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Abstract 

Time of creation is one of the predominant 
(often implicit) clustering strategies found not 
only in Data Warehouse systems: line items 
are created together with their correspond- 
ing order, objects are created together with 
their subparts and so on. The newly created 
data is then appended to the existing data. 
We present a new join algorithm, called Diag- 
Join, which exploits time-of-creation cluster- 
ing. If we are able to take advantage of time- 
of-creation clustering, then the performance 
evaluation reveals the superiority of Diag-Join 
over standard join algorithms like block-wise 
nested-loop join, GRACE hash join, and index 
nested-loop join. We also present an analyti- 
cal cost model for Diag-Join. 

1 Introduction 

During the evaluation of queries in Data Warehouses, 
relations containing millions or even billions of tuples 
need to be joined. Joins involving fact tables are very 
costly operations. Evidently, fast join algorithms are 
very important in this environment. 

The main strategy to lower join cost is to filter out 
many non-qualifying tuples beforehand. Bit-vector in- 
dexing is predominantly used for this purpose, like in 
O’Neil’s and Graefe’s multi-table join [23]. However, 
it may not always be possible to filter out a significant 
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number of tuples. The join attribute may also take 
on many different values, leading to huge bit-vectors, 
so that the overhead of filtering may not pay off. We 
were wondering, if properties of relations exist that can 
be exploited somehow during a join operation. Dur- 
ing our analysis we made the following observations. 
When inserting new tuples into a Data Warehouse, 
those tuples are usually appended to existing relations 
[13, 171. Therefore time of creation is the predomi- 
nant-though often implicit-clustering strategy. An- 
other important observation was that in the context of 
data-warehousing relations are typically joined on for- 
eign keys [13, 171. Backed by these observations, we 
developed a join algorithm-called Diag-Join- which 
takes advantage of these facts. It exploits time-of- 
creation clustering for 1:n relationships. 

Let us illustrate these two points by an example 
taken from [17]. All companies selling products have 
to ship these products to their customers. Hence, the 
process of shipping goods plays an important role. As- 
sume that in the Data Warehouse of such a company 
a central fact table Shipments exists, that contains 
the data on all deliveries made. In a dimensional ta- 
ble CustomerOrders we store information on all or- 
ders that the company received. See Figure 1 for an 
illustration. Soon after appending an order from a 
customer, we expect the corresponding tuples to be 
added to Shipments, resulting in clustering by time of 
creation. 

The Diag-Join exploits this clustering. In essence, 
Diag-Join is a sort-merge join without the sort phase. 
An important difference, however, is that the merge 
phase of Diag-Join does not assume that the tuples of 
either relation are sorted on the join attributes. In- 
stead, it relies on the physical order created by the 
(implicit) time-of-creation clustering strategy. More 
specifically, Diag-Join joins the two tables by scanning 
them simultaneously. The scan on the outer relation 
proceeds by moving a sliding window of adjustable size 
over the relation. Only within this window we search 
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.10/12/96 
10/13/96 
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H/23/96 
11123196 
12/10/96 
12118196 
12/20/96 

Figure 

1 
1: 

Air K-323 
Air K-323 
Truck K-326 
Truck K-326 
Air K-351 
Rail K-351 
Ship K-351 

. . . . 

CustomerOrders 
Order-No 1 CustomerID 1 TotalPrice ] OrderDate 
K-323 1 1943 156.00 1 lo/lo/96 

The relations Shipments and CustomerOrders 

for join partners for the inner relation. A special mech- 
anism takes care of those tuples of the inner relation 
for which no join partner could be found in the win- 
dow. They are called mishits. Though simple, this 
idea proves to be very effective. There are, however, 
some subtleties that are addressed later on. These are 
the buffer management, the window size, the organi- 
zation of the window, and the sliding speed of the win- 
dow. We also present a method which allows Diag-Join 
to join non-base relations (resulting from intermediate 
operations). 

Diag-Join has two advantages over other join algo- 
rithms for appropriately clustered relations: 

l Even if the relations do not fit into main memory, 
in many cases Diag-Join will be able to avoid the 
creation of large temporary files, unlike the sort- 
merge join [l], the hybrid hash join [4, 261, and 
the GRACE hash join [6, 261. 

l Contrary to other join algorithms, output tuples 
can be produced right away without a painful in- 
terruption of the query evaluation pipeline. 

The rest of the paper is organized as follows. Sec- 
tion 2 covers related work. We present the Diag-Join 
algorithm in Section 3. Section 4 contains performance 
evaluations and comparisons with block-wise nested- 
loop join, GRACE hash join, and index nested-loop 
join (for a brief sketch on GRACE hash join, see Sec- 
tion 2). Section 5 concludes the paper. 

2 Related Work 

Since the invention of relational database systems, 
tremendous effort has been undertaken in order to de- 
velop efficient join algorithms. Starting from a simple 
nested-loop join algorithm, the first improvement was 
the introduction of the merge join [l]. Later, the hash 
join [2, 41 and its improvements [14, 18, 22, 271 be- 
came alternatives to the merge join. (For overviews 
see [21, 261 and for a comparison between the sort- 
merge and hash joins see [8, 91.) A lot of effort has 

also been spent on parallelizing join algorithms based 
on sorting [5, 19, 20, 241 and hashing [3, 6, 251. 

For many applications hash-based join algorithms 
have proven to be superior. One of these algorithms 
is the GRACE hash join 16, 261. As it plays a central 
role in our paper let us give a brief description of it. 
When joining two relations R and S, we partition them 
in a way such that the following two conditions are 
met. First, each of the partitions of the smaller one 
fits into main memory. Second, matching tuples are 
always found in corresponding partitions of the other 
relation. The algorithm performs the following steps 
(assuming R is the smaller relation): 

1. Choose a hash function h so that it partitions R 
into T approximately equal-sized subsets. Allo- 
cate r output buffers. 

2. Scan R, thereby hashing each tuple into the ap- 
propriate output buffer using h. If the output 
buffer is full, write it to disk. When finished with 
the scan, flush all buffers to disk. 

3. Do the same for S. 

4. For each of the r partitions read partition Ri into 
a main memory hash table. For each tuple in 
the corresponding partition Si probe in this hash 
table to find a match. 

Another important research area is the development 
of index structures that allow to accelerate the evalu- 
ation of joins [ll, 15, 16, 23, 29, 303. However, if there 
is no selection prior to a join or the selections exhibit 
a high selectivity value (i.e. many output tuples are 
produced), the performance gain of these algorithms is 
limited. This is also true for bit-map join indices [23], 
that were developed especially for Data Warehouse en- 
vironments. Hence, we only incorporated standard 
join algorithms in our performance benchmarks. 
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Definition 
(smaller) relation to be joined 
key of relation RI 
(larger) relation to be joined 

(with foreign key K) 
cardinality of relation R, in 

number of tuples (CC E (1, N}) 
size of relation R, in number of pages 
tuple at position i in relation R,, 

15 i I lR,I 
an arbitrary tuple 
size of buffer/window in 

number of tuples 
size of buffer/window in 

number of pages 
size of array of hash tables 
hash table size in pages (= F) 
intermediate operator on R, 

Table 1: Used symbols 

Symbol 
Rl 

K 

RN 

IRZI 

t 

mt 

mp 

1 

inter&( Rz) 

3 The Diag-Join 

The first subsection briefly summarizes some prelimi- 
naries and notations used throughout the rest of the 
paper. We then present a basic version of the Diag- 
Join explaining the principle of the algorithm in sub- 
section 3.2. We proceed by giving an advanced ver- 
sion of the algorithm illuminating implementation de- 
tails in 3.3. We deal with the subtleties mentioned 
in the introduction. Further, we discuss how to join 
non-base relations (resulting from intermediate opera- 
tions). The last two subsections contain a cost model 
and the derivation of formulas to calculate the m&hit 
probability (i.e. the probability that a tuple turns out 
to be a mishit). 

3.1 Preliminaries 

For the rest of the paper we use the symbols depicted 
in Table 1. Given two relations RI and RN to be 
joined, we assume that RI contains the key K, which 
is foreign key of RN. That is, a 1:n relationship exists 
between RI and RN. lRzj denotes the cardinality (in 
number of tuples) of a relation R, (with z E (1, N}), 
while ]]RZ]] stands for the size of R, in pages. We fur- 
ther assume that the tuples in each relation are (im- 
plicitly) numbered by their physical occurrence. The 
i-th tuple in R, is denoted by R5[i] with 1 2 i < (R,(. 

Let us assume that a tuple of RI and all matching 
tuples in RN are created by the same transaction and 
are written to disk at the same time. We can easily 
figure out the physical position of the joining tuple in 
Ri for a given tuple in RN. We call this situation 
“perfect” clustering by time of creation. In the special 
case of 1:n relationships, i.e. every tuple in RN joins 

exactly with one tuple from RI, we expect for each 
tuple RN[~] to find the matching tuple in RI at posi- 

tion [*Il. If the number of join partners of each 
tuple in RI varies, the calculated position is only an 
approximation, Figure 2 illuminates a perfect situa- 
tion. On the x-axis we have the positions of the tuples 
in RN, on the y-axis the expected positions of their 
join partners in RI. Here, each tuple in RI joins with 
exactly two tuples from RN. Hence, the join partner of 

RN[~] is R1[3], because & = 3. It is important to 1 1 
note that, even for perfect clustering, the relations will 
almost certainly not be sorted on the join attributes. 

Figure 2: Expected positions of matching tuples 

3.2 Basic Diag-Join 

If the tuples in the relations are perfectly clustered, 
then a simple merge phase suffices to join the two re- 
lations. However, in reality this is not always the case. 
There may be some exceptions, because the number of 
join partners for each tuple in RI varies, the tuples are 
not inserted simultaneously into RI and RN, or they 
are reorganized later (e.g. deletion of tuples, insertion 
of additional tuples, replacements). Hence we do not 
just look at one tuple of RI at a time, but hold mt tu- 
ples-those in the vicinity of the expected position-in 
a buffer. We call the part of RI held in the buffer a 
window on RI. 

The basic Diag-Join algorithm works as follows. We 
initialize the window with [y] tuples from R,[l] to 
Rl[ [?I]. We expect the matching tuple for RN[~] 
to be at Ri[l] or in the range from RI[- [?I] to 
Rl[ [?]I. Since there are no negative positions in RI, 
the interval from - 17) to 0 is cut off. Then RN is 
scanned sequentially starting with RN[~]. NO buffer- 
ing is applied to RN, except for the current tuple. For 
every tuple RN[~] we search the window for a match- 
ing tuple from RI. If the lookup is successful (we call 
this a hit), we immediately produce an output tuple 
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Diag-Join(R-1, R-N, m-t) 
t 

/* phase 1 */ 

ratio = IR-NI / ILII; 
curTup = m-t/Z; 
fill buffer with R-1ClI to R~lCcurTupl; 
fos(i = 1; i <= IR-NI; i++) 
t 

if(tuple t in buffer matches R-NCiI) 
i 

join t with R-NM; 
output result; 

1 
else 
i 

write R-NM to tmpfile; 
> 
if(i % ratio == 0) 
t 

curTup++; 
if(buffer is full) 
i 

replace tuple with lowest position with R-l[curTupI; 
I 

1 
? 

/t phase 2 */ 

join R-1 with tmpfila using any standard join algorithm; 
I 

Figure 3: Basic Diag-Join algorithm 

and go on to the next tuple in RN. We can do this, 
because there can be at most one hit (l:n relation- 
ship). If the lookup fails (called m&it), then R,v[i] 
is written into a temporary file. Whenever IRN~/IRI) 
tuples from RN have been processed, we add the next 
tuple from RI to the window. If there is no free space 
left in the window, we replace the tuple with the low- 
est position. When we have finished scanning RN, we 
join the tuples in the temporary file (which should be 
much smaller than 1) RN] I) with RI using some stan- 
dard join algorithm. Figure 3 gives a summary of the 
basic Diag-Join algorithm. 

Before presenting a more elaborate version of Diag- 
Join, let us briefly highlight some problems of the 
basic version. First, the algorithm is not very effi- 
cient, because it uses a tuple-oriented buffer, while 
most DBMSs use page-oriented structures. Second, 
the organization of the window is also crucial for the 
efficiency and needs to be discussed. Third, the algo- 
rithm only works on base relations, e.g. no selections 
prior to the join are possible. We resolve these prob- 
lems in the next section. 

3.3 Advanced Diag-Join 

We kept the algorithm in the last section very simple, 
because we intended to illustrate the basic principle 
of the algorithm. The implementation details are pre- 
sented in this section. 

3.3.1 Page-oriented buffer 

We change from a tuple-oriented buffer to a page- 
oriented buffer. We do not read single tuples into the 
window, but all tuples on the next p pages, which is 
much more efficient. We call p the step size of Diag- 
Join. As a consequence, we replace tuples in the win- 
dow whenever ~.I(RNJ(/IIR~(J pages have been scanned 
in RN. 

3.3.2 Hashing the window 

Searching the window sequentially for matching tuples 
is too expensive, therefore we use hash tables to look 
up join partners in the window. There are two alter- 
natives. We can use one large hash table with a size 
of mP pages or an array of 1 hash tables with a size 
of y pages each. Using only a single hash table is 
disadvantageous. If we apply a step size p equal to the 
window size mP, we also replace a part of the vicinity 
inserted during the last step that is needed in the cur- 
rent step. If we apply a step size p smaller than the 
window size mP, we must delete many tuples from the 
hash table individually. Therefore we allocate an ar- 
ray of 1 hash tables. Each hash table has a size equal 
to y. We equate the hash table size with the step 
size, hence p = T. Then in each step we free an en- 
tire hash table, which is much cheaper than deleting 
individual entries. Figure 4 depicts the window orga- 
nization. The window size is six pages, organized into 
three chunks of two pages each. Therefore the step size 
is also equal to two pages. The broken lines indicate 
how the pages are replaced when no free buffer space 
is left. 

RI 

Window size: 

Hash table directories 

Figure 4: Window organization for Diag-Join 

After describing the organization of the window let 
us now look at the algorithm. Sliding the window is 
done as follows. Whenever p ) ) RN ( I / (JR1 ) I pages have 
been scanned in RN, the least recently loaded hash 
table is cleared. Then the next p pages from RI are 
loaded into this hash table. How do we look up mat,ch- 
ing tuples in the hash table array? First of all we 
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search the middle table at position If1 in the array. If 
RI and RN are perfectly clustered, we expect to find 
the matching tuple in this table. If we are not able to 
find it there, we search the table at position If1 + 1. 
On failure the tables at positions [$I - 1, [fl + 2, 

El - 2, and so on are searched. We call this tech- 
nique zig-zag search. This is the best technique, when 
the deviation of the relations from perfect clustering 
can be described by a normal distribution (see Figure 
7 in Section 3.5). If the matching tuple is found, then 
we join the tuples immediately and output the result. 
Otherwise the tuple from RN is written into a tempo- 
rary file. To speed up the algorithm, we could hold the 
mishits in a main memory buffer. Only if this buffer 
overflows, we flush it to disk. We also recommend to 
use an odd number for 1, so that the searching range 
for the lookups is symmetrical. 

Diag-Join(R-1, interOp(R-N), m-p, 1) 
{ 

/t phase 1 t/ 

ratio = IR-NI / IR-11; 
allocate array arrC11 of hash tables; 
fill arsCl1 to arrCl/Zl with tuples from R-1; 
do 
c 

t-N = next tuple from interOp(R-N); 
zig-zag search hash tables for matching tuple; 
ifcmatching tuple found) 
f 

join tuples; 
output results; 

1 
else 

f 
write t-N to tmpBuf; 

I 
ifcnotified from access operator on base relation R-N) 
f 

ifCal hash tables are full) 
{ 

clear least recently loaded hash table; 
load next pages from R-1 into cleared hash table; 

1 
I 

) while (tuples from interOp(R-N) remain); 

/t phase 2 t/ 

join R-1 with tmpBuf using any standard join algorithm; 
? 

Figure 5: Advanced Diag-Join algorithm 

3.3.3 Joining non-base relations 

We have to take special care when joining non-base 
relations. If we feed tuples from intermediate oper- 
ators (working on RN) straight into a Diag-Join op- 
erator, this may destroy the synchronization, i.e. we 
may slide the window on RI incorrectly. We solve this 
problem by using the Observer pattern described in 
[7]. The intent of the Observer pattern (also known as 
publish-subscribe) is to notify all dependent objects 
~l,Pz,..., o, of a state change in an object s. For a 

description in C++ notation see Figure 6. 

class Observer 
x 

update(Subject*) ; 
1 

class Subject 
c 

attach(Object*) ; 
detach(Object*) ; 
notify0 ; 

Figure 6: Observer Pattern 

The methods attach and detach connect and discon- 
nect objects to a subject object s. When s changes its 
state, it calls the method notify which in turn calls 
the method update of all observer objects currently at- 
tached. In our case the operator accessing the tuples 
from RN (scan, index scan, etc.) notifies Diag-Join 
about the position within RN from which the current 
tuples are fetched. Then Diag-Join is able to slide the 
window with the right speed or even skip some pages 
of RI. Note that this technique allows any interme- 
diate operator to occur between the scan on RN and 
Diag-Join, as long as it preserves the relative order of 
the tuples. A similar technique can also be applied 
to handle intermediate operators between the scan on 
RI and Diag-Join. When loading a hash table dur- 
ing the advancement of the window, it is always filled 
completely. If an intermediate operator discards many 
tuples, the scan on RI may hurry ahead in order to fill 
the hash table. If the scan on RI notifies Diag-Join 
of the positions of the currently scanned tuples, Diag- 
Join will be able to recognize this case. As a conse- 
quence, Diag-Join will delay the window sliding on RI 
until the scan on RN has caught up. 

The algorithm is summarized in Figure 5. Please 
note that the current middle table is not always at 
position [fl, because we reuse the hash tables in the 
array. 

3.4 Cost model 

Our cost model for Diag-Join is based on the cost mod- 
els presented in [12]. The parameters needed for the 
cost model are presented in Table 2. The cost Cl/o for 
transferring a set of 11 R, 11 pages from disk to memory, 
or vice versa, through a buffer of size B, is given by 
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Symbol Definition 

c IJO cost for transferring pages between disk 
and memory 

BZ arbitrary buffer 
Tk sum of average seek and latency time 
Tt time for transfer of one page 
TC time for hashing a tuple 

Tj time for finding the join partner of a tuple 

Table 2: Parameters for cost model 

where Tk is composed of the sum of the average seek 
and latency time and Tt is the cost for transferring a 
page between disk and memory. 

The costs for Diag-Join consist of the costs for the 
first and the second phase. 

CDIAG @l, RN) = CPhasel + CPhase2 (2) 

In the first phase we have to read RI and RN, hash 
all tuples of RI, look for matching tuples and join them 
or write the mishits to disk. 

CPhasel = CRead R1 + CCreateHash + CRead RN + 

CJoin + CWrite (3) 

The components of CPhaSel are defined as follows: 

C Read R, = G/o(llRd>~) (4) 
C CreateHash = lRll.Tc (5) 

CRead RN = CI/O(llRNll,1) (6) 

CJoin = IRNI.T~ (7) 

CWrite = C~j0(lltvFWl, 1) (8) 

The costs in the second phase depend on the join 
algorithm used. In our case we applied GRACE hash 
join in the second phase (for cost models of GRACE 
hash join see [lo, 12]), hence 

C Phase2 = CGRACE(R~, twFile) (9) 

Even though we present an estimation for nor- 
mally distributed tuples in Section 3.5 approximat- 
ing )(tmpFiZe(I will not be a trivial task. As the as- 
sumption of normally distributed tuples is probably 
not valid for all applications we recommend the fol- 
lowing procedure. During times of low workload (or 
an issued run-stat command) a shortened version of 
the first phase of Diag-Join is processed. This short- 
ened version is used to determine JjtmpFiZelJ without 
actually creating the temporary file or any result tu- 
ples. 

The query optimizer of a DBMS needs to be sup- 
plied with the above cost model and its parameters 

Symbol Definition 

N(a, h P, 0) normal distribution 
42, P, 0) density function of normal distribution 

j(i) expected position of matching tuple 
mdi) start position of middle hash table 
mhi (i) end position of middle hash table 
wb(i) start position of window (wlO(i) < ml,(i)) 
Whiti) end pOSitiOn of window (n’&;(i) < w,,;(i)) 

ht average number of tuples per hash table 

Table 3: Parameters for mishit probability 

(especially an estimation of IltmpFilell) to enable it 
to make a decision about the application of Diag-Join. 
The costs for joining base relations can be approxi- 
mated by using (2) without modifications. If order- 
preserving intermediate operators occur, the standard 
techniques of the optimizer to estimate the costs of 
complex queries have to be applied (e.g. calculating 
the cardinalities of the intermediate relations and the 
size of Diag-Join’s temporary files (tmpFile) with the 
help of selectivities). At the moment we are working 
on formulas to estimate the “clusteredness” of an (in- 
termediate) relation when applying different operators 
to it. Our goal is to enable the optimizer to approxi- 
mate the costs of Diag-Join operators in more complex 
query-plans (involving operators that break the tuple 
ordering). 

3.5 Calculating the mishit probability 

In this section we derive a formula for calculating the 
mishit probability, that is the probability that an arbi- 
trary tuple from RN turns out to be a mishit. Table 3 
summarizes the needed parameters. 

With the help of this probability the size of the 
temporary file can be estimated: 

ItmpFiZe( M Pr,,,(RN[i]is a mishit) . IRNI (10) 

As already mentioned, we assume that the deriva- 
tion of the relations from perfect clustering can be de- 
scribed by a normal distribution. The normal distri- 
bution n(x, CL, 0) with mean ~1 and standard deviation 
u is defined as follows. 

1 (=-rF 
n(x,p,u) = -eT 

ul/s 
(11) 

We also need to know the probability that x is in 
the range between a and b. This can be calculated by 
the distribution N(a, b, ,v, 0). 
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Let us illustrate what we mean by normally dis- 
tributed tuples. For the tuple RN[~] at position i 
(1 5 i 5 I&]) in relation RN, we expect to find the 

matching tuple at position j(i) = Ii . Hj in rela- 

tion RI, if the relations are perfectly clustered. There 
may be some deviation, however, as indicated by the 
bell-shaped curve in Figure 7. The curve indicates the 
probability that the matching tuple can be found at a 
certain position around j(i) in RI. The middle hash 
table in the window starts at position ml,(i) and ends 
at position mhi(i) (ht is the average number of tuples 
per hash table): 

(13) 

(14 

wlO(i) and whi(i) are the smallest and largest posi- 
tions of the elements found in the window, respectively 
(we assume that I is odd): 

(16) 

Please note that for a better readability we have 
refrained from covering the special cases at the start 
and end of RI. - 

RI RI 

i 

Figure 7: Normally distributed tuples 

The probability that RN[~] turns out to be a mishit 
is the probability that the matching tuple is not inside 
the window: 

Pr(&[i] is a mishit) = 1 - N(~~,(i),ulh;(i),j(i),u) (17) 

When scanning through RN this probability 
changes, because j(i) moves through the middle hash 
table from ml,(i) to mhi(i). Whenever j(i) reaches 
n&i(i) the window slides down by the specified step 
size. 

We are interested in attaining a mishit probability 
below a threshold value paccept. This is tantamount to 
limiting the size of the temporary file. How large do we 
have to choose the window size mt (and the step size 
ht) to guarantee Pravg (RN[~] is a mishit) 5 pnccept? 
The mishit probabilities of the tuples in RN repeat 
themselves for each window as j(i) passes from ml,(i) 
to mhi(i). So the average mishit probability can be 
approximated by 

I;lh+l 

Pravs(&[i] is a mishit) = c 
1 - W,%iU) (18) 

j=[$J.ht+l 
ht 

This formula is very impractical as it can only be 
calculated numerically and we still lack a way to de- 
termine o precisely. Therefore, when estimating the 
needed window size, we recommend using histograms. 
Histograms can be built in a single scan through RI 
and RN with as large a buffer as possible. For each 
tuple in RN the absolute value of the difference be- 
tween the expected position and the actual position 
of the matching tuple in RI is inserted into the corre- 
sponding bucket of the histogram. Mishits are counted 
separately. The resulting histogram (for an example 
see Figure 8) can be used to approximate the smallest 
required window size for a given probability pnccept. 

- 

Figure 8: Histograms for measuring deviation from 
perfect clustering 

4 Benchmarks 

This section is composed of two parts. Within the 
first part we describe the benchmark environment and 
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how the benchmarks were run. In the second part we 
present the results and analyze them. 

4.1 Benchmark description 

The benchmarks were executed on a lightly loaded Sun 
UltraSparc 1 (143 MHz) with 288 MByte main mem- 
ory running under Solaris 2.5.1. The data we worked 
with were generated for a TPC-D benchmark with a 
scaling factor of 1 [28]. We joined the relations Or- 
der and Lineitem (see Figure 4 for the schemes). The 
relation Order was sorted on the attribute orderdate, 
Lineitem was sorted on shipdate. Note that this does 
not result in an ordering on the join attribute orderkey 
in the relations, but it nicely models clustering by time 
of creation. 

custkey 
orderstatus 
totalprice 
orderdate 

l--i orderpriority 
clerk 
shippriority 
comment 

1 Lineitem 
orderkey 
partkey 
swdw 
linenumber 
quantity 
extendedprice 
discount 
tax 
returnflag 
linestatus 
shipdate 
commitdate 
receiptdate 
shipinstruct 
shipmode 
comment J 

Table 4: Relations Order and Lineitem from TPC-D 

The algorithm was implemented in C++ using the 
Sun C++ Compiler Version 4.1. It was integrated into 
our experimental Data Warehouse Management Sys- 
tem AODB. We buffered one page of mishits in main 
memory. For the standard join algorithm in the second 
phase of Diag-Join we used GRACE hash join [6, 261. 
For the index nested-loop join we indexed the attribute 
orderkey on the relation Order with a B+-tree using 
the Berkeley Database package 2. 

In a first step we optimized some parameters of 
Diag-Join, e.g. finding the optimal number of hash 
tables. Then we compared the total costs, CPU-based 
costs and I/O based costs of Diag-Join with block-wise 
nested-loop join, GRACE hash join, and index nested- 
loop join for different buffer sizes. We did not look at 
hybrid hash join, because for large relations relative to 
the size of main memory, GRACE hash join performs 

as well as hybrid hash join [12, 261. Table 5 summa- 
rizes the parameters for the benchmarks. As can be 
seen the chosen buffer size is at most & of the size of 
the relations. This is a realistic assumption for Data 
Warehouses in which huge relations can be found. 

I Pammeter I Value 1 
Page Size 4 KByte 
Size of Order 44,475 pages 
Cardinality of Order 1,500,OOO tuples 
Size of Lineitem 189.635 oaees 

I . ~u-~ 

Cardinality of Lineitem 6,001,215 tuples 
Buffer size (window size) 300 - 4000 pages 

for Diag-Join (1.17 MByte - 15.62 MByte) 
Step size (Window size/5) 60 - 800 pages 
Buffer size for Nested-loop join 300 - 4000 pages 

(block-wise and index) (1.17 MByte - 15.62 MByte) 
Buffer size for GRACE join 300 - 4000 pages 

(1.17 MByte - 15.62 MByte) 

Table 5: Parameters used for benchmarks 

4.2 Benchmark results 

4.2.1 Tuning the Diag-Join algorithm 

Figure 9: Granularity of hash tables 

Figure 10: Percentage of mishits 

2Berkeley DB toolkit: http://www.sleepycat.com 
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When joining relations with Diag-Join, we have to 
choose the right step size and buffer size for the win- 
dow. Two effects have to be considered. If we use a 
large number of hash tables (small step size), we avoid 
cutting off matching tuples in the vicinity of the ex- 
pected positions. However, the more hash tables we 
use, the longer the zig-zag search will take. 

For small buffer sizes the step size is irrelevant, be- 
cause the number of mishits caused by a large step size 
is small compared to the total number of mishits. For 
large buffer sizes, however, the number of mishits is rel- 
atively small and the step size has a noticeable effect. 
The break-even points can be clearly seen in Figure 9. 
R.educing the step size further does not improve the 
mishit ratio significantly. The run-time might even 
deteriorate as it is dominated by the search time for 
the zig-zag search in this case. 

For our benchmarks we divided the window into five 
hash tables. In general this turned out to be a good 
compromise between optimizing the step size and the 
search time. 

In Figure 10 the percentage of mishits in the rela- 
tion Lineitem is depicted. The results of these mea- 
surements are straightforward. The more buffer we 
allocate, the lower the probability that a tuple from 
Lineitem will be a mishit, because the probability to 
find the matching tuple in a hash table increases. For 
large buffer sizes the effect of a large step size can be 
clearly seen, as the percentage of mishits rises for a low 
number of hash tables. (The curves marked with (t) 
are theoretical values assuming that the deviation of 
the relations from perfect clustering can be described 
by a normal distribution (see Section 3.5).) 

4.2.2 Comparison with other join algorithms 

In this section we compare Diag-Join with block-wise 
nested-loop join, GRACE hash join, and index nested- 
loop join. The results for total runtime of all algo- 
rithms for joining the relations Order and Lineitem on 
the attribute order-key are shown in Table 6. Block- 
wise Nested-loop join is used as a reference, not as a 
serious competitor. 

Total costs 

Block-wise nested-loop join performs worst. This 
comes as no great surprise, because the ratio between 
the buffer size and the relations’ sizes is very unfavor- 
able. 

For sufficiently large buffer sizes (>3000 pages or 
6% of IlOrderll) Diag-Join easily outperforms GRACE 
hash join, because in this case all tuples are joined in 
the first phase of Diag-Join and no additional phase 
for joining the mishits is needed. For medium-sized 
buffers (between 1000 and 3000 pages) Diag-Join is 

Figure 11: Total number of mishits 

still faster than GRACE hash join and only for very 
small buffer sizes (<lo00 pages or 2% of 1 IOrder I) 
GRACE hash join performs better. What are the rea- 
sons for this? The first phase of Diag-Join has a rel- 
atively low overhead, but is still able to join a certain 
number of tuples (see Figure 11). This takes at least 
some of the load off GRACE hash join in the second 
phase of Diag-Join. The difference between the over- 
head for the first phase of Diag-Join and the perfor- 
mance gain of GRACE hash join in the second phase 
is not as large as one might expect. 

Diag-Join also performs much better than index 
nested-loop join. Although index nested-loop join also 
profits from the clustering of Order, we have to access 
the tuples indirectly through a Bf-tree, which leads 
to a much higher overhead than hash table lookups. 

CPU-based costs 

Let us now have a look at the CPU-based costs of the 
join algorithms (see Table 7). 

The more available memory we have, the lower the 
costs of the block-wise nested-loop join are. This is 
obvious as the number of necessary loops decreases 
with increasing buffer size. 

As long as it is sufficiently large, the size of the 
hash table directories is irrelevant for the CPU-based 
costs of GRACE hash join. The CPU-based costs for 
GRACE hash join are composed of the costs for hash- 
ing all tuples of Order, hashing all tuples of Lineitem, 
hashing all tuples of Order again during the merge 
phase, and do [Lineitem lookups on this hash table. 
This leads to nearly constant costs. 

The CPU-based costs for index nested-loop join are 
very high. Some of these costs could be reduced by 
implementing a B+-tree customized for AODB. How- 
ever, this will not reduce the costs for searching the 
inner nodes of the tree, which will always be higher 
than (maximal) 5 lookups in hash tables. 
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buffer size (4K pages) 300 ( 400 1 500 ( 600 ( 800 [ 1000 1 1500 [ 2000 [ 2500 ( 3000 1 3500 ( 4000 
Algorithm total elapsed time in set 
Diag-Join 557 571 441 432 396 333 284 231 194 129 127 126 
GRACE hash 552 544 424 424 355 296 300 300 301 296 296 300 
Index Nested-loop - 1378 
Block-wise Nested-loop 16003 12000 8681 8059 6032 4598 2975 2369 1802 1559 1314 1252 

Table 6: Total runtime of join algorithms 

Table 7: CPU-based costs of join algorithms 

The CPU-based costs for Diag-Join for the first 
phase are almost constant regardless of buffer size, be- 
cause Order and Lineitem are simply scanned (see Ta- 
ble 8). The slight increase is caused by the costs for 
joining the tuples. The more available buffer there is in 
the first phase, the more tuples will find a join partner 
in this phase. (We did not write mishits to disk while 
measuring the CPU-based costs for the first phase.) 
The total decreasing CPU-based costs for Diag-Join 
are caused by falling costs of GRACE hash join in the 
second phase, as the number of tuples in the tempo- 
rary file steadily decreases. 

I/O-based costs 

The I/O-based costs are displayed in Table 9. For the 
block-wise nested-loop join we have the same behavior 
as for the CPU-based costs. The larger the buffer size, 
the smaller the number of loops, the lower the costs. 

For GRACE hash join the I/O-based costs decrease 
with increasing buffer size. Beyond a certain buffer 
size, however, the seek and latency time becomes small 
and the costs for transferring the data dominate. As 
Order and Lineitem are always read twice and written 
once, more buffer does not change the transfer costs. 
Therefore the I/O-based costs level out. 

Index nested-loop join also buffers pages of Order in 
main memory: When loading theses pages into mem- 
ory, however, they are not necessarily accessed sequen- 
tially. Therefore seek and latency time is considerably 
higher for index nested-loop join than for the other 
join algorithms. 

When allocating large buffers for Diag- Join (1 3000 
pages, which corresponds to about 6% of the size of 
Order), all we have to do is to read Order and Lineitem 

once and we are finished. Hence we have low I/O-based 
costs in this case. For small buffers (< 3000 pages) 
all tuples of Order and Lineitem are read once in the 
first phase. Additionally, part of Lineitem is written 
into a temporary file, which is then joined with Order. 
When we decrease the buffer size, the temporary file 
will increase (because of a larger number of mishits) 
leading to higher join costs for GRACE hash join in 
the second phase. 

4.3 Summary of Benchmarks 

If we have a clustering of relations by time of creation, 
Diag-Join performs very well (up to two and a half 
times faster than GRACE hash join and considerably 
faster than block-wise/index nested-loop join). Diag- 
Join needs sufficient memory (about 6% of IJRiII in 
our benchmark) to achieve the best case, but even for 
small buffer sizes the performance is still satisfactory. 

Obviously, when joining relations that are not clus- 
tered by time of creation, i.e. relations with ran- 
domly placed tuples, Diag-Join will fail. In this case 
we expect a high rate of mishits as on average only 
buffgl size . R N of the tuples in RN will find a match- 
ing tuple in the first phase. 

5 Conclusion and future work 

We developed a join algorithm, called Diag-Join, for 
any environment in which joining relations (or extents 
in object-oriented DBMS) clustered by time of creation 
is not unusual. We take advantage of the fact that 
new incoming data is appended at the end of relations 
(or extents), resulting in a clustering of the tuples (or 
objects) by time of creation. When this is the case, 
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buffer size (4K pages) 300 1 400 1 500 1 600 ) 800 1 1000 1 1500 1 2000 1 2500 1 3000 1 3500 1 4000 
Algorithm elapsed CPU time in set 
Diag-Join (1st phase) 60 I 60 I 61 I 63 I 64 ( 66 I 69 I 71 I 73 1 75 I 76 I 76 

Table 8: CPU-based costs for the first phase of Diag-Join 

buffer size (4K pages) 300 1 400 1 500 1 600 1 800 / 1000 1 1500 1 2000 1 2500 1 3000 1 3500 1 4000 
Algorithm elapsed I/O time in set 
Diag-Join 270 267 169 158 139 118 103 85 65 43 43 43 
GRACE hash 357 341 232 219 160 111 114 113 113 104 108 115 
Index Nested-loop - 113 
Block-wise Nested-loop 8302 6061 3944 3965 2912 2056 1284 1042 761 668 556 548 

Table 9: I/O-based costs of join algorithms 

often a single merge phase suffices to join these large 
relations. This results in lower join costs than the costs 
for any other join algorithm. 

We implemented Diag-Join and integrated it into 
our experimental Data Warehouse Management Sys- 
tem AODB. There we ran benchmarks based on the 
TPC-D relations Order and Lineitem. A careful ana- 
lysis of the behavior of Diag-Join and the comparison 
to block-wise nested-loop join, GRACE hash join, and 
index nested-loop join revealed the impressive perfor- 
mance of our join algorithm. It ran two and a half 
times faster than GRACE hash join (the latter being 
on equal grounds with hybrid hash join in our case) 
and considerably faster than block-wise/index nested- 
loop join. 

Diag-Join can be improved further by integrating it 
tightly into the join algorithm executed in the second 
phase. For example, the merging phase of Diag-Join 
can be coupled with the partition phase of GRACE 
hash join, i.e. all tuples that do not match are immedi- 
ately partitioned. This would avoid the first scanning 
step of GRACE hash join. 

However, we recommend that Diag-Join should only 
be used for at least loosely clustered relations, because 
for non-clustered relations the results are less favor- 
able, as we have the overhead of the first phase, but 
still almost all tuples have to be joined in the second 
phase by a standard join algorithm. 

Our next goal is to derive accurate (and not overly 
complex) methods for estimating the costs of a Diag- 
Join operator in a query-plan beforehand. This in- 
cludes finding a measure for the degree of “clustered- 
ness” of relations and the measurement of the effect of 
various other relational operators on the “clustered- 
ness” . 
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