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Abstract 

A broad spectrum of data is available on the 
Web in distinct heterogeneous sources, and 
stored under different formats. As the num- 
ber of systems that utilize this heterogeneous 
data grows, the importance of data translation 
and conversion mechanisms increases greatly. 
In this paper we present a new translation 
system, based on schema-matching, aimed at 
simplifying the intricate task of data conver- 
sion. We observe that in many cases the 
schema of the data in the source system is very 
similar to that of the target system. In such 
cases, much of the translation work can be 
done automatically, based on the schemas sim- 
ilarity. This saves a lot of effort for the user, 
limiting the amount of programming needed. 
We define common schema and data mod- 
els, in which schemas and data (resp.) from 
many common models can be represented. Us- 
ing a rule-based method, the source schema 
is compared with the target one, and each 
component in the source schema is matched 
with a corresponding component in the tar- 
get schema. Then, based on the matching 
achieved, data instances of the source schema 
can be translated to instances of the target 
schema. We show that our schema-based 
translation system allows a convenient specifi- 
cation and customization of data conversions, 
and can be easily combined with the tradi- 
tional data-based translation languages. 
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1 Introduction 

Data integration and translation is a problem facing 
many organizations that wish to utilize Web data. A 
broad spectrum of data is available on the Web in dis- 
tinct heterogeneous sources, stored under different for- 
mats: a specific database vendor format, SGML or La- 
TeX (documents), DX formats (scientific data), Step 
(CAD/CAM data), etc. Their integration is a very ac- 
tive field of research (see for instance, for a very small 
sample, [15, 10, 13, 12, 23, 20, 14, 2, 31). A key ob- 
servation is that, often, the application programs used 
by organizations can only handle data of a specific for- 
mat. (e.g. Web browsers, like Netscape, expect files 
in HTML format, and relational databases expect re- 
lations). To enable a specific tool to manipulate data 
coming from various sources (e.g. use, in a relational 
system, data stored on the Web in HTML format), a 
translation phase must take place - the data (in the 
source format) needs to be mapped to the format ex- 
pected by the application. 

The naive way to translate data from one format to 
another is writing a specific program for each transla- 
tion task. Examples are the LaTeX to HTML trans- 
lators the HTML to text translators. Writing such a 
program is typically a non trivial task which is often 
complicated by numerous technical aspects of the spe- 
cific data sources that are not really relevant to the 
translation process (e.g. HTML or SGML parsing, or 
specific database access protocol). Recent works [3,16] 
consider a more general framework which enables a 
more flexible translation between various models. The 
solution is based on using a common data model to 
which the source/target data is mapped, and provid- 
ing a common translation language which enables the 
specification and customization of the translation task. 
This makes the introduction of new translations easier, 
but very often still requires considerable programming 
effort whenever a new translation is to be defined [3]. 

The goal of this work is to design a mechanism for 
simplifying the specification of translations. The base 
observation is that, frequently, much of the structure 
of the source data is very similar to that of the tar- 



get translated data, and many of the structure mod- 
ifications to be performed by the translation process 
are rather standard and result from various differences 
between the schemas of the source and the target sys- 
tems. We use here the general term schema to de- 
note whatever way a data model chooses to model its 
data. For example, databases use schemas to model 
database instances; structured documents often obey 
some grammar (e.g. Document Type Definition - 
DTD - in SGML and HTML); in other models such a 
definition may be partial (e.g. in semi-structured data 
[l]). The observation is that, in many translations, the 
schema of the target system is closely related to that 
of the source system - both schemas aim to represent 
the same data. This implies that a large part of the 
translation process can be done automatically, relying 
on this (often standard) relationship, thereby reducing 
the programming effort, and involving the user only in 
the specification of the “non standard” parts of the 
translation. 

We built a data translation system, called TranScm, 
which implements the above idea. Given the schemas 
for the source and target data, the system examines 
the schemas and tries to find similarities/differences 
between them. This is done using a rule-based 
method, where each rule (1) defines a possible com- 
mon matching between two schema components, and 
(2) provides means for translating an instance of the 
first to an instance of the second. The system has a 
set of built-in rules that handles most common cases, 
and that can be extended/adjusted/overridden by the 
user during the translation process. The system uses 
the rules and tries to find for each component of the 
source schema a unique “best matching” component in 
the target schema, or determine that the component 
should not be represented in the target. This is called 
the matching process. If the process succeeds, the data 
translation can be performed automatically using the 
translation facilities of the matching rules. There are 
two cases where the process may fail: (i) a compo- 
nent of the source schema cannot be matched with a 
target one using the current set of rules (nor can the 
matching process derive that the component should be 
just ignored), or (ii) a component of the source schema 
matches several components in the target schema, and 
the system cannot automatically determine the “best” 
match. For (i) the user can add rules to the system to 
handle the special component and describe the trans- 
lation to be applied to it. For (ii) the user is asked 
to determine the best match. Then, based on the 
user’s input, the matching process is completed and 
the translation is enabled. 

Note that the purpose of the schema-based data 
translation method that we propose is not to replace 
the programming languages for data translation pro- 
posed in [3, 161, but rather to complement them. The 
idea is that rather than having to write a transla- 

tion program for all the data, much of the translation 
specification will be done automatically by the system, 
based on the schema matching, and the programmer 
will only need to supply some minimal additional code 
to handle the data components not covered by the sys- 
tem. Hence the programming effort will be greatly 
simplified. 

The focus of the work is on the system architecture 
and the modular use of schema-based match&translate 
rules, and not on the specific language used to define 
the rules. In fact, we provide a generic interface for 
rules and the presentation is independent of the spe- 
cific language used to specify them. For implemen- 
tation reasons we used in the prototype Java as the 
rule definition language, but if desired, the user can 
use declarative rule languages in the style of [3, 161, 
thus enabling logic-based inference of the properties 
and correctness of rules. This is beyond the scope of 
this paper. 

Handling data and schemas from different models 
requires a common framework in which the different 
schema and data formats can be presented. For that 
we defined a middleware schema and data models in 
which the matching process and the data translation 
are performed. The schema model consists of graphs, 
and the data model consists of labeled forests and is 
similar to the one introduced in [3] and to the OEM 
and the tree models of [24, lo]. The difference with the 
OEM model is that we allow some nodes to be ordered. 
This is crucial for modeling data that might be ordered 
(e.g. structured documents). Each data source that is 
to be exposed to the Web community is expected to 
provide a mapping to/from the middleware format. As 
we shall see, the representation of each source inside 
the middleware is very close to the structure of the 
data/schema in the source, so the implementation of 
such a mapping is fairly easy. 

The paper is organized as follows. We start with a 
general overview of the system in Section 2. Then Sec- 
tion 3 presents the middleware data and schema mod- 
els. In Section 4 we describe the match&translate rules 
used to determine the matching between the schema 
components and the data translation derived from it. 
We also explain the user interaction with the system 
and the means for customizing the translations. The 
system architecture and implementation are presented 
in Section 5. Finally, we conclude in Section 6 by con- 
sidering related work. 

2 System Overview 

A typical scenario of the system’s work is as follows. It 
receives as input two schemas, one of the data source 
and the other of the target. The two schemas are im- 
ported into the system and presented in the common 
schema model. The next step is matching. The system 
tries to find for every component in the source schema 
a corresponding component in the target schema (or 
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determine that the component should not be repre- 
sented in the target), using the rule-based process 
mentioned in the Introduction. Once the matching is 
completed (perhaps with the user’s assistance), a data 
translation is possible. To perform the translation, a 
data instance of the source schema is imported into 
the common data model, and is “typed”, i.e. every el- 
ement in the data is attached a corresponding schema 
element as a type. Now, the system uses the match 
between the schema components, achieved in the pre- 
vious step, to translate the data: Recall from the In- 
troduction that every rule in the system has two com- 
ponents, the first defines a possible common matching 
between two components of schemas, and the second 
provides means for translating an instance of the first 
to an instance of the second. Every element of the 
source data is translated, using the translation func- 
tion of the rule that matched its type with a type 
(component) of the target schema, to an instance of 
the target type. The resulting elements are “glued” 
together to form a valid instance of the target schema. 
Finally, the translated data is exported to the target 
application. 

We demonstrate the above process with an exam- 
ple. We assume below some basic knowledge of SGML 
[19] and OODB s, and consider the translation of data 
between these formats. The example we use is a sim- 
plified version of the example described in [15]. (The 
full example can be handled similarly; the simplifica- 
tion is only for space reasons.) We ignore for now 
the representation of these formats in the middleware 
models (this will be considered in the next section) and 
concentrate on the matching and translation steps. 

Consider the SGML DTD in Figure 1, the SGML 
document in Figure 2, and the OODB schema in Fig- 
ure 3. We would like to translate the SGML docu- 
ment (which is an instance of the mentioned DTD) to 
an instance of the OODB schema. Note that the DTD 
and the 00 schema are quite similar. We will describe 
some possible matches between their components, that 
can be determined by an automatic rule-based system. 
For every such match we will detail the difference be- 
tween the structure of the components, and suggest a 
possible translation function for mapping instances of 
the first to instances of the second. 

l The article element in the SGML DTD is basi- 
cally an ordered tuple. The most “similar” ele- 
ment in the 00 schema is the Article class. (The 
two components have the same name, up to cap- 
ital letters, and similar components, and as will 
be explained below, the structure of the compo- 
nents also match.) A difference is that tuple at- 
tributes in OODBs are not ordered. The trans- 
lation function in this case is rather simple - an 
Article instance in the OODB will be built from 
the input instance by simply omitting the order 
information. 

<!DOCTYPE article [ 
<!ELEMENT article 
<!ELEMENT authors 
<!ELEMENT sections 
<!ELEMENT title 
<!ELEMENT author 
<!ELEMENT section 
<!ELEMENT section1 
<!ELEMENT section2 
<!ELEMENT b4/ 
<!ELEMENT picture 
<!ELEMENT caption 
<!ELEMENT wag 

(title, authors, sections) > 
(author+) > 
(section*) > 
(#PCDATA) > 
(#PCDATA) > 
(section1 ( section2) > 
(title, body)) > 
(picture, caption?) > 

(paw*) > 
(#PCDATA) > 
(#PCDATA) > 
(#PCDATA) > 

Figure 1: SGML DTD 

< article > 
< title > From structured Documents to . . . < /title > 
< authors > 
< author > V. Christophides < /author > 
< author > S. Abiteboul < /author > 
< author > S. Cluet < /author > 
< /authors > 
< sections > 
< section > 
< section1 > 
< title > Introduction < /title > 
< body > 
< parag > Structured documents are . . . < /parag > 
< /body > 
< fsectionl > 
< /section > 
< section > 
< section1 > 
< title > SGML Preliminaries < ftitle > 
< body > 
< parag > In this section, we present... < Jparag > 
< parag > In order to define... < lparag > 
< /body > 
< /section1 > 
< /section > 
< section > 
< section2 > 
<picture > some bitmap < Jpicture > 
< caption > A DTD for a document < /caption > 
< Jsection2 > 
< /section > 
< Jsections > 
< /article > 

Figure 2: SGML Document 
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class Article public type 
tuple (title : string, 

author3 : list(Author), 
sections : set(Section)) 

class Author : string; 

class Section public type 
tuple (section1 : tuple (title : string, 

body : set (string)), 
section2 : tuple(tmuna : string, 

koteret : string), 
tag : string) 

Figure 3: OODB Schema 

l The section element in the DTD describes a union 
type. In the 00 schema, the most similar el- 
ement seems to be the Section class: this class 
describes a 3-ary tuple, where the first and sec- 
ond attributes are similar (in name and structure) 
to the first and second alternatives, resp., of the 
SGML section union type, and the third attribute 
is a ‘tag’. Knowing that ODMG does not sup- 
port union types, and that such a construct is 
often implemented by having a tuple containing 
the two alternatives, plus a tag attribute indi- 
cating which of the two alternatives is actually 
used, we can conclude that two structures of the 
above form match. The translation function in 
this case maps an the SGML section to a tuple 
in the OODB, filling the relevant attribute (ac- 
cording to the section type) and assigning some 
default value to the other one, and filling the tag 

attribute with the relevant type indication. 

l The authors element in the DTD and the authors 

list in the OODB both represent a collection of 
matching elements (author and Author resp.) The 
translation function can produce an OODB list of 
authors from the SGML element by taking the 
individual (translated) author elements and the 
grouping them into a list ordered by the order of 
occurrence in the file. 

l Last, consider the picture and caption elements 
in the SGML DTD. From the above discussion 
we conclude that, the section2 elements of the two 
schemas potentially match, hence the picture and 
caption are likely to be matched with the tmuna 

and the koteret elements in the OODB schema 
(which are actually the Hebrew terms for picture 

and caption, resp.) But assuming that our com- 
puter does not contain a Hebrew dictionary, how 
can it decide which of the two is to be matched 
with each of the components? Note that we can- 
not use the structure of the attributes to deter- 
mine the best match since they both have exactly 

class 
Article 

Author 
Author 
Author 

Section 

Section 

Section 

oid 
P 

VC 
SA 
SC 

secl 

sec2 

sec3 

value 
tupleftitle : “From Structured...“, - \ 

authors : list(VC, SA, SC),’ 
sections : set(sec1, sec2, sec3)) 

V. Christophides 
S. Abiteboul 
S. Cluet 

tuple( section1 : tuple( 
title : “Introduction” 
body : set(“Structurkd...“)), 

section2 : tuple(tmuna : ““, 
koteret : ““), 

tag : “sectionl”) 

tuple(section1 : tuple ( 
title : “SGML Preliminaries”, 
body : set(“In this sect...“, 

“In order to...“)), 
section2 : tuple(tmuna : ““, 

koteret : ““) , 
tag : “sectionl”) 

tuple(section1 : tuple (title : ““, 
body : set()), 

section2 : tuple( 
tmuna : some bitmap, 
koteret : “A DTD...“), 

tag : ” section2”) 

Figure 4: An OODB Instance 

the same structure. Hence the user is asked to 
determine the best match. 

Now, assume that the system contains, among oth- 
ers, some generic matching rules that cover the above 
cases: rule 1, matching ordered and unordered tuple- 
like structures, with an attached translation function 
as described above (the rule also handles the case 
where some attributes are omitted or added); rule 
2, matching union types and tagged tuples, with an 
attached translation function as above; and rule 3, 
matching collections of matched components, again 
with a translation function as above. Then, the user 
input is added to the system as an additional spe- 
cial rule indicating the match between the picture and 
tmuna (caption and koteret) elements, with a trans- 
lation function which is the identity function (up to 
elements label). After the matching and translation 
process (using the extended set of rules) is completed 
we get an instance of the OODB schema (Figure 4), 
which is a natural translation of the source document. 
This example is relatively simple. Now, let us compli- 
cate things a bit. 

l Assume first that the article element in the doc- 
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ument is defined by 

4ELEMENT article (title, author+, section*) > 

and thus the tags < authors >, < /authors >, 
<sections>, and </sections> are omitted in the 
SGML document. In this case, the SGML article 
no longer includes a clear separation into three 
components, but is rather a sequence of many el- 
ements, starting with a title element followed by 
several author elements and then some section ele- 
ments. Nevertheless, when looking at the schema, 
it is fairly easy to see that the sequence can be 
logically separated into three parts, and that the 
author+ subsequence matches the authorss at- 
tribute of the Article class, and the section* sub- 
sequence matches the sections attribute. Thus 
the translation mechanism here first has to split 
the sequence into its logical sub-components, and 
only then proceed with the mapping described 
above. Similarly, if the definition of the section 
element is shortened by 

<!ELEMENT section 

( (title, parag’) ) (picture, caption?) ) > 

then the sectionl, section2, and body elements no 
longer explicitly appear in the data - their tags 
are omitted - which would complicate the map- 
ping to the 00 image, if only the data itself was 
considered. But the logical structure of the data is 
still reflected in the schema and can thus be used 
in the translation process to split the file into its 
logical components. 

l As another example, assume that the Author 
class in the OODB, rather than containing a sim- 
ple string, is defined by 

class Author : tuple (first-name : string, 
last-name : string, 
email : string) 

Just by looking at the SGML schema (DTD), the 
system cannot determine how to break an SGML 
author string into the relevant components. The 
user needs to provide here a specific translation 
program for this element, based on the string se- 
mantics and the data analysis. Although some 
programming is needed here, the effort is limited 
to a small portion of the data, while the rest of 
the translation is derived automatically. 

l Finally, assume that the user wants to move all 
figures to the end of the article, and perhaps 
also to omit some specific figures. To do that, 
the user can override Rule 3 above (the rule for 
matching and translating collections of matched 
components), so that for this particular collection 
the translation function reorders the (translated) 
components as required, and omits the specified 
elements. Again, some programming is needed to 

define the new translation function for this spe- 
cific case, but still this is a very limited: The user 
only needs to specify the reordering of the collec- 
tion, while the actual translation of the collection 
components is given automatically by the system. 

There are cases where the differences between the 
schema structure require a more complex matching 
and analysis, e.g. when the source schema includes 
nested collections or nested tuple structures (which 
is common in the 00 model and in structured doc- 
uments), and the target schema does not (e.g. when 
the target system is a relational database), or when 
the source schema includes references/links (typical 
for the OODBs and hypertext), and the target schema 
does not (e.g. a relational database or a simple non- 
hyperlinked textual document). Nevertheless, our ex- 
perience shows that even in these cases the common 
mappings are rather standard. Continuing with the 
above examples, nested tuples are often represented in 
flat models by simply flattening the nesting and us- 
ing a flat tuple containing all the leaf attributes (and 
sometimes additionally adding the name of the origin 
component as a prefix to the attribute name). Nested 
sets have two common representations in flat models: 
either simple unnesting, or giving each nested set an 
identifier and then using some auxiliary relation that 
records the relationship between the identifiers and the 
corresponding set elements. Similarly, references are 
often represented in a relational system (or a docu- 
ment) using keys that identify the referred element. 
Another common alternative in documents is to use an 
actual copy of the referred element instead of the link. 
In all these cases it is rather simple to define match- 
ing rules for each of the possible alternatives with a 
corresponding translation function. 

Our system contains a large set of predefined rules 
covering the above cases and many other common 
cases we encountered in our experiments or found in 
the literature on data translation. When working with 
the system the user can add, if needed, additional 
rules to cover cases that are currently not handled by 
the system, define arbitrary new translations, or dis- 
able/modify/override existing rules to adjust the sys- 
tem to his needs. The system has a graphical inter- 
face that can display at each point the two schemas 
and the set of matches determined by the system 
rules (and the problems, if any, encountered in the 
matching process). Starting from this the user can 
add/disable/modify/override rules to obtain the de- 
sired matching and translation. 

In the rest of the paper we describe the components 
of the system and how they are used. We start with the 
middleware data and schema models, and then con- 
tinue with the match&translate rules. 
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3 The Data and Schema Models 

Handling data and schemas from different models re- 
quires a common framework in which the different 
schema and data formats can be presented. For that 
we defined a middleware schema and data models in 
which the matching process and the data translation 
are performed. Each data source that wishes to use 
the system is expected to provide a mapping of its 
data and schema to/from the middleware format. As 
we shall see, the models are fairly simple and the 
representation of each source inside the middleware 
is very close to the structure of data/schema in the 
source, so the implementation of such a mapping is 
fairly easy. Furthermore our system includes several 
import/export programs for some common data mod- 
els (e.g. relational, 00, HTML, SGML, etc.) that can 
be used by the data sources. 

3.1 The Data Model 

The data model that we use is similar to that of [3], 
and to the OEM and the tree models of [24, lo]. Data 
is represented by a forest with labeled nodes. A partic- 
ularity here is that we allow an order to be defined on 
the children of some of the nodes. Order in an inher- 
ent component of some data structures, e.g. ordered 
tuples and lists. Similarly, textual data can either be 
described as a sequence of characters or words, or on 
a higher level as a certain parse tree; in both cases, 
the order of data elements is important. Supporting 
order as part of the data model enables a natural rep- 
resentation of data coming from such sources [3]. As 
in [3, 24, lo] the labels on vertices can be used to 
represent schematic information and data values. To 
represent cyclic structures, leaves can have values that 
are the ids of other vertices in the forest, in which case 
the leaf basically describes a “pointer” to the vertex. 

The main reason for the popularity of this kind of 
model is its simplicity and the fact that one can easily 
map anything into a graph/tree. To illustrate how 
data from different sources is naturally represented in 
the middleware model we consider the representation 
of the SGML document and the OODB discussed in 
the previous section. (A formal definition of the model 
and additional examples of the representation of data 
from various sources in it can be found in [26].) An 
SGML document is basically represented by its parse 
tree, so the document in Figure 2 is described by the 
tree in Figure 5. Its variant, discussed in the previous 
section, with the article and section elements defined 
by 

BELEMENT article (title, author+, section*) > 
and 

4ELEMENT section 
( (title,parag*) 1 (picture, caption?) ) > 

is represented by the tree in Figure 6. Observe that 
the tree here is flatter, reflecting the fact that some of 
the logical tags are now missing from the data. In the 

two trees, all the nodes are ordered to reflect the order 
of elements in the file. The data graph of the OODB 
in Figure 4 is omitted for lack of space. The represen- 
tation is the natural one, with the only ordered node 
being the authors node, and with the references to ob- 
jects described by leafs having the objects vertex id as 
value. 

3.2 The Schema Model 

Schemas are modeled by labeled graphs, where some 
of the nodes may be ordered. We chose to use a graph 
rather than a forest, as in the data model case, to sim- 
plify the description of recursive types. This however 
is not a significant issue and a similar forest-based rep- 
resentation can be defined (by having leaves pointing 
to other vertices, as done in the data-forest case). 

Each vertex in the schema graph represents a 
schema element (type), and the children represent its 
possible components. The labeling of a vertex de- 
scribes the name of the element, some of the element 
properties, and information on the relationship be- 
tween the element and its components. This includes 
information on (1) whether this is a root type, i.e. 
whether roots of the data forest can be assigned this 
type, (2) what are the possible labels of data vertices 
of this type (for leaf vertices this will determine the 
possible domain of data values), (3) whether a data 
vertex of this type can be referenced by other vertices 
(i.e. the vertex id can be the value of some leaf node 
in the forest), (4) what is the allowed number (range) 
of children of a data vertex of this type, (5) whether 
the children of a data vertex of this type are ordered 
or not (6) if some of the component types are optional 
(this is useful for describing union types and optional 
attributes), (7) if th e sub-tree rooted at a node of this 
type is allowed to have an arbitrary structure (useful 
to describe semi-structured data[l]), and (8) whether 
vertices of this type actually appear in the data graph 
or are just “virtual”. 

To understand the last point, consider the second 
SGML definition of the article element 

<!ELEMENT article (title, author+, section*) > 
As explained in the previous section, for translation 
purposes, it is convenient to make it explicit in the 
schema that an article is composed of three logical 
components, a title part, an author+ part, and a 
section* part. Note however that the data tree for 
this SGML document (Figure 6), does not really con- 
tain the author+ and section* nodes. Item (8) in the 
labeling is used to reflect this fact. 

To illustrate things we present below a few exam- 
ples. (A formal definition of the schema model and 
additional examples of the representation of various 
schemas can be found in [26]; due to lack of space it 
is omitted here.) The schema graph of the OODB 
database is presented in Figure 7, and the schema 
graph of the SGML document from Figure 6 is pre- 
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article 

caption 

‘Introduction” 

“Structured 
dot...” 

“SGML “some bitmap” “A DTD...” 

Pn4iminaries” 

“In this...” ‘In order to...” 

Figure 5: SGML file in the middleware data representation 

Stmctured...” christo- Abiteboul” Cluet” 

phides” L 
‘Introduction” “Structured “SGh4L “In this...” “In order to...” 

dot...” Preliminaries” 

Figure 6: Second SGML file in the middleware data representation 

Section [3] 

ti 

Figure 7: OODB schema in the middleware schema representation 
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article [3,-z=] 

Figure 8: SGML schema in the middleware schema 
representation 
sented in Figure 8.i 

The empty circles represent “virtual” elements (i.e. 
elements that do not actually appear in the data), 
while the full circles represent “real” elements. The la- 
beling of a vertex includes the element name (for “real” 
elements) and some additional information listed in 
square brackets. Data instances of an element will 
have the element name as a label, or, if this a base 
type name (e.g. Int, String), then the data element 
will be labeled with a value of the corresponding do- 
main. The keyword ref (Figure 7) is used to denote 
leaf data vertices that “point” to other vertices (i.e. 
have the pointed to vertex id as a label). The first 
element in the square brackets indicates the number 
(range) of children that a vertex of this type can have. 
The + indicates that the node is ordered. So, for ex- 
ample, the [0 - . . , +] next to the authors vertex in 
Figure 7 means that a data vertex of this type is or- 
dered and can have zero or more children. The possible 
type for the children is determined by the children of 
the vertex in the schema graph2. The ? sign denotes 
optionality. So, for example, the ? next to the caption. 
vertex in Figure 8 means that a data vertex of this 
type is optional, i.e there may be data instances where 
it appears, and others where it does not. Similarly, the 
? next to the two children of the section vertex in this 
graph (together with the fact that the section vertex 
is declared to have a single child), reflects the fact that 
this is a union type, i.e. a choice between two possible 
types of the children. 

A schema graph defines a set of data instances that 
conform to it. Intuitively a data forest F conforms to 

‘The schema of the SGML document in Figure 5 is basically 
the same except that all the “virtual” elements become regular. 

20bserve that since the data trees of the SGML files are 
ordered, all the vertices in the schema graph of these files are 
ordered as well. 

a schema graph G if each of the vertices u E F can be 
assigned a type, i.e. a vertex t E G, s.t. v satisfies the 
requirements of t, as described by t’s labeling. Note 
however that “virtual” types appear explicitly only in 
the schema and do not have corresponding vertices in 
the data. For translation purpose, it is useful to make 
the full structure explicit in the data as well. So rather 
than looking at the data forest F we will look at an 
“explicit” version of it: 

Definition 3.1 An explicit version of a data forest F, 
is a data forest F’ with some of its nodes marked as 
“virtual”, s.t. F is obtained from F’ by identifying all 
the virtual vertices with their parents, preserving the 
order of all the outgoing edges. 

For example, the SGML tree in Figure 5, with the 
authors, section, sectionl, section2, and body vertices 
marked as virtual and their labels omitted, is an ex- 
plicit version of the tree of Figure 6. 

Now we can refine the notion of conformity de- 
scribed above and say that a data forest F conforms 
to a schema graph G, if F has an explicit version F’ 
and a type assignment h mapping vertices of F’ to ver- 
tices (types) in G, s.t. each vertex v’ 6 F’ satisfies the 
requirements of its assigned type, as described by the 
labeling of h(v’) in G, and in particular W’ is virtual iff 
h(v’) is. (For a formal definition see [26] .) 

The explicit version F’ of a data forest F and its 
type assignment h are used to determine the data 
translation, as explained in the next section. 

To continue with the above example, the tree in 
Figure 6 conforms to the schema in Figure 8 due to 
an explicit version with a structure as in Figure 5, and 
with the natural type assignment. 

4 Match & Translate Rules 

Schema matching is the process of matching vertices 
of the source schema graph with vertices of the target 
schema graph. The matching achieved is then used for 
translating instances of the first schema to instances 
of the second. 

For that we use rules. Each rule has two compo- 
nents; one is in charge of the matching and the other 
of the translation. The matching part consists of two 
basic functions: A Match function that given two ver- 
tices, vr in the input schema graph and 212 in the tar- 
get schema graph, examines the labeling of the ver- 
tices and determines if they “possibly” match. The 
match is conditional on the matching of the compo- 
nents of the vertices (i.e. their descendents in the 
schema graph) as determined by the second function, 
the Decendents function. For each pair vi, 712 of input 
and output schema vertices, the function Decendents 
returns two sets of descendents, of VI and 212, resp. 
(and possibly also a set of constraints) that need to 
be matched (in a way that satisfies the constraints) in 
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order for wl and u2 to match. The translation part con- 
sists of a Translation function that is in charge of the 
translation of instances of matched types (according 
to the rule). We use r.Match (resp. r.Decendents, 
r.Translation) to denote the Match function (resp. 
Decendents, Translation) of a rule r. We say that 
two schema vertices ~1, v2 match, if there exists some 
rule r for which r.Match(vl, ~12) is true. 

As a simple example, consider Rule 1 used in Sec- 
tion 2 to match ordered and unordered tuple-like struc- 
tures. The match function of the rule simply compares 
the names of the two elements (using a built-in dictio- 
nary to detect synonyms) and the number of children 
they can have. The Decendents function returns the 
sets of direct children of the two vertices. The con- 
straint on the allowed matchings for these descendents 
depends on how close we want the two structures to 
be: for example, if we want to consider only cases 
where all the input attributes are represented in the 
output, we can require the matching on the descen- 
dents to be total. If we allow some of the attributes 
to be omitted, we may allow partial matchings, and 
possibly constrain the minimal number of (or the spe- 
cific) attributes that must match. The translation 
function here simply constructs a data vertex repre- 
senting the target tuple (with a label as indicated in 
the target schema), and then attaches the translated 
descendents as children. 

We distinguish between three types of rules: lo- 
cal rules where the Decendents are direct children of 
the matched schema vertices (as in Rule 1 discussed 
above) ; semi-local rules where the Decendents can 
be non-direct children (e.g. when a nested tuple is 
mapped to a flat one and the translation takes the leaf 
attributes of the nested input tuple and glues them to- 
gether to form a flat tuple)3; and global rules where the 
translation function handles the whole subtree rooted 
at the vertex (i.e. performs a global translation, rather 
than a recursive one as in the previous cases), in which 
case the Decendents function returns the empty set. 
As we shall see below, global rules are very useful for 
customizing the translation - the user can add to the 
system global rules defining special treatment for spe- 
cific subtrees in the data, while the rest of the data is 
handled in a standard manner by the other predefined 
rules of the system. 

Rules have (distinct) priorities, and when two ver- 
tices can be matched by several rules, we are interested 
in the highest, priority rule. In the matching process 
we attach to vertices in the input schema a vertex of 
the output schema together with a (highest priority) 
rule supporting the matching of the two vertices. 

3Note that in this case the descendentsof the input vertex are 
non-direct while those of the output vertex are direct. An exam- 
ple where both descendents are non-direct is when one nested 
tuple is mapped to another nested tuple having a different in- 
ternal structure but with matching leaf attributes 

Definition 4.1 Given a set of rules R, we say that 
two schema graphs G1, G:! match w. r. t R, if it is possi- 
ble to define a partial mapping ,LI from vertices v1 E G1 
to pairs (712, r) of vertices v E G2 and rules r E R s.t. 
the roots of G1 are mapped to roots of G2, and for ev- 
ery vertex vl E G1 with ,u(w~) = (212, r) the following 
holds. 

1. r is the best possible matching rule, i.e. 
r.Match(vl, ~2) holds and there is no other rule 
r’ with priority 2 of r s.t. r’.Match(vl, ~2) holds. 

2. The descendents are properly (and non ambigu- 
ously) matched, i.e. 

(4 

6) 

The mapping P when restricted 
to r.Decendents(vl) maps the descendents of 

VI to members of r.Decendents(v2) (satisfy- 
ing the constraints, if exist, on the allowed 
matchings), and 

For every vi E r.Decendents(vl) with 
I = (vh,r’) there is no other vertex 
~‘2’ E Decendents(v2) and rule r” E R with 
priority 1 of r’, s. t. r”.Match(vi, vy) holds. 
And conversely, there is no other vertex vy E 
Decendents(w1) and rule r” E R with prior- 
ity > of r’, s.t. r”.Match(vy, v;) holds. 

If the schema graphs have several roots, then we also 
require non-ambiguity in the mapping of the roots, as 
in 2b above. 

4.1 User Interaction 

There are two cases where the matching may fail: (i) 
a component of the source schema cannot be matched 
with a target one using the current set of rules, (and 
the matching process can neither derive that the com- 
ponent should be just ignored), or (ii) a component of 
the source schema matches several components in the 
target schema, and the system cannot automatically 
determine the “best” match. 

An example of the first case is when a vertex v1 can 
be matched with only one vertex 212 by a single rule 
r that requires a total matching on the Decendents 
of v1 and ~2, but some of ~11’s descendents cannot be 
matched with any of 212’s descendents by any of the 
given rules. An example of the second case is when 
some descendent of ~1 can be matched by the same 
rule with two distinct descendents of ~12, and there is 
no other higher priority rule to break the tie. In fact, 
this was exactly the case considered in Section 2, when 
the figure (caption) element could be matched with 
both the tmuna and koteret elements, and the system 
could not automatically determine the best match. 

Our system has a graphical interface that can dis- 
play at each point the two schemas and the set of 
matches determined by the system rules. When the 
matching fails, the system displays to t,he user the 
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maximal partial matching satisfying the above con- 
ditions, and highlights the schema components where 
the matching failed. Starting from this the user can 
add/disable/modify/override rules to obtain the de- 
sired matching and translation. 

To solve problem (i) the user can add rules to the 
system to handle the special component and describe 
the translation to be applied to it. For (ii) the system 
asks the user to determine the best match. The user 
input is then added to the system as a new rule with 
higher priority than that of the rule causing the am- 
biguity. Now, when the matching process is restarted 
and reaches the problematic node, it will be matched 
using the new rule (which is now the highest priority 
possible rule) with the unique target node specified by 
the rule, hence resolving the ambiguity. The system 
maintains the set of rules as a list, and the priority of 
a rule is reflected by its relative position in the list. 

Besides adding new rules, the user can also disable, 
modify, or override existing rules. Consider for exam- 
ple the SGML-to-OODB translation discussed in Sec- 
tion 2, and assume we want to override Rule 3 (the rule 
for matching and translating collections of matched 
components) so that some specific collections are given 
special treatment (for example, when translating the 
list of sections we may want to move all figures to the 
end). To override a rule T we can insert a new rule 
r’ with a higher priority, with a Match criteria that 
covers a subset of the cases handled by r, and with a 
translation function appropriate for this subset. Since 
the matching process always chooses the highest rel- 
evant priority rule, the new rule will override the old 
one, for all the specified elements. 

4.2 Translation 

Once the system determines the matching between the 
source and the target schema graphs (perhaps with the 
user’s assistance), the translation of instances of the 
first schema into instances of the second is enabled. 

To perform the translation, a data instance of the 
source schema is imported into the common data 
model, and is “typed”, i.e. every data vertex is at- 
tached a corresponding schema vertex as its type. Re- 
call however that to facilitate the translation, we want 
to use the full logical structure of the data. Hence, 
we first transform the input into an explicit version, 
and consider the type assignment for the explicit data 
forest. Now, the system uses the matching between 
the input and target schema vertices, computed in the 
previous step, to translate the data forest by applying 
recursively from top to bottom the translation func- 
tions of the rules attached to the types of the vertices. 
The resulting forest is an erpcplicit instance of the target 
schema. To obtain a “real” forest, the virtual nodes are 
glued to their parents (as in Definition 3.1). Finally, 
the resulting data instance is exported to target appli- 
cation. We conclude this section with two remarks: 

COMBINING SCHEMA- AND DATA-BASED TRANSLA- 
TION: Recent works [3, 161 propose specialized pro- 
gramming languages, targeted for specifying data 
translations. The schema-based approach that we 
present here is not aimed at replacing these languages 
but rather at complementing them. The idea is that 
rather than having to write a translation program for 
all the data, much of the translation specification will 
be done automatically by the system, based on the 
schema matching, and the programmer will only need 
to supply some minimal additional code to handle the 
data components not covered by the system. In terms 
of our system, this means adding some new rules with 
a translation function programmed in one of the above 
languages. 

TYPING: The translation process constructs an output 
data forest. Before exporting the data to the target 
application, the system checks that the forest indeed 
conforms to the output schema. Note that this test 
can be spared if the individual rules are guaranteed to 
be correct, in the sense that, in each rule, the transla- 
tion function is guaranteed to generate a legal instance 
of the output type, if given a legal instance of the in- 
put type and a correct translation for the Decendents. 
Our system contains a large set of built-in rules for 
which correctness, in the above sense, has been veri- 
fied [26]. When new rules are added (or when existing 
rules are modified), the user can either declare them 
to be “correct”, in the sense that their correctness has 
been checked and proved, or else the type checking has 
to be enabled at run time to test the translated data 
before it is exported. 

5 Architecture and Implementation 

The TranScm system is composed of five main compo- 
nents: 

l a rule base consisting of a large set of predefined 
rules covering all the above cases and many other 
common cases we encountered in our experiments 
and in the literature on data translation. (A full 
list of the available rules can be found in [26, 271.) 

l a matching module in charge of the matching of 
the input and output schemas w.r.t to the current 
set of rules. The matching algorithm works in a 
top down fashion starting from the root nodes and 
going down, following the conditions in Definition 
4.1, and taking at most time polynomial in the 
size of the schemas and the rules. 

l a typing module that, given a data forest and a 
schema graph, tests that the data conforms to 
the schema, constructing an explicit version of the 
data forest, together with a type assignment for 
the vertices. It is possible to show that in the 
worst case the process can take time exponential 

131 



in the size of the input (the problem is NP com- 
plete), but for a large class of schemas, covering 
most common data models, a polynomial algo- 
rithm exists [9], and this is what we use here. 

l a graphical user interface that can display the two 
schemas and the set of matches det.ermined by the 
system rules (and the problems, if any, encoun- 
tered in the matching process), and assists the 
user in adding/disabling/modifying/overriding 
rules to obtain the desired matching and trans- 
lation. The interface can also display the in- 
put/target data forests and the typing computed 
for their nodes. 

l an extendible library of import/export programs 
for connecting to external sources and import- 
ing/exporting data and schemas to the system. 

The TranScm system is a part of a larger project, 
WWWDAG [8], that aims at developing tools for the 
utilization of digital libraries available through the 
Web. Our system is used to translate data found 
on the Web to the formats expected by the appli- 
cations that are part of WWWDAG. The TranScm 
system is written in Java and its first version is cur- 
rently fully operational. It can be used in an interac- 
tive mode or via an API, and includes all the features 
discussed above as well as some import/export pro- 
grams (SGML, HTML, 02 database, and WWWDAG 
relational data). We are currently working on enhanc- 
ing the user interface and plan to add additional im- 
port/export modules and to work on performance and 
optimization issues. 

6 Related Work 

We conclude by considering related work. Many 
works on data translation focus on the translation of 
specific formats. Some examples are the LaTeX to 
HTML translators or the HTML to text translators, 
and mappings between structured documents and ob- 
ject oriented databases in [2] and [15]. Some works 
[3, 16, 14, 5, 251 g eneralize this approach and consider 
mappings between various data models. However most 
of them rely on the data and not on the schema. The 
input data is converted to some middleware model, 
where it is transformed or integrated with some tar- 
get models. This is often done using some translation 
language. The language should be powerful enough 
to ca.pture a variety of translations, and may be quite 
complex. [3], f or example, uses datalog-style rules to 
do this. In [16] the model is more general, and allows 
the representation of schemas, but still, the translation 
program should be written manually, and the transla- 
tion language is intricate. 

The closest to our approach is the one presented in 
[17], and demonstrated by the WOL language of [18]. 

This work also considers schema-based data transla- 
tions. However, in their approach, the translation 
program depends on the specific characteristics of the 
input schema (e.g. specific labels and typing in the 
schema), and every two schemas should be assigned 
mappings manually. In our system, the translation 
rules are in a sense more generic. The system con- 
tains a large set of predefined generic rules that are 
based only on common properties of schemas in the 
middleware model, and not on the characteristics of a 
specific input schema. The user can however add spe- 
cific rules for customizing the matching/translation. 
For that one can use, for example, the languages men- 
tioned above. 

A related subject is schema transformation. Works 
in this area mainly concentrated on the restructuring 
of source schemas into target ones (and not on the con- 
version of data instances of the schemas). See [7] for a 
survey of schema merging and translation techniques. 
Several works, e.g. [ll, 51, consider aspects of merg- 
ing schemas of source databases. Others, e.g. [6, 41, 
consider translation of schemas from one model to an- 
other. A target schema is created by a series of manip- 
ulations on the source schema. [6] for example, intro- 
duces a meta-schema model, in which many schemas 
can be presented. Using the schema meta-model and a 
rule-based method, the source schema is restructured 
to become a schema in the target model. The out- 
put can then be mapped to the external “real world” 
format. These works and others, e.g. [21, 221, address 
the problem of informat,ion capacity, namely determin- 
ing whether it is possible to represent instances of the 
source schema by instances of the target schema, in 
a unique way, and vice versa. [6] proves that some 
schema transformations preserve information capacity. 
Note, however, that in our context, the user may some- 
times need to export data to a specific target schema 
that does not preserve information capacity. 

Most of the works in this area do not consider the 
underlying data. After a schema is transformed, there 
is still a need to translate the underlying data. Our 
work on the other hand concentrates on data transla- 
tion. It does not deal with the schema transformation, 
but rather assumes that both the source and target 
schemas are given as input, and suggests a (partly) 
automated data translation, based on matching be- 
tween the schemas. Combining our system with the 
works on schema transformation could be very benefi- 
cial, and we plan to study the issue in future work. 
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