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Abstract 

Time sequences appear in various application 
domains. Many applications require time 
sequences to be seen as continuous where 
implicit values can be derived from explicit 
values by arbitrary user-defined interpolation 
functions. This paper describes the implemen- 
tation of an extended SELECT operator, o*, 
that retrieves implicit values from a discrete 
time sequence under various user-defined inter- 
polation assumptions. The cr* operator is effi- 
ciently supported by an indexing technique 
termed the IP-index. Possible optimizations of 
the o* operator are investigated and verified by 
experiments on SHORE. The o* operator is 
applicable to any 1-D sequence data. 

1 Introduction 
Modern Database applications involve large amounts of 
time sequences. Examples of time sequences appear in 
various application domains: 1) Scientific experiments 
such as temperature reading generated by sensors; 2) 
business applications such as stock price indexes or 
bank account histories; 3) medical data such as 
patients’ temperature readings or cardiology data; 4) 
event sequences in automatic control and process super- 
vision. In concept, a time sequence (TS) can be mod- 
elled as a sequence of states Si*. Each state has a time 
stamp and a value, i.e., Si-(tl, Vi). 

To meet the requirements of these applications, con- 
siderable research effort has been dedicated to querying 
time sequences. Most of the work deals with similarity 
search, i.e., finding sub-sequences that match a given 
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pattern in some error distance [1][2][3][12][22]. Vari- 
ous approaches have been suggested, such as using the 
Discrete Fourier Transform, interpolation approxima- 
tion, or defining some shape querying languages. The 
reason why nearly all research on time sequences has 
been dedicated to examine shapes is as [22] pointed out, 
“‘individual values are usually not important but the 
relationships between them are”. However, we argue 
that in many applications individual values are at least 
as important as shapes of time sequences. Two exam- 
ples are given below: 

[22] gives the example of finding the pattern of “goal- 
post fever” (Fig. 1.1) in a patient’s temperature reading 
(a time sequence). “Goalpost fever” is one of the symp- 
toms of Hodgkin’s disease, behaving as two consecutive 
fevers during 24 hours. This query was formulated as a 
shape query in [22] as “finding those sub-sequences 
with exactly two peaks”. However, since a “fever” 
means the body temperature is higher than 38’C. this 
query can also be formulated as “finding the two time 
intervals when the values inside the intervals are greater 
than 38 and the distance between them is less than 24 
hours”, 
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Fig. 1.1: The “goalpost fever” pattern 

ExamDIe 2 

Fig. 1.2 shows a periodic time sequence representing 
the pressure of a cylinder inside an engine. The data 
was collected by a sensor in a real-life application [9]. 
The pressure of the cylinder changes with its angle peri- 
odically (360”) and reaches a peak once in every period. 
On monitoring the behaviour of the engine, an interest- 
ing query would be “when did the pressure reach its 
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peak in every period?” [9]. It can be seen from Fig. 1.2 
that all peaks have the property that v > 1.5. So this 
query could be reformulated as “when was the value 
greater than 1 .S?“. 

Fig. 1.2: The real-life pressure sequence 

Thus, we argue that queries concerning values of time 
sequences are as important as queries concerning 
shapepes of time sequences. We term queries concernmg 
values as value queries in contrast to shape queries. To 
support value queries on a time sequence is not trivial 
because most applications require time sequences to be 
seen as continuous where implicit values can be derived 
from explicit (stored} values. 

In this paper we present an extended SELECT oper- 
ator, o*s and its implementation. The o* operator retrieves 
implicit values from time sequences under various user- 
defined interpolation assumptions. A new indexing 
technique, the IP-index 1131, has been developed to 
support the o* operator. The preliminary work on the 
IP-index, ] 131, concerns only main-memory implemen- 
tation and investigated only some aspects of the inser- 
tion and search time of the index. In this paper we 
analyze the behaviour of the IP-index with respect to 
the properties of time sequences and typical query pat- 
terns, and the analysis is based on an implementation on 
the disk-resident database system SHORE [6]. The effi- 
ciency of the cr* operator is demonstrated by experi- 
ments on SHORE using both synthetic and real-life 
time sequences. Possible optimizations of the o* opera- 
tor are investigated and verified. We also investigate 
space usage of the IP-index with regard to the cardinal- 
ity of the time sequences to show that it is practical to 
build IP-indexes for large time sequences. An interest- 
ing comparison of the IP-index with conventional sec- 
ondary indexes is also given 

The o* operator and its corresponding optimization 
rules can be plugged into extensible database systems 
such as Illustra [I 1] or PREDATOR [21] where extensi- 
ble cost-based or rule-based optimizations are sup- 
ported. For example, Illustra’s “time series” data type 
[25] could benefit from the o* operator. 

This paper is organized as following: Section 2 dis- 
cusses related work. Section 3 shows how the u* opera- 
tor works for different selection conditions and 
discusses possible optimizations. A comparison of the 
IP-index with conventional secondary indexes is given 

in Section 4. Section 5 shows experimental results made 
on SHORE. Conclusions and future work are given in 
Section 6. 

2 Related Work 
The importance of associating interpolation methods 
with temporal data was pointed out by Clifford [8] as 
the “Comprehension Principle”, i.e. “under any reason- 
able interpretation a historical database defined over a 
sequence of states <Sr, SZ,..., S, > should be considered 
as modelling an enterprise completely over the entire 
closed interval [St, S,JrrO It was also mentioned that the 
mapping from a finite set of moments < Sl, S2,.*.? S, > 
into the densed interval [Sls S,], termed the “Continu- 
ous Assumption”, could be a accomplished by various 
interpolation methods. 

Segev [16][ 171) proposed a temporal data model 
based QP), time sequences. Four rypes of time sequences 
are defined according to what interpolation assumption 
is applied, a) Step-wise constant (all values in [Si, Sl+t) 
are assumed to be equal to vi), b) Continuous (a curve- 
fitting function is applied over [Si, Sj))? c) Discrete 
(missing values cannot be interpolated) d) User-defined 
(a user-defined interpo%ation function is applied). 

Allthough it was pointed out in the early 80’s that it 
is important to support interpolation assumptions on 
time sequences, very few implementation issues have 
been addressed. For example: how to support queries 
based on arbitrary user-defined interpolation assump- 
tions, and Row to process these queries efficiently, espe- 
cially when the time sequences are very long. These are 
the motivations for this paper. 

In [8] an extended SELECT operator (a*) was men- 
tioned that denotes selecting implicit states from 41, 
q,..., S, > based on tRe “step-wise constant” assump- 
tion. But no implementation was discussed. A recent 
paper 15) points out that by the “step-wise constant” 
assum&on, a database DB can be seen as a larger data- 
base DB that contains both explicit and implicit infor- 
mation. It suggests that a user query Q can be 
transformed into a “system query” Q’. Q’ contains the 
“step-wise constant” assumption so that applying Q’ to 
DB will yield the same result as applying Q to DB. In 
this paper we take a different approach. We associates 
the interpolation assumption with the SELECT operator 
o instead. In this way there is no need to transform the 
database DB to DB or the user query Q to Q’. Also we 
support more sophisticated interpolation functions such 
as linear interpolation or moving average. 

In [22], in order to find the “goalpost fever” pattern, 
the temperature sequence has to be transformed into 
some “feature preserved” representation. By contrast, in 
our solution, we view the problem as a value query so 
that there is no need to transform the original time 
sequence. This example also shows that it is not true 
that the amplitude of a time sequence can always be 
ignored, named “amplitude independence” in 1221). In 
fact, the amplitude of a sequence in an x-y axis is 
always sensitive to the unit of the y-axis, just as the fre- 
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quency of the sequence is sensitive to the unit of the x- 
axis. In this sense value queries are as important as 
shape queries. 

Time sequences can be seen as a special case of 1-D 
sequence data [20] where the ordering domain 120% is 
“time”. Other ordering domains are integers, space 
positions. etc. The o* operator and its optimization tech- 
niques are applicable to any 1-D sequence data, 
although this paper only concerns time sequences. [19] 
motivated the importance of sequence query processing 
and addressed efficiency issues. It pointed out that the 
or&red semantics of sequences should be utilized in 
query optimization for sequence data. Based on 1191, 
[20] presents a sequence database system named SEQ. 
In Section 3.3 we will show that the IP-index can be uti- 
lized to improve the efficiency of selection push down 
in SEQ [20]. We found that the sequence database sys- 
tem SEQ is currently the most relevant related work to 
the o* operator and our IP-index. 

3 The CJ* Operator and the IP-index 
To make our discussion independent of any data model 
and physical implementation, a time sequence is 
denoted as a sequence of states TS -41, S;?,...S,> 
where Si = (tip Vi) (i = 1, 2.n). By associating a user- 
defined interpolation function ifn with it, TS will be 
transformed into TS (following the same notation as 
[5]). m is a continuous time sequence defined over the 
time interval [tl, tJ by apply& ifn on the discrete TS. 
A SELECT operator o on TS returns sub-sequences 
(time intervals) where the values or time stamps-inside 
those intervals satisfy some conditions, i.e., o(TS) = (t’, 
ty*. In the extreme case, the u operator returns 
“points”, i.e., implicit or explicit states S’-(t’, v’). 
Since TS is continuous, it is impossible to generate all 
S’s and store them in the database. Instead, we associate 
the interpolation assumption ifn with the u operator, 
resulting in the CJ* operator. Applying cr* to a TS will 
generate t& same result as applyin&o to the corre- 
sponding TS, i.e., o*(TS, ifn) - ~~(73). Eet us take a 
look at how the o* operator works for different selec- 
tion conditions. 

3.A o*,,,o(TS) 

The operator ou(TS)’ returns the state S’=(t’, v’) in 
the continuous TS whose time stamp is t’. The value vY 
is calculated by: 
1. Find the state Si in TS where 

Si.time I t’< Si+,.time --- (step 1) 

2. Apply the interpolation function ifn to the neighbour 
states Of Si. 

V’ = ifn(t’, surrounding-states(Si)) 
--- (step 2) 

R. A precise notation should be a*&TS, ifn) where ifn is the user- 
defined interpolation function. Wc-omit the argument ijn assuming 
that a system-defined (default) interpolation function (e.g., linear 
interpolation) is used. 

In step 2 above, the definition of surrounding-states(S$ 
is determined by the interpolation function ifn. For 
example: a) If ifn is “linear interpolation”, then 
surrounding-states(Si) - {Si, Si+l}: b) If ifn is moving- 
average over three states, then surrounding-states(Si) - 
(S,,, Si, Si+l) (or perhaps (Sj, Si+lV Si+z)). In the sim- 
plest case of the “step-wise constant” assumption, we 
have surrounding-states(&) - (Si). 

The key to support the interpolation assumption on TS 
is in step 1 -- to locate the position in TS where to apply 
ifnO We define step 1 as the IP operator, It returns the 
state-id where ifn can be applied. Therefore, o*,~,(TS) 
is implemented by the execution of the IP operator and 
ifn. as illustrated in Fig. 3.1: 

I----------1 

i ifn I 
I 

I u*tt - 
t 

I IP,*,* I 
l- ---------J 

Fig. 3.1: The relationship between the 
u* operator and the IP operator 

A naive way to implement IP,,,I(TS) is to linearly scan 
TS YO find the state Si where Si.time I t’< Si+l.time. 
More efficient implementations of the IP operator can 
take advantage of the physical organization of TS and 
available indexes. For example, If TS is implemented 
by an array [ 151, then a binary search will do. 

Many applications assume the “step-wise constant” 
interpolation assumption on time sequences. In this 
case there is no need to apply ifn. We have in step 2 v’= 
Sj.value where Si is returned by step 1 -- IP,&TS). 

The advantage of the IP,,,I(TS) operator is that it is 
independent of the interpolation assumption ifk Intui- 
tively, it returns the nearest neighbour states for the 
time point t”. 

The operator u*~,~~(TS) returns a sequence of states (t’, 
v’)* in TS whose values are equal to v’. The time points 
t’s can be calculated similarly as in Section 3.1: 
B. Eocate the states Si in TS where 

Si .value I v’< Si+l .value --- (step 1) 

2. Apply ifi-’ * on the neighbor states of Si. 
t’ = ifn‘l(v', surrounding-states(Si)) 

--- (step 2) 

The above step 1 is defined as the IP,,JTS) operator. It 
returns the positions in the time sequence where to 
apply i$nm*. For example, in Fig. 3.2, IP,,,JTS) will 
return <Sl, Se, Sl*. This state sequence is termed anchor- 
state sequence and is stored in the IP-index 61311. In the 

2. ifi’ is the inverse function of ifn. 
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next section we briefly recall the idea of the IP-index. 

fl f2 t’3 -t 

Fig. 3.2: Illustration of a value query on a TS 

3.2.1 IP-index 

The IP-index stores the anchor-state sequence of v’ by 
recording all segments that intersect with the line v = v’. Par 
example, in Fig. 3.2, the segments that intersect with the 
line v - v’ are Sgt, Sge, Sgt,-,. Thus the anchor-state 
sequence of v’ is <St, Se, Slo>. The anchor-state sequence 
of v* is denoted as A(v’). The cardinality of A(v’) is 
denoted as card(~(v’)) and is also stored in the IP- 
index. 

The structure of the IP-index is the following: The 
keys in the index are the ordered, distinct values of the 
vis in TS, and each key ki is associated with a pointer to 
A(v9) for those ve where ki 5 vp e ki+t. Thus, the 
anchor-state sequence of any value v’ can be retrieved 
easily by performing a range search (i.e., ki 5 vp < kl+r) 
on the IP-index and retrieve A(ki). Therefore, the 
IP,,,(TS) is efficiently supported by the IP-index, 

Notice that a naive way to execute IP&TS) (without 
the IP-index) is to linearly scan the whole time sequence to 
find those Sis where Sl.value 5 v’< Si+t.value. We will dem- 
onstrate the performance improvement in the experiments 
in Section 5.3. 

We shall point out that a limitation of the IP-index is 
that if the interpolation function @r introduces new 
extreme points (thus introduce new segments) to the 
original time sequence, then the IP-index needs to be 
modified to include the extra segments as well, as men- 
tioned in 1131. 

3.2.2 First Few Answers 

Since A(v’) is an ordered sequence of states, IP,+(TS) 
can be implemented as a stream where the next element 
of IP&TS) is the next state in A(v’). Therefore, 
I?,,~(TS) can be implemented as a stream as well: the 
next state of o*,,,#(TS) is generated by applying ifn-’ 
over the neighbor states of the next state returned from 
IP,,,(TS) (“step 2” above). 

By implementing o*,,+(TS) as a stream the first few 
answers [4] can be generated quickly. This is especially 
important when card(A(v’)) is large. To generate the 
first few answers, the interpolation function ifn-t is 
applied to only the first few states in A(v’). Notice that 
the stream of o*,,,(TS) and IP&TS) can be generated 
in the reverse order as well, i.e., the states with newer 
time stamps come out first. This is useful in many 
applications since newer states are usually more inter- 

esting than older ones. 
By contrast, linearly scanning TS will take very long 

time to get the first answer when the first answer 
appears late in the TS. This will be shown in experi- 
ments in Section 5.4. 

3.23 New Functions Proposed 

As Silberschatz et. al. 1241 point out, the new genera- 
tion of object-relational database systems will allow 
complex types, nested relations, and object-oriented 
features. SQL-3 is under way to standardize queries on 
complex types. Stonebraker [25] points out that TSs 
should be modelled as a new abstract data type in 
object-relational databases (instead of as tables in rela- 
tional databases). Operations on TSs can be defined as 
functions (methods) such as “moving-avg(TS, 5, ‘1995- 
07-15’)” [25] (five-day moving average on July 15th, 
1995). To query continuous TSs, we propose the func- 
tions: 
0 get-time-stamps(TS, ‘=EI v’) 

// assume default interpolation assumption 
e get-time-stamps(TS, ‘=I! v’! ffn) 

// assume user-defined interpolation assumption i$ 
to return the time points when the values are equal to v’ 
for a continuous TS, These time points t’s can be 
extracted from the pairs (t’. v’)* that are returned by the 
cr*,,v~(TS) operator. 

3.3 Range Queries 

Range queries are essential for time sequences. It 
should be possible to extract sub-sequences by: 
1. A time interval (t 1, t2); 
2, A value range (vl, ~2). 
Since we view time sequences as continuous, the result 
of a range query is a sequence of time intervals. For 
example, in Fig. 3.2, o*v,v~(TS) will return the 
sequence of time intervals: <(tl, t’l), (t’2, t’+. 

Range queries based on time conditions, i.e., o*,t(TS) 
(or o*&TS)) are relatively easy to support because 
binary search on the time sequence array can find the 
position of tI and t2 even when tl and t2 are implicit 
time stamps. Range queries on value conditions, i.e., 
a*,,,f(TS) (or u*“~I (TS)) are difficult to support when 
vB and v2 are implicit. Without a suitable index the 
whole sequence has to be scanned. 

By using the IP-index, the o*v+(TS) operator can 
be supported surprisingly easy. For example, in 
Fig. 3.2, o*,,,I(TS) returns (tt, t’l) and (t’2, Y3). The time 
points t’t, C2 and V3 can be extracted from the results of 
a*,,,,(TS). In this way there is no need to visit those states 
inside the range v>v’ (or inside the time intervals (tl, t’t) 
and (V2, t’3)). This indicates that the cosr of rhe range 
query o*,,,(TS) is nearly the same as the cost of 
a*v,,l(TS). 

Furthermore, we will show in next section that the 
cr*&TS) operator is also useful in processing discrete 
time sequences. 
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3.3.1 Discrete Range Queries 

The operator ~*,,,I(TS) improves the efficiency of 
query processing even when the time sequence is dis- 
crete. [20] gives an example query that asks for the 
monetary value of Stock1 traded in each hour when the 
Bow price fell below 50. 

SELECT’ ((A.high+A.low)/2)*A.volume 
FROM Stock1 A 
WHERE A.low < 50 

[20] claimed that selection push-down (A.low<SO) 
should be applied here to optimize the query so that the 
calculation of “((A.high+A.low)/2)*A.volume” only 
needs to be done for those states whose low values are 
below 50. But, without an index, the whole time 
sequence has to be scanned to find these states. One 
may argue that a conventional secondary index on the 
“low” value will help. Unfortunately it does not. We 
will explain the reasons in Section 4. 

By applying the CY*,~~(TS) operator, we can 
retrieve the time points t’ and t” (see Fig. 3.3) directly 
and then apply the calculation to only those SiS in the 
range (t’9 t”)O 

price . - 

Fig. 3.3: A stock price sequence 

Selections on the value dimension appear very often in 
real-life applications, but we have not seen any other 
indexes similar to the IP-index that is designed particu- 
larly for the value dimension of time sequences. 

3.32 New Functions Proposed 

To support range queries on continuous time sequences, 
we propose the functions: 
0 get-time-intervals(TS, ‘>11 v’) 

// assume default interpolation assumption 
0 get-time-intervals(TS, I>‘, v’, ifn)) 

// assume user-defined interpolation assumption ifie 
to return those time intervals when the values are 
greater than v’. This function is translated to the 
CJ*~,~~(TS) operator and is efficiently supported by the 
IP-index. 

3.4 Time Window Queries 

Some value queries only concern a part of the time 
sequence, i.e., a time window. An example of a time 
window query could be: When did the patient have a 
fever in the kustfew days (denoted as t > t9)? Using the 

1. Yn [201 ‘PROJECT’wasusedinsteadoftheSQLkeywordSELECT. 

new functions defined in Section 3.2.3, this query can 
be expressed as the following: 

SELECT t 

FROM Temperature-seq TS 

WHERE t IN get-time-stamps(TS, ‘=r21 38) 
AND t > t’ 

The answer of this query is marked by the two crosses 
in Fig. 3.4. This query can be processed in two steps: 1) 
0*vM3s (TS); 2) cY*~~~ (TS). The (T*v,38 (TS) generates 
all (explicit or implicit) states S’ where S’.value - 38. 
Every state s’ from 0*,,3s can be checked to see if it is 
in the time interval (t’. now) to get the resulting states. 

V 

I+- 
e>te, 

Fig. 3.4: A time window query 

. . Ouerb 

When there are many states returned from 0*“-38 and 
the resulting states are very few (the time window is 
small). it might be a waste to calculate all S’s and check 
the condition later. Recall the operator 0*+38 (TS) is 
accomplished by IP&s (TS) and ifn (illustrated as (a) 
in Fig. 3.5), the selection CT*~~V (TS) can be “pushed 
down” to the IP,,38 (TS) operator, resulting in the oper- 
ator 1Pv,3s AND ,&see (b) in Fig. 3.5). The operator 
IPvm3s AND t>t’ can be accomplished by binary searching 
A(38) to find the first state Si where Z&time > t’. In this 
way only a part of the anchor-state sequence A(38) (the 
part that is inside the time window) is involved in query 
processing. 

r--------------, 

I (J*ov I 
I O*Dt’ 

t 
ifn I 

I optimized to 
I t -/ +G’, ,-w t 

I 
I 

I I 

1Pv-38ANDt>t’ 1 

I ‘1 I ’ 
, \. _ _ _ 53,’ 

I 
I 

I (a) @) I 
L--------------J 

Fig. 3.5: Optimization of time window queries 

Another possible optimization strategy is to generate 
0*,,38 as a reverse stream (as described in Section 

2. Inrealitywe shoulduse”>“insteadof”-” since afevermeansbody 
temperature > 38°C. All the discussions will hold. 
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3.2.2) and terminate when t > t’ does not hold. This 
strategy, compared to the one in Fig. 3.5, has the limita- 
tion that the output stream is not in the same (time) 
order as the input stream so that it cannot be used in 
methods such as sort-merge joins of time sequences. 
Also notice that a general time window query tP < t c t” 
requires binary search on A(v’) to efficiently find the 
positions of t’ and t”. 

Performance comparison of these different strate- 
gies for time window queries are given in Section 5.5 
by experiments on SHORE. 

Time window queries for the condition t < t’ can ‘be 
optimized similarly by pushing the condition t < t’ 
down to the IP operator as in Fig. 3.5. However, no 
binary search is needed here since the starting position 
is the J;rst state in A(v’). The stream output of the IP 
operator is terminated when the condition Si.time a vF 
does not hold any more. 

4 Comparison of the IP-index with 
Conventional Secondary indexes 

This section explains why the IP-index is needed even 
when there are conventional secondary indexes availa- 
ble. The reason why the IP-index is compared with con- 
ventional secondary indexes is that the IP-index is 
essentially a secondary index as well. A secondary 
index is a “nonclustering index”, as defined in [24]. TSs 
are normally clustered by time stamps $s, not by values 
vis. Therefore, all indexes on the value domain of a TS 
are considered to be secondary indexes. 

Suppose that Fig. 4.1 represents a patient’s tempera- 
ture reading sequence TS = Si* where S,-(q, vi), and lin- 
ear interpolation is assumed to transform the 
temperature sequence TS into a continuous function m. 
A conventional secondary index on the value vis will 
use the distinct values of vis as ‘keys k. and record all 
the (ti, vi) pairs where vi equals to the k ey kj. By con- 
trast, the IP-index associates the keys kjs with their 
anchor-state sequences (Section 3.2.1). Let us compare 
the IP-index with the conventional secondary index m 
dealing with the following value queries: 

Fig. 4.1: Comparing the IP-index with 
a conventional secondary index 

I. When did the patient have the temperature 38”C’P 

A conventional secondary index will return nil since 
there are no explicit values equal to 38, By contrast, by 

using the IP-index we will get <t’, t”>. 

When did the patient have the temperature 39OC? 

A conventional index will only return t4 (suppose v4 
= 39), while the correct answer (if we want to support 
the interpolation assumption) should include an implicit 
point as well that is between S5 and S6 (marketed in 
Fig. 4.1). 

During what time period did the patient have the tem- 
perature higher than 38OC (i.e.. have a fever)? 

By using the IP-index, this query will return the time 
interval (t’, t”) (Section 3.3). There is no way to return 
this interval by using conventional indexes since t’ and 
R” are implicit. 

Now let us drop the “continuous” assumption and 
assume that the time sequence is discrete. Then the 
answer of this query would be [t3, tb]? where no 
implicit time points are involved any more. It seems 
that the conventional secondary index would work 
now, Well, it returns a set of discrete states (S3, Sq, Sgg 
Sg) (since these states have values greater than 38). To 
group these states into the time interval [tJV tgJ is not a 
trivial task, especially when the answer is several 
intervals (Fig. 3.2) for large time sequences. 

To conclude, the IP-index has the following advantages 
over conventional secondary indexes: 

The IP-index supports not only explicit values but also 
implicit values. This is achieved by the concept of the 
anchor-state sequences, A@‘). 
The IP-index keeps the ordering semantics of the origi- 
naR time sequence. The Sis in the A(v’) are ordered by 
time as they are in the original time sequence. A conven- 
tional secondary index destroys the ordering of the orig- 
inal TS. 
For range queries (v > v’) on a TS, the IP-index is 
needed for efficiency regardless of whether interpola- 
tion is required or not. 

Experiments 

To investigate the behaviour of the IP-index with 
respect to the properties of the time sequence, and 
measure the performance of the CJ* operator, we imple- 
mented the IP-index in the object-oriented database sys- 
tem SHORE [6]. The reason why we did not use a 
relational database system is that, as pointed out by 
Stonebraker [25], it is not a good choice to implement a 
time sequence as a relational table due to space and effi- 
ciency reason, 

5,% Implementations Notes 

The reason why we chose SHORE is that a recent paper 
by Seshadri [20] demonstrates that a SHORE array of 
records is a good choice of physical implementation of 
sequential data. Therefore, we chose to implement the 
time sequence TS as an array of records (ti, vi) in 
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SHORE. For simplicity (without affecting the perform- 
ance) we use integers i (4-bytes) to store the time stamp 
ti (instead of using the SQL time stamp value such as 
“1997/20/01”). The vis are stored as 4-bytes floating 
point numbers. 

The IP-index is implemented as a B+-tree in 
SHORE. The keys in the B+-tree are the floating num- 
bers vis and each key is associated with a pointer to its 
anchor-state sequence. The anchor-state sequences are 
implemented as arrays of integers (not arrays of records 
(ti, vi)). For example, if A(v’> - <St, Sg, Std, then cl, 
6, lO> (an array of integers) is stored. There are two 
reasons for this: 1) We only store (t+ Vi) in the original 
time sequence array. It will be redundant to store (tiq vi) 
in every A(v’). 2) The anchor-states only indicate the 
positions in the TS where to apply ifn. To apply $r, all 
neighbour states (see surrounding-stutes(Si) in Section 
3.1) need to be retrieved from TS (so it does not help if 
(ti, Vi) is stored duplicated in A(v’)). 

Since anchor-state sequences are expected to be of 
dynamic length, these arrays are implemented as 
SHORE large objects which can grow arbitrary large. 
For further details of implementations, please refer to 
the report [15]. All measurements were done on a 
SPARC 20 machine with 64M main memory. The 
SHORE buffer pool size was set to 40 8K pages. 

Both synthetic and real-life time sequences were 
used in the measurements. The reason for using syn- 
thetic time sequences is that we need to control several 
parameters of the time sequences in order to understand 
the behaviour of the IP-index with respect to their prop- 
erties. The reason for using real-life time sequences 
was to evaluate how the IP-index behaves in reality. We 
used the real data in most measurements. Synthetic 
sequences were only used when it was necessary to con- 
trol the parameters of the TS. 

5.2 The Size of the Index tree Versus the Cardinal- 
itg of TS 

The first experiment was to answer the critical question: 
Since most time sequences are very large, is it practical 
to build IP-indexes for large time sequences with regard 
to space usage and efficiency issue? Recall the IP-index 
contains an index tree and many anchor-state 
sequences. We investigated how the size of the IP-index 
tree (the number of index entries) and the lengths of the 
anchor-state sequences, i.e., card(A(v’))s, grow with 
the cardinality of the TS. 

5.2.1 The Time Sequence Used in the Experiments 

The time sequence used in this experiment was the real- 
life pressure sequence in Fig. 1.2 with cardinality 1OOK 
and the value range (-0.5, 2.5). 

The first lK, 10K and 100K of the pressure 
sequence was used to vary the cardinality of TS. The 
precision of values (vis) was varied from 0.1, 0.01 to 
0.001. An IP-index was built for every combination of 
the above variations (e.g.p the first 1K sequence with 
precision 0.1, the first 10K sequence with precision 0.1, 

etc.). 

5.2.2 Experimental Results 

The sizes of the IP-index trees with respect to the cardi- 
nality of TS and the precision of values are plotted in 
Fig. 5.1 D The lengths of A(v’)s with respect to the cardi- 
nality of TS and the precision of values are plotted in 
Fig. 5.2. 

Fig 5.1 show that: 1) the lower the precision is, the 
smaller the index tree will be; 2) for a specific value 
precision, the size of the IP-index tree (the number of 
index entries) does not grow much with the cardinality 
sf the TS, (For the precision 0.1 and 0.01 the index tree 
size stays constantly small regardless of the growth of 
the time sequence.) The reason for the slow growing of 
the index tree is that there are repeated values in a non- 
monotonic time sequence. For a specific precision and 
value range of Vls, there are a limited number of possi- 
ble keys in the index tree (Section 3.2.1). This investi- 
gatiow shows that it is practical to build W-indexes for 
large time sequences with regard to space usage. Mean- 
while, since the index tree will generally be small, 
searching the IP-index to find A(v’) will be very fast. 
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Fig. 5.1: How the size of the index tree 

grows with the cardinality of TS 

Fig. 5.2 shows how card(A(v’)) grows with the cardi- 
nality of TS. For every precision the maximum 
card(A(v’)) was plotted as the worst case behaviour. 
Maximum card(A(v’)) happens when v’ - -0.25 where 
the values are very noisy, as can be seen from Fig. 1.2. 
The card(A(-0.25)) is 4945 for the IOOK pressure 
sequence, resulting in the ratio of 49451lOOK = 5% 
(worst case). This only happens when the values are 
very noisy around v’. In most applications the time 
sequence will generally have much shorter A(v’)s, 
especially in the case of monotonic trend time 
sequences such as stock prices. 

Fig. 5.2 shows that: 1) the lower the precision is, the 
smaller the maximum card(A(v’)) will be; 2) the maxi- 
mum card(A(v’)) grows linearly with the cardinality of 
the pressure sequence. This is again because of the peri- 
odic property of the pressure sequence. The longer the 
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Fig. 5.2: How the maximum cardinality of 
A(v’)s grows with the cardinality of TS 

TS is, the more number of segments will probably cross 
the line v - v’ (Section 3.2.1). This indicates that A(v’) 
will normally grow with the size of TS for any value veO 

For the case of long growing TS and A(v’)s, the 
older part of TS (i.e., the part of TS that has time 
stamps t<t’) can be archived (or vacuumed [26]) to tape 
storage. The corresponding IP-index can be archived 
easily by copying the B+-tree and archiving the parts of 
the A(v’)s that are inside the time window t<t’. 

. The Case of Stock Price Seauences 

For monotonic trend time sequences such as stock 
prices, the size of the IP-index tree will be relatively 
large compared to a periodic time sequence due to the 
less number of repeated values. By contrast, all anchor- 
state sequences will then be much shorter than those of 
periodic time sequences. The overall effect, i.e., the 
total space usage (the index tree plus the anchor-state 
sequences) will be generally smaller than that of peri- 
odic time sequences. 

5.3 u*vpv’ (TS) -- Using the IP-index or Scanning TS 

As pointed out in Section 3.2.1, the only way to process 
CJ*,,~ (TS) without the IP-index is to linearly scan the 
TS. To demonstrate the importance of the IP-index, we 
compared the time difference between using the IP- 
index and linear scanning. Recall the operator (I*,,,~ 
(TS) is accomplished by IP,,,> (TS) and ifn (Section 
3.2). To exclude the time spent in ifn, we assume t’ - 
Si.time (step 2 in Section 3.2) where Si is returned by 
the IP operator in step 1. In this case the execution time of 
~*“-“’ (TS) will exclude the time spent in interpolation, 
both for using the IP-index and for linear scanning. A detail 
is that Si.time is not stored in A(v’); it has to be read 
from the time sequence array by using the state-id Si, 
which is stored in A(v’) (see Section 5.1). 

53.1 Constructing the Synthetic Time Sequence 

In order to control the properties of the time sequence used 
in the experiments, we generated a synthetic time sequence 

v(i) -m(i) * sin(k*i) (i - 1,2...lOK), which is periodic time 
sequence with growing amplitude, see Fig. 5.3. The func- 
tion m(i) is used to control the Vis SO that 1) all vis are 
inside a limited value range (it was i-10, lo] in the 
measurement) and 2) value ranges behave in the “step- 
wise constant” pattern as shown in Fig. 5.3. The reason 
for a limited value range is to make the B-tree size lim- 
ited since we showed in the last section that most real 
time sequences result in limited size of the IP-index 
tree. The reason for the “step-wise constant” pattern of 
value ranges is that it makes it easy to construct differ- 
ent cardinalities of A(v’)s by specifying the value of v’. 
For example, in Fig. 5.3 we have A(1.25) - 2*11 since 
there are 11 periods of sine data intersect with the line v 
- 1.25. The smaller the value v’ is (v’ > 0), the longer 
the A(v’) will be. The maximum card(A(v’)) happens 
when v’ - 0. The card(A(0)) was tuned to 2000 in the 
experiments by the parameter k (by tuning the fre- 
quency of the TS). Compared to the cardinality of the 
whole sequence, lOK, it results in the ratio of 2WlOK - 
20%, which is sufficient to model the worst case behav- 
iour since we showed in last section that the worst case 
of card(A(v’)) for the pressure sequence was only 5% 
of the cardinality of TS, although values are very noisy 
around v’ - -0.25. 

Fig. 5.3: The synthetic sine sequence 

5.3.2 Experimental Results -- The Linear Case 

We expect that the execution time of o*,,~ (TS) using 
the IP-index will be linear to card(A(v’)) since the 
card(A(v’)) is the number of states needed to be visited 
to get the results. By contrast, the execution time of 
4J*,,,p (TS) using linearly scanning TS will be linear to 
the cardinality of the whole TS since every state in the 
TS needs to be visited. 

The selected v’s and their corresponding cardinalities used 
in the measurements are listed in Table 1. The execution 
times of o*v-vV (TS) with regard to card(A(v’))s are shown 
in Fig. 5.4. It verifies our “linear” speculation (above). It 
shows that the execution time of o*,,~ (TS) by linearly 
scanning TS is the same for any value vp, no matter how 
long the A(v’) is. By contrast, the execution time of u*,,,~ 
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V’ 

cardinality 

Table 1: Selected v’s and the cardinalities of A(v’)s 

9.4 9.2 9 8.4 7.3 4.9 3.0 0 
14 60 106 246 504 1064 1508 2ooo 

Table 2: Selected v’s and the positions where they first appear in the TS 

V% 1.0 2.9 5.1 7.3 8.5 

first appears in position 122 2342 4912 7482 8882 

by using the IP-index is linear to card(A(v’)). Thus, the 
smaller the card(A(v’)) is, the more we gain by using 
the IP-index compared to linearly scanning TS. Notice 
that in most real life applications the submitted queries 
o*,,,7(TS) are normally for short A(v’)s. For example, 
in Fig. 1.2 we are interested in those peaks where v > 
1 S. Since o* V,1.5(TS) is processed by u*,,&TS) (Sec- 
tion 3.3), the execution time is determined by the cardi- 
nality of A(1.5), which is then only 80 for the 1OOK 
time sequence, resulting in the factor of 80/100K - 
0.08%. In this case the time difference between using 
the IP-index or not is dramatic. 

Fig. 5.4: The execution times of o*,,,t (TS) 

Another interesting observation is that for the card(A(v’)) = 
2000 (i.e., v’ - 0), the query processing time of u*,,,~ (TS) 
by using the IP-index is approximately the same as linearly 
scanning TS -- we do not gain anything any more. The rea- 
son is that to retrieve those Sis whose state-ids are in 
A(O), all disk pages storing the TS have to be visited 
since those SiS are evenly distributed in the disk pages 
that store the TS (page divisions for the TS are illus- 
trated in Fig. 5.5). The cardinality of the anchor-state 
sequence is then 20% (200011OK) of the cardinality of 
the original TS. The threshold of 20% is dependent on 
the page size, of course. The bigger the page size is, the 
smaller the threshold will be. 

5.3.3 Experimental Results -- The Non-Linear Case 

More investigations show that the nice “linear” property 
of the IP-index in Fig. 5.4 is only valid when the states 

in A(v’) tend to reside in the same page, as the sine 
sequence does. Fig. 5.5 illustrates this. Suppose that the 
portion of the sine sequence in Fig. 5.5 (defined over 
the time interval [0, 4601) occupies 4 pages, then all the 
states in A(1.25) will reside in the same page (the last 
page). And all states of A( 1.20) will reside in two 
pages. In this case the number of pages visited is linear 
to the cardinality of A(v’). In reality most time 
sequences do not have this nice property. States in 
A(v’) are “scattered” in different pages instead of clus- 
tered together. For example, states in A( 1.5) in the pres- 
sure sequence (Fig. 1.2) are scattered instead of 
clustered. In this case the execution time of u*,~ (TS) 
using the IP-index will not be linear to the cardinality 
of A(v’), instead it will be linear to the number of disk 
pages visited. We tested the o*,,,v (TS) on the pressure 
sequence in Fig. 1.2 with cardinality 1OOK and precision 
0.01. The results are shown in Fig. 5.6. What is surprising 
is that the execution time of CJ*,,,~ (TS) for shorter A(v’)s 
can he bigger than the execution time of u*,,,~ (TS) for 
longer A(v’)s. This indicates that to estimate the cost of 
u*v+ (TS) using the IP-index, we need to have knowl- 
edge of the distribution of those SiS in A(v’) in addition 
Ito the cardinality of A(v’). In the worst case we have to 
assume every Si in A(v’) resides in a different disk 
wy I 

I-1 page* I I 
I I I I 

Fig. 5.5: The page division of a portion 
of the sine sequence 

5.4 Getting the First Answer 

We also measured the time to get the first answer of 
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Fig. 5.6: The execution times of <T*~,~* (TS) 
for the pressure sequence 

o*,,,* (TS) by using the IP-index, compared to linearly 
scanning TS. As mentioned in Section 3.2, it is impor- 
tant to get the first answer quickly in real-time query 
processing. 

JAI Constructing the Experimental Data 

By using the synthetic sine sequence it is easy to simu- 
late the situation when the first answer appears in dif- 
ferent positions in the time sequence, The selected v’s 
and the positions where they first appear in the TS (i.e., 
the state-id of the first state in A(v’)) are listed in Table 
2. 

5.4.2 Experimental Results 

The execution times of getting the first answer of cr*,,,~ 
(TS) with regard to the position of the first answer 
appears in the TS are shown in Fig. 5.7. It shows that by 
using the [P-index the time to get the first answer is 
constant regardless of the position of the first anchor- 
state (because the first state-id in A(v’) indicates where 
to retrieve the state Sj in TS). By contrast, the time for 
linear scanning to get the first answer can be very slow 
when the first anchor-state appears late in the TS, 

The conclusion is that it is essential to have the IP- 
index in real-time query processing. 

To conclude, in this section we have measured the 
performance of o*,,,~ (TS) with respect to the properties 
of time sequences. Measurements on range queries cr*,,,~ 
(TS) are not included since, as we pointed out in Sec- 
tion 3.3. the cost of cr*,,,~ (TS) is the nearly the same as 
the cost of o*,,,,. (TS). In next section we will look at time 
window queries. 

5.5 Time Window Queries 

We also measured three different strategies for time 
window queries that were discussed in Section 3.4, The 
three strategies are: 1) Scanning A(v’) to calculate all 
t’s and check the condition later; 2) binary searching 
A(v’); 3) reversely scanning A(v9). 

Fig. 5.7: The execution times of the first answer 
of vv+ (TS) 

5.5,1 Constructing the Experimental Data 

The time sequences used in the measurements were the 
sine sequence (Fig* 5.3) and the pressure sequence 
(Fig. B.2). 

The time window was defined as t>t’. The window size 
was varied from 100, 500, IK, 5K to 1OK for the sine 
sequence and lK, 5K, IOK, 50K to 1OOK for the pres- 
sure sequence. Every window size results in a different 
number of anchor-states visited (Section 3.4). These 
numbers are plotted as x-axis in Fig. 5.8 and Fig. 5.9. 

5,5,2 Experimental Results 

The measurements show that: 1) reverse scanning of 
A(v’) is the most efficient strategy since no extra over- 
head is needed; 2) binary searching A(v’) (to get close 
to the position of t>t’) performs almost as efficient as 
reverse scanning; 3) when the time window is small, the 
difference between not searching A(v’) and binary 
search A(v’) is dramatic. 

TRe conclusion is that it is very important to opti- 
mize time window queries by pushing the condition t>t’ 
mto the IP operator (Section 3.4) when the window is 
smalI, 

Notice that binay search can also be performed on 
the original TS to process time window queries by find- 
ing the position of t’ to start scanning TS. But this will 
always be slower than the strategy 2 above, i.e., binary 
searching A(v’) (or strategy 3 above, i.e., reverse scan- 
ning A(v’)) since A(v’) is normally much shorter than 
the whole TS. 

In summary, we have analysed the behaviour of the IP- 
index and the performance of the cr* operator with 
respect to the properties of time sequences and typical 
query patterns. 

6 Conclusions and Future Work 

Time sequences appear in various domains in modern 
database applications. Research work on time 
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Fig. 5.8: The time window query for the sine 
sequence (10K) 

Fig. 5.9: The time window query for the 
pressure sequence (100K) 

sequences has mainly dealt with similarity search 
which concerns shapes of time sequences. This paper 
presents the extended cr* operator to retrieve implicit 
values from time sequences under various user-defined 
interpolation assumptions. We have developed the IP- 
index [ 131 to efficiently support the o* operator. The 
efficiency of the u* operator for getting all or the first 
few answers was demonstrated by experiments made on 
SHORE. The relationship between the behaviour of the 
IP-index and the performance of the cr* operator witb 
regard to the properties of time sequences were investi- 
gated and verified. Possible optimizations of the o* 
operator were discussed and verified by experiments. 
Space usage of the IP-index with regard to the size of 
the time sequence was analysed to show that it is practi- 
cal to build IP-indexes for large time sequences. 

In a survey by Chomicki on temporal query lan- 
guages 171, it is argued that the densed temporal domain 
is very useful in many applications but is difficult to 
implement efficiently since the set of time instances is 
very large. The IP-index provides the ability to derive 
the densed instances from the original discrete 
sequence, saving both storage and query processing 

time. The actual number of time instances (termed 
“states” in this paper) needed to be stored are deter- 
mined by the range and precision of the values in the 
sequence. Also the sampling frequency can change dur- 
ing different periods, higher frequency can be used for 
interesting value ranges and lower frequency can be 
used for uninteresting ranges. Different interpolation 
functions can also be applied to different sub- 
sequences. 

We have found several research papers where the u* 
operator is needed for sequence data: 1) in [lo], for 
case-based reasoning on event sequences where a “loca- 
tion method” based on some value condition is needed; 
2) in [14], for finding the grids in a map whose terrain 
elevation are inside some value range; 3) in 1201, for 
retrieving sub-sequences in a stock price sequence 
where the prices are in some range. Also the example 
query on the pressure sequence [9] used in this paper 
shows the importance of the o* operator. 

In future work we would like to develop a good data 
structure for dynamic time sequences 1231. As pointed 
gut by Shoshani [23], a time sequence that is both 
$jlnanaic and i’rregular is the most difficult to be sup- 
ported physically. The data structure has to be variable 
length and support fast random access in the time 
domain (fast random access on the value domain is sup- 
ported by the IP-index). Our current plan is to partition 
the large TS into arrays (each array fitting in one page) 
and use a B+-tree to index these arrays. It is also inter- 
esting to investigate a good data structure for the 
anchor-state sequences since they are dynamic and vary 
much in length. The design goal is not to waste space 
for small A(v)s and to support fast random access for 
large A(v)s, which is needed in time window queries. 

We will then develop the cost model for the o* oper- 
ator based on the new data structure, so that query opti- 
mization concerning the o* operator can be carried out 
by the database system. Since many extensible database 
systems (such as Illustra [ll] and PREDATOR [21]) 
support “plug in” of new abstract data types together 
with their storage, manipulation methods and their 
indexes, the IP-index, the o* operator and its cost 
model can be plugged into those systems to support 
queries on time sequences or any 1-D sequence data 
1203. New functions for time sequences or other 1-D 
sequence data such as “get-time-stamps(seq-name, 
‘W’) v’)” and “get-time-intervals(seq_name, ‘>‘, v’) 
can be defined and supported efficiently by the IP- 
index, 

We would also like to investigate how to extend the 
IP-index to two-dimensional time sequences. An exam- 
ple of a two-dimensional application can be found in 
114% where an IP-index is needed for a two-dimensional 
terrain map. 
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