
Diag-Join: An Opportunistic Join Algorithm for 1:N
Relationships

Sven Helmer Till Westmann Guido Moerkotte
helmer)westmann)moer@pi3.informatik.uni-mannheim.de

Fakultat fur Mathematik und Informatik, University of Mannheim, Germany

Abstract

Time of creation is one of the predominant
(often implicit) clustering strategies found not
only in Data Warehouse systems: line items
are created together with their correspond-
ing order, objects are created together with
their subparts and so on. The newly created
data is then appended to the existing data.
We present a new join algorithm, called Diag-
Join, which exploits time-of-creation cluster-
ing. If we are able to take advantage of time-
of-creation clustering, then the performance
evaluation reveals the superiority of Diag-Join
over standard join algorithms like block-wise
nested-loop join, GRACE hash join, and index
nested-loop join. We also present an analyti-
cal cost model for Diag-Join.

1 Introduction

During the evaluation of queries in Data Warehouses,
relations containing millions or even billions of tuples
need to be joined. Joins involving fact tables are very
costly operations. Evidently, fast join algorithms are
very important in this environment.

The main strategy to lower join cost is to filter out
many non-qualifying tuples beforehand. Bit-vector in-
dexing is predominantly used for this purpose, like in
O’Neil’s and Graefe’s multi-table join [23]. However,
it may not always be possible to filter out a significant

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

number of tuples. The join attribute may also take
on many different values, leading to huge bit-vectors,
so that the overhead of filtering may not pay off. We
were wondering, if properties of relations exist that can
be exploited somehow during a join operation. Dur-
ing our analysis we made the following observations.
When inserting new tuples into a Data Warehouse,
those tuples are usually appended to existing relations
[13, 171. Therefore time of creation is the predomi-
nant-though often implicit-clustering strategy. An-
other important observation was that in the context of
data-warehousing relations are typically joined on for-
eign keys [13, 171. Backed by these observations, we
developed a join algorithm-called Diag-Join- which
takes advantage of these facts. It exploits time-of-
creation clustering for 1:n relationships.

Let us illustrate these two points by an example
taken from [17]. All companies selling products have
to ship these products to their customers. Hence, the
process of shipping goods plays an important role. As-
sume that in the Data Warehouse of such a company
a central fact table Shipments exists, that contains
the data on all deliveries made. In a dimensional ta-
ble CustomerOrders we store information on all or-
ders that the company received. See Figure 1 for an
illustration. Soon after appending an order from a
customer, we expect the corresponding tuples to be
added to Shipments, resulting in clustering by time of
creation.

The Diag-Join exploits this clustering. In essence,
Diag-Join is a sort-merge join without the sort phase.
An important difference, however, is that the merge
phase of Diag-Join does not assume that the tuples of
either relation are sorted on the join attributes. In-
stead, it relies on the physical order created by the
(implicit) time-of-creation clustering strategy. More
specifically, Diag-Join joins the two tables by scanning
them simultaneously. The scan on the outer relation
proceeds by moving a sliding window of adjustable size
over the relation. Only within this window we search

98

123 u 24.00
234 35.00
012 97.00
635 1298.00
534 453.00
239 20.00
978 10000.00
174 35000.00

. .

Shipments
ProductKeu 1 Price 1 ShivDate

.10/12/96
10/13/96
10/13/96
H/23/96
11123196
12/10/96
12118196
12/20/96

Figure

1
1:

Air K-323
Air K-323
Truck K-326
Truck K-326
Air K-351
Rail K-351
Ship K-351

. . . .

CustomerOrders
Order-No 1 CustomerID 1 TotalPrice] OrderDate
K-323 1 1943 156.00 1 lo/lo/96

The relations Shipments and CustomerOrders

for join partners for the inner relation. A special mech-
anism takes care of those tuples of the inner relation
for which no join partner could be found in the win-
dow. They are called mishits. Though simple, this
idea proves to be very effective. There are, however,
some subtleties that are addressed later on. These are
the buffer management, the window size, the organi-
zation of the window, and the sliding speed of the win-
dow. We also present a method which allows Diag-Join
to join non-base relations (resulting from intermediate
operations).

Diag-Join has two advantages over other join algo-
rithms for appropriately clustered relations:

l Even if the relations do not fit into main memory,
in many cases Diag-Join will be able to avoid the
creation of large temporary files, unlike the sort-
merge join [l], the hybrid hash join [4, 261, and
the GRACE hash join [6, 261.

l Contrary to other join algorithms, output tuples
can be produced right away without a painful in-
terruption of the query evaluation pipeline.

The rest of the paper is organized as follows. Sec-
tion 2 covers related work. We present the Diag-Join
algorithm in Section 3. Section 4 contains performance
evaluations and comparisons with block-wise nested-
loop join, GRACE hash join, and index nested-loop
join (for a brief sketch on GRACE hash join, see Sec-
tion 2). Section 5 concludes the paper.

2 Related Work

Since the invention of relational database systems,
tremendous effort has been undertaken in order to de-
velop efficient join algorithms. Starting from a simple
nested-loop join algorithm, the first improvement was
the introduction of the merge join [l]. Later, the hash
join [2, 41 and its improvements [14, 18, 22, 271 be-
came alternatives to the merge join. (For overviews
see [21, 261 and for a comparison between the sort-
merge and hash joins see [8, 91.) A lot of effort has

also been spent on parallelizing join algorithms based
on sorting [5, 19, 20, 241 and hashing [3, 6, 251.

For many applications hash-based join algorithms
have proven to be superior. One of these algorithms
is the GRACE hash join 16, 261. As it plays a central
role in our paper let us give a brief description of it.
When joining two relations R and S, we partition them
in a way such that the following two conditions are
met. First, each of the partitions of the smaller one
fits into main memory. Second, matching tuples are
always found in corresponding partitions of the other
relation. The algorithm performs the following steps
(assuming R is the smaller relation):

1. Choose a hash function h so that it partitions R
into T approximately equal-sized subsets. Allo-
cate r output buffers.

2. Scan R, thereby hashing each tuple into the ap-
propriate output buffer using h. If the output
buffer is full, write it to disk. When finished with
the scan, flush all buffers to disk.

3. Do the same for S.

4. For each of the r partitions read partition Ri into
a main memory hash table. For each tuple in
the corresponding partition Si probe in this hash
table to find a match.

Another important research area is the development
of index structures that allow to accelerate the evalu-
ation of joins [ll, 15, 16, 23, 29, 303. However, if there
is no selection prior to a join or the selections exhibit
a high selectivity value (i.e. many output tuples are
produced), the performance gain of these algorithms is
limited. This is also true for bit-map join indices [23],
that were developed especially for Data Warehouse en-
vironments. Hence, we only incorporated standard
join algorithms in our performance benchmarks.

99

Definition
(smaller) relation to be joined
key of relation RI
(larger) relation to be joined

(with foreign key K)
cardinality of relation R, in

number of tuples (CC E (1, N})
size of relation R, in number of pages
tuple at position i in relation R,,

15 i I lR,I
an arbitrary tuple
size of buffer/window in

number of tuples
size of buffer/window in

number of pages
size of array of hash tables
hash table size in pages (= F)
intermediate operator on R,

Table 1: Used symbols

Symbol
Rl

K

RN

IRZI

t

mt

mp

1

inter&(Rz)

3 The Diag-Join

The first subsection briefly summarizes some prelimi-
naries and notations used throughout the rest of the
paper. We then present a basic version of the Diag-
Join explaining the principle of the algorithm in sub-
section 3.2. We proceed by giving an advanced ver-
sion of the algorithm illuminating implementation de-
tails in 3.3. We deal with the subtleties mentioned
in the introduction. Further, we discuss how to join
non-base relations (resulting from intermediate opera-
tions). The last two subsections contain a cost model
and the derivation of formulas to calculate the m&hit
probability (i.e. the probability that a tuple turns out
to be a mishit).

3.1 Preliminaries

For the rest of the paper we use the symbols depicted
in Table 1. Given two relations RI and RN to be
joined, we assume that RI contains the key K, which
is foreign key of RN. That is, a 1:n relationship exists
between RI and RN. lRzj denotes the cardinality (in
number of tuples) of a relation R, (with z E (1, N}),
while]]RZ]] stands for the size of R, in pages. We fur-
ther assume that the tuples in each relation are (im-
plicitly) numbered by their physical occurrence. The
i-th tuple in R, is denoted by R5[i] with 1 2 i < (R,(.

Let us assume that a tuple of RI and all matching
tuples in RN are created by the same transaction and
are written to disk at the same time. We can easily
figure out the physical position of the joining tuple in
Ri for a given tuple in RN. We call this situation
“perfect” clustering by time of creation. In the special
case of 1:n relationships, i.e. every tuple in RN joins

exactly with one tuple from RI, we expect for each
tuple RN[~] to find the matching tuple in RI at posi-

tion [*Il. If the number of join partners of each
tuple in RI varies, the calculated position is only an
approximation, Figure 2 illuminates a perfect situa-
tion. On the x-axis we have the positions of the tuples
in RN, on the y-axis the expected positions of their
join partners in RI. Here, each tuple in RI joins with
exactly two tuples from RN. Hence, the join partner of

RN[~] is R1[3], because & = 3. It is important to 1 1
note that, even for perfect clustering, the relations will
almost certainly not be sorted on the join attributes.

Figure 2: Expected positions of matching tuples

3.2 Basic Diag-Join

If the tuples in the relations are perfectly clustered,
then a simple merge phase suffices to join the two re-
lations. However, in reality this is not always the case.
There may be some exceptions, because the number of
join partners for each tuple in RI varies, the tuples are
not inserted simultaneously into RI and RN, or they
are reorganized later (e.g. deletion of tuples, insertion
of additional tuples, replacements). Hence we do not
just look at one tuple of RI at a time, but hold mt tu-
ples-those in the vicinity of the expected position-in
a buffer. We call the part of RI held in the buffer a
window on RI.

The basic Diag-Join algorithm works as follows. We
initialize the window with [y] tuples from R,[l] to
Rl[[?I]. We expect the matching tuple for RN[~]
to be at Ri[l] or in the range from RI[- [?I] to
Rl[[?]I. Since there are no negative positions in RI,
the interval from - 17) to 0 is cut off. Then RN is
scanned sequentially starting with RN[~]. NO buffer-
ing is applied to RN, except for the current tuple. For
every tuple RN[~] we search the window for a match-
ing tuple from RI. If the lookup is successful (we call
this a hit), we immediately produce an output tuple

100

Diag-Join(R-1, R-N, m-t)
t

/* phase 1 */

ratio = IR-NI / ILII;
curTup = m-t/Z;
fill buffer with R-1ClI to R~lCcurTupl;
fos(i = 1; i <= IR-NI; i++)
t

if(tuple t in buffer matches R-NCiI)
i

join t with R-NM;
output result;

1
else
i

write R-NM to tmpfile;
>
if(i % ratio == 0)
t

curTup++;
if(buffer is full)
i

replace tuple with lowest position with R-l[curTupI;
I

1
?

/t phase 2 */

join R-1 with tmpfila using any standard join algorithm;
I

Figure 3: Basic Diag-Join algorithm

and go on to the next tuple in RN. We can do this,
because there can be at most one hit (l:n relation-
ship). If the lookup fails (called m&it), then R,v[i]
is written into a temporary file. Whenever IRN~/IRI)
tuples from RN have been processed, we add the next
tuple from RI to the window. If there is no free space
left in the window, we replace the tuple with the low-
est position. When we have finished scanning RN, we
join the tuples in the temporary file (which should be
much smaller than 1) RN] I) with RI using some stan-
dard join algorithm. Figure 3 gives a summary of the
basic Diag-Join algorithm.

Before presenting a more elaborate version of Diag-
Join, let us briefly highlight some problems of the
basic version. First, the algorithm is not very effi-
cient, because it uses a tuple-oriented buffer, while
most DBMSs use page-oriented structures. Second,
the organization of the window is also crucial for the
efficiency and needs to be discussed. Third, the algo-
rithm only works on base relations, e.g. no selections
prior to the join are possible. We resolve these prob-
lems in the next section.

3.3 Advanced Diag-Join

We kept the algorithm in the last section very simple,
because we intended to illustrate the basic principle
of the algorithm. The implementation details are pre-
sented in this section.

3.3.1 Page-oriented buffer

We change from a tuple-oriented buffer to a page-
oriented buffer. We do not read single tuples into the
window, but all tuples on the next p pages, which is
much more efficient. We call p the step size of Diag-
Join. As a consequence, we replace tuples in the win-
dow whenever ~.I(RNJ(/IIR~(J pages have been scanned
in RN.

3.3.2 Hashing the window

Searching the window sequentially for matching tuples
is too expensive, therefore we use hash tables to look
up join partners in the window. There are two alter-
natives. We can use one large hash table with a size
of mP pages or an array of 1 hash tables with a size
of y pages each. Using only a single hash table is
disadvantageous. If we apply a step size p equal to the
window size mP, we also replace a part of the vicinity
inserted during the last step that is needed in the cur-
rent step. If we apply a step size p smaller than the
window size mP, we must delete many tuples from the
hash table individually. Therefore we allocate an ar-
ray of 1 hash tables. Each hash table has a size equal
to y. We equate the hash table size with the step
size, hence p = T. Then in each step we free an en-
tire hash table, which is much cheaper than deleting
individual entries. Figure 4 depicts the window orga-
nization. The window size is six pages, organized into
three chunks of two pages each. Therefore the step size
is also equal to two pages. The broken lines indicate
how the pages are replaced when no free buffer space
is left.

RI

Window size:

Hash table directories

Figure 4: Window organization for Diag-Join

After describing the organization of the window let
us now look at the algorithm. Sliding the window is
done as follows. Whenever p)) RN (I / (JR1) I pages have
been scanned in RN, the least recently loaded hash
table is cleared. Then the next p pages from RI are
loaded into this hash table. How do we look up mat,ch-
ing tuples in the hash table array? First of all we

101

search the middle table at position If1 in the array. If
RI and RN are perfectly clustered, we expect to find
the matching tuple in this table. If we are not able to
find it there, we search the table at position If1 + 1.
On failure the tables at positions [$I - 1, [fl + 2,

El - 2, and so on are searched. We call this tech-
nique zig-zag search. This is the best technique, when
the deviation of the relations from perfect clustering
can be described by a normal distribution (see Figure
7 in Section 3.5). If the matching tuple is found, then
we join the tuples immediately and output the result.
Otherwise the tuple from RN is written into a tempo-
rary file. To speed up the algorithm, we could hold the
mishits in a main memory buffer. Only if this buffer
overflows, we flush it to disk. We also recommend to
use an odd number for 1, so that the searching range
for the lookups is symmetrical.

Diag-Join(R-1, interOp(R-N), m-p, 1)
{

/t phase 1 t/

ratio = IR-NI / IR-11;
allocate array arrC11 of hash tables;
fill arsCl1 to arrCl/Zl with tuples from R-1;
do
c

t-N = next tuple from interOp(R-N);
zig-zag search hash tables for matching tuple;
ifcmatching tuple found)
f

join tuples;
output results;

1
else

f
write t-N to tmpBuf;

I
ifcnotified from access operator on base relation R-N)
f

ifCal hash tables are full)
{

clear least recently loaded hash table;
load next pages from R-1 into cleared hash table;

1
I

) while (tuples from interOp(R-N) remain);

/t phase 2 t/

join R-1 with tmpBuf using any standard join algorithm;
?

Figure 5: Advanced Diag-Join algorithm

3.3.3 Joining non-base relations

We have to take special care when joining non-base
relations. If we feed tuples from intermediate oper-
ators (working on RN) straight into a Diag-Join op-
erator, this may destroy the synchronization, i.e. we
may slide the window on RI incorrectly. We solve this
problem by using the Observer pattern described in
[7]. The intent of the Observer pattern (also known as
publish-subscribe) is to notify all dependent objects
~l,Pz,..., o, of a state change in an object s. For a

description in C++ notation see Figure 6.

class Observer
x

update(Subject*) ;
1

class Subject
c

attach(Object*) ;
detach(Object*) ;
notify0 ;

Figure 6: Observer Pattern

The methods attach and detach connect and discon-
nect objects to a subject object s. When s changes its
state, it calls the method notify which in turn calls
the method update of all observer objects currently at-
tached. In our case the operator accessing the tuples
from RN (scan, index scan, etc.) notifies Diag-Join
about the position within RN from which the current
tuples are fetched. Then Diag-Join is able to slide the
window with the right speed or even skip some pages
of RI. Note that this technique allows any interme-
diate operator to occur between the scan on RN and
Diag-Join, as long as it preserves the relative order of
the tuples. A similar technique can also be applied
to handle intermediate operators between the scan on
RI and Diag-Join. When loading a hash table dur-
ing the advancement of the window, it is always filled
completely. If an intermediate operator discards many
tuples, the scan on RI may hurry ahead in order to fill
the hash table. If the scan on RI notifies Diag-Join
of the positions of the currently scanned tuples, Diag-
Join will be able to recognize this case. As a conse-
quence, Diag-Join will delay the window sliding on RI
until the scan on RN has caught up.

The algorithm is summarized in Figure 5. Please
note that the current middle table is not always at
position [fl, because we reuse the hash tables in the
array.

3.4 Cost model

Our cost model for Diag-Join is based on the cost mod-
els presented in [12]. The parameters needed for the
cost model are presented in Table 2. The cost Cl/o for
transferring a set of 11 R, 11 pages from disk to memory,
or vice versa, through a buffer of size B, is given by

102

Symbol Definition

c IJO cost for transferring pages between disk
and memory

BZ arbitrary buffer
Tk sum of average seek and latency time
Tt time for transfer of one page
TC time for hashing a tuple

Tj time for finding the join partner of a tuple

Table 2: Parameters for cost model

where Tk is composed of the sum of the average seek
and latency time and Tt is the cost for transferring a
page between disk and memory.

The costs for Diag-Join consist of the costs for the
first and the second phase.

CDIAG @l, RN) = CPhasel + CPhase2 (2)

In the first phase we have to read RI and RN, hash
all tuples of RI, look for matching tuples and join them
or write the mishits to disk.

CPhasel = CRead R1 + CCreateHash + CRead RN +

CJoin + CWrite (3)

The components of CPhaSel are defined as follows:

C Read R, = G/o(llRd>~) (4)
C CreateHash = lRll.Tc (5)

CRead RN = CI/O(llRNll,1) (6)

CJoin = IRNI.T~ (7)

CWrite = C~j0(lltvFWl, 1) (8)

The costs in the second phase depend on the join
algorithm used. In our case we applied GRACE hash
join in the second phase (for cost models of GRACE
hash join see [lo, 12]), hence

C Phase2 = CGRACE(R~, twFile) (9)

Even though we present an estimation for nor-
mally distributed tuples in Section 3.5 approximat-
ing)(tmpFiZe(I will not be a trivial task. As the as-
sumption of normally distributed tuples is probably
not valid for all applications we recommend the fol-
lowing procedure. During times of low workload (or
an issued run-stat command) a shortened version of
the first phase of Diag-Join is processed. This short-
ened version is used to determine JjtmpFiZelJ without
actually creating the temporary file or any result tu-
ples.

The query optimizer of a DBMS needs to be sup-
plied with the above cost model and its parameters

Symbol Definition

N(a, h P, 0) normal distribution
42, P, 0) density function of normal distribution

j(i) expected position of matching tuple
mdi) start position of middle hash table
mhi (i) end position of middle hash table
wb(i) start position of window (wlO(i) < ml,(i))
Whiti) end pOSitiOn of window (n’&;(i) < w,,;(i))

ht average number of tuples per hash table

Table 3: Parameters for mishit probability

(especially an estimation of IltmpFilell) to enable it
to make a decision about the application of Diag-Join.
The costs for joining base relations can be approxi-
mated by using (2) without modifications. If order-
preserving intermediate operators occur, the standard
techniques of the optimizer to estimate the costs of
complex queries have to be applied (e.g. calculating
the cardinalities of the intermediate relations and the
size of Diag-Join’s temporary files (tmpFile) with the
help of selectivities). At the moment we are working
on formulas to estimate the “clusteredness” of an (in-
termediate) relation when applying different operators
to it. Our goal is to enable the optimizer to approxi-
mate the costs of Diag-Join operators in more complex
query-plans (involving operators that break the tuple
ordering).

3.5 Calculating the mishit probability

In this section we derive a formula for calculating the
mishit probability, that is the probability that an arbi-
trary tuple from RN turns out to be a mishit. Table 3
summarizes the needed parameters.

With the help of this probability the size of the
temporary file can be estimated:

ItmpFiZe(M Pr,,,(RN[i]is a mishit) . IRNI (10)

As already mentioned, we assume that the deriva-
tion of the relations from perfect clustering can be de-
scribed by a normal distribution. The normal distri-
bution n(x, CL, 0) with mean ~1 and standard deviation
u is defined as follows.

1 (=-rF
n(x,p,u) = -eT

ul/s
(11)

We also need to know the probability that x is in
the range between a and b. This can be calculated by
the distribution N(a, b, ,v, 0).

103

Let us illustrate what we mean by normally dis-
tributed tuples. For the tuple RN[~] at position i
(1 5 i 5 I&]) in relation RN, we expect to find the

matching tuple at position j(i) = Ii . Hj in rela-

tion RI, if the relations are perfectly clustered. There
may be some deviation, however, as indicated by the
bell-shaped curve in Figure 7. The curve indicates the
probability that the matching tuple can be found at a
certain position around j(i) in RI. The middle hash
table in the window starts at position ml,(i) and ends
at position mhi(i) (ht is the average number of tuples
per hash table):

(13)

(14

wlO(i) and whi(i) are the smallest and largest posi-
tions of the elements found in the window, respectively
(we assume that I is odd):

(16)

Please note that for a better readability we have
refrained from covering the special cases at the start
and end of RI. -

RI RI

i

Figure 7: Normally distributed tuples

The probability that RN[~] turns out to be a mishit
is the probability that the matching tuple is not inside
the window:

Pr(&[i] is a mishit) = 1 - N(~~,(i),ulh;(i),j(i),u) (17)

When scanning through RN this probability
changes, because j(i) moves through the middle hash
table from ml,(i) to mhi(i). Whenever j(i) reaches
n&i(i) the window slides down by the specified step
size.

We are interested in attaining a mishit probability
below a threshold value paccept. This is tantamount to
limiting the size of the temporary file. How large do we
have to choose the window size mt (and the step size
ht) to guarantee Pravg (RN[~] is a mishit) 5 pnccept?
The mishit probabilities of the tuples in RN repeat
themselves for each window as j(i) passes from ml,(i)
to mhi(i). So the average mishit probability can be
approximated by

I;lh+l

Pravs(&[i] is a mishit) = c
1 - W,%iU) (18)

j=[$J.ht+l
ht

This formula is very impractical as it can only be
calculated numerically and we still lack a way to de-
termine o precisely. Therefore, when estimating the
needed window size, we recommend using histograms.
Histograms can be built in a single scan through RI
and RN with as large a buffer as possible. For each
tuple in RN the absolute value of the difference be-
tween the expected position and the actual position
of the matching tuple in RI is inserted into the corre-
sponding bucket of the histogram. Mishits are counted
separately. The resulting histogram (for an example
see Figure 8) can be used to approximate the smallest
required window size for a given probability pnccept.

-

Figure 8: Histograms for measuring deviation from
perfect clustering

4 Benchmarks

This section is composed of two parts. Within the
first part we describe the benchmark environment and

104

how the benchmarks were run. In the second part we
present the results and analyze them.

4.1 Benchmark description

The benchmarks were executed on a lightly loaded Sun
UltraSparc 1 (143 MHz) with 288 MByte main mem-
ory running under Solaris 2.5.1. The data we worked
with were generated for a TPC-D benchmark with a
scaling factor of 1 [28]. We joined the relations Or-
der and Lineitem (see Figure 4 for the schemes). The
relation Order was sorted on the attribute orderdate,
Lineitem was sorted on shipdate. Note that this does
not result in an ordering on the join attribute orderkey
in the relations, but it nicely models clustering by time
of creation.

custkey
orderstatus
totalprice
orderdate

l--i orderpriority
clerk
shippriority
comment

1 Lineitem
orderkey
partkey
swdw
linenumber
quantity
extendedprice
discount
tax
returnflag
linestatus
shipdate
commitdate
receiptdate
shipinstruct
shipmode
comment J

Table 4: Relations Order and Lineitem from TPC-D

The algorithm was implemented in C++ using the
Sun C++ Compiler Version 4.1. It was integrated into
our experimental Data Warehouse Management Sys-
tem AODB. We buffered one page of mishits in main
memory. For the standard join algorithm in the second
phase of Diag-Join we used GRACE hash join [6, 261.
For the index nested-loop join we indexed the attribute
orderkey on the relation Order with a B+-tree using
the Berkeley Database package 2.

In a first step we optimized some parameters of
Diag-Join, e.g. finding the optimal number of hash
tables. Then we compared the total costs, CPU-based
costs and I/O based costs of Diag-Join with block-wise
nested-loop join, GRACE hash join, and index nested-
loop join for different buffer sizes. We did not look at
hybrid hash join, because for large relations relative to
the size of main memory, GRACE hash join performs

as well as hybrid hash join [12, 261. Table 5 summa-
rizes the parameters for the benchmarks. As can be
seen the chosen buffer size is at most & of the size of
the relations. This is a realistic assumption for Data
Warehouses in which huge relations can be found.

I Pammeter I Value 1
Page Size 4 KByte
Size of Order 44,475 pages
Cardinality of Order 1,500,OOO tuples
Size of Lineitem 189.635 oaees

I . ~u-~

Cardinality of Lineitem 6,001,215 tuples
Buffer size (window size) 300 - 4000 pages

for Diag-Join (1.17 MByte - 15.62 MByte)
Step size (Window size/5) 60 - 800 pages
Buffer size for Nested-loop join 300 - 4000 pages

(block-wise and index) (1.17 MByte - 15.62 MByte)
Buffer size for GRACE join 300 - 4000 pages

(1.17 MByte - 15.62 MByte)

Table 5: Parameters used for benchmarks

4.2 Benchmark results

4.2.1 Tuning the Diag-Join algorithm

Figure 9: Granularity of hash tables

Figure 10: Percentage of mishits

2Berkeley DB toolkit: http://www.sleepycat.com

105

When joining relations with Diag-Join, we have to
choose the right step size and buffer size for the win-
dow. Two effects have to be considered. If we use a
large number of hash tables (small step size), we avoid
cutting off matching tuples in the vicinity of the ex-
pected positions. However, the more hash tables we
use, the longer the zig-zag search will take.

For small buffer sizes the step size is irrelevant, be-
cause the number of mishits caused by a large step size
is small compared to the total number of mishits. For
large buffer sizes, however, the number of mishits is rel-
atively small and the step size has a noticeable effect.
The break-even points can be clearly seen in Figure 9.
R.educing the step size further does not improve the
mishit ratio significantly. The run-time might even
deteriorate as it is dominated by the search time for
the zig-zag search in this case.

For our benchmarks we divided the window into five
hash tables. In general this turned out to be a good
compromise between optimizing the step size and the
search time.

In Figure 10 the percentage of mishits in the rela-
tion Lineitem is depicted. The results of these mea-
surements are straightforward. The more buffer we
allocate, the lower the probability that a tuple from
Lineitem will be a mishit, because the probability to
find the matching tuple in a hash table increases. For
large buffer sizes the effect of a large step size can be
clearly seen, as the percentage of mishits rises for a low
number of hash tables. (The curves marked with (t)
are theoretical values assuming that the deviation of
the relations from perfect clustering can be described
by a normal distribution (see Section 3.5).)

4.2.2 Comparison with other join algorithms

In this section we compare Diag-Join with block-wise
nested-loop join, GRACE hash join, and index nested-
loop join. The results for total runtime of all algo-
rithms for joining the relations Order and Lineitem on
the attribute order-key are shown in Table 6. Block-
wise Nested-loop join is used as a reference, not as a
serious competitor.

Total costs

Block-wise nested-loop join performs worst. This
comes as no great surprise, because the ratio between
the buffer size and the relations’ sizes is very unfavor-
able.

For sufficiently large buffer sizes (>3000 pages or
6% of IlOrderll) Diag-Join easily outperforms GRACE
hash join, because in this case all tuples are joined in
the first phase of Diag-Join and no additional phase
for joining the mishits is needed. For medium-sized
buffers (between 1000 and 3000 pages) Diag-Join is

Figure 11: Total number of mishits

still faster than GRACE hash join and only for very
small buffer sizes (<lo00 pages or 2% of 1 IOrder I)
GRACE hash join performs better. What are the rea-
sons for this? The first phase of Diag-Join has a rel-
atively low overhead, but is still able to join a certain
number of tuples (see Figure 11). This takes at least
some of the load off GRACE hash join in the second
phase of Diag-Join. The difference between the over-
head for the first phase of Diag-Join and the perfor-
mance gain of GRACE hash join in the second phase
is not as large as one might expect.

Diag-Join also performs much better than index
nested-loop join. Although index nested-loop join also
profits from the clustering of Order, we have to access
the tuples indirectly through a Bf-tree, which leads
to a much higher overhead than hash table lookups.

CPU-based costs

Let us now have a look at the CPU-based costs of the
join algorithms (see Table 7).

The more available memory we have, the lower the
costs of the block-wise nested-loop join are. This is
obvious as the number of necessary loops decreases
with increasing buffer size.

As long as it is sufficiently large, the size of the
hash table directories is irrelevant for the CPU-based
costs of GRACE hash join. The CPU-based costs for
GRACE hash join are composed of the costs for hash-
ing all tuples of Order, hashing all tuples of Lineitem,
hashing all tuples of Order again during the merge
phase, and do [Lineitem lookups on this hash table.
This leads to nearly constant costs.

The CPU-based costs for index nested-loop join are
very high. Some of these costs could be reduced by
implementing a B+-tree customized for AODB. How-
ever, this will not reduce the costs for searching the
inner nodes of the tree, which will always be higher
than (maximal) 5 lookups in hash tables.

106

buffer size (4K pages) 300 (400 1 500 (600 (800 [1000 1 1500 [2000 [2500 (3000 1 3500 (4000
Algorithm total elapsed time in set
Diag-Join 557 571 441 432 396 333 284 231 194 129 127 126
GRACE hash 552 544 424 424 355 296 300 300 301 296 296 300
Index Nested-loop - 1378
Block-wise Nested-loop 16003 12000 8681 8059 6032 4598 2975 2369 1802 1559 1314 1252

Table 6: Total runtime of join algorithms

Table 7: CPU-based costs of join algorithms

The CPU-based costs for Diag-Join for the first
phase are almost constant regardless of buffer size, be-
cause Order and Lineitem are simply scanned (see Ta-
ble 8). The slight increase is caused by the costs for
joining the tuples. The more available buffer there is in
the first phase, the more tuples will find a join partner
in this phase. (We did not write mishits to disk while
measuring the CPU-based costs for the first phase.)
The total decreasing CPU-based costs for Diag-Join
are caused by falling costs of GRACE hash join in the
second phase, as the number of tuples in the tempo-
rary file steadily decreases.

I/O-based costs

The I/O-based costs are displayed in Table 9. For the
block-wise nested-loop join we have the same behavior
as for the CPU-based costs. The larger the buffer size,
the smaller the number of loops, the lower the costs.

For GRACE hash join the I/O-based costs decrease
with increasing buffer size. Beyond a certain buffer
size, however, the seek and latency time becomes small
and the costs for transferring the data dominate. As
Order and Lineitem are always read twice and written
once, more buffer does not change the transfer costs.
Therefore the I/O-based costs level out.

Index nested-loop join also buffers pages of Order in
main memory: When loading theses pages into mem-
ory, however, they are not necessarily accessed sequen-
tially. Therefore seek and latency time is considerably
higher for index nested-loop join than for the other
join algorithms.

When allocating large buffers for Diag- Join (1 3000
pages, which corresponds to about 6% of the size of
Order), all we have to do is to read Order and Lineitem

once and we are finished. Hence we have low I/O-based
costs in this case. For small buffers (< 3000 pages)
all tuples of Order and Lineitem are read once in the
first phase. Additionally, part of Lineitem is written
into a temporary file, which is then joined with Order.
When we decrease the buffer size, the temporary file
will increase (because of a larger number of mishits)
leading to higher join costs for GRACE hash join in
the second phase.

4.3 Summary of Benchmarks

If we have a clustering of relations by time of creation,
Diag-Join performs very well (up to two and a half
times faster than GRACE hash join and considerably
faster than block-wise/index nested-loop join). Diag-
Join needs sufficient memory (about 6% of IJRiII in
our benchmark) to achieve the best case, but even for
small buffer sizes the performance is still satisfactory.

Obviously, when joining relations that are not clus-
tered by time of creation, i.e. relations with ran-
domly placed tuples, Diag-Join will fail. In this case
we expect a high rate of mishits as on average only
buffgl size . R N of the tuples in RN will find a match-
ing tuple in the first phase.

5 Conclusion and future work

We developed a join algorithm, called Diag-Join, for
any environment in which joining relations (or extents
in object-oriented DBMS) clustered by time of creation
is not unusual. We take advantage of the fact that
new incoming data is appended at the end of relations
(or extents), resulting in a clustering of the tuples (or
objects) by time of creation. When this is the case,

107

buffer size (4K pages) 300 1 400 1 500 1 600) 800 1 1000 1 1500 1 2000 1 2500 1 3000 1 3500 1 4000
Algorithm elapsed CPU time in set
Diag-Join (1st phase) 60 I 60 I 61 I 63 I 64 (66 I 69 I 71 I 73 1 75 I 76 I 76

Table 8: CPU-based costs for the first phase of Diag-Join

buffer size (4K pages) 300 1 400 1 500 1 600 1 800 / 1000 1 1500 1 2000 1 2500 1 3000 1 3500 1 4000
Algorithm elapsed I/O time in set
Diag-Join 270 267 169 158 139 118 103 85 65 43 43 43
GRACE hash 357 341 232 219 160 111 114 113 113 104 108 115
Index Nested-loop - 113
Block-wise Nested-loop 8302 6061 3944 3965 2912 2056 1284 1042 761 668 556 548

Table 9: I/O-based costs of join algorithms

often a single merge phase suffices to join these large
relations. This results in lower join costs than the costs
for any other join algorithm.

We implemented Diag-Join and integrated it into
our experimental Data Warehouse Management Sys-
tem AODB. There we ran benchmarks based on the
TPC-D relations Order and Lineitem. A careful ana-
lysis of the behavior of Diag-Join and the comparison
to block-wise nested-loop join, GRACE hash join, and
index nested-loop join revealed the impressive perfor-
mance of our join algorithm. It ran two and a half
times faster than GRACE hash join (the latter being
on equal grounds with hybrid hash join in our case)
and considerably faster than block-wise/index nested-
loop join.

Diag-Join can be improved further by integrating it
tightly into the join algorithm executed in the second
phase. For example, the merging phase of Diag-Join
can be coupled with the partition phase of GRACE
hash join, i.e. all tuples that do not match are immedi-
ately partitioned. This would avoid the first scanning
step of GRACE hash join.

However, we recommend that Diag-Join should only
be used for at least loosely clustered relations, because
for non-clustered relations the results are less favor-
able, as we have the overhead of the first phase, but
still almost all tuples have to be joined in the second
phase by a standard join algorithm.

Our next goal is to derive accurate (and not overly
complex) methods for estimating the costs of a Diag-
Join operator in a query-plan beforehand. This in-
cludes finding a measure for the degree of “clustered-
ness” of relations and the measurement of the effect of
various other relational operators on the “clustered-
ness” .

Acknowledgments

We would like to thank Beate Rossi and Wolfgang
Scheufele for carefully reading a first draft of this pa-
per. We also thank the anonymous referees for their
useful comments.

References

PI

PI

PI

PI

PI

161

M. W. Blasgen and K. P. Eswaran. On the eval-
uation of queries in a relational database system.
Technical Report IBM Research Report RJ1745,
IBM, 1976.

K. Bratbergsengen. Hashing methods and rela-
tional algebra operations. In Proc. of the 10th
VLDB Conference, pages 323-333, Singapore,
August 1984.

D. Dewitt and R. Gerber. Multiprocessor hash-
based join algorithms. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 151-164, Stock-
holm, Sweden, 1985.

D. Dewitt, R. Katz, F. Ohlken, L. Shapiro,
M. Stonebraker, and D. Wood. Implementation
techniques for main memory database systems.
In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 1-8, 1984.

D. Dewitt, J. Naughton, and D. Schneider. Par-
allel sorting on a shared-nothing architecture us-
ing probabilistic splitting. In Int. Conf. on Par-
allel and Distributed Information Systems, Miami
Beach, Fl, 1991.

S. Fushimi, M. Kitsuregawa, and H. Tanaka. An
overview of the systems software of a parallel re-
lational database machine: GRACE. In Proc. Int.

108

Conf. on Very Large Data Bases (VLDB), pages
209-219,1986.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison Wesley, Read-
ing, Massachusetts, 1995.

(81 G. Graefe. Sort-merge-join: An idea whose time
has(h) passed? In Proc. IEEE Conference on
Data Engineering, pages 406-417, Houston, TX,
1994.

[9] G. Graefe, A. Linville, and L. Shapiro. Sort versus
hash revisited. IEEE Trans. on Data and Knowl-
edge Eng., 6(6):934-944, Dec. 1994.

[lo] L.M. Haas, M.J. Carey, M. Livny, and A. Shukla.
Seeking the truth about ad hoc join costs. VLDB
Journal, 6(3):241-256, 1997.

[II] T. Harder. Implementing a generalized access
path structure for a relational database system.
ACM Trans. on Database Systems, 3(3):285-298,
1978.

[12] E.P. Harris and K. Ramamohanarao. Join algo-
rithm costs revisited. VLDB Journal, 5(1):64-84,
1996.

[13] W. H. Inmon. Building the Data Warehouse (2nd
ed.). John Wiley & Sons, 1996.

[14] M. Kamath and K. Ramamritham. Bucket skip
merge join: A scalable algorithm for join process-
ing in very large databases using indexes. Tech-
nical Report CS-TR-96-20, University of Mas-
sachusetts, 1996.

[15] C. Kilger and G. Moerkotte. Indexing multiple
sets. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 180-191, Santiago, Chile,
Sept. 1994.

[16] W. Kim, K. C. Kim, and A. Dale. Indexing tech-
niques for object-oriented databases. In W. Kim
and F. H. Lochovsky, editors, Object-Oriented
Concepts, Databases, and Applications, pages
371-394, Massachusetts, 1989. Addison Wesley.

[17] R. Kimball. The Data Warehouse TooZkit. Jon
Wiley and Sons, Inc., New York, 1996.

[18] M. Kitsuregawa, M. Nakayama, and M. Takagi.
The effect of bucket size tuning in the dynamic
hybrid GRACE hash join method. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages
257-266,1989.

[19] R. Lorie and H. Young. A low communication
sort algorithm for a parallel database machine.
In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 135-144, 1989. also published as:
IBM TR RJ 6669, Feb. 1989.

[20] J. Menon. A study of sort algorithms for multi-
processor DB machines. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 197-206,
Kyoto, 1986.

[21] P. Mishra and H. Eich. Join processing in re-
lational databases. ACM Computing Surveys,
24(1):63-113, March 1992.

[22] M. Nakayama, M. Kitsuregawa, and M. Tak-
agi. Hash-partitioned join method using dynamic
destaging strategy. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 468478, 1988.

[23] P. O’Neil and G. Graefe. Multi-table joins
through bitmapped join indices. SIGMOD
Record, 24(3):8-11, Sep 1995.

[24] B. Salzberg, A. Tsukerman, J. Gray, M. Stew-
art, S. Uren, and B. Vaughan. FastSort: an dis-
tributed single-input single-output external sort.
In Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 94-101, 1990.

[25] D. Schneider and D. Dewitt. Tradeoffs in process-
ing complex join queries via hashing in multipro-
cessor database machines. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 469-480,
Brisbane, 1990.

[26] L.D. Shapiro. Join processing in database systems
with large main memories. ACM Transactions
on Database Systems, ll(3) :239-264, September
1986.

[27] D. Shin and A. Meltzer. A new join algorithm.
SIGMOD Record, 23(4):13-18, Dec. 1994.

[28] Transaction Processing Council (TPC). TPC
Benchmark D. http://www.tpc.org, 1995.

[29] P. Valduriez. Join indices. ACM Transactions on
Database Systems, 12(2), 1987.

[30] Z. Xie and J. Han. Join index hierarchies for
supporting efficient navigation in object-oriented
databases. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 522-533, 1994.

109

