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Abstract 

We propose a multi-dimensional language called 
nD-SQL with the following features: (i) nD-SQL 
supports queries that interoperate amongst 
multiple relational sources with heterogeneous 
schemas, including RDBMS and relational data 
marts, overcoming the mismatch between data 
and schema; (ii) it supports complex forms of 
restructuring that permit the visualization of n- 
dimensional data using the three physical dimen- 
sions of the relational model, viz., row, column, 
and relation; (iii) it captures sophisticated aggre- 
gations involving multiple granularities, to an ar- 
bitrary degree of resolution compared to CUBE, 
ROLLUP, and DRILLDOWN. We propose a formal 
model for a federation of relational sources and 
illustrate nD-SQL against it. We propose an ex- 
tension to relational algebra, called restructuring 
relational algebra (RRA), capable of restructuring 
and aggregation. We propose an architecture for 
the implementation of an nD-SqL server, based on 
translating nD-SC/L queries into equivalent RRA 
expressions, which are then optimized. We are 

currently implementing an nD-SQL server on the 
PC platform based on these ideas. 

1 Introduction 
Interoperation among multiple heterogeneous databases 
continues to be an important practical problem. It en- 
tails resolving incompatibilities and conflicts between com- 
ponent database systems on a number of different fronts, 
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including platforms, database schemas, and transaction 
management systems, to name a few. The importance 
of developing query languages capable of “cross-querying” 
the component databases, overcoming the discrepancies 
among their schema and data semantics has been recog- 
nized (see [CL93, GLRS93, KLK91, Lit89, SSR94, LSS96] 
for a few proposals for such languages). It has been real- 
ized from these earlier works that even in the context of a 
federation consisting of relational databases, the conflicts 
among the component database schemas raise serious chal- 
lenges for interoperability. For instance, an entry such as 
“ibm” might appear as a domain value in one component 
database, as an attribute in another, and as a relation name 
in the third (see Figure 1). It is known that conventional 
languages like SQL or variants cannot be used to overcome 
this conflict (see [LSS96]), without a host language. 

In this paper, we view interoperability in a slightly larger 
context where the objective is not only to run tradi- 
tional SqL queries on the data in a federation, but also 
queries involving multiple granularity aggregation required 
for OLAP. Typically, such queries involve operators like 
CUBE, ROLLUP, and DRILLDOWN. More precisely, the prob- 
lcm studied in this paper is: how to develop a query Jan- 
guage compatible with SqL, that is capable of(i) expressing 
queries on a federation of relational sources resolving the 
conflicts between the component schemas, and (ii) express- 
ing OLAP queries involving multiple granularity aggrega- 
tions? 

The motivation for the above problem is as follows. First, 
consider a complex organization whose data is distributed 
among its functional or departmental units. Decision 

support requires: (i) interoperability among component 
databases, and (ii) eventually the creation of a data ware- 
house storing integrated summaries of the operational 
data, providing efficient support for OLAP queries.’ Once 
a data warehouse is created, the discrepancies among com- 
ponent databases are resolved and the data would be inte- 
grated. Why then need yet another query language? How- 
ever, as discussed in [CD97], building a data warehouse is 

‘Actually, a data warehouse should ideally support both 
OLAP and mining as argued by Chaudhuri and Dayal [CD97], 
but in this paper, we do not consider mining. 
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ibm 10127197 close 62.56 
. . . 
ms ;‘i(O1(97 1 ;Idw 1 44.60 
. . . . . . . . . I . . . 

(a nyse: :prices 

’ Ticker Date low high . . . 

ibm 10127197 62.00 64.00 . . . 
. . . . . . 
ms 11101197 46.00 48.72 ::: 

(b)tse: :quotas 

Date open, ibm open, ms open, . . . . . . close, ibm close, ms close, . . . 
10127197 59.89 45.00 . . . . . . 62.05 46.17 . . . 
. . . . . . . . . . . . . . . . . . . . . . . . 
11101)97 60.89 43.98 . . . . . . 62.05 46.17 

(c) bse: :prices 

Date 
10127197 58021 

. . . 
11101197 

l.y 2 11; -1 ... ... 

55.75 

mse : : ibm mse: :ms . . . 
(d) relations in mse 

Figure 1: A federation of relational databases with heterogeneous schemes, containing stock market data. Only 
relevant relations from each database are shown. The notation db: :rel means db is a database containing 
relation rel. 

a long, complex, and expensive process, often taking up to 
several years to complete. Many organizations adopt an in- 
termediate solution, whereby they create the so-called data 
marts, which are essentially miniature data warehouses in- 
tegrating small subsets of the operational databases. Thus, 
in the evolutionary lifecycle of a data warehouse, one has 
to cope with interoperating among operational databases, 
among data marts, and among both. Given the ultimate 
need to perform OLAP style computations, it would be 
desirable to have one query language that can express not 
only conventional queries across component databases (or 
data marts), but also OLAP queries. 

Next, consider interoperation of a general federation of 
databases, not necessarily belonging to any one organiza- 
tion. The participants of the federation may not permit 
the data in their databases to be integrated into a cen- 
tral warehouse. One approach that has been followed in 
the past to resolve schematic discrepancies is to convert 
the data in the databases to conform to a common canon- 
ical schema, by defining mappings (e.g., see [ASD+Sl]). 
Unfortunately, such mappings tend to be very low level 
and converting data in this manner is labor intensive, ne- 
cessitating lengthy and costly human interventions. This 
once again calls for a high level query language capable 
of resolving such conflicts automatically, assuming addi- 
tional information on the component schemas is added to 
the federation in a non-intrusive manner. In this context, 
even though traditionally interoperability has been posed 
as a problem without the requirement to support OLAP 
queries, we anticipate there are many applications which 
can benefit from such a feature. For example, in a stock 
market federation, an investment broker or analyst might 
wish to compute multiple granularity summaries on the 
data pooled from a number of exchanges, in order to study 

the performance of stocks and funds. 

In this paper, we propose a formal model for a federation of 
relational databases with possibly heterogeneous schemas 
(Section 2). We also propose an n-dimensional query lan- 
guage called nD-SCJL, capable of: (a) resolving schematic 
discrepancies among a collection of relational databases 
or data marts with heterogeneous schemas, and (b) sup- 
porting a whole range of multiple granularity aggregation 
queries like CUBE, ROLLUP, and DRILLDOWN, but, to an ar- 
bitrary, user controlled, level of resolution. In addition, 
nD-SqL can express queries that restructure data conform- 
ing to any particular dimensional representation to any 
other (Section 3). We propose an extension to relational 
algebra capable of restructuring, called restructuring rela- 
tional algebra (RRA). We use RRA as a vehicle for efficient 
processing of nD-SQL queries, and propose an architecture 
for this purpose. We develop query optimization strategies 
based on properties of RRA operators (Section 4). We also 
discuss the implementation of a system based on our ideas 
(Section 5). We finally compare nD-SQL and its approach 
with related work (Section 6). 

Before concluding this section, we briefly illustrate the 
power of nD-SQL. In nD-SQL, it is straightforward to re- 
structure the data in any of the databases in Figure 1, to 
the schema of any other database, which is impossible in 
most known query languages, without external calls to pro- 
cedures in a host language. For lack of space, we suppress 
the proofs of all our results and finer details of our query 
processing algorithms in this paper, and refer the reader 
to the full version [GL98]. We also point the reader to 
the URL http://www.cs.concordia.ca/-special/bibdb/nd- 
sql for more information about nD-SQL. 
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2 The Model 
In this section, we propose a formal model for collec- 

tions of relational databases. The highlights of this model 
are: (i) It captures heterogeneous schemas of relational 
databases arising in practice, treating data and schema 
symmetrically; (ii) It gives a first class status to the three 
physical dimensions implicit in the traditional relational 
model ~ row, column, and relation; (iii) Using this, it gives 
a precise meaning to representations of n-dimensional data 
using three physical dimensions; (iv) it is straightforward 
to incorporate (relational) data marts with the federation 
model, and this is discussed at the end of the section. 
We begin with the notion of a scheme. The size of prac- 
tical database schemas, may be data dependent (e.g., the 
number of columns of tse and the number of relations in 
mse, in Figure l), unlike in the classical relational model. 
Our notion of a “federation scheme”, proposed next, makes 
it possible to elegantly view the scheme of a relation, a 
database, or a federation, as a fired entity independent of 
the contents in it, just as in the classical case. We as- 
sume pairwise disjoint, infinite, sets of names, A!, values, 
V, and id’s, 0. We use typewriter font for names (e.g., 
Measure) and roman for values (e.g., open), regardless of 
what positions they appear in-- data or relation/column 
label positions. Ids will always be clear from the context. 

The partial function dom : N ~2 V maps names in JV to 
their underlying domains of values. Names that only cor- 
respond to relations or databases do not have associated 
domains. 

Definition 2.1 (Federation Scheme) A federated 
name is a pair (N, X) where N E N is a name and X C N 
is a finite subset of names, such that N@X. In a federated 
name, the component N is referred to as the concept and 
the set X as the associated criteria set. A federated name 
(N, X) is simple (resp., complex) provided X = 0 (req., 
X # 0). We usually denote simple federated names (N, 0) 
just as N, following the classical convention. A federated 
attribute or relation name is any federated name. A feder- 
ated relation scheme is of the form R(C1,. . , C,), where 
R is a federated relation name and the C,s are all federated 
attribute names. A federated database scheme is a set of 
federated relation schemes, and a federation scheme is a 
set of named federated database schemes. 

The intuition behind the above definition is two- 
fold: (1) A complex attribute (resp., relation) name 
translates to a set of complex column (resp., re- 
lation) labels in an instance. For example, the 
complex attribute name (Price, {Measure, Ticker}) in 
the scheme might correspond in an instance to the 

:z?q IPrice 
FOR Measure = low AND Ticker = 

. ) Price FOR Measure = close AND Ticker = 

hp} of column labels. The federation scheme of the 
instance shown in Figure 1 is: Si = {nyse: :prices( 
Ticker, Date, Measure, Price), tse: :quotes(Ticker, 
Date, (Price, {Measure})), bse: :prices(Date, (Price, 

;p” 
easure, Ticker})), mse: : (prices, {Ticker})(Date, 
rice, {Measure}))}. Notice that in the instance shown 

in Figure 1, the somewhat cryptic labels like “open” take 
the place of the formal label “Price FOR Measure = open”. 

We will return to this point later. (2) The notion of a 
federated relation scheme formalizes the idea that certain 

attribute domains are arranged along each of the three di- 
mensions ~ relation, column, and row. Specifically, in an in- 
stance of a federated relation scheme (e.g., mse: : (prices, 
{Ticker})), domain values of relation criteria (Ticker) are 
placed along the relation dimension, domain values of cri- 
teria of complex columns (Measure) along the row dimen- 
sion, and domain values of simple columns (Date) along 
the column dimension. 

Definition 2.2 (Federation Instance) Let S = {di :: 
Rl(Cl!. . , Ck), . ,d, :: &(Di,. , D,)}, the d, not 

necessarily distinct, be a federation scheme. Then a fed- 
eration instance (instance for short) oj this scheme is a 
7-tuple Z = (V, rel, col, tup, cone, crit, val), defined as jol- 
lows. 

‘D = {dl, . , dm}, i.e. ‘D consists exactly of the dis- 
tinct database names mentioned in the scheme S. 

rel : D-2’ as a junction that maps each database 
name in V to a jinite set of relation id’s. Below, we 
will use R = U,,, ret(d) to denote the set of all rela- 
tion id’s in the instance. 

col: Ri2L3 as a function thaf maps each relation id 
to a finite set of column id’s, 

tup is a junction that maps each relation id r in R 
to a finite set of tuples tup(r) over the set of columns 
CO(T). 

cone : O-N is a function that maps each id to a 
name, called its underlying concept. 

crit : O+aN 1s a function that maps each id to a 
finite set of names, namely its underlying set of crite- 
ria. 

val : O x N-V is a partial function that maps an id 
and a name (viewed as (z possible criterion associated 
with the id) to a value. 

For example, an instance of the scheme S1 above is the 
federation shown in Figure 1, intuitively speaking. There 
are four database names- nyse, tse, bse, mse, each 
of them having their associated simple/complex relations. 
For instance, mse has the relations “ibm, ms, . ..I’. each 
having the same set of column labels-- “Date, low, high, 

1, . . . All these labels intuitively correspond to (relation 
and column) id’s in the formal definition. The concepts 
and criteria associated with these labels are typically not 
recorded in real-life federations. However, intuitively, we 
can understand that the concept associated with the label 
“low” is Price and that the only associated criterion is 
Measure. In the sequel, we shall refer to the formal notion 
of instances defined above as abstract instances to distin- 
guish them from the “real” (i.e. real-life) instances, defined 
shortly. For an abstract instance to be a legal instance of 
a federation scheme, certain consistency conditions should 
be met. 

Definition 2.3 (Legal Instances) Let T be an abstract 
instance of a federation scheme S. Then T is said to be a 
legal instance provided it satisfies the jolloming conditions. 
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db 1 relid rellabel rel-concept 
nyse Tl ( prices [ prices 

relid attrid attrlabel attrxoncept 
9.1 al Ticker Ticker 

id criteria 
T4 1 Ticker 1 
T5 Ticker 
ai Heasure 
at Ticker 
. . . . . . 

a3 Measure 
. . . . . . . . . 

criteria 

1. The following sets are pairwise disjoint: each set of 
relation id’s associated with a given database, each set 
of column id’s associated with a given relation. 

2. Whenever a, b E coJ(r), a # b, and both a, b correspond 
to complex attribute names, i.e. crit(a) # 0 # crit(b), 
we require that crit(a) = crit(b). In words, the crite- 
ria sets associated with any two complex columns in a 
relation must be identical. 

3. For each relation id r, for each tuple t E tup(r), for 
a E coJ(r), we require t[a] E dom(conc(a)), i.e. the 
relations must respect the types of the concepts asso- 
ciated with their column labels. 

4. For a E coJ(r) U reJ(d), r being any relation id, and d 
being any database in V, and N E crit(a), we require 
vaJ(a, N) E dam(N), i.e. the values associated with 
criteria should belong to the appropriate domains. 

In the sequel, when we refer to abstract instances, we mean 
legal (abstract) instances. 

Real Federations and Formal Model Bridged: Two 
questions need to be addressed now: (1) How can real- 
life federations be captured in the formal framework? (2) 
How relevant is our formal notion of abstract federation 
instances to practice, and specifically, for the purpose of 
interoperability? To deal with question 1, we define real 
instances. 

Definition 2.4 (Real Instance) A real instance 3 of a 
federation scheme S is simply a named collection of rela- 
tional databases such that: (i) 3 contains a database cor- 
responding to each database name d in S; (ii) each simple 
(resp., complex) relation name R associated with a database 
d in S corresponds to a relation label (resp., set of relation 
labels) in 3; (iii) each simple (resp., complex) attribute 
name A associated with a relation name R in database d 
in S corresponds to a column label (resp., set of column 
labels) in 3; (iv) all relation labels corresponding to a rela- 
tion name R haue the 8ame set of associated column labels. 

Given an abstract instance Z of a federation scheme S, it 
is straightforward to construct a real instance F by turn- 
ing the various id’s in Z into labels. We call such a real 
instance 7 the real instance corresponding to the abstract 
instance 1. The federation shown in Figure I is indeed the 
real instance of the federation scheme &, corresponding 
to the abstract instance sketched following Definition 2.2. 
Notice that (i) the notions of concepts and criteria are not 
present in the definition of a real instance; (ii) there is no 
constraint on the labels chosen for the relations or columns. 

ms 
OpXl 
ibm 

. . . 
low 

Figure 2: The catalog database associated with the federation of Figure 1. 

Indeed, in real-life federations, we may have no control over 
the chosen labels, and the concept and criteria information 
may not be explicitly present. Thus, the notion of real 
instances captures real-life federations. 

We next address question 2 above. We can connect ab- 
stract and real instances by treating the various labels in 
the real instance as though they were id’s, The actual 
concepts and criteria associated with them, which are not 
explicitly present, can be attached in a non-intrusive way 
in the form of system catalog tables, formalized next. 

Definition 2.5 (Catalog Database) The catalog 
database associated with an abstract instance Z consists 
of the following three relations (which we call catalog ta- 
bles): 
dbscheme(db, relid, rel-label, rel-concept ) , 
relschemes(relid, attrid, attrlabel, attr-concept), 
criteriacid, criteria, value) satisfying the following 
conditions. 

l the relation dbscheme contains a tuple (d, r, f?, c) ex- 
actly when, according to 1, database d has a relation 
with relation id r whose label is I! and underlying con- 
cept is c. 

l the relation relschemes has a tuple (r, a, e, c) exactly 
when, according to Z, relation with id r has attrid a 
as one of its associated attributes, k! is the label of a 
while c is its underlying concept. 

l the relation criteria has a tuple (i, CT,O) exactly 
when, according to Z, the id i has CT as one of its 
criteria which has the associated value II. 

The catalog database associated with the federation of Fig- 
ure 1 is shown in Figure 2. 

We treat the database catalog as a distinguished database 
from a formal viewpoint in that it always consists of the 
three catalog tables defined above. We stress that casual 
users do not have to expIicitly manipulate the catalog db. 
For linking an abstract instance to its corresponding real 
instance, we propose the notion of an augmented instance. 
Let T be a real instance corresponding to an abstract in- 
stance Z. The augmented instance associated with F and Z 
is the federation obtained by adding to 1F the distinguished 
database catalog, the catalog database associated with Z. 
We then have the following theorem: 

Theorem 2.1 Let S be a federation scheme. Then to ew- 
ery abstract instance of S, there exists an equivalent (aug- 
mented) real instance of S, and vice versa. . 
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Incorporating data marts: So far, we have focused at- 
tention on relational databases. Many data marts (like 
data warehouses) that are based on the so-called ROLAP 
approach adopt a star schema or a snowflake schema for 
their implementation. We call such data marts relational 
data marts. It is easy to see that such schemas corre- 
spond to federated schemas where both relation names and 
attributes are simple. Thus, the notions of a federation 
scheme and instance defined in Definitions 2.1 and 2.2 
subsume relational data marts. 

3 Syntax and Semantics of nD-SQL 

In this section, we present the syntax of nD-SqL by ex- 
plaining the additions made to SqL. The semantics of 
nD-SCJL will be illustrated with examples. The complete 
syntax of the language and a rigorous account of the se- 
mantics can be found in [GL98]. Tables summarizing the 
differences in syntax between SQL and nD-SqL are avail- 
able at http://www.cs.concordia.ca/lspecial/bibdb/ndsql. 
Throughout, we will use the federation of Figure I as a 
running example to illustrate our queries. 

3.1 Multi-dimensionality and Restructuring 

nD-SqL uses the classic SELECT, FROM, WHERE, GROUP BY and 
HAVING clauses of SqL, and adds to the syntax in several 
manners. (1) FROM clause: In addition to declaring the 
usual tuple variables (called ‘aliases’ in SqL), users can 
now also declare variables ranging over database names, 
a set of relations , or a set of columns of relation(s). 
(2) WHERE clause: We introduce two new interpreted con- 
straints which may be used in the WHERE clause to constrain 
relation or column variables to range over a “homogeneous” 
set of schema objects, i.e. over relations/columns having 
the same concept and set of criteria. The use of such con- 
straints will help ensure queries are “well-typed”, a notion 
we will formally define at the end of the present section. 

As an example of the use of variable declarations and of 
proper constraints, here is what the FROM and WHERE clauses 
could contain in order to query the data from Figure l(d): 

FROM mse -> R, mse::R T, mse::R -> C 
WERE R HASA Ticker AID C ISA Price 

Here, R is a rel-var restricted to range over the relations of 
database mse having Ticker values as criteria values, and C 
is a clmn-var restricted to range over the columns of these 
relations having Price dues as their underlying concept. 

(3)SqL has a unique kind of domain expression, 
tnple-var.attr (abbreviated as attr). In addition 

to this, nD-SqL also has the domain expressions 

tuple-var.clmn-var and C.criterion, where C is a rela- 
tion/column variable and criterion is one of the criteria 
of the relations/columns it ranges over. This expression 
serves to extract criteria values. All of these domain ex- 
pressions can be used in the SELECT and GROUP BY clauses, 
and in conditions in the WHERE and HAVING clauses. We 
define the underlying concept of a domain as follows: 

Definition 3.1 (Underlying concept of a domain) 
undcorac(domain) = 

I 
attribute if domain is of the form 

tuple-var.attribute 
criterion if domain is of the form 

rel-var.criterion 
criterion if domain is of the form 

clmn-var.criterion 
concept(clmnsar) if domain is of the form 

tuple-var.clmn-var 

where we refer to the concept of a complex column or rela- 
tion over which a var ranges as concept(var). We will also 
refer in the sequel to the set of criteria of the same column 
or relation var as crit(var). 

As an example of the use of each kind of domains, the 
following query “flattens” the data from the tables of Fig- 
ure l(d) into a form similar to table nyse: :prices: 

SELECT R.Ticker, T.Date, C.Haasure, 
T.C AS Price 

(Ql) FROM mse -> R, mse::R T, mse::R -> C 
WHERE R HASA Ticker AID C ISA Price 

Note in this query, in addition to the use of the HASA/ISA 
conditions to constrain the relation and column variables, 
the extraction of the values of criteria C.Measure into a 
column ofits own. The multiple columns that C ranges over 
are aligned into a single column by the select..object T.C 
AS Price. Here, each tuple of each table of Figure I(d) is 
broken down into many output tuples, one per value of the 
criterion Measure. 
(4)In order to create complex columns and relations, we 
need to deposit data values as criteria values. The syntax 
for depositing data values as column criteria values is to 
use the following new type of select-objects in the SELECT 
clause: 

domain0 [ AS label ] FOR (domain1 {, domaini}), i > 1 

where the optional label can be any combination of con- 
stant strings concatenated (using the “&” symbol) with 
any combination of the domains domain,, j 2 1. Ex- 
amples of labels could be: “Price for Year = “&T.Ticker, 
“Price for “&T.Ticker, T.Ticker&“‘s Price” or even simply 
T.Ticker. When no label (AS subclause) is present, appro- 
priate default conventions for labels are used [GL98]. 

The use of the FOR subclause with a select-object indi- 
cates that there should be a complex attribute with name 
(undconc(domaino), {undconc(domainl), undconc(domainz), 
. ..}) (see Definition 3.1) in the output relation schema. 
The following example illustrates the use of this syntax by 
transforming the content of nyse: :prices into a format 
similar to the one of table tse: :quotes. 

SELECT T.Ticker, T.Date, 
(92) T.Price AS T.l4easure FOR T.Heasure 

FROM nyse::prices T 

Note in this query how the multiple Price columns are cre- 
ated, one for each Measure values, by the use of the FOR 
subclause. Note also how these Measure values are used as 
column labels. 

(5)To deposit data values as relation criteria, we englobe 
all the select-objects of the SELECT clause in parentheses 
and apply the following additional FOR subclause: 
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SumPrice FOR SumPrice FOR . . . SumPrice FOR SumPrice FOR . . . 
Measure = open Measure = close . . . . . . Measure= open Measure = close ,.. . . . 

6521K 5475K . . . 5905K 6308K . . . 
output::10127)97 . . . output ::11(01197 . . . 

Figure 3: Result of query q3 

SELECT (select-objectslist) [ AS label 1 
FOR domain1 {, domaini}, i > 1 

which indicates that a relation with name (relk, 
{undconc(domainl), undconc(domaina), . ..}) should be 
created. The relation concept relk is generated by the sys- 
tem in order to prevent conflicts with other relation con- 
cepts in the catalog. 

The following example illustrates the creation of complex 
relations, while an aggregation is performed. 

SELECT (Sum(T.C) AS "SumPrice FOR 
Measure = " & C.Measure FOR C.Heasure) 
AS T.Date FOR T.Date 

(93) FROM bse::prices -> C, bse::prices T 
WERE C ISA Price 
GROUP BY C.Reasure, T.Date 

This query takes the aggregation of each individual Price 
for a given Measure on a given Date (i.e. the aggrega- 
tion is over Tickers). Here, note that the aggregation is 
performed over a subset of the criteria of C. The aggrega- 
tion is performed on T.C (i.e. Price values), grouping by 
C .Measure (extracting the values of Measure) and T .Date. 
The inner FOR subcJause restructures the sums into muJ- 
tiple columns, one per value of Measure, while the outer 
FOR subclause restructures the result into multiple rela- 
tions, one per value of Date. The result of the query is 
shown in Figure 3, where we assume all output relations 
to be temporarily viewed as members of a database named 
“output”. 

Various abbreviations are acceptable in nD-SqL syntax 
[GL98], whose details are suppressed for lack of space. 

Well Typing: Intuitively, a query can be meaningful only 
if it maps legal instances to legal instances. More precisely, 
we have the following definition. 

Definition 3.2 (Well-Typing) A nD-SQL query 9 is 
well-typed provided for every legal instanced, q(Z), viewed 
as an instance is also legal. 

Ensuring well-typing is important for query processing, not 
only to make sure the result presented to the user is mean- 
ingful, but also for ensuring aggregations can be correctly 
applied. Thus, an efficient algorithm for testing well-typing 
is essential. We develop such an algorithm below. 

It turns out that there are simple rules that the user can 
follow in order to make sure a query is well-typed. In par- 
ticular, let us call a query 9 well-formed, provided it satis- 
fies the following conditions. 

l relation variables must be restricted (by ISA and HASA 
conditions) to range over relations having the same 
concept and criteria set; 

attribute variables must be restricted (by ISA and 
HASA conditions) to range over columns having same 
concept and same set of criteria; 

all the complex columns created in the SELECT clause 
have the same set of criteria; 

The following is a syntactic characterization of well-typing. 

Theorem 3.1 A query is well-typed if and only if it is 
well-formed. 

Theorem 3.1 immediately yields an algorithm for testing 
well-typing: test whether the query satisfies the conditions 
for being well-formed. We can test the latter in time linear 
in the size of a given query [GL98]. 

3.2 Enhancing nD-SqL for OLAP: multiple vi- 
sualizations and subaggregates 

Since the proposal by Gray et al. [Gray+961 for the pow- 
erful CUBE operator, researchers have developed several ef- 
ficient algorithms for computing this expensive operator 
[Agars96, ZDN97]. The CUBE operator corresponds to ag- 
gregation at exponentially many granularities. It has been 
recognized [Agar+96, ZDN97] that in practice, a user may 
be interested in specific subsets of group-bys. Two such 
examples are ROLLUP (e.g., {{Date, Ticker}, {Date}, {}) 
and its converse DRILLDOWN. While these operators are im- 
portant, we contend that in general, depending on the ap- 
plication at hand, users may be interested in subsets that 
need not be covered by these operators (see Example 3.4 
e.g.). In this section, we develop some simple extensions to 
nD-SqL and show how they lead to a powerful mechanism 
for expressing arbitrary subsets of group-bys. In addition, 
we will also show that together with the restructuring ca- 
pabilities of nD-SQL, this allows us to compute arbitrary 
multiple granularity aggregations and visualize the results 
in multiple ways. Following OLAP terminology, we refer 
to each of the names in a federation scheme as a logical 
dimension. More precisely, we have the following 

Definition 3.3 (Logical Dimensions) The logical di- 
mensions of a federated relation scheme R(C1,. , C,) are 
the set of concepts of C, together with the set of criteria 
of R, and of the complex columns among C,, 1 5 i 5 n. 
Let Q be an nD-SQL query and let RI,. . . , R, be the set of 
federated relation schemes mentioned in Q, Then the set 
of logical dimensions associated with Q is the union of the 
logical dimensions associated with R,, 1 5 i < m. 

For example, the dimensions of each of the four federated 
relation schemes in &, corresponding to the instance of 
Figure 1 are Ticker, Date, Measure, Price. We do not 
address the issue of dimension hierarchies in this paper. 
The main enhancement to nD-SQL syntax is a new kind of 
variable called dimension variable (declared as DIM var), 
ranging over the names of all logical dimensions associated 
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with the query, except those being aggregated. An nD-SQL 
query Q with dimension variables is equivalent to a set 
of nD-SDL queries without dimension variables, obtained 
by instantiating the dimension variables in Q to all possi- 
ble combinations of dimension names that satisfy the con- 
straints on the dimension variables, specified in the WHERE 
clause of Q. We start with an extremely simple example 
to illustrate the ideas. 

Example 3.1 

SELECT X, SM(T.Price) 
(94) FROH nyse::prices T, DIM X 

GROUP BY X 

The only dimension variable is X. The only federated rela- 
lion scheme mentioned in (q4) is nyse: :prices, whose as- 
sociated dimensions are Date, Ticker, Measure, Price. 
Of these, Price is being aggregated. So, the dimension 
variable X ranges over the dimension names Date, Ticker, 
andMeasure. The equivalent set of queries without dimen- 
sion variables are as follows. 

SELECT T.Ticker, SUH(T.Price) 
(Q4a) FROM nyse::prices T 

GROUP BY T.Ticker 

SELECT T.Date, SUlJ(T.Price) 
(Q4b) FROH nysa : : prices T 

GROUP BY T.Date 

SELECT T.Measure, SUH(T.Price) 
(Q4c) FROM nyse : : prices T 

GROUP BY T.Heasure 

Thus, this query expresses the aggregation of T.F’rice with 
respect to each of the three possible group-bys - Ticker, 
Date, and Measure. . 

Constraints on dimension variables include the standard 
rel-ops =, 5, <, >, 2, #. We interpret them w.r.t. the lex- 
icographic ordering of the dimension names. E.g., Date 
< Ticker. We introduce a special constant, NONE, in- 
spired by the special constant all introduced by Gray et 
al. [Gray+96].’ We give this constant a special status 
w.r.t. the way the rel-ops are interpreted. We assume: 
(i) NONE Op NONE is always true for all rel-ops Op; (ii) 
(dimension) < NONE is always true, for all dimension names 
(dimension). Besides rel-ops, we also allow constraints in- 
volving the IN operator, with the obvious semantics. Fi- 
nally, we introduce a special type of constraint using which 
we can allow a dimension variable to assume the value 
NONE. This feature is particularly useful for specifying mul- 
tiple granularity aggregations, as our examples will show. 

Example 3.2 Let us now revisit the previous example and 
see how we can express a CUBE of Price values over the 
dimensions T. Ticker, T. Date and T .Measure. 

SELECT X, Y, Z, SUR(T.Price) 
FROH nyse::prices T, DIH X,Y,Z 

(95) WHERE X < Y < Z AUD DIM CAR BE ROBE 
GROUP BY X, Y, Z 

2We simply find the nameYOEEmoreappropriate fortheuse 
we have for this constant here. 

In this query, X, Y and Z can each range over the di- 
mension names {T.Ticker, T.Date, T.Measure, NONE}. 
The condition X < Y < Z (an abbreviation for X < Y AND 
Y < Z) further restricts the possible groupings. Finally, if 
we modify the constraints on dimension variables to: X 
IN {T.Date, NONE} AND Y IN {T.Measure, NONE} AND Z 
IN {T.Ticker, NONE} AND X < Y < Z, then this produces 
exactly the group-bys {T.Date, T.Measure, T.Ticker}, 
{T.Date, T.Heasure}, {T.Date}, and {}, corresponding 
to ROLLUP. . 

Our next example shows the interplay between multiple 
granularity aggregation and restructuring. 

Example 3.3 

SELECT (AVG(T.Price) AS Y FOR Y) AS X FOR X 
(QS) FROn nyse::prices T, DIM X, Y 

YHERE DIHS IB CT.Date, T.Heasure, T.Ticker) 
GROUP BY X, Y 

This query generates all possible group- 
ings of AVG (T. Price) along two logical dimensions among 
Date, Measure and Ticker. Furthermore, it restructures 
each particular grouping in multiple ways along (physical) 
relation and row dimensions such that multiple visualiza- 
tions of the same data are provided at once, as shown in 
Figure 4(b). . 

Our last example in this section illustrates the power of 
nD-SQL to generate sets of multiple granularity aggrega- 
tions which do not seem to be obviously expressible us- 
ing a combination of operators like CUBE, ROLLUP and/or 
DRILLDOWN. 

Figure 4: (a) “neighborhood” operator (b) Visualiza- 
tions or result of query q6 

Example 3.4 
Consider a relation db: :rel(A,B,C,D,E,F,G), and sup- 
pose a user is looking at the result of SUM(G) grouped by 
A,B ,C. It is very natural for the user to want to took at the 
“neighborhood” of this group-by, 1 level below and above 
{A,B,C} in the group-by lattice. Specifically, the user 
might be interested in examining the group-by8 {A, B , C ,D}, 
{A,B,c,E}, {A,B,c,F}, {A,B}, {A,c}, and {B,c} which 
form the neighborhood of {A,B,C} in the cube lattice. This 
query can be expressed as follows. 
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SELECT Y, X, Y, Z, SUH(G) 
(97) FROM db::rel T, DIH Y,X,Y,Z 

WHERE u < X < Y < Z AID u 11 CA,B,C) AID 
x 11 CA,B,C) Am Y In Ic, ROBE) AID 
z II {D,E,F, rors) 

Figure 4(a) depicts the “shape” oj this set of group-bys. It 
is not clear how such a query can be expressed using known 
operators. . 

4 Query Processing 
We will discuss in this section our approach to an efficient 
implementation of the nD-SQL language. In order to sim- 
plify the presentation, we will first cover the processing of 
queries that do not involve dimension variables (Section 
4.1). We will then discuss the processing of those queries 
involving dimension variables (Section 4.3). 

4.1 Processing of queries that do not involve 
dimension variables 

Overview: In order to efficiently process nD-SQL queries, 
we will define a new Restructuring Relational Algebra 
(RRA) which extends classical Relational Algebra (RA) 
with restructuring operators. Thus, to process nD-SQL 
queries we will translate them into equivalent RRA expres- 
sions, just like SQL queries are translated into RA expres- 
sions. We will then take advantage of the properties of the 
RRA operators to optimize the expressions. We can also 
take advantage of downward compatibility of RRA with 
RA to push some of the processing to remote databases. 
Our architecture is illustrated in Figure 6. Its highlights 
are that it is non-intrusive, requiring minimal extensions 
to existing technology, for deployment on top of existing 
SQL systems. 

T 
3 1 Query Interface 

& “I 

rD - SQL to RRA Translator 

4 

I RRA Optimizer I 

Source, Source 2 Source Ir 

Figure 6: System Architecture 

Restructuring Relational Algebra: RRA consists of 
the classical RA operators (that we extend slightly), to- 
gether with new restructuring operators. These address the 
issues arising from: (i) complex relations and columns; (ii) 
restructuring with a dynamic input and/or output schema. 
Recall that in our model, simple columns of relations are 
denoted as in the classical relational model, while com- 
plex columns are of the form (concept FOR criteria = 

G), where criteria is a list of criteria and v’ is a tu- 
ple of values of the appropriate type for the criteria. In 
formal definitions, we denote such complex columns as 

( concept, tcri+,eria), where tcriteria is the tuple that 
maps criteria to V: We sometimes refer to icriteria as 
a criteria-tuple. A similar remark applies for complex rela- 
tions. The operators of RRA are thus: 6, rI, W, ADD-COL, 
REM-COL, ADDREL and AGG where the latter can be any 
of the usual aggregation operators. 
We first define the new operators, then explain how the 
classical ones are extended. 

Definition 4.1 (Add Criteria to Columns) The op- 
eration ADD-COL,,jtLi,t,,,,,ti,t(rsl), crii%ist and concList 
being sets of concepts, applied to a relation with name rel, 
has the following effect. Let T be any instance of the rela- 
tion name rel in the database. Then, the operation pro- 
duces an output relation r’ with the same concept as r, 
satisfying the following conditions. 

l The column labels of r’ are cols(r’) = (cols(r) - 
{C ( C is a column of r with concept in critlist} - 
(C ) C is a column of r with concept in conclist}) u 

{Cc7 tcritList) I c is a column of r with concept in 
conclist} A 3 E r : t[critList] = tcritList}. Here 
cols(r) is the set of column labels of r. 

l The instance of r’ consists of a set of tuples over 
cols(r’), defined as inst(r’) = {t ( V(C,t,,itL& E 
COlS(r’) - COh(r) : 39 E T : VA E COlS(r) n COlS(d) : 
t[A] = s[A] A tcritl;ist = s[critList] 

A tt(C,tcritList)l = s[cIl. 

It should be noted that the column C could be a 
simple or complex column, in the above definition. 
As an illustration of the above operator, the ex- 
pressloll ADD-COLM,,s,,,-p,i,, (we :: prices) would pro- 
duce a relation with column labels similar to those of 
tse: :quotes of Figure 1, and contents equivalent to those 
of nyse : : prices. The resulting table, call it ny2t, is shown 
in Figure 5. 

Definition 4.2 (Remove Criteria from Columns) 
The operation REM_COL,,i,Li,t(rel), critList being a list of 
criteria, applied to a relation with name rel, has the jol- 
lowing efiect. Let r be any instance of the relation name 
rel in the database. Then, corresponding to each such re- 
lation r, the operation produces an output relation T', with 
the same concept as r, satisfying the following conditions. 

l The column labels of r’ are cola(r’) = {A 1 
A is a simple column in cols(r)} U {(A, tc)[C - 
critList]) ( (A, tc) is a complex column in co/s(r)} U 

critlist. 

l The instance of T' consists of a set of tuples over 
cols(r’), defined as inst(r’) = {t 1 33 E r : 
3 a criteria-tuple tc : (V simple column A E cols(r) : 
t[A] = s[A]) A (V complex column (C,tc) E cols(r) : 
t[(C, tc[C - critlist])] = s[(C, tc)]) A t[critList] = 
tc[critListl}. 

E.g., the expression REM-COLM,,,,,, (ny2t :: prices), ap- 
plied to the relation ny2t: :prices of Figure 5, exactly 
yields the relation nyse: :prices of Figure 1. 
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Figure 5: ny2t::prices 

Ticker Date open close low . . . 
ibm 10127197 63.67 62.56 62.00 . . . 
. . . . . . 
UIS 11101197 ii.02 ii.50 44.60 ::: 

ny2m: : ibm ny2m : :ms 

Figure 7: ny2m: :prices 

Definition 4.3 (Add Criteria to Relations) The op- 
e&ion ADDREL,,;,Li,t(rel), Crii%ist being a list of crite- 
ria, applied to a relation with name rel, has the following 
eflect. Let r be any instance of the relation name rel in the 
database. Assume for simplicity that all criteria in critList 
are concepts of simple columns in r. Then, corresponding 
to each relation r, the operation produces multiple output 
relations r’, with the same concept as T, and with criteria 
critlist, that satisfy the following conditions. 

l The column labels of every T’ are cols(r’) = cols(r) - 
critList 

l There is one output relation I-’ corresponding to r and 
to each distinct critlist-value, say t,ritList, in r. Let 
the label of this relation r’ be (rel, tcritlist >I ). 

l The instance of each (rel, tcritlist,,) consists of a 

set of tuples over cols(r’), defined as inst(r’), = (1 1 
39 E T : (VA E COIS(r’) : t[A] = s[A]) A tc,itList,l = 
s[critList]}. 

As an illustration of the above operator, the expres- 
sion ADDRELTi,ker(lly2t :: prices) would produce mul- 
tiple relations, with relation labels similar to those of 

mse : : quotes of Figure 1, with column labels similar to the 
ones of those relations, and contents equivalent to those of 
ny2t: :prices. The resulting table is shown in Figure 7. 

It turns out the converse of ADD-REL, call it REM-REL, is 
not needed as an explicit operator, as its sense is built into 
our query processing algorithms. We point the reader to 
[GL98] for the details as well as for an algorithmic presen- 
tation of the restructuring operators. 
The classical RA operators are extended in the following 
way: we allow that parameters to these operators refer to 
one specific column instance of a complex column by us- 
ing its label. We also also allow them to refer to the set 
of instances of a complex column by using the column’s 
concept. This serves as a shorthand to enumerating ev- 
ery column label and applying the same operation to each 
(e.g. TIprice (IlySS : : prices) denotes the projection of rela- 

tion nyse: :quotes on the set of columns having concept 
Price). This is perfectly compatible with RA since when a 
column is simple, this abbreviation reduces to the classical 
select or project. 
In general, operators of our RRA commute provided cer- 
tain conditions are met. 

. . . 

. . . 

Theorem 4.1 Commutativity of operators. 

0 ADDXOLpl+p2 [ REM-COLp, (Table) ] E 
REM-COLP, [ ADD-COLpl,p2 (Table) 1, provided the 
sets of domains referred to in the parameter lists pl 
and p3 are disjoint, and those in p2 and ps. 

l Let RES-OP be either of REM-COL or ADDXOL 
and NONRES-OP be any non-restructuring opera- 
tor, then NONRES-OPp, [ RES-OP,,, (Tab/e) ] E 
RES-OPp, [ NONRES-OPT, (Table) 1, provided the sets 
of domains referred to in the parameter lists pl and 
pp are disjoint. 

Translation from nD-SQL to RRA: As stated earlier, 
the processing of nD-SQL queries is based on the translation 
of said queries into equivalent RRA expressions. For lack 
of space, we point the reader interested in details of the 
translation algorithm to [GL98]. We will provide here a 
very high level description of the algorithm. 

Intuitively, we expect that the classical SQL parts of a query 
translate into the corresponding classical RA operations 
(e.g. selected objects in the SELECT clause become param- 
eters of projections, conditions in the WHERE clause become 
parameters to selections, etc). In addition to this, the new 
parts of the syntax will induce additional operations. Re- 
structurings are derived from both (i) the new FOR sub- 
clauses of the SELECT clause, and (ii) those conditions of 
the WHERE clause that involve some criteria. 
The tables to which these operations will be applied are ob- 
tained from the instantiations of the variables (both those 
declared or those implicit that appear only after unfold- 
ing an abbreviation). We note that while the information 
necessary to instantiate non-tuple variables is contained in 
the catalog tables, we need to pull data by querying re- 
mote sources to instantiate tuple variables. We denote the 
Variable Instantiation Table containing the instantiations 
of a variable Vi by VIT-V,. 

Consider query q8: 

SELECT T.Date, C.Heasure, 
T.C AS R.Ticker FOR ll.Ticker 

(Q8) FROH mse -> R, mse::R T, mse::R -> C 
WHERE R HASA Ticker AID C HASA Measure 

AED T.Date > lOi 
AID R.Ticker > 'rn' AID R.Ticker < 'n) 

The following would be the equivalent RRA expression: 
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uVIT-T.Date>10129)97AVIT-R.Ticker>’m’l\V.Ti~k~~<~~~ ( 

VITR W VIT-T )] } 
Note that it joins the necessary VITs, extracts the column 
criteria Measure, adds the criteria Ticker to the Price 
columns and applies the proper selections. 

4.2 Optimization 
Many opportunities for optimization arise from our use of 
RRA in processing nD-SQL queries. Since RRA is down- 
ward compatible with RA, and since the projections and 
selections are commutative with the new restructuring op- 
erators, we have the opportunity to push to remote sources 
some computations. 
A preliminary step in optimizing the computations con- 
sists in ordering the instantiation of variables and using 
the technique of sideways information passing (sip). This 
becomes particularly important in order to determine what 
database and/or relation to access to instantiate some tu- 
ple variable. Equally important is the possibility of passing 
bindings from a first instantiated variable to the query in- 
stantiating a second one. This opportunity arises when a 
join is called for between tables originating from two dis- 
tinct sources. In some situations, we should delay instan- 
tiating the second variable until we can pass as bindings 
the values of the join attribute(s) obtained from the first 
variable’s instantiations. These bindings would be passed 
on as selections in an SQL query. 
We can also use for optimization purposes the following 
equivalences arising from the symmetry between our re- 
structuring operators REM-COL and ADD-C• L: 

Theorem 4.2 RRA expression equivalences. 
l ADDXOLpl.+p2 [REM-COLp, (Table)] 

= ADD-COL~~-~~ (Table), 

ifp3 Cm Ap4 =PI -p3. 

l ADD-COL~~-~~ [REM-COLT, (Table) ] 
3 REM-COLp, (Table), 

ifpl Cp3Ap4 =p3-PI. 

l ADD-COL~,,~, [ REM-COLT, (Table) ] z Table, if 
PI = p3. 

Another set of optimization rules rely on the following 
heuristic: 

Heuristic 4.1 It is in general more efficient to perform 
join or restructuring on fewer tuples, albeit they be wider. 
Since ADD-COL (in general) lowers the number of tuples and 
REM-COL increases it, we derive the following additional 
heuristics: 

Derived Heuristics 4.1 
l REM-COLp, [ADD-COLp,,Pz (T&e)] i3 more efiCient 

than ADD-COL~~-~~ [REM-COLT, (Table) ]. 

. If&Q andREM-COLP, can commute andpz only refers 

to Tablez, 
then REMXOLp, [ Table1 WPI Table2 ] is more efi- 

Gent than Table1 HP, [ REM-COLT, (Tablez) 1, pro- 
vided the join selectivity is higk3 

3Recall, the higher the join selectivity, the fewer the tuples 
that result from the join. 

’ If wp, and ADD-COL~,,~, can commute and p2 and 
ps refer only to Tablez, 

then Table1 WP, [ ADD-COL~~-~~ (Tablez) ] is more 
efficient than ADD-COL~,,~, [ Table1 W,, Table2 1, 
provided the join selectivity is low. 

l If AGG~,, Pa and REM-COLA, are such that pl and p3 
are disjoints but p3 C pz (pz is the group-by list) then 
REM-COLP, [AGGpl,Pa (Table) ] is more efficient than 

AGGP1, PZ [REM-COLP, (Table)] 

Another form of optimization would be to take advantage 
of what we call “interleaving”. Interleaving is the efficient 
implementation of a series of operators that are often called 
for in cascade, similar to the way join is a more efficient 
implementation of Cartesian product ‘interleaved’ with se- 
lection. In RRA, we have pinpointed two such series of 
operations: (1) A selection applied to the values of a col- 
umn criterion without any restructuring being called for 
should be implemented more efficiently than by first re- 
moving the criteria, selecting on it, and adding it back. 
(2) A selection applied to the values of the concept of a 
complex column without any restructuring being called for 
should also be implemented more efficiently than by re- 
moving all criteria of that complex column, selecting on 
the concept and adding all criteria back. We define two 
new operators, II* and o* that capture the series of oper- 
ations (1) and (2) respectively. For lack of space, we refer 
their formal definition to [GL98]. 

4.3 Processing of queries involving dimension 
variables 

The most interesting (and challenging) class of queries of 
this kind are the ones which involve aggregation, The key 
idea in their processing is recognizing that they involve the 
computation of a subset of group-bys from the cube lat- 
tice. Such computations are referred to as partial cubes 
[Agar+ 96, ZDN97]. ROLLUP is a common example of a par- 
tial cube. See Example 3.4 for another intersting example 
of a partial cube. The papers [Agar+96, ZDN97] discuss 
how algorithms for computing the CUBE can be adapted for 
computing partial cubes. Optimization of partial cubes is 
a topic of its own interest and is orthogonal to this paper. 
We mainly observe that queries with dimension variables 
and aggregation may in general involve: (i) computing a 
partial cube, and (ii) computing multiple visualizations of 
the result. The processing of such queries can be organized 
as follows: 

(1) Identify the precise partial cube to be computed, by 
instantiating the dimension variables in the query. (2) Ap- 
ply any fast algorithm in the literature for computing the 
partial cube. These algorithms can be made more efficient 
by taking advantage of the implicit grouping provided by 
column and relation criteria. (3) Apply the required re- 
structuring operations for each group-by computed in step 
(2). An interesting research problem is: how to interleave 
the computation of the partial cube with the required re- 
structuring for each group-by in the partial cube. 

5 Implementation 
The implementation of our nD-SQL Server follows the archi- 
tecture described in Section 4 (see Figure 6). The platform 
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is IBM PCs running Windows 95. The system is built as an 
external module, independent of the databases in the fed- 
eration. The main components of the Server are: a Query 
Interface, a Translator to go from nD-SClL to RRA, an RRA 
Expression Optimizer, and an RRA Expression Executor. 
The Query Interface accepts a user’s input query and veri- 

fies well-typedness, giving back helpful messages to the user 
if the query is ill-typed. Once a query is accepted by the In- 
terface, the Translator creates the equivalent RRA expres- 
sion which is sent to the Optimizer for a first pass. Then, 
the SQL queries for tuple-var VIT creation are created from 
the RRA expression and submitted to local databases, us- 
ing sip to determine the order of submission, and passing 
parameters from one result to another query. When all 
the VITs are instantiat,ed the Optimizer finishes optimiz- 
ing the RRA expression. The Executor then executes it, 
using restructuring operations, and presents the final re- 
sult to the user. The RRA operators are implemented in 
Visual C++. 

6 Comparison With Related Work 
We compare our work with previously proposed extensions 
to SqL, including SchemaSqL, and related work on multi- 
database query optimization. 

1. SQL Extensions: There have been numerous exten- 
sions to SqL-like languages over the years, some inspired 
by multi-database interoperability requirements ([Lit89, 
GLRS93, SSR94, MR95]), some motivated by querying 
OODBs ([KKS92, ASDt91, CL93]). An extensive compar- 
ison between nD-SqL and many of these languages appears 
in [GL98]. For lack of space, we merely observe that none 
of the above languages have both the restructuring and 
complex aggregation capabilities of nD-SqL. Important ex- 
tensions to SqL inspired by OODB querying include Kifer 
et al.% XSQL [KKS92], Ahmed at al.‘s HOSQL [ASD+Sl], 
and Chomicki and Litwin’s OSQL [CL93]. XSQL permits 
very complex and powerful queries, and the concern about 
its effective and efficient implementability has not been ad- 
dressed by its authors. Both HOSQL and OSQL do not al- 
low ad hoc queries that refer to more than one component 
database in one shot. Finally, it is not clear that the se- 
mantics of HOSQL, OSQL, and XSQL are downward com- 
patible with SQL. The powerful emerging standard for SqL3 
([SQL96, Bee93]) supports ADTs, oid’s, and external func- 
tions, but to our knowledge, does not directly support the 
kind of higher-order features for meta-data manipulation 
as in nD-SqL; programming such features would thus be too 
low level and tedious. Some of the expressions for extract- 
ing domain values and values of criteria in nD-SqL resemble 
the path expressions of IlqL [Cat96]. However, there seems 
to be no direct facility for restructuring in OqL. 
Two noteworthy extensions to SqL from the vendor side are 
DB2/SqL [DB296] and ORACLE/SqL [ORA]. Of these, 
DB2/SqL is being incorporated in DataJoiner, IBM’s new 
middleware for interoperability, and supports queries in- 
volving joins of tables from multiple DBMS in one select 
statement. As far as we know, restructuring and complex 
forms of aggregation of the kind supported in nD-SClL are 
not directly supported at a high level. ORACLE/SqL’s 
DECODE feature is worth noting, since it permits some lim- 

ited form of cross-tabbing. This is far too limited compared 
to the restructuring capabilities of nD-SqL. 

Finally, Ross [Ros92] and Gyssens et al. [GLS96] are two 
recently proposed algebras which have the power of ma- 
nipulating meta-data. Of these, [Ros92] has limited re- 
structuring capabilities, while [GLS96] has been shown to 
be complete for all generic restructuring transformations. 
However, both languages do not handle aggregation. A 
comparison between nD-SQL and a whole class of related 
logics is given in [GL98]. Ross et al. [SRC97] generalize 
CUBE into a multi-feature CUBE, and propose fast algorithms 
for computing queries involving this operator. Their con- 
tributions and those of this paper are complementary. 

2. SchemaSqL: SchemaSaL is a multi-database interopera- 
ble query language proposed by one of the authors [LSS96], 
capable of restructuring and complex aggregations, and is 
the closest language to nD-SqL. In particular, our syntax 
for database, relation, and column variables was inspired 
by SchemaSqL. However, there are the following major dif- 
ferences between the two languages. (1) Lack of typing: 
SchemaSqL offers no aids to the programmer to control an 
indiscriminate use of column/relation variables. This can 
lead to “ill-typed” and meaningless queries; e.g., it is easy 
to write a query in SchemaSqL that puts all values appear- 
ing in all columns of bse: :prices into one output col- 
umn! In the presence of aggregation, this is a very serious 
problem. (2) Limited restructuring: At most one attribute 
domain can be placed in the relation/column dimension; 
e.g., one cannot transform the data in tse: :quotes to 
the representation similar to bse: :prices. Besides, un- 
like nD-SqL, only views, and not queries, can express re- 
structuring, leading to an unpleasant asymmetry. (3) Loss 
of meta-data: The underlying model of SchemaSqL cannot 
keep track of meta-data against restructuring; e.g., when 
nyse: :prices is restructured into the schema of mse, the 
fact that ‘ibm’ is a Ticker is lost. In nD-‘SQL, the notions 
of concepts and criteria are rich enough to always retain 
meta-data. (4) Limited subaggregation: SchemaSqL does 
not allow many subaggregates; e.g., it is impossible to com- 
pute the daily total price (over all stocks) for each measure 
type in bse: :prices. By contrast, this is straightforward 
in nD-SqL(e.g., see query (q3), page 6). (5) Multiple gran- 
ularity: One of the strengths of nD-SQL is its ability to ex- 
press multiple granularity aggregation, possibly together 
with multiple visualizations (see Section 3.2), something 
SchemaSqL cannot do. On the query processing side, un- 
like [LSS96], we give an algebra and exploit its properties 
for query optimization. 

3. Multi-database Query Optimization: Much work has 
been done in the context of multi-database query optimiza- 
tion, particularly in integrating data sources with diverse 
capabilities. See Haas et al. [Haa97] for a survey. Du 
et al. [DKS92], Qian [Qia96] and Florescu et al. [Flo95] 
are related works studying query optimization in multi- 
database systems. Our concern in query optimization in 
this paper is different: we focus on algebraic optimization 
of queries across multiple relational databases with hetero- 
geneous schemas, where queries can involve attribute/value 
conflicts, restructuring, and complex OLAP-style aggrega- 
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tion. To our knowledge, optimization in such a setting is 
new. There are many interesting open research problems 

in this context, which we are currently investigating. 
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