 20 25

MPL

Figure 5: Relative performance of UNDO compensa-
tion compared to GO-processing. (Sel = 10%)

‘;; 600
a
s 500
5
2 400
Y
e 300
s 200

- UNDO
- REDO

Figure 7 also shows that the space requirements for
the update-table could be significantly reduced if space
optimization is applied. Assuming uniform tuple ac-
cess and constant scan rate, avoiding insertions of en-

190

10 15 20 25

MPL

Figure 7: Non-optimized and optimized (OPT) space Figure 8: Comparing the overhead of UNDO com-
requirements for the update-table. (Logarithmic scale pensation relative to GO-processing in the two exper-
on the vertical axis.) iments. (Sel = 10%)

tries for already processed tuples and deleting entries
of processed tuples, reduce the space requirements to
one fourth of the non-optimized case.” In addition,
entries need only be made for tuples within the se-
lectivity range of the query. Thus, optimization may
reduce the space requirements to Se114 of the non-
optimized case, where Se1 is the selectivity factor of
the query. However, in order to apply the optimiza-
tion, the log processing thread need to be able to deter-
mine whether a tuple lies behind or ahead of the scan.
Thus, for partial tuple logging, the non-optimized and
the optimized results in Figure 7 can be viewed as the
upper and lower limits, respectively, for the space re-
quirements of the update-table.

The optimizations also lead to increased query per-
formance due to reduced work for the log processing
thread. For long running queries at high MPL, the
query response times were reduced by 10%. Transac-
tion throughput was not significantly affected.

4.2.4 Transaction-Mix Experiment

While TPC-B transactions reflect a simple update-
intensive OLTP application, an OLTP system is often
characterized by multiple transaction types of vary-
ing complexities. Therefore, another experiment was
performed where transactions of various lengths and
operations were used. The number of operations of a
transaction were Poisson distributed with an average
of five operations, and the mix of operations used was
40% reads, 30% updates, and 15% each of inserts and
deletes. The same database was used for this exper-
iment, and for each operation the relation was ran-

loThe update-table will reach its maximum half way through
the scan. At that time, half of the entries have not yet been
made, and the update-table will only contain entries for unread
tuples.

1.35

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

, I I I

- GO I

I I I I

0 0.2 0.4 0.6 0.8 1

CPU Utilization

domly determined. Within each relation an uniform
access pattern was used.

Figure 8 compares the relative query performance
with respect to GO-processing of this experiment to
that of the TPC-B experiment. The overhead of
UNDO compensation for a given CPU utilization by
t,ransactions were lower than in the TPC-B experi-
ment. This is because TPC-B transactions have a
higher frequency of modifying operations than the
transactions used in the second experiment. In other
words, more log processing and compensation are
needed for running queries concurrently with TPC-B
transactions.

The reduction in transaction throughput when run-
ning queries was similar to the TPC-B experiment.
The space requirements for the update-table were
smaller due to the lower update-rate.

4.2.5 Time Used for Backward Log Processing

For the TPC-B experiment, the time used for back-
ward log processing (BLP) seldom exceeded 1 ms.
The reason for this is the profile of TPC-B transac-
tions. Most transactions will only have to fetch one
page from disk, the page for the Account tuple. Since
the Account relation is accessed by the first operation,
most of the active TPC-B transactions will not have
performed any operations at the start of the query,
and these transactions need not be handled by BLP.

The execution time of BLP for the transaction-mix
experiment is shown in Figure 9. As expected, the time
is dependent on the multiprogramming level (MPL)
since this directly determines the size of the AFTER.
set. The reason for the more than linear growth in exe-
cution time with increasing MPL, is that an increasing
update rate will increase the probability of having to
access log pages that is no longer in main memory. By

191

0 5 lo 15 20 25 30
MPL

Figure 9: Time to perform backward log processing.
(Sel = 2%)

using a larger buffer for log pages, less pages would
have to be fetched from disk by BLP. Accessing log
records on disk, may potentially slow down transac-
tions. However, no significant effects on transaction
throughput was observed in this experiment.

4.3 Discussion

The simulation experiments show that it is possible to
efficiently perform compensation-based query process-
ing without significantly affecting the performance of
transactions. As expected, UNDO compensation out-
performs REDO compensation with respect to query
response times and 2PL with respect to transaction
throughput.

The extra work required to achieve transaction-
consistency only slightly increases the response times
for queries in a system with low to medium CPU
ut,ilization by transactions. The maximum overhead
compared to GO-processing was 30% when running a
query concurrently with TPC-B transactions. For less
update-intensive transactions, the overhead to achieve
transaction-consistency will be smaller. At very high
CPU utilization by transactions, the log processing
thread was not able to keep up with the production
of new log records. The starvation of the log process-
ing thread can be avoided by letting it process all new
log records each time it is scheduled. However, this
may potentially increase transction response times.

The increase in transaction response time by intro-
ducing queries is negligible as long as threads executing
the query are given lower priority than other threads.
The experiments also showed that the extra work re-
quired by transactions when doing REDO compensa-
tion is not significant as long as transactions need to
read pages from disk. For transactions which do not
need to access disk, this extra work may possibly af-
fect transaction response times, especially for queries

that require more complex processing of concurrent
updates.

The experiments show that the critical part for
when using UNDO compensation is the size of the
update-table. For short queries or low to medium up-
date rates, the size will not represent a problem. For
long queries and very high update rates, the space re-
quirements for the update-table may exceed the avail-
able main memory even when using the space opti-
mization techniques.

In all experiments, the time needed to perform
backward log processing (BLP) was negligible com-
pared to the entire execution time of the query. The
BLP time is generally dependent on the length and
number of concurrent transactions. For most queries
the BLP time will be a small fraction of the execution
time even for much longer transactions than those used
in these simulation experiments.

5 Related Work

Transient versioning is an alternative approach to
avoid lock contention while still achieving transaction-
consistency for queries in an OLTP system [5, 3, 12,
191. In transient versioning algorithms, transactions
create a new physical version of a data item when
performing an update. Queries may access an older
version in order to get a transaction-consistent view.

In order to maintain data clustering, transient ver-
sioning algorithms should perform in-place updates.
Hence, the previous version of a data item will be
copied before the data item is updated. Hence, tran-
sient, versioning will increase the response times of
transactions. In the original transient versioning algo-
rithms, prior versions are stored in a separate version
pool [5]. This will potentially reduce query perfor-
mance since the data clustering is disrupted with re-
spect to queries. In addition, several disk accesses may
be needed in order to locate the correct version of a
data item. To reduce this problem, on-page caching of
prior version has been proposed [3]. However, on-page
caching will decrease the buffer hit ratio for transac-
tions since the database will occupy more pages.

Unlike transient versioning, compensation-based
query processing will only materialize versions that are
actually needed by queries in the system. This means
that there will be no overhead when there is no active
queries. On the other hand, transient versioning will
never maintain more than one instance of a prior ver-
sion while update-tables for concurrent queries may
each contain a copy of the same version of a tuple.
However, this can also be achieved with compensation-
based query processing by letting a single forward log
processing thread and a single update-table serve mul-
tiple concurrent queries. The update-table may then

192

contain several versions of the same tuple, and each
version will be tagged with the query IDS of the queries
that should access this particular version.

Compensation-based query processing also has the
advantage of being able to tailor the content of the
update-table to specific queries [8]. In addition, if the
update-table is (partly) stored on disk, its organization
could be optimized on I/O cost given the access pat-
tern of the query. This is not possible for the general
version pool used in transient versioning.

Transient versioning has been implemented in the
Oracle DBMS which uses its rollback segments as the
version pool 141.

6 Conclusions

This paper has presented a novel method for compen-
sation-based query processing that overcomes most of
the disadvantages of the method presented by Srini-
vasan and Carey [16]. By using the log to communicate
updates, negligible extra load is put on updating trans-
actions. Hence, all work related to the compensation-
based execution of a query could be performed by a
separate query process. A two-phased approach is
avoided by using undo/no-redo compensation. Thus,
there is no need for temporary storage of base rela-
tions. In addition, queries can emit tuples at once they
are read, making it possible to exploit efficient pipelin-
ing of relational operations. Several queries may also
see the same transaction-consistent state by using a
common update-table.

The simulation experiments show that compensa-
tion-based query processing can be efficiently per-
formed without significantly affecting response times
of concurrent transactions. This is achieved by giv-
ing higher priority to transactions than to query pro-
cesses. A minimum of spare capacity must be available
for query execution in order to keep the update-table
at a moderate size. The main-memory requirements
for the update-table could be reduced by storing parts
of the update-table on disk. Efficient methods for a
disk-based update-table are presented in [8].

The method has already been extended to dis-
tributed execution of queries [8]. The plan is to imple-
ment the distributed version in the ClustRa DBMS.

Acknowledgements

The authors would like to thank Rune Humborstad and
Maitrayi Sabaratnam for constructive comments on earlier
drafts of this paper.

References
[l] J. Banks, J. S. Carson, II, and B. L. Nelson. Discrete-

Event System Simulation. Prentice Hall, second edi-
tion, 1996.

[2] P. M. Bober. Towards Practical Multiversion Lock-
zng Techniques for On-Line Query Processing. PhD
thesis, University of Wisconsin - Madison, 1993.

[3] P. M. Bober and M. J. Carey. On mixing queries and
transactions via multiversion locking. In PTOC. Int.
Conf. Data. Eng., pp. 535-545, Feb. 1992.

[4] W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza,
and N. MacNaughton. The Oracle Universal Server
buffer manager. In Proc. Int. Conf. VLDB, pp. 590-
594, Aug. 1997.

[5] A. Chan, S. Fox, W. Lin, A. Nori, and D. Ries. The
implementation of an integrated concurrency control
and recovery scheme. In PTOC. ACM SIGMOD, pp.
184-191, 1982.

[6] D. Dewitt and J. Gray. Parallel database systems:
The future of high performance database systems.
Commun. ACM, 35(6):85-98, June 1992.

[7] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, 1993.

[8] 0. Grcavlen. Concurrent Query and Transaction Pro-
cessing - A Compensation-Based Approach. Dr.ing.
thesis, Norwegian University of Science and Technol-
ogy, Trondheim, Norway, Aug. 1998.

[9] S.-O. Hvasshovd. Recovery in Parallel Database Sys-
tems. Vieweg, 1996.

[lo] S.-O. Hvasshovd, 0. Torbjornsen, S. E. Bratsberg,
and P. Holager. The ClustRa telecom database: High
availability, high throughput, and real-time response.
In PTOC. Int. Conf. VLDB, pp. 469-477, Sept. 1995.

[ll] Mesquite Software, Austin, TX. User’s Guide
CSIMl8 Simulation Engine (C++ Version).

[12] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and
flexible methods for transient versioning of records to
avoid locking by read-only transactions. In Proc. ACM
SIGMOD, pp. 124-133, June 1992.

[13] Oracle Corporation, Redwood City, CA. Oracle7
Server Concepts, Release 7.2, 1995.

[14] D. Quass and J. Widom. On-line warehouse view
maintenace. In PTOC. ACM SIGMOD, pp. 393-404,
May 1997.

[15] C. Ruemmler and J. Wilkes. An introduction to disk
drive modeling. Computer, pp. 17-28, Mar. 1994.

[16] V. Srinivasan and M. J. Carey. Compensation-based
On-he Cpery PrOCeSSing. In PTOC. ACM SIGMOD, pp.
331-340, June 1992.

[17] Transaction Processing Performance Council, San
Jose, CA. TPC Benchmark B Standard Specification,
Revision 2.0, June 1994.

[18] B. L. Worthington, G. R. Ganger, Y. N. Patt, and
J. Wilkes. On-line extraction of SCSI disk drive pa-
rameters. In Proceedings of the ACM SIGMETRICS
Conference, pp. 146-156, May 1995.

[19] K.-L. Wu, P. S. Yu, and M.-S. Chen. Dynamic finite
versioning: An effective versioning approach to con-
current transaction and query processing. In PTOC.

Int. Conf. Data. Eng., pp. 577-586, Apr. 1993.

193

