
Using Schema Matching to Simplify Heterogeneous Data
Translation

Tova Milo Sagit Zohar
milo@math.tau.ac.il sagit@math.tau.ac.il

Computer Science Dept., Tel-Aviv University

Abstract

A broad spectrum of data is available on the
Web in distinct heterogeneous sources, and
stored under different formats. As the num-
ber of systems that utilize this heterogeneous
data grows, the importance of data translation
and conversion mechanisms increases greatly.
In this paper we present a new translation
system, based on schema-matching, aimed at
simplifying the intricate task of data conver-
sion. We observe that in many cases the
schema of the data in the source system is very
similar to that of the target system. In such
cases, much of the translation work can be
done automatically, based on the schemas sim-
ilarity. This saves a lot of effort for the user,
limiting the amount of programming needed.
We define common schema and data mod-
els, in which schemas and data (resp.) from
many common models can be represented. Us-
ing a rule-based method, the source schema
is compared with the target one, and each
component in the source schema is matched
with a corresponding component in the tar-
get schema. Then, based on the matching
achieved, data instances of the source schema
can be translated to instances of the target
schema. We show that our schema-based
translation system allows a convenient specifi-
cation and customization of data conversions,
and can be easily combined with the tradi-
tional data-based translation languages.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, CJP to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

1 Introduction

Data integration and translation is a problem facing
many organizations that wish to utilize Web data. A
broad spectrum of data is available on the Web in dis-
tinct heterogeneous sources, stored under different for-
mats: a specific database vendor format, SGML or La-
TeX (documents), DX formats (scientific data), Step
(CAD/CAM data), etc. Their integration is a very ac-
tive field of research (see for instance, for a very small
sample, [15, 10, 13, 12, 23, 20, 14, 2, 31). A key ob-
servation is that, often, the application programs used
by organizations can only handle data of a specific for-
mat. (e.g. Web browsers, like Netscape, expect files
in HTML format, and relational databases expect re-
lations). To enable a specific tool to manipulate data
coming from various sources (e.g. use, in a relational
system, data stored on the Web in HTML format), a
translation phase must take place - the data (in the
source format) needs to be mapped to the format ex-
pected by the application.

The naive way to translate data from one format to
another is writing a specific program for each transla-
tion task. Examples are the LaTeX to HTML trans-
lators the HTML to text translators. Writing such a
program is typically a non trivial task which is often
complicated by numerous technical aspects of the spe-
cific data sources that are not really relevant to the
translation process (e.g. HTML or SGML parsing, or
specific database access protocol). Recent works [3,16]
consider a more general framework which enables a
more flexible translation between various models. The
solution is based on using a common data model to
which the source/target data is mapped, and provid-
ing a common translation language which enables the
specification and customization of the translation task.
This makes the introduction of new translations easier,
but very often still requires considerable programming
effort whenever a new translation is to be defined [3].

The goal of this work is to design a mechanism for
simplifying the specification of translations. The base
observation is that, frequently, much of the structure
of the source data is very similar to that of the tar-

get translated data, and many of the structure mod-
ifications to be performed by the translation process
are rather standard and result from various differences
between the schemas of the source and the target sys-
tems. We use here the general term schema to de-
note whatever way a data model chooses to model its
data. For example, databases use schemas to model
database instances; structured documents often obey
some grammar (e.g. Document Type Definition -
DTD - in SGML and HTML); in other models such a
definition may be partial (e.g. in semi-structured data
[l]). The observation is that, in many translations, the
schema of the target system is closely related to that
of the source system - both schemas aim to represent
the same data. This implies that a large part of the
translation process can be done automatically, relying
on this (often standard) relationship, thereby reducing
the programming effort, and involving the user only in
the specification of the “non standard” parts of the
translation.

We built a data translation system, called TranScm,
which implements the above idea. Given the schemas
for the source and target data, the system examines
the schemas and tries to find similarities/differences
between them. This is done using a rule-based
method, where each rule (1) defines a possible com-
mon matching between two schema components, and
(2) provides means for translating an instance of the
first to an instance of the second. The system has a
set of built-in rules that handles most common cases,
and that can be extended/adjusted/overridden by the
user during the translation process. The system uses
the rules and tries to find for each component of the
source schema a unique “best matching” component in
the target schema, or determine that the component
should not be represented in the target. This is called
the matching process. If the process succeeds, the data
translation can be performed automatically using the
translation facilities of the matching rules. There are
two cases where the process may fail: (i) a compo-
nent of the source schema cannot be matched with a
target one using the current set of rules (nor can the
matching process derive that the component should be
just ignored), or (ii) a component of the source schema
matches several components in the target schema, and
the system cannot automatically determine the “best”
match. For (i) the user can add rules to the system to
handle the special component and describe the trans-
lation to be applied to it. For (ii) the user is asked
to determine the best match. Then, based on the
user’s input, the matching process is completed and
the translation is enabled.

Note that the purpose of the schema-based data
translation method that we propose is not to replace
the programming languages for data translation pro-
posed in [3, 161, but rather to complement them. The
idea is that rather than having to write a transla-

tion program for all the data, much of the translation
specification will be done automatically by the system,
based on the schema matching, and the programmer
will only need to supply some minimal additional code
to handle the data components not covered by the sys-
tem. Hence the programming effort will be greatly
simplified.

The focus of the work is on the system architecture
and the modular use of schema-based match&translate
rules, and not on the specific language used to define
the rules. In fact, we provide a generic interface for
rules and the presentation is independent of the spe-
cific language used to specify them. For implemen-
tation reasons we used in the prototype Java as the
rule definition language, but if desired, the user can
use declarative rule languages in the style of [3, 161,
thus enabling logic-based inference of the properties
and correctness of rules. This is beyond the scope of
this paper.

Handling data and schemas from different models
requires a common framework in which the different
schema and data formats can be presented. For that
we defined a middleware schema and data models in
which the matching process and the data translation
are performed. The schema model consists of graphs,
and the data model consists of labeled forests and is
similar to the one introduced in [3] and to the OEM
and the tree models of [24, lo]. The difference with the
OEM model is that we allow some nodes to be ordered.
This is crucial for modeling data that might be ordered
(e.g. structured documents). Each data source that is
to be exposed to the Web community is expected to
provide a mapping to/from the middleware format. As
we shall see, the representation of each source inside
the middleware is very close to the structure of the
data/schema in the source, so the implementation of
such a mapping is fairly easy.

The paper is organized as follows. We start with a
general overview of the system in Section 2. Then Sec-
tion 3 presents the middleware data and schema mod-
els. In Section 4 we describe the match&translate rules
used to determine the matching between the schema
components and the data translation derived from it.
We also explain the user interaction with the system
and the means for customizing the translations. The
system architecture and implementation are presented
in Section 5. Finally, we conclude in Section 6 by con-
sidering related work.

2 System Overview

A typical scenario of the system’s work is as follows. It
receives as input two schemas, one of the data source
and the other of the target. The two schemas are im-
ported into the system and presented in the common
schema model. The next step is matching. The system
tries to find for every component in the source schema
a corresponding component in the target schema (or

123

determine that the component should not be repre-
sented in the target), using the rule-based process
mentioned in the Introduction. Once the matching is
completed (perhaps with the user’s assistance), a data
translation is possible. To perform the translation, a
data instance of the source schema is imported into
the common data model, and is “typed”, i.e. every el-
ement in the data is attached a corresponding schema
element as a type. Now, the system uses the match
between the schema components, achieved in the pre-
vious step, to translate the data: Recall from the In-
troduction that every rule in the system has two com-
ponents, the first defines a possible common matching
between two components of schemas, and the second
provides means for translating an instance of the first
to an instance of the second. Every element of the
source data is translated, using the translation func-
tion of the rule that matched its type with a type
(component) of the target schema, to an instance of
the target type. The resulting elements are “glued”
together to form a valid instance of the target schema.
Finally, the translated data is exported to the target
application.

We demonstrate the above process with an exam-
ple. We assume below some basic knowledge of SGML
[19] and OODB s, and consider the translation of data
between these formats. The example we use is a sim-
plified version of the example described in [15]. (The
full example can be handled similarly; the simplifica-
tion is only for space reasons.) We ignore for now
the representation of these formats in the middleware
models (this will be considered in the next section) and
concentrate on the matching and translation steps.

Consider the SGML DTD in Figure 1, the SGML
document in Figure 2, and the OODB schema in Fig-
ure 3. We would like to translate the SGML docu-
ment (which is an instance of the mentioned DTD) to
an instance of the OODB schema. Note that the DTD
and the 00 schema are quite similar. We will describe
some possible matches between their components, that
can be determined by an automatic rule-based system.
For every such match we will detail the difference be-
tween the structure of the components, and suggest a
possible translation function for mapping instances of
the first to instances of the second.

l The article element in the SGML DTD is basi-
cally an ordered tuple. The most “similar” ele-
ment in the 00 schema is the Article class. (The
two components have the same name, up to cap-
ital letters, and similar components, and as will
be explained below, the structure of the compo-
nents also match.) A difference is that tuple at-
tributes in OODBs are not ordered. The trans-
lation function in this case is rather simple - an
Article instance in the OODB will be built from
the input instance by simply omitting the order
information.

<!DOCTYPE article [
<!ELEMENT article
<!ELEMENT authors
<!ELEMENT sections
<!ELEMENT title
<!ELEMENT author
<!ELEMENT section
<!ELEMENT section1
<!ELEMENT section2
<!ELEMENT b4/
<!ELEMENT picture
<!ELEMENT caption
<!ELEMENT wag

(title, authors, sections) >
(author+) >
(section*) >
(#PCDATA) >
(#PCDATA) >
(section1 (section2) >
(title, body)) >
(picture, caption?) >

(paw*) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >

Figure 1: SGML DTD

< article >
< title > From structured Documents to . . . < /title >
< authors >
< author > V. Christophides < /author >
< author > S. Abiteboul < /author >
< author > S. Cluet < /author >
< /authors >
< sections >
< section >
< section1 >
< title > Introduction < /title >
< body >
< parag > Structured documents are . . . < /parag >
< /body >
< fsectionl >
< /section >
< section >
< section1 >
< title > SGML Preliminaries < ftitle >
< body >
< parag > In this section, we present... < Jparag >
< parag > In order to define... < lparag >
< /body >
< /section1 >
< /section >
< section >
< section2 >
<picture > some bitmap < Jpicture >
< caption > A DTD for a document < /caption >
< Jsection2 >
< /section >
< Jsections >
< /article >

Figure 2: SGML Document

124

class Article public type
tuple (title : string,

author3 : list(Author),
sections : set(Section))

class Author : string;

class Section public type
tuple (section1 : tuple (title : string,

body : set (string)),
section2 : tuple(tmuna : string,

koteret : string),
tag : string)

Figure 3: OODB Schema

l The section element in the DTD describes a union
type. In the 00 schema, the most similar el-
ement seems to be the Section class: this class
describes a 3-ary tuple, where the first and sec-
ond attributes are similar (in name and structure)
to the first and second alternatives, resp., of the
SGML section union type, and the third attribute
is a ‘tag’. Knowing that ODMG does not sup-
port union types, and that such a construct is
often implemented by having a tuple containing
the two alternatives, plus a tag attribute indi-
cating which of the two alternatives is actually
used, we can conclude that two structures of the
above form match. The translation function in
this case maps an the SGML section to a tuple
in the OODB, filling the relevant attribute (ac-
cording to the section type) and assigning some
default value to the other one, and filling the tag

attribute with the relevant type indication.

l The authors element in the DTD and the authors

list in the OODB both represent a collection of
matching elements (author and Author resp.) The
translation function can produce an OODB list of
authors from the SGML element by taking the
individual (translated) author elements and the
grouping them into a list ordered by the order of
occurrence in the file.

l Last, consider the picture and caption elements
in the SGML DTD. From the above discussion
we conclude that, the section2 elements of the two
schemas potentially match, hence the picture and
caption are likely to be matched with the tmuna

and the koteret elements in the OODB schema
(which are actually the Hebrew terms for picture

and caption, resp.) But assuming that our com-
puter does not contain a Hebrew dictionary, how
can it decide which of the two is to be matched
with each of the components? Note that we can-
not use the structure of the attributes to deter-
mine the best match since they both have exactly

class
Article

Author
Author
Author

Section

Section

Section

oid
P

VC
SA
SC

secl

sec2

sec3

value
tupleftitle : “From Structured...“, - \

authors : list(VC, SA, SC),’
sections : set(sec1, sec2, sec3))

V. Christophides
S. Abiteboul
S. Cluet

tuple(section1 : tuple(
title : “Introduction”
body : set(“Structurkd...“)),

section2 : tuple(tmuna : ““,
koteret : ““),

tag : “sectionl”)

tuple(section1 : tuple (
title : “SGML Preliminaries”,
body : set(“In this sect...“,

“In order to...“)),
section2 : tuple(tmuna : ““,

koteret : ““) ,
tag : “sectionl”)

tuple(section1 : tuple (title : ““,
body : set()),

section2 : tuple(
tmuna : some bitmap,
koteret : “A DTD...“),

tag : ” section2”)

Figure 4: An OODB Instance

the same structure. Hence the user is asked to
determine the best match.

Now, assume that the system contains, among oth-
ers, some generic matching rules that cover the above
cases: rule 1, matching ordered and unordered tuple-
like structures, with an attached translation function
as described above (the rule also handles the case
where some attributes are omitted or added); rule
2, matching union types and tagged tuples, with an
attached translation function as above; and rule 3,
matching collections of matched components, again
with a translation function as above. Then, the user
input is added to the system as an additional spe-
cial rule indicating the match between the picture and
tmuna (caption and koteret) elements, with a trans-
lation function which is the identity function (up to
elements label). After the matching and translation
process (using the extended set of rules) is completed
we get an instance of the OODB schema (Figure 4),
which is a natural translation of the source document.
This example is relatively simple. Now, let us compli-
cate things a bit.

l Assume first that the article element in the doc-

125

ument is defined by

4ELEMENT article (title, author+, section*) >

and thus the tags < authors >, < /authors >,
<sections>, and </sections> are omitted in the
SGML document. In this case, the SGML article
no longer includes a clear separation into three
components, but is rather a sequence of many el-
ements, starting with a title element followed by
several author elements and then some section ele-
ments. Nevertheless, when looking at the schema,
it is fairly easy to see that the sequence can be
logically separated into three parts, and that the
author+ subsequence matches the authorss at-
tribute of the Article class, and the section* sub-
sequence matches the sections attribute. Thus
the translation mechanism here first has to split
the sequence into its logical sub-components, and
only then proceed with the mapping described
above. Similarly, if the definition of the section
element is shortened by

<!ELEMENT section

((title, parag’)) (picture, caption?)) >

then the sectionl, section2, and body elements no
longer explicitly appear in the data - their tags
are omitted - which would complicate the map-
ping to the 00 image, if only the data itself was
considered. But the logical structure of the data is
still reflected in the schema and can thus be used
in the translation process to split the file into its
logical components.

l As another example, assume that the Author
class in the OODB, rather than containing a sim-
ple string, is defined by

class Author : tuple (first-name : string,
last-name : string,
email : string)

Just by looking at the SGML schema (DTD), the
system cannot determine how to break an SGML
author string into the relevant components. The
user needs to provide here a specific translation
program for this element, based on the string se-
mantics and the data analysis. Although some
programming is needed here, the effort is limited
to a small portion of the data, while the rest of
the translation is derived automatically.

l Finally, assume that the user wants to move all
figures to the end of the article, and perhaps
also to omit some specific figures. To do that,
the user can override Rule 3 above (the rule for
matching and translating collections of matched
components), so that for this particular collection
the translation function reorders the (translated)
components as required, and omits the specified
elements. Again, some programming is needed to

define the new translation function for this spe-
cific case, but still this is a very limited: The user
only needs to specify the reordering of the collec-
tion, while the actual translation of the collection
components is given automatically by the system.

There are cases where the differences between the
schema structure require a more complex matching
and analysis, e.g. when the source schema includes
nested collections or nested tuple structures (which
is common in the 00 model and in structured doc-
uments), and the target schema does not (e.g. when
the target system is a relational database), or when
the source schema includes references/links (typical
for the OODBs and hypertext), and the target schema
does not (e.g. a relational database or a simple non-
hyperlinked textual document). Nevertheless, our ex-
perience shows that even in these cases the common
mappings are rather standard. Continuing with the
above examples, nested tuples are often represented in
flat models by simply flattening the nesting and us-
ing a flat tuple containing all the leaf attributes (and
sometimes additionally adding the name of the origin
component as a prefix to the attribute name). Nested
sets have two common representations in flat models:
either simple unnesting, or giving each nested set an
identifier and then using some auxiliary relation that
records the relationship between the identifiers and the
corresponding set elements. Similarly, references are
often represented in a relational system (or a docu-
ment) using keys that identify the referred element.
Another common alternative in documents is to use an
actual copy of the referred element instead of the link.
In all these cases it is rather simple to define match-
ing rules for each of the possible alternatives with a
corresponding translation function.

Our system contains a large set of predefined rules
covering the above cases and many other common
cases we encountered in our experiments or found in
the literature on data translation. When working with
the system the user can add, if needed, additional
rules to cover cases that are currently not handled by
the system, define arbitrary new translations, or dis-
able/modify/override existing rules to adjust the sys-
tem to his needs. The system has a graphical inter-
face that can display at each point the two schemas
and the set of matches determined by the system
rules (and the problems, if any, encountered in the
matching process). Starting from this the user can
add/disable/modify/override rules to obtain the de-
sired matching and translation.

In the rest of the paper we describe the components
of the system and how they are used. We start with the
middleware data and schema models, and then con-
tinue with the match&translate rules.

126

3 The Data and Schema Models

Handling data and schemas from different models re-
quires a common framework in which the different
schema and data formats can be presented. For that
we defined a middleware schema and data models in
which the matching process and the data translation
are performed. Each data source that wishes to use
the system is expected to provide a mapping of its
data and schema to/from the middleware format. As
we shall see, the models are fairly simple and the
representation of each source inside the middleware
is very close to the structure of data/schema in the
source, so the implementation of such a mapping is
fairly easy. Furthermore our system includes several
import/export programs for some common data mod-
els (e.g. relational, 00, HTML, SGML, etc.) that can
be used by the data sources.

3.1 The Data Model

The data model that we use is similar to that of [3],
and to the OEM and the tree models of [24, lo]. Data
is represented by a forest with labeled nodes. A partic-
ularity here is that we allow an order to be defined on
the children of some of the nodes. Order in an inher-
ent component of some data structures, e.g. ordered
tuples and lists. Similarly, textual data can either be
described as a sequence of characters or words, or on
a higher level as a certain parse tree; in both cases,
the order of data elements is important. Supporting
order as part of the data model enables a natural rep-
resentation of data coming from such sources [3]. As
in [3, 24, lo] the labels on vertices can be used to
represent schematic information and data values. To
represent cyclic structures, leaves can have values that
are the ids of other vertices in the forest, in which case
the leaf basically describes a “pointer” to the vertex.

The main reason for the popularity of this kind of
model is its simplicity and the fact that one can easily
map anything into a graph/tree. To illustrate how
data from different sources is naturally represented in
the middleware model we consider the representation
of the SGML document and the OODB discussed in
the previous section. (A formal definition of the model
and additional examples of the representation of data
from various sources in it can be found in [26].) An
SGML document is basically represented by its parse
tree, so the document in Figure 2 is described by the
tree in Figure 5. Its variant, discussed in the previous
section, with the article and section elements defined
by

BELEMENT article (title, author+, section*) >
and

4ELEMENT section
((title,parag*) 1 (picture, caption?)) >

is represented by the tree in Figure 6. Observe that
the tree here is flatter, reflecting the fact that some of
the logical tags are now missing from the data. In the

two trees, all the nodes are ordered to reflect the order
of elements in the file. The data graph of the OODB
in Figure 4 is omitted for lack of space. The represen-
tation is the natural one, with the only ordered node
being the authors node, and with the references to ob-
jects described by leafs having the objects vertex id as
value.

3.2 The Schema Model

Schemas are modeled by labeled graphs, where some
of the nodes may be ordered. We chose to use a graph
rather than a forest, as in the data model case, to sim-
plify the description of recursive types. This however
is not a significant issue and a similar forest-based rep-
resentation can be defined (by having leaves pointing
to other vertices, as done in the data-forest case).

Each vertex in the schema graph represents a
schema element (type), and the children represent its
possible components. The labeling of a vertex de-
scribes the name of the element, some of the element
properties, and information on the relationship be-
tween the element and its components. This includes
information on (1) whether this is a root type, i.e.
whether roots of the data forest can be assigned this
type, (2) what are the possible labels of data vertices
of this type (for leaf vertices this will determine the
possible domain of data values), (3) whether a data
vertex of this type can be referenced by other vertices
(i.e. the vertex id can be the value of some leaf node
in the forest), (4) what is the allowed number (range)
of children of a data vertex of this type, (5) whether
the children of a data vertex of this type are ordered
or not (6) if some of the component types are optional
(this is useful for describing union types and optional
attributes), (7) if th e sub-tree rooted at a node of this
type is allowed to have an arbitrary structure (useful
to describe semi-structured data[l]), and (8) whether
vertices of this type actually appear in the data graph
or are just “virtual”.

To understand the last point, consider the second
SGML definition of the article element

<!ELEMENT article (title, author+, section*) >
As explained in the previous section, for translation
purposes, it is convenient to make it explicit in the
schema that an article is composed of three logical
components, a title part, an author+ part, and a
section* part. Note however that the data tree for
this SGML document (Figure 6), does not really con-
tain the author+ and section* nodes. Item (8) in the
labeling is used to reflect this fact.

To illustrate things we present below a few exam-
ples. (A formal definition of the schema model and
additional examples of the representation of various
schemas can be found in [26]; due to lack of space it
is omitted here.) The schema graph of the OODB
database is presented in Figure 7, and the schema
graph of the SGML document from Figure 6 is pre-

127

article

caption

‘Introduction”

“Structured
dot...”

“SGML “some bitmap” “A DTD...”

Pn4iminaries”

“In this...” ‘In order to...”

Figure 5: SGML file in the middleware data representation

Stmctured...” christo- Abiteboul” Cluet”

phides” L
‘Introduction” “Structured “SGh4L “In this...” “In order to...”

dot...” Preliminaries”

Figure 6: Second SGML file in the middleware data representation

Section [3]

ti

Figure 7: OODB schema in the middleware schema representation

128

article [3,-z=]

Figure 8: SGML schema in the middleware schema
representation
sented in Figure 8.i

The empty circles represent “virtual” elements (i.e.
elements that do not actually appear in the data),
while the full circles represent “real” elements. The la-
beling of a vertex includes the element name (for “real”
elements) and some additional information listed in
square brackets. Data instances of an element will
have the element name as a label, or, if this a base
type name (e.g. Int, String), then the data element
will be labeled with a value of the corresponding do-
main. The keyword ref (Figure 7) is used to denote
leaf data vertices that “point” to other vertices (i.e.
have the pointed to vertex id as a label). The first
element in the square brackets indicates the number
(range) of children that a vertex of this type can have.
The + indicates that the node is ordered. So, for ex-
ample, the [0 - . . , +] next to the authors vertex in
Figure 7 means that a data vertex of this type is or-
dered and can have zero or more children. The possible
type for the children is determined by the children of
the vertex in the schema graph2. The ? sign denotes
optionality. So, for example, the ? next to the caption.
vertex in Figure 8 means that a data vertex of this
type is optional, i.e there may be data instances where
it appears, and others where it does not. Similarly, the
? next to the two children of the section vertex in this
graph (together with the fact that the section vertex
is declared to have a single child), reflects the fact that
this is a union type, i.e. a choice between two possible
types of the children.

A schema graph defines a set of data instances that
conform to it. Intuitively a data forest F conforms to

‘The schema of the SGML document in Figure 5 is basically
the same except that all the “virtual” elements become regular.

20bserve that since the data trees of the SGML files are
ordered, all the vertices in the schema graph of these files are
ordered as well.

a schema graph G if each of the vertices u E F can be
assigned a type, i.e. a vertex t E G, s.t. v satisfies the
requirements of t, as described by t’s labeling. Note
however that “virtual” types appear explicitly only in
the schema and do not have corresponding vertices in
the data. For translation purpose, it is useful to make
the full structure explicit in the data as well. So rather
than looking at the data forest F we will look at an
“explicit” version of it:

Definition 3.1 An explicit version of a data forest F,
is a data forest F’ with some of its nodes marked as
“virtual”, s.t. F is obtained from F’ by identifying all
the virtual vertices with their parents, preserving the
order of all the outgoing edges.

For example, the SGML tree in Figure 5, with the
authors, section, sectionl, section2, and body vertices
marked as virtual and their labels omitted, is an ex-
plicit version of the tree of Figure 6.

Now we can refine the notion of conformity de-
scribed above and say that a data forest F conforms
to a schema graph G, if F has an explicit version F’
and a type assignment h mapping vertices of F’ to ver-
tices (types) in G, s.t. each vertex v’ 6 F’ satisfies the
requirements of its assigned type, as described by the
labeling of h(v’) in G, and in particular W’ is virtual iff
h(v’) is. (For a formal definition see [26] .)

The explicit version F’ of a data forest F and its
type assignment h are used to determine the data
translation, as explained in the next section.

To continue with the above example, the tree in
Figure 6 conforms to the schema in Figure 8 due to
an explicit version with a structure as in Figure 5, and
with the natural type assignment.

4 Match & Translate Rules

Schema matching is the process of matching vertices
of the source schema graph with vertices of the target
schema graph. The matching achieved is then used for
translating instances of the first schema to instances
of the second.

For that we use rules. Each rule has two compo-
nents; one is in charge of the matching and the other
of the translation. The matching part consists of two
basic functions: A Match function that given two ver-
tices, vr in the input schema graph and 212 in the tar-
get schema graph, examines the labeling of the ver-
tices and determines if they “possibly” match. The
match is conditional on the matching of the compo-
nents of the vertices (i.e. their descendents in the
schema graph) as determined by the second function,
the Decendents function. For each pair vi, 712 of input
and output schema vertices, the function Decendents
returns two sets of descendents, of VI and 212, resp.
(and possibly also a set of constraints) that need to
be matched (in a way that satisfies the constraints) in

129

order for wl and u2 to match. The translation part con-
sists of a Translation function that is in charge of the
translation of instances of matched types (according
to the rule). We use r.Match (resp. r.Decendents,
r.Translation) to denote the Match function (resp.
Decendents, Translation) of a rule r. We say that
two schema vertices ~1, v2 match, if there exists some
rule r for which r.Match(vl, ~12) is true.

As a simple example, consider Rule 1 used in Sec-
tion 2 to match ordered and unordered tuple-like struc-
tures. The match function of the rule simply compares
the names of the two elements (using a built-in dictio-
nary to detect synonyms) and the number of children
they can have. The Decendents function returns the
sets of direct children of the two vertices. The con-
straint on the allowed matchings for these descendents
depends on how close we want the two structures to
be: for example, if we want to consider only cases
where all the input attributes are represented in the
output, we can require the matching on the descen-
dents to be total. If we allow some of the attributes
to be omitted, we may allow partial matchings, and
possibly constrain the minimal number of (or the spe-
cific) attributes that must match. The translation
function here simply constructs a data vertex repre-
senting the target tuple (with a label as indicated in
the target schema), and then attaches the translated
descendents as children.

We distinguish between three types of rules: lo-
cal rules where the Decendents are direct children of
the matched schema vertices (as in Rule 1 discussed
above) ; semi-local rules where the Decendents can
be non-direct children (e.g. when a nested tuple is
mapped to a flat one and the translation takes the leaf
attributes of the nested input tuple and glues them to-
gether to form a flat tuple)3; and global rules where the
translation function handles the whole subtree rooted
at the vertex (i.e. performs a global translation, rather
than a recursive one as in the previous cases), in which
case the Decendents function returns the empty set.
As we shall see below, global rules are very useful for
customizing the translation - the user can add to the
system global rules defining special treatment for spe-
cific subtrees in the data, while the rest of the data is
handled in a standard manner by the other predefined
rules of the system.

Rules have (distinct) priorities, and when two ver-
tices can be matched by several rules, we are interested
in the highest, priority rule. In the matching process
we attach to vertices in the input schema a vertex of
the output schema together with a (highest priority)
rule supporting the matching of the two vertices.

3Note that in this case the descendentsof the input vertex are
non-direct while those of the output vertex are direct. An exam-
ple where both descendents are non-direct is when one nested
tuple is mapped to another nested tuple having a different in-
ternal structure but with matching leaf attributes

Definition 4.1 Given a set of rules R, we say that
two schema graphs G1, G:! match w. r. t R, if it is possi-
ble to define a partial mapping ,LI from vertices v1 E G1
to pairs (712, r) of vertices v E G2 and rules r E R s.t.
the roots of G1 are mapped to roots of G2, and for ev-
ery vertex vl E G1 with ,u(w~) = (212, r) the following
holds.

1. r is the best possible matching rule, i.e.
r.Match(vl, ~2) holds and there is no other rule
r’ with priority 2 of r s.t. r’.Match(vl, ~2) holds.

2. The descendents are properly (and non ambigu-
ously) matched, i.e.

(4

6)

The mapping P when restricted
to r.Decendents(vl) maps the descendents of

VI to members of r.Decendents(v2) (satisfy-
ing the constraints, if exist, on the allowed
matchings), and

For every vi E r.Decendents(vl) with
I = (vh,r’) there is no other vertex
~‘2’ E Decendents(v2) and rule r” E R with
priority 1 of r’, s. t. r”.Match(vi, vy) holds.
And conversely, there is no other vertex vy E
Decendents(w1) and rule r” E R with prior-
ity > of r’, s.t. r”.Match(vy, v;) holds.

If the schema graphs have several roots, then we also
require non-ambiguity in the mapping of the roots, as
in 2b above.

4.1 User Interaction

There are two cases where the matching may fail: (i)
a component of the source schema cannot be matched
with a target one using the current set of rules, (and
the matching process can neither derive that the com-
ponent should be just ignored), or (ii) a component of
the source schema matches several components in the
target schema, and the system cannot automatically
determine the “best” match.

An example of the first case is when a vertex v1 can
be matched with only one vertex 212 by a single rule
r that requires a total matching on the Decendents
of v1 and ~2, but some of ~11’s descendents cannot be
matched with any of 212’s descendents by any of the
given rules. An example of the second case is when
some descendent of ~1 can be matched by the same
rule with two distinct descendents of ~12, and there is
no other higher priority rule to break the tie. In fact,
this was exactly the case considered in Section 2, when
the figure (caption) element could be matched with
both the tmuna and koteret elements, and the system
could not automatically determine the best match.

Our system has a graphical interface that can dis-
play at each point the two schemas and the set of
matches determined by the system rules. When the
matching fails, the system displays to t,he user the

430

maximal partial matching satisfying the above con-
ditions, and highlights the schema components where
the matching failed. Starting from this the user can
add/disable/modify/override rules to obtain the de-
sired matching and translation.

To solve problem (i) the user can add rules to the
system to handle the special component and describe
the translation to be applied to it. For (ii) the system
asks the user to determine the best match. The user
input is then added to the system as a new rule with
higher priority than that of the rule causing the am-
biguity. Now, when the matching process is restarted
and reaches the problematic node, it will be matched
using the new rule (which is now the highest priority
possible rule) with the unique target node specified by
the rule, hence resolving the ambiguity. The system
maintains the set of rules as a list, and the priority of
a rule is reflected by its relative position in the list.

Besides adding new rules, the user can also disable,
modify, or override existing rules. Consider for exam-
ple the SGML-to-OODB translation discussed in Sec-
tion 2, and assume we want to override Rule 3 (the rule
for matching and translating collections of matched
components) so that some specific collections are given
special treatment (for example, when translating the
list of sections we may want to move all figures to the
end). To override a rule T we can insert a new rule
r’ with a higher priority, with a Match criteria that
covers a subset of the cases handled by r, and with a
translation function appropriate for this subset. Since
the matching process always chooses the highest rel-
evant priority rule, the new rule will override the old
one, for all the specified elements.

4.2 Translation

Once the system determines the matching between the
source and the target schema graphs (perhaps with the
user’s assistance), the translation of instances of the
first schema into instances of the second is enabled.

To perform the translation, a data instance of the
source schema is imported into the common data
model, and is “typed”, i.e. every data vertex is at-
tached a corresponding schema vertex as its type. Re-
call however that to facilitate the translation, we want
to use the full logical structure of the data. Hence,
we first transform the input into an explicit version,
and consider the type assignment for the explicit data
forest. Now, the system uses the matching between
the input and target schema vertices, computed in the
previous step, to translate the data forest by applying
recursively from top to bottom the translation func-
tions of the rules attached to the types of the vertices.
The resulting forest is an erpcplicit instance of the target
schema. To obtain a “real” forest, the virtual nodes are
glued to their parents (as in Definition 3.1). Finally,
the resulting data instance is exported to target appli-
cation. We conclude this section with two remarks:

COMBINING SCHEMA- AND DATA-BASED TRANSLA-
TION: Recent works [3, 161 propose specialized pro-
gramming languages, targeted for specifying data
translations. The schema-based approach that we
present here is not aimed at replacing these languages
but rather at complementing them. The idea is that
rather than having to write a translation program for
all the data, much of the translation specification will
be done automatically by the system, based on the
schema matching, and the programmer will only need
to supply some minimal additional code to handle the
data components not covered by the system. In terms
of our system, this means adding some new rules with
a translation function programmed in one of the above
languages.

TYPING: The translation process constructs an output
data forest. Before exporting the data to the target
application, the system checks that the forest indeed
conforms to the output schema. Note that this test
can be spared if the individual rules are guaranteed to
be correct, in the sense that, in each rule, the transla-
tion function is guaranteed to generate a legal instance
of the output type, if given a legal instance of the in-
put type and a correct translation for the Decendents.
Our system contains a large set of built-in rules for
which correctness, in the above sense, has been veri-
fied [26]. When new rules are added (or when existing
rules are modified), the user can either declare them
to be “correct”, in the sense that their correctness has
been checked and proved, or else the type checking has
to be enabled at run time to test the translated data
before it is exported.

5 Architecture and Implementation

The TranScm system is composed of five main compo-
nents:

l a rule base consisting of a large set of predefined
rules covering all the above cases and many other
common cases we encountered in our experiments
and in the literature on data translation. (A full
list of the available rules can be found in [26, 271.)

l a matching module in charge of the matching of
the input and output schemas w.r.t to the current
set of rules. The matching algorithm works in a
top down fashion starting from the root nodes and
going down, following the conditions in Definition
4.1, and taking at most time polynomial in the
size of the schemas and the rules.

l a typing module that, given a data forest and a
schema graph, tests that the data conforms to
the schema, constructing an explicit version of the
data forest, together with a type assignment for
the vertices. It is possible to show that in the
worst case the process can take time exponential

131

in the size of the input (the problem is NP com-
plete), but for a large class of schemas, covering
most common data models, a polynomial algo-
rithm exists [9], and this is what we use here.

l a graphical user interface that can display the two
schemas and the set of matches det.ermined by the
system rules (and the problems, if any, encoun-
tered in the matching process), and assists the
user in adding/disabling/modifying/overriding
rules to obtain the desired matching and trans-
lation. The interface can also display the in-
put/target data forests and the typing computed
for their nodes.

l an extendible library of import/export programs
for connecting to external sources and import-
ing/exporting data and schemas to the system.

The TranScm system is a part of a larger project,
WWWDAG [8], that aims at developing tools for the
utilization of digital libraries available through the
Web. Our system is used to translate data found
on the Web to the formats expected by the appli-
cations that are part of WWWDAG. The TranScm
system is written in Java and its first version is cur-
rently fully operational. It can be used in an interac-
tive mode or via an API, and includes all the features
discussed above as well as some import/export pro-
grams (SGML, HTML, 02 database, and WWWDAG
relational data). We are currently working on enhanc-
ing the user interface and plan to add additional im-
port/export modules and to work on performance and
optimization issues.

6 Related Work

We conclude by considering related work. Many
works on data translation focus on the translation of
specific formats. Some examples are the LaTeX to
HTML translators or the HTML to text translators,
and mappings between structured documents and ob-
ject oriented databases in [2] and [15]. Some works
[3, 16, 14, 5, 251 g eneralize this approach and consider
mappings between various data models. However most
of them rely on the data and not on the schema. The
input data is converted to some middleware model,
where it is transformed or integrated with some tar-
get models. This is often done using some translation
language. The language should be powerful enough
to ca.pture a variety of translations, and may be quite
complex. [3], f or example, uses datalog-style rules to
do this. In [16] the model is more general, and allows
the representation of schemas, but still, the translation
program should be written manually, and the transla-
tion language is intricate.

The closest to our approach is the one presented in
[17], and demonstrated by the WOL language of [18].

This work also considers schema-based data transla-
tions. However, in their approach, the translation
program depends on the specific characteristics of the
input schema (e.g. specific labels and typing in the
schema), and every two schemas should be assigned
mappings manually. In our system, the translation
rules are in a sense more generic. The system con-
tains a large set of predefined generic rules that are
based only on common properties of schemas in the
middleware model, and not on the characteristics of a
specific input schema. The user can however add spe-
cific rules for customizing the matching/translation.
For that one can use, for example, the languages men-
tioned above.

A related subject is schema transformation. Works
in this area mainly concentrated on the restructuring
of source schemas into target ones (and not on the con-
version of data instances of the schemas). See [7] for a
survey of schema merging and translation techniques.
Several works, e.g. [ll, 51, consider aspects of merg-
ing schemas of source databases. Others, e.g. [6, 41,
consider translation of schemas from one model to an-
other. A target schema is created by a series of manip-
ulations on the source schema. [6] for example, intro-
duces a meta-schema model, in which many schemas
can be presented. Using the schema meta-model and a
rule-based method, the source schema is restructured
to become a schema in the target model. The out-
put can then be mapped to the external “real world”
format. These works and others, e.g. [21, 221, address
the problem of informat,ion capacity, namely determin-
ing whether it is possible to represent instances of the
source schema by instances of the target schema, in
a unique way, and vice versa. [6] proves that some
schema transformations preserve information capacity.
Note, however, that in our context, the user may some-
times need to export data to a specific target schema
that does not preserve information capacity.

Most of the works in this area do not consider the
underlying data. After a schema is transformed, there
is still a need to translate the underlying data. Our
work on the other hand concentrates on data transla-
tion. It does not deal with the schema transformation,
but rather assumes that both the source and target
schemas are given as input, and suggests a (partly)
automated data translation, based on matching be-
tween the schemas. Combining our system with the
works on schema transformation could be very benefi-
cial, and we plan to study the issue in future work.

Acknowledgments: The work was supported by the
Israeli Ministry of Science and by the Academy of Arts
and Sciences.

References

[l] S. Abiteboul. Querying semi-structured data. In
Proc. ICDT 9’7, pages 1-18, 1997.

132

PI

PI

[51

[71

PI

PI

1101

1113

P21

1131

S. Abiteboul, S. Cluet, and T. Milo. A database
interface for files update. In Proc. of the ACM
SIGMOD Conf. on Management of Data, San
Jose, California, 1995.

S. Abiteboul, S. Cluet, and T. Milo. Correspon-
dence and translation for heterogeneous data. In
Proc. ICDT 97, pages 351-363, 1997.

R. Abu-Hamdeh, J.R. Cordy, and T.P. Martin.
Schema translation using structural transforma-
tion. In CASCON’94, IBM Centre for Advanced
Studies 1994 Conference, pages 202-215, Novem-
ber 1994.

R. Ahmed, P. De Smedt, W. Du, W. Kent, M.A.
Ketabchi, W. Litwin, A. Rafii, and M.C. Shan.
The Pegasus heterogeneous multidatabase sys-
tem. IEEE Computer, 24(12):19-27, 1991.

P. Atzeni and R. Torlone. Schema translation
between heterogeneous data models in a lattice
framework. In Sixth IFIP TC-2 Working Confer-
ence on Data Semantics (DS-6), Atlanta, Geor-
gia, 1995.

C. Batini, M. Lenzerini, and S.B. Navathe.
A comparative analysis of methodologies for
database schema integration. ACM Computing
Surverys, 18(4):323-364, Dec. 1986.

C. Beeri, G. Elber, T. Milo, Y. Sagiv, N. Tishby,
D. Konopniki, and P. Mogilevski. Websuite - a
tool suite for harnessing web data. In To appear
in WebDB’98, 1998.

C. Beeri and T. Milo. Schemas for semi-structured
data. Technical report.

P. Buneman, S. Davidson, G. Hillebrand, and
D. Suciu. A query language and optimization
techniques for unstructured data. In Proc. of the
ACM SIGMOD Conf. on Management of Data,
San Diego, 1996.

P. Buneman, S. Davidson, and Anthony Kosky.
Theoretical aspects of schema merging. In Proc.
Extending Database Technology, 1992.

M.J. Carey et al. Towards heterogeneous mul-
timedia information systems : The Garlic ap-
proach. Technical Report RJ 9911, IBM Almaden
Research Center, 1994.

T.-P. Chang and R. Hull. Using witness gener-
ators to support bi-directional update between
object-based databases. In Proc. ACM SIG-
MOD/SIGACT Conf. on Print. of Database Syst.
(PODS), San Jose, California, May 1995.

P41

P51

I161

P71

WI

D91

PO1

WI

PI

P31

PI

[251

P61

PI

S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. The tsimmis project: Integration
of heterogeneous information sources. In Pro-
ceedings of IPSJ Conference, pages 7-18, Tokyo,
Japan, October 1994.

V. Christophides, S. Abiteboul, S. Cluet, and
M. Scholl. From structured documents to novel
query facilities. In Proc. of the ACM SIGMOD
Conf. on Management of Data, Minneapolis, Min-
nesota, 1994.

S. Cluet, C. Delobel, J. Simeon, and K. Smaga.
Your mediators need data conversion! In SIG-
MOD’98, to appear, 1998.

Susan Davidson, Peter Buneman, and Anthony
Kosky. Semantics of database transformations.
Technical Report MS-CIS-95-25, University of
Pennsylvania, 1995.

Susan B. Davidson and Anthony S. Kosky. Wol
: A language for database transformations and
constrains. In Proc. of the 13th Int. Conf, on Data
Engineering, pages 55-65, April 1997.

C.F. Goldfarb. The SGML Handbook. Calendon
Press, Oxford, 1990.

A. Levy, A. Rajaraman, and J. Ordille. Querying
heterogeneous information sources using source
descriptions. In VLDB, 1996.

R.J. Miller, S. Y.E. Ioannidis, and R. Ramakrish-
nan. The use of information capacity in schema
integration and translation. In VLDB, 1993.

R.J. Miller, S. Y.E. Ioannidis, and R. Ramakrish-
nan. Schema equivalence in heterogeneous sys-
tems: Bridging theory and practice. Information
Systems, 19:3-31, 1994.

Y. Papakonstantinou, H. Garcia-Molina, and
J. Ullman. Medmaker: A mediation system
based on declarative specifications. Available by
anonymous ftp at db. stanf ord. edu as the file
]pub/pap&onstantinou/i995/medmaker.ps.

Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object exchange across heterogeneous
information sources. In Int. Conference on Data
Engineering, 1995.

G. Wiederhold. Forward : Intelligent integration
of information. Journal of Intelligent Information
Systems, 6(2/3):281-291, May 1996.

Sagit Zohar. Schema-based data translation,
1997. M.Sc Thesis, Tel-Aviv University.

Sagit Zohar. The transcm system, 1997.
http://www.math.tau.ac.il/8agit/tranScm/.

133

