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Abstract 
The query execution engine in Microsoft SQL Server em- 
ploys hash-based algorithms for inner and outer joins, 
semi-joins, set operations (such as intersection), grouping, 
and duplicate removal. The implementation combines 
many techniques proposed individually in the research 
literature but never combined in a single implementation, 
neither in a product nor in a research prototype. One of 
the paper’s contributions is a design that cleanly integrates 
most existing techniques. One technique, however, which 
we call hash teams and which has previously been de- 
scribed only in vague terms, has not been implemented in 
prior research or product work. It realizes in hash-based 
query processing many of the benefits of interesting or- 
derings in sort-based query processing. Moreover, we 
describe how memory is managed in complex and bushy 
query evaluation plans with multiple sort and hash opera- 
tions. Finally, we report on the effectiveness of hashing 
using two very typical database queries, including the 
performance effects of hash teams. 

Introduction 
While top-end scalability can be achieved only by data- 
base systems that exploit parallel queries and utilities, the 
vast majority of all database servers have usually many 
fewer available CPUs than concurrently active requests. 
For example, one to eight CPUs may serve tens to thou- 
sands of concurrent requests. Thus, while intra-query CPU 
parallelism is important for. high-end installations, utility 
operations, and benchmarks, it is not a panacea for cus- 
tomer applications. Instead, we first have to ensure that 
sequential query plans can execute as efficiently as possi- 
ble, and then combine efficient sequential operations into 
parallel plans when warranted. 

Joins and groupings are frequently used operations in 
relational query processing. Nonetheless, previous re- 
leases of the product used only naTve and index nested 
loops algorithms for joins and an “index nested loops 
grouping” strategy. While these algorithms are suitable for 
queries that basically “navigate from record to record” 
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through the database, they can be a severe limitation in 
data warehouse environments. Moreover, if fast set 
matching algorithms are available, some query plans may 
become attractive that did not make sense in the past. 
Examples include index intersection, union, and differ- 
ence, as well as joining two indexes of a single table on a 
common unique column, e.g., the record identifier of the 
base file, in order to extend the concept of a “covering 
index” (also called “index-only retrieval”) from a single 
index to multiple indexes. Consider, for example, the sim- 
ple query Select A, B From T. It can be executed by scan- 
ning the base file for table T or by joining two single- 
column indexes on columns A and B. If the two indexes 
can be scanned faster than the base file, and if the join 
can be performed very efficiently, the latter plan may be 
the most efficient one. 

For query plans combining multiple indexes as well as for 
more traditional join plans, we spent considerable effort on 
implementing the fastest join algorithms possible. In addi- 
tion to nested iteration, index nested loops, and merge 
join, we implemented a hash join that is a unique combi- 
nation of techniques and ideas proposed in the research 
literature. A description of this hash join implementation is 
the main subject of this paper. 

The implemented techniques include hybrid hashing, dy- 
namic destaging, large units of I/O, partition tuning (also 
called bucket tuning), recursive overflow resolution with 
three operator phases (input, intermediate, and output 
phases similar to input, intermediate, and output phases in 
sorting), dynamic role reversal between build and probe 
inputs, histogram-guided skew resolution, “bail-out” using 
alternative algorithms if inputs contain excessive numbers 
of duplicates, multi-disk concurrent read-ahead and write- 
behind, cache line alignment of in-memory data structures, 
bit vector filtering, and integration into an extensible exe- 
cution paradigm based on iterator objects. All these tech- 
niques are either fully implemented or designed and pro- 
totyped. In addition, this is the first implementation of N- 
ary “teams” of hash joins, which realize in hash-based 
query processing most of the benefits of interesting or- 
derings in sort-based query processing. 

If multiple users execute complex query plans with multi- 
ple memory-intensive operations such as sorting and hash 
join, memory becomes a precious commodity, even at 
today’s memory prices, and memory allocation requests 
on behalf of competing users and of multiple operators 
within a single query plan must be balanced and coordi- 
nated. To the best of our knowledge, there is no known 
general solution for this problem that considers random 
arrival and completion of queries, bushy plans shapes, 
execution phases of complex query plans with multiple 
“stop and go” operators such as sort and hash join, and, 
maybe the most difficult yet most frequently ignored issue, 
the notorious inaccuracy in estimating the sizes of inter- 
mediate results. Given that we had to implement some 
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solution to this problem, even if we cannot claim or even 
prove optimality, we designed what we believe is a prag- 
matic and robust solution, which is also described in this 
paper. 

Related work 
Since we are working to ship a robust and maintainable 
product, we could not afford to undertake or use very 
much unproven research. Our contribution has been to 
integrate and to innovate in integration rather than to inno- 
vate in specific techniques. Many relevant papers have 
been summarized and cited in an earlier survey [Graefe 
19931. While hybrid hash join and parallel hash join are 
well-known ideas today [Dewitt 1984, Dewitt 19851, our 
appreciation for the insights by Bratbergsengen, Sacco, 
and Kitsuregawa and their collaborators [Bratbergsengen 
1984, Sacco 1986, Kitsuregawa 19891 on hash-based 
query evaluation methods has grown since the writing of 
that survey, e.g., partition tuning [Kitsuregawa 19891. 
Some of the techniques combined in our implementation, 
in particular histogram-guided skew management and N- 
ary hash join, have been vaguely described in an earlier 
paper, which also provides a rationale for preferring hash 
join over merge join in very many cases yet for imple- 
menting both join algorithms in a product [Graefe 19941. 

Among competing products, Tandem’s hash join is one of 
the few commercial implementations described in some 
detail in the open literature [Zeller 19901. Oracle uses hy- 
brid hashing for joins, including dynamic role reversal, but 
not for grouping and duplicate removal. lnformix also uses 
hybrid hashing, but we believe that this implementation is 
not as sophisticated as the hashing algorithm described 
here. Red Brick employs hybrid hashing with multi-level 
recursion, role reversal, and bit vector filtering [Red Brick 
19961. NCR’s Teradata product uses hashing extensively, 
including partitioning and merge join on hash values as 
well as hash grouping. IBM’s DBZ/400 employs hashing 
for grouping and for joins, including bit vector filtering, and 
relies on the AS40O’s single-level store instead of hybrid 
hashing, partition tuning, and recursive partitioning. IBM’s 
DBZ/CS team prototyped a hash join implementation, but 
decided not to include it in the product. Sybase has im- 
plemented a hash join in the Sybase IQ product and is 
rumored to be implementing a hash join in its main rela- 
tional database product. 

The benefits of hash join and hash 
grouping 
Implementing hash join and hash grouping operations can 
be quite complex. Given that most database systems al- 
ready have nested loops join and merge join algorithms as 
well as sort- or index-based grouping, what value do hash- 
based algorithms add? The truth is that there is no one 
overall winner, and each of these algorithms is superior to 
its alternatives in certain circumstances. 

Since hash-based algorithms process large, unsorted, 
non-indexed inputs efficiently, they are particularly useful 
for intermediate results in complex queries, for two rea- 
sons. First, intermediate results are not indexed (unless 
explicitly saved to disk and then indexed) and often are 
not produced suitably sorted for the next operation in the 
query plan. Second, since query optimizers only estimate 
intermediate result sizes, and since estimates can be 
wrong by more than an order of magnitude in complex 
queries, algorithms to process intermediate results must 
not only be efficient but also degrade gracefully if an in- 
termediate result turns out to be much larger than antici- 
pated. 

Once an efficient join algorithm is available that requires 
neither sorted nor indexed inputs, some of the query plans 
traditionally associated with bitmap indexes can be ex- 
ploited, such as index intersection, difference and union. 
Bitmap indexes and other types of non-unique non- 
clustered indexes differ in their representations of the set 
of row identifiers associated with each search key. There 
are multiple well-known representations of sets in com- 
puter programs; bitmap indexes represent each such set 
as a bitmap, whereas conventional database indexes ex- 
plicitly enumerate all members of each such set. All op- 
erations possible with bitmap indexes are also possible 
with conventional indexes; for intersection, difference and 
union, hash join is typically the algorithm of choice. 

Efficient join algorithms also open two further avenues of 
database performance improvement. First, semi-join re- 
ductions may apply not only to distributed but also to sin- 
gle-site database systems. Second, in many databases, 
de-normalization is used achieve better perfomance. In 
other words, in order to save join operations, databases 
are designed that violate the well-known normal forms, in 
spite of the dangers of redundancy such as inconsistent 
updates. On the physical level, i.e., on the level of ab- 
straction describing disk space and indexes and query 
execution plans, de-normalization is often called “master- 
detail clustering.” It is usually explained with orders and 
their line items, and is a viable and effective technique to 
improve database performance. However, on the logical 
level, i.e., on the level of abstraction describing tables and 
constraints and queries, de-normalization is a bad idea: 
the dangers of redundancy and the virtues of normal forms 
are well known. With efficient join algorithms, including 
hash join, the motivation for de-normalization diminishes 
or even vanishes. Taken to the opposite extreme, vertical 
partitioning (representing groups of columns from a single 
table in separate files or indexes) may become a viable 
option for physical database design. We’ll come back to 
this point in the performance evaluation. 

An overview of hash join tech- 
niques and terminology 
For completeness, we describe the basic ideas of hash- 
based query processing. More detailed descriptions, algo- 
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rithm variants, cost functions, etc. can be found else- 
where, e.g., [Graefe 19931. 

As a join operator, a hash join has two inputs, which are 
called “build input” and “probe input,” for reasons that will 
be apparent shortly. The optimizer assigns these roles 
such that the smaller one among the two inputs is the 
build input. 

Our hash join implementation implements many types of 
set matching operations: inner join; left, right, and full outer 
join; left and right semi-join: intersection; union; and differ- 
ence. Moreover, with some modest modifications, it can 
do duplicate removal and grouping (like “sum (salary) 
group by department”). These modest modifications boil 
down to using the one and only input for both the build and 
probe roles. We explain inner join only in this section, and 
leave it to the reader to adapt the description to the other 
operations. 

Hash join (like merge join) can only be used if there is at 
least one equality clause in the join predicate. This is usu- 
ally not an issue because joins are typically used to re- 
assemble relationships, expressed with an equality predi- 
cate between a primaly key and a foreign key. Let’s call 
the set of columns in the equality predicate the “hash key,” 
because these are the columns that contribute to the hash 
function. Additional predicates are possible, and are 
evaluated as “residual predicate” separately from the 
comparison of hash values. Note that the hash key can be 
an expression, as long as it can be computed exclusively 
from column in a single row. In grouping operations, the 
columns of the “group by” list play the role of the hash key. 
In set operations such as intersection, as well as in dupli- 
cate removal, the hash key consists of all columns. 

There are several cases that are interesting to distinguish, 
based on input sizes and memory size (for grouping and 
duplicate removal operations, the output size also mat- 
ters). The simplest case is defined by a build input that is 
smaller than the memory allocated to the hash join opera- 
tion. In that case, the hash join first consumes (scans or 
computes) the entire build input and builds a hash table in 
memory (hence the name “build input”). Each record is 
inserted into a hash bucket depending on the hash value 
computed for the its hash key. Because in this case the 
entire build input is smaller than the available memory, all 
records can be inserted into the hash table without any 
problem. This “build phase” is followed by the “probe 
phase.” The entire probe input is consumed (scanned or 
computed) one record at a time, and for each probe rec- 
ord, the hash key’s hash value is computed, the corre- 
sponding hash bucket scanned, and matches produced. 

If the build input does not fit in memory, a hash join pro- 
ceeds in several steps. Each step has two phases, build 
phase and probe phase. In the initial step, the entire build 
and probe inputs are consumed and partitioned (using a 
hash function on the hash keys) into multiple files. The 
number of such files is called the “partitioning fan-out.” In 
other words, the two inputs are partitioned into “fan-out”- 
many pairs of files. Using the hash function on the hash 

keys guarantees that any two joining records must be in 
the same pair of files. Therefore, the problem of joining 
two large inputs has been reduced to multiple instances of 
the same problem, but of smaller size - a prototypical “di- 
vide-and-conquer” algorithm. In other words, we simply 
apply the same algorithm again to each pair of partition 
files -with a modified hash function, of course. 

In the worst case, multiple partitioning steps and multiple 
partitioning levels are required. Note that this is required 
only for very large inputs, i.e., inputs for which a standard 
external merge sort would require multiple merge levels. 
Also, if only some of the partitions are very large, addi- 
tional partitioning steps are used only for those. In order to 
make all partitioning steps as fast as possible, large, 
asynchronous I/O operations should be used, such that a 
single thread can keep multiple disk drives busy with use- 
ful work. 

The first case above is called “in-memory hash join;” the 
second case, “Grace hash join” (after a database machine 
research project [Fushimi 19861); the third case, “recursive 
hash join.” If the build input is somewhat larger but not a 
lot larger than the available memory, it is possible to com- 
bine elements of in-memory hash join and Grace hash join 
in a single step -this is called “hybrid hash join.” Basically, 
some hash buckets are build and probed in memory, 
whereas records belonging to all other hash buckets are 
spilled to partition files (also called overflow files). 

Often, an optimizers estimate of the count of incoming 
records is off by a factor or 2 or even 10, in either direc- 
tion. Thus, it is not always possible during optimization to 
determine reliably which of these cases will occur at run 
time. Our implementation (like most others) starts as in- 
memory hash join, but gradually transitions to hybrid, 
Grace, and recursive hash join if the build input is very 
large. This has been aptly called “dynamic destaging” in 
the Grace papers, but that name is not universally known 
or used. 

If a hash bucket has been spilled in the build phase of any 
one step, our implementation retains in memory a bit vec- 
tor filter. For each build record spilled to an overflow file, 
the hash value of the hash key is used to determine a bit 
to set “on.” In the probe phase of that step, the bit vector is 
checked to determine whether a probe record at hand can 
possibly have a match in the build input. If not, the probe 
record can either be discarded (e.g., in an inner join) or 
produce an output record (e.g., in a full outer join) - in 
either case, the probe record doesn’t go to the probe 
overflow file and therefore doesn’t incur I/O costs. This 
technique is called “bit vector filtering” and can be quite 
effective - we believe several hash join implementations 
employ this performance enhancement. 

If the optimizer anticipates wrongly which of the two inputs 
is smaller and therefore should have been the build input, 
or if bit vector filtering has reduced the probe overflow file 
for some partition so much that it is smaller than its corre- 
sponding build overflow file, the two roles (build & probe) 
can be reversed in the next step. In other words, before 
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processing a spilled partition, our hash join makes sure 
that it uses the smaller overflow file as build input. This 
technique is called “role reversal” - many hash join im- 
plementations use this technique, too. 

Hash join implementation 

Data structures 
Let us begin the description of our implementation with an 
overview of its core data structures. The hash table is a 
large array, say 1,000 or 50,000 slots, depending on the 
size of the available memory. Each slot anchors a linked 
list, which we call a hash bucket. Each element in a linked 
list contains a full four-byte hash value and a pointer to a 
record pinned in the buffer. Note that we use buffer space 
to retain records in memory; in other words, the hash table 
proper contains pointers to records, but not actual records. 
Multiple elements in a bucket are allocated together, in 
units of 64 bytes, to optimize the faulting behavior in CPU 
caches by reducing the number of next pointers in the 
linked lists. When counting or limiting the memory space 
to be used by a hash join, we count both the elements in 
the lists and the buffers containing the records. 

Each bucket is assigned to a partition’. There is an over- 
flow file for each partition and for each input. Thus, a bi- 
nary operation such as a join with a partitioning fan-out of 
10 will have 20 overflow files, although some of them, in 
particular probe overflow files of resident partitions, will be 
empty and will not have any disk or buffer space allocated 
for them. While a partition is resident, all its records from 
the build input are pinned in the buffer, accessible through 
their respective hash buckets. When a partition is spilled, 
its records are not accessible through the hash table, and 
hash table slots for the partition’s buckets are used not as 
pointers (anchors of linked lists) but as bit vector filters. 
Knowledge and control over which partitions are currently 
spilled is delegated to a separate object, in order to facili- 
tate “teams” of multiple hash operations for N-ary opera- 
tions, as described later. 

Each partition includes one overflow file for each of the 
operation’s inputs - for example, a unary operation such 
as duplicate removal has one input, a join has two inputs, 
and an N-ary operation has N inputs such that each parti- 
tion is represented as an N-tuple. There are three sets of 
overflow partitions. The first set contains partitions that are 
currently being built by the current partitioning step. In 
hybrid hash join, some of these partitions may be resident, 
while others are spilled. After each partitioning step, this 
set is emptied and its members discarded or distributed to 
the other two sets. The second set contains partitions that 
are ready for final processing - those partitions will be 
processed with a hybrid hash join step, without recursive 

’ While some other authors use the term bucket where we 
use partition, we have chosen to use bucket for in-memory 
division and partition for dividing inputs into multiple over- 
flow files on disk. 

overflow resolution. The third set of partitions contains 
those partitions that are too large for hybrid hashing, i.e., 
those partitions that require a partitioning step with full fan- 
out and recursion. In many practical situations, this set 
remains empty throughout execution of a hash operation. 

In addition to these data structures that capture and retain 
the state of a hash operation, there are also data struc- 
tures with control information, e.g., whether the present 
operation is an inner or an outer join, which is probably 
explained best while describing the algorithm itself. 

Basic algorithm 
The basic components of the hash join algorithm consists 
of three nested loops. The outer-most loop iterates over 
partitioning steps, the second loop iterates over the inputs, 
and the inner-most loop iterates over records. We try to 
explain these loops in outer-to-inner order. 

A partitioning step is a general term that can be either the 
initial step that consumes the hash operation’s inputs or 
an overflow resolution step that consumes overflow parti- 
tions created in previous steps, and it can take the form of 
a traditional in-memory hashing operation with no overflow 
records being written to disk, a hybrid hash join with some 
partitions resident in memory and some partitions spilled 
to overflow files, or a full partitioning step with no in- 
memory hash table. A partitioning step determines its par- 
titioning fan-out based on the available memory, creates 
an empty hash table, processes all inputs, drains and de- 
stroys the hash table, and disposes of all partitions. Parti- 
tions are either discarded directly without incurring any I/O 
(those that were resident at the end of the partitioning 
step, and are therefore completed) or moved to another 
set of overflow partitions, either the set ready for final 
processing or the set requiring full partitioning steps. This 
latter decision is considered in more detail later. 

The core of each partitioning step is a loop over the op- 
eration’s inputs. This loop permits using a single code 
base for both unary operations such as grouping and du- 
plicate removal as well as binary operations such as inner 
and outer joins. Moreover, the loop avoids multiple copies 
of a fair amount of code and, more importantly, of com- 
plexity and of code maintenance. An incidental but not 
unimportant benefit is that it is trivial to support binary op- 
erations such as joins with grouping or duplicate removal 
on the build input, which actually is useful quite frequently 
because duplicate records can safely and beneficially be 
removed for semi-joins and, interestingly, many group-by 
clauses are foreign keys to be used in a join following the 
grouping operation. Finally, as a matter of curiosity, the 
basic algorithm does not require that there be at most two 
inputs, although we currently do not exploit this capability. 
Candidate operations that could exploit this capability such 
as union distincf of more than two inputs are mapped to 
alternative plans using concatenation of intermediate re- 
sults, and N-ary operations are implemented using 
“teams” of multiple unary and binary operations. The role 
played by a specific input, i.e., build or probe input, is rep- 
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resented by a small set of control values, in particular for 
searching in the hash table, aggregation or insertion into 
the hash table, output to the next operator in the query 
plan, and for setting or testing the bit vector filter. 

For each input, the algorithm opens the record source, 
which is an operator in the initial partitioning step or an 
overflow file in a subsequent partitioning step, creates and 
opens a suitable number of output overflow files, loops 
over the input records, and closes record source and 
overflow files. Processing an input record begins with de- 
termining its hash value, hash bucket, and partition. If the 
partition is resident and search is required, the hash 
bucket is searched for matches with the current input rec- 
ord. If insertion into the hash table is required, possibly 
based on the outcome of the search, a record slot is allo- 
cated in the partition file and a new linked list element is 
inserted into the hash bucket. If output is required, also 
possibly depending on the search, an output record is 
produced and passed to the next operator in the query 
plan. If the input record’s partition is not resident but 
spilled, the bit vector filter may be set or tested, the record 
may be appended to the partition file, or an output record 
may be delivered (in outer joins, based on the bit vector 
filter). 

Hybrid hashing and dynamic destaging 
At the beginning of a step, all buffers assigned to the hash 
operation are considered available, and we ensure that 
the number of buffers is always equal to or larger than the 
number of partitions. While a resident partition may pin 
records on and thus occupy an arbitrary number of buffer 
pages, a spilled partition uses only one output buffer at a 
time; write-behind buffers are allocated for the entire parti- 
tioning step as a whole and are not counted here. When a 
resident partition requires a new page, one of the available 
buffers is assigned to the partition. If no buffer is available, 
the largest resident partition is spilled. Note that the larg- 
est resident partition occupies at least two pages. When 
the largest resident partition is spilled, either some page is 
freed, or the partition requiring an additional page is 
spilled, in which case its memory requirement drops to a 
single page. The second justification for spilling the largest 
resident partition is that, in the absence of any knowledge 
about skew in the probe input but presuming that the 
probe input is larger than the build input, spilling the larg- 
est build partition results in the best ratio of saved I/O to 
required memory. 

Setting the partitioning fan-out as a function of the buffer 
size is not simple, because input size estimation may be 
inaccurate even by orders of magnitude for very complex 
queries. First, some buffers are taken off the top to be 
used for asynchronous read-ahead and write-behind. In 
general, it doesn’t pay to have more buffers for asynchro- 
nous I/O than disks, because each disk can perform only 
one I/O action at a time. The remaining buffers can be 
used either to increase the fan-out or to increase the size 
of the in-memory hash table. If the build input is particu- 
larly large and recursive partitioning will be required, the 

fan-out should be as large as possible. On the other hand, 
if the build input is only a small multiple of the memory 
size, a large fan-out requires more output buffers than 
necessary and therefore over-restricts the size of the hash 
table for the resident partitions. Our pragmatic compro- 
mise is to set that fan-out for the initial partitioning step 
such that about 50-80% of available buffer space might be 
used, depending on our input size estimate as well as our 
confidence in that estimate. Partition tuning at the end of 
the build phase can alleviate the effects of a fan-out cho- 
sen too large and a hash table chosen too small. 

More important than the exact fan-out is the size of each 
I/O unit. In order to achieve a sustained bandwidth of 
about 50% of the disks’ raw transfer speed with random 
I/O as needed in partitioning, the data volume for each 
disk access has to fairly large; pragmatically, we chose 64 
KB as our unit of I/O using scatter-gather I/O of in-memory 
pages of 8 KB, our system page size. In general, the goal 
is to maximize the product of sustained bandwidth and the 
logarithm of the fan-out, because we believe that a merge 
step in external merge sort and partitioning in hash-based 
algorithms are very closely related, and because this goal 
maximizes the number of comparisons per unit time in a 
merge step. 

Partition tuning 
For binary operations such as join (as well as N-ary op- 
erations), partition tuning at the end of the build phase 
may save substantial I/O for probe overflow files. If some 
of the spilled build overflow files are smaller than the 
memory allocated for the hash operation, multlple spilled 
partitions may be processed concurrently, and it is suffi- 
cient to create a single probe overflow file for an entire 
group of build overflow files. Thus, output buffer space 
may be saved during the probe phase, and the hash table 
size may be increased. In our implementation, we employ 
a simple first-fit heuristic bin packing algorithm on the 
spilled build overflow files, and restore the build overflow 
file of as many partitions as possible into memory, restor- 
ing the smallest build overflow file first. 

While this technique is quite effective, in particular if the 
build input size is a small multiple of the available memory 
size, recursive overflow resolution, as required for very 
large inputs, can use an even more effective method, 
based on histograms on hash value distributions. 

Recursive over-f/o w resolution, three 
phases, and iterator methods 
As mentioned above, there is a loop over partitioning 
steps, and each partitioning step reads from the input op- 
erators (first partitioning step) or from an overflow partition 
(all subsequent steps) and writes zero or more overflow 
partitions to disk. The important point is that the recursion 
in multi-level partitioning, which is a direct dual to multi- 
level merging in external sorting, has been rewritten into a 
loop using well-known recursion-to-loop tranSfOtmati0t-i 
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techniques using a stack maintained explicitly (see, e.g., 
[Sedgewick 19841). Unfortunately, this is not quite suffi- 
cient to integrate recursive partitioning into a single-thread 
query execution engine, because the hash operation still 
has to fit into the scanning or iterator paradigm, i.e., re- 
spond to open, next, and close methods’. To reduce the 
complexity in the algorithm, we retained the three explicit 
loops and adapted the standard implementation of co- 
routines. We map the open, next, and close methods to a 
single method, retain all state not on the general call stack 
but in a special state object that retains its contents be- 
tween invocations of the iterator methods, including the 
program counter, and jump to the program counter each 
time the co-routine is resumed. Instead of an explicit pro- 
gram counter, we combine a variable of an enumerated 
data type with a switch statement using a go to statement 
in each case, all encapsulated in suitable macros. This 
technique can be used both on the input and output side 
of iterators, thus creating data- or demand-driven iterators, 
even within a single thread, which can be very useful to 
“push” the result of a common sub-plan to multiple con- 
sumer iterators. 

Overflow files themselves might be very large. In that 
case, all overflow partitions are divided into two sets, de- 
pending on whether processing an overflow partition will 
require that all sub-partitions be spilled because they, too, 
are larger than memory, or will result in hybrid hashing 
with some sub-partitions remaining resident in memory. 
This point is sometimes referred to as “memory squared,” 
despite the lack of attention to the difference between fan- 
out and memory size due to large units of I/O, buffers for 
asynchronous I/O, etc. If there are partitions of such large 
size, it is important to employ the largest possible fan-out 
while partitioning those. During the initial partitioning step, 
the hash operation competes for memory with its input 
iterators and plans; once the first output item has been 
produced, the hash operation competes with its consumer 
iterator and plan. However, if the inputs are truly very 
large, it is useful to ensure that some partitioning steps 
can use the entire memory allocated to the query plan, 
without competing with any other iterators in the same 
plan. In our implementation, if none of the previous parti- 
tioning steps has produced output, i.e., the present hash 
operation is still in its open method, any overflow partition 
larger than the limit for hybrid hashing is assigned to a 
special set of overflow partitions. When choosing the input 
partition for the next partitioning step, partitions in this set 
are preferred over all other waiting partitions. Moreover, 
those partitioning steps set the fan-out to use 100% of the 
available buffer space as output buffers (excluding buffers 
used for read-ahead and write-behind), and spill all sub- 
partitions right from the start, without waiting for dynamic 
destaging. It may be interesting to note that partitioning 
steps that do not compete with either input nor output 
plans for memory and may therefore use all memory 

2 We extended this triple with some additional ones, e.g., 
rewind and rebind (with new correlation values or pa- 
rameters). The hash operation simply restarts for any of 
these. 

available to the query to maximize their partitioning fan-out 
are a direct dual to the intermediate merge steps in exter- 
nal sorting for very large inputs. 

Role reversal 
Given that selectivity estimation can be rather inaccurate, 
and that hash joins derive much of their advantage over 
merge joins from their asymmetry, i.e., from using the 
smaller of the two inputs as build input, a natural idea is to 
defer the assignment of build and probe roles to the two 
inputs from compile-time to run-time. Moreover, even if the 
two inputs are equal in size, bit vector filtering during the 
initial partitioning step may result, for some or all spilled 
partitions, in probe overflow files smaller than the corre- 
sponding build overflow files. Finally, hash value skew 
may also result in this situation for some but not all spilled 
partitions. Therefore, when starting to process a spilled 
partition, our implementation always considers role rever- 
sal. Note that in recursive partitioning, in particular if bit 
vector filtering is effective, role reversal back and forth 
may be useful in multiple successive recursion levels. 

Bail-out 
If, after several recursion levels, none of the techniques 
above results in build overflow files small enough to permit 
in-memory or at least hybrid hashing, both input files 
probably contain so many duplicate keys that no partition- 
ing method can succeed. In this case, our implementation 
resorts to sort- or loops-based join and grouping algo- 
rithms. The required alternative execution plans are cre- 
ated at compile-time using deterministic algorithms, with- 
out optimizating plan search. Note that these algorithms 
are applied to individual overflow partitions, not the entire 
input. Note also that this case is very rare, and therefore it 
is not performance-critical - the primary concern is that 
the problem be resolved correctly and in all cases, with the 
reasonable development and testing effort. 

There are very few alternative bail-out strategies. Other 
than sort- and loops-based strategies, one can resort to 
additional memory allocations, data compression, or drop- 
ping columns from overflow files. Additional memory 
grants can disrupt the entire server, as well as lead to 
deadlock (waiting for a memory grant while holding a lock 
on data). Data compression, in particular data compres- 
sion on the fly, is very complex and would have introduced 
substantially larger implementation and testing effort. 
Dropping columns from partition files (replacing them with 
pointers into permanent files, and re-fetching the dropped 
column values later) can be very expensive due to the 
cost of fetching. Most importantly, however, all three alter- 
native strategies only alleviate but do not completely re- 
solve the problem. If the set of duplicates is truly very 
large, these three alternative strategies might well fail. Our 
goal, however, was to find a robust and complete solution 
for this rare case. 
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Histogram-guided partitioning 
One of the reasons why recursive partitioning might re- 
quire multiple levels is skew in the hash value distribution, 
both distribution skew and duplicate skew. In order to 
avoid the worst cases, we employ histogram-guided re- 
cursive partitioning, i.e., while writing a set of partitions, we 
gather distribution statistics for the next recursion level. In 
fact, if the partitioning fan-out is F, we gather statistics for 
as many as 4F future sub-partitions for each output parti- 
tion currently being created. Before starting to read such a 
partition, a first-fit heuristic bin packing algorithm is used to 
create either F real partitions of 4 sub-partitions on aver- 
age, or fewer partitions with 
smaller than memory, plus 
one partition fitting into the 
memory not required for out- 
put buffers. The histograms 
can also be used to plan for 
role reversal as well as to 
decide earlier, before rather 
than after wasting an entire 
partitioning step, when to 
switch to a sort- or loops- 
based algorithm because 
partitioning cannot divide an 
excessively large set of du- 
plicates into sets smaller 
than memory. 

build overflow files barely 
optimizers ever since. Given ~_________________________ 

j Team manager i - - Hash inner join that teams apply in the same 
.---,- fmps ____--_____ :, cases as interesting order- 

I ‘\ ings and basically have the 
I 

Hash left outer join Hash full outer join 
same effect, and that most 

I 
I 

query optimizers attempt to 

4 
exploit interesting orderings, 
among the query processors 

Hash grouping employing hash-based joins 

1 

H Data flow and grouping (in commercial 
- - + Control flow as well as research database 

systems), ours is the only 
Figure 1 - Data and control flow between operators query processor to imple- 
and team manager ment and exploit teams. 

The fundamental idea of N-ary hashing or “hash teams” 
has been vaguely described in the past [Graefe 1993, 

nized as important to exploit in query optimization [Setin- 
ger 19791. Using the same example of joining three tables, 
if two merge joins use the same join key, only three sort 
operations for the three original tables are required, 
whereas four sort operations are required if the two joins 
use different keys and therefore require different sort or- 
ders. 

The essential point is that intermediate sort operations can 
be saved if neighboring operations in a query execution 
plan require and produce ordering on the same sequence 
of columns. This idea is well known ever since the classic 
query optimization paper [Selinger 19791, and has been 
considered an important technique in all database query 

Teams for N-sty hash joins 
The most innovative techniques in our hash join imple- 
mentation is the notion of “teams,” i.e., multiple hash op- 
erations cooperating to process their inputs, often more 
than two inputs. These operations can be any of the im- 
plemented set matching operations, i.e., joins, grouping 
operations, etc., in any combination, even bushy plan 
segments. Teams are used if multiple neighboring opera- 
tions in a query plan hash on the same column(s), and 
ensure that intermediate Ooerators’ tasks 

Graefe 19941. The key to implementing hash teams is to 
separate control over spilling (overflow) and partitioning 
policy decisions from the individual hash operation and to 
assign it to a team manager, which performs this control 
function for all member operations within the team. As a 
result, all team members (which, by definition of a team, 
hash on the same set of columns) spill, restore, and proc- 
ess the same partitions at the same time, even when re- 
cursive partitioning is required. The division of tasks be- 
tween the team manager and the team members, i.e., 
Team manaaer’s tasks operators such as hash 

inner join, is given Fig- 
ures 1 and 2. The im- 
portant effect is that, 
among two members of a 
team that form a pro- 
ducer-consumer relation- 
ship, the consumer can 
be sure that the producer 
won’t produce any data 
items for a partition once 
that partition has been 
spilled. Thus, a team 
avoids partitioning inter- 
mediate results between 
team members, and 
saves all (or actually al- 

most all) I/O to and from overflow files for intermediate 
results between members of the same team. Moreover, 
the consumer may release all memory, including all output 

results between members ’ 
of the same hash team do Consume input records Map hash values to buckets 
not have to be partitioned 
by the consumer operator. 

Produce output records Map buckets to partitions 

For example, if three tables Manage hash table Grant memory requests 
are to be joined on a single 
common column, a tradi- Manage overflow files Request to spill & to restore 

tional pair of binary hash from entire team 

joins will partition four in- 
puts, namely the three 

Request memory grants 

original tables as well as Spill partitions on request 
the intermediate result, 
whereas a team will incur 

Restore partitions on request 

overflow I/O only on the 
three original inputs. Figure 2 -Tasks of operators and team manager 

In effect, teams are a dual to interesting orderings in sort- 
based query processing, which permit omitting an inter- 
mediate sort between joins or grouping operations on the 
same keys. Interesting orderings have been well recog- 
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buffers, for a spilled partition. Thus, for a spilled partition, 
only one output buffer at a time is required within the en- 
tire team, exactly as for the two inputs in a binary hash 
join. 

It is possible that a partition is spilled after some records 
have been forwarded from a producer to a consumer 
within the same team. Thus, the consumer must allocate 
an overflow files for all of its inputs, even those that are 
members of the same team. When a partition spills during 
the consumer’s build phase, the records already in the 
consumer’s hash table are spilled and the build overflow 
file for that partition may be closed without retaining an 
output buffer. When the spilled partition is processed in a 
later partitioning step, both the overflow file and the input 
iterator’s further output for that partition must be con- 
sumed. Thus, the loop to consume all records in an input 
partition has been augmented to read first any overflow file 
and then, if the input is a member of the same team, to 
consume any remaining input for the current partition. 

Unfortunately, teams can inhibit other performance en- 
hancements in some special cases. For example, consider 
the case that the producer in a team is a full outer join (but 
not inner join or semi-join). Since bit vector filtering might 
produce output for spilled partitions, bit vector filtering 
must be switched off in the producer. Of course, bit vector 
filtering can be used in the root operator of the team, even 
if that operator is an outer join. 

What’s missing 
Among the techniques described, three are designed and 
prototyped but not implemented yet in the product, namely 
partition tuning, histogram-guided recursion, and caching 
results of expensive functions using hybrid caching [Hel- 
lerstein 19961. Similar to the. last feature, we implemented 
duplicate removal with fast return of the first result rows, 
which uses the same control flow, and are missing only a 
few mechanisms for record formats and function invoca- 
tion. Beyond these techniques, we hope to include several 
further improvements in a later release. The most promi- 
nent of those is dynamic memory adjustment during the 
run-time of a join, including restoring spilled partitions dy- 
namically in order to exploit memory made available in the 
middle of a partitioning step. 

Memory management 

Goals 
Previous releases have relied very heavily on loops- and 
index-based methods for set operations such as joins and 
grouping. For any one query, at most one sort operation 
could be active at a time. Thus, division of memory be- 
tween queries (as well as other types of requests, such as 
index creation) as well as within queries was a lot simpler 
than the current version, which uses query plans with mul- 
tiple concurrent sorts (e.g., two sorts feeding into a merge 

join that in turn feeds a third sort operation), multiple con- 
current hash operations (within and between teams), as 
well as mixed plan with sort and hash operations active 
concurrently, feeding data to each other. 

For simplicity and robustness, we decided to forgo poten- 
tial benefits of dynamic memory adjustment during a 
query’s (or a requests) run-time and instead run each 
query with an amount of memory set at start-up time. 
There are three remaining problems that need to be 
solved. First, each query needs to be admitted for proc- 
essing. Second, an amount of memory must be set for the 
query. Third, memory must be managed among the op- 
erators within a query plan. 

In this paper, we do not detail our final solution for the first 
and second problems. A simple and robust approach is to 
set aside a fraction of the buffer pool for query memory, 
say 50%, to assign each query with at least one memory- 
intensive operation a fixed amount of memory, say 1 MB 
or 4 MB, and to admit additional queries until the entire 
query memory is assigned to running queries. A slightly 
more sophisticated policy also considers CPU load. 

The third problem is still quite hard. Our goal was to create 
a solution that permits fairly efficient execution of complex 
plan trees yet is complete, robust, and simple. These latter 
three issues are imperative in a product environment, 
even if the policy incurs at times some minor performance 
loss. One criterion for robustness is that the policy de- 
grades gracefully if the optimizer’s selectivity estimates 
are wrong, an issue that has often been ignored in the 
literature on resource allocation. 

Rejected solutions 
We considered a variety of alternative solutions for each of 
the problems, but decided to use policies that are simple 
and robust rather than optimal but complex, A possible 
policy for dividing memory between the general I/O buffer 
and query memory is based on furn-over rates and was 
inspired by the “five-minute rule” [Gray 19871. Both the l/O 
buffer and the memory-intensive operators employ main 
memory to hold disk pages and therefore reduce the 
amount of I/O. The basic idea of buffer replacement poli- 
cies is to retain those pages in memory that are used fre- 
quently. The basic idea of the allocation policy considered 
here is to ensure that there is a uniform cutoff frequency 
for all pages deemed worthy to be retained in memory. For 
pages in the general I/O buffer, this frequency is fairly 
easy to determine. For pages in the system-wide query 
memory, the turn-over frequency is based on the merge 
behavior of external sorting or the partitioning behavior of 
hash-based algorithms with overflow, and on the total I/O 
bandwidth of devices used for run files in sorting and 
overflow files in hash algorithms. We presume that all 
temporary files are striped to balance the I/O load among 
these devices, which is generally a simply and effective 
policy. Note that concurrent sort or hash operations multi- 
plex both the query memory and these I/O devices with 
compensating effect (for the consideration here), so we 



ignore concurrent operations. Given that both merge and 
hash algorithms need to read and write temporary files, 
data pass through the query memory at half the bandwidth 
of these I/O devices. The quotient of half this I/O band- 
width and the size of the query memory is the turn-over 
frequency in the query memory. The proposed policy is to 
adjust the division of memory between general I/O buffer 
and query memory such that the turn-over rate or fre- 
quency in the general I/O buffer and in the query memory 
are equal. 

A possible policy for dividing memory between competing 
queries is to compute upper and lower memory limits for 
each query with at least one memory-intensive operator. A 
useful upper limit is the maximal useful memory, i.e., the 
amount of memory with which, based on the anticipated 
sizes of intermediate results, the entire query plan can be 
executed in memory, without any hash overflow files or 
sort run files being written to disk. Moreover, the upper 
limit should be restricted not to exceed the server’s query 
memory. The lower limit must be at least large enough to 
permit reasonably effective merging in external sort as 
well as partitioning in hash operations, which may trans- 
late to a fan-in and fan-out of at least 8 or 12 in intermedi- 
ate phases of sorting and hash matching. If there is mem- 
ory contention, assign all concurrent queries the same 
fraction of their maximal useful memory, but no less than 
their minimum memory. 

Policy 
Our solution for managing memory within a query plan first 
divides a complex plan in phases based on the input, in- 
termediate, and output phases of all stop-and-go opera- 
tors in the plan and then, still at compile-time and there- 
fore based on expected cardinalities and average record 
lengths, assigns to each operator phase a fraction of the 
memory available to the query as a whole. Intermediate 
phases are always assigned 100% of the available mem- 
ory. When multiple operators make up a plan phase, 
memory is assigned to each operator proportionally to the 
operator’s anticipated input data volume relative to the 
total input data volume of all memory-intensive operators 
participating in the plan phase. For hash joins, it is pre- 
sumed that hybrid hashing is used, i.e., the hash join’s 
second phase competes with both the probe input and the 
output. The memory assignment for a hash join is the 
minimum assignment among its input phases. A team of 
hash iterators is treated as a single N-ary hash join with 
many phases. 

At run-time, each operator phase is permitted to allocate 
up to its fraction of the available memory. If an iterator 
holds memory, the iterator and its memory are said to be 
waiting if the iterator has completed its open method and 
is ready for the first invocation of its next method. Simi- 
larly, an iterator and its memory are waiting if the iterator 
has invoked an open method on one of its inputs which 
has not returned yet. For example, if a merge join is sur- 
rounded by three sort iterators, both the sort iterator at the 
root of the plan segment and the sort iterator for the first 

input are waiting while the merge join opens its second 
input. As a second example, a hash join and its memory 
are waiting while the probe input is being opened. 

While an operator is waiting, its memory is registered with 
the query memory manager. If some other operator in the 
query needs to allocate memory, the query memory man- 
ager requests that one of the registered waiting operator 
release some or all of its memory. The operator chosen is 
the operator registered (and waiting) the longest, because 
that operator is probably the furthest away within the query 
plan from the plan phase currently active. In other words, 
memory-intensive operators that may benefit from holding 
data in memory between their open method and the first 
invocation of their next method must be able to release 
some or all of this memory upon request. For example, if 
the first input into a merge join is a sort with a data volume 
small enough to fit in memory (and therefore kept in mem- 
ory between the sort iterator’s open and next methods), 
and if the merge join’s second input is a sort iterator that 
needs all available memory for an intermediate merge, the 
query memory manager will request that the first sort spill 
its memory contents to disk, in a sense turning the in- 
memory sort into an external sort with a single run file. The 
important issue is that this is done on demand only, be- 
cause the optimizer’s size estimates for the second sort’s 
input may have been wrong in either direction. Similarly, a 
hash join in a complex plan, e.g., a bushy plan, must be 
prepared to spill and later restore its hash table if the 
probe input is itself a complex plan that requires a lot of 
memory. Fortunately, restoring some or even all partitions 
after the probe input has been opened, but before it has 
been consumed, is one of the operations inherent in parti- 
tion tuning, and thus needs to be implemented anyway. 

Performance 
For our performance study, we chose the TPC-D verifica- 
tion database with 100 MB of raw data (scale factor 0.1) 
and a desktop PC running Windows NT 4.0. In order to 
force memory contention, each query is limited to 1 MB of 
memory for sort and hash operations. The buffer is flushed 
before each query plan is started. Because our product’s 
latest release that includes all the described techniques is 
still under development, we cannot report absolute “wall 
clock” times. Given the incessant improvements in proc- 
essing and I/O hardware, relative times serve our purpose 
just as well. 

The Line/tern table contains about 600,000 rows of about 
120 bytes (about 72 MB), and the Orders table holds 
150,000 rows of about 100 bytes (about 15 MB). Our 
physical database design is fairly simple but not untypical: 
a clustered index on each table’s primary key, a non- 
clustered index on each foreign key, and non-clustered 
indexes on some further columns, e.g., Or- 
ders.O-OrderPriority and Line/tern. CShipDate. Note that 
if a clustered index exists for a table, our storage engine 
requires that non-clustered indexes for that table contain 
the search key of the clustered index, similar to Tandem’s 
database products. 
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Rather than reporting on the performance of the original 
TPC-D query set, which tests the query optimizer as much 
as the execution algorithms, we chose two simple and 
typical queries to show interesting alternative plans. Typi- 
cally, our optimizer selects the plan with the lowest antici- 
pated cost, but specific plans can also be forced using 

able here even for tables with records as short as 100 
bytes. For larger records in the base table, the benefit 
increases. 

Join query 
hints. The second example query joins two large tables and 

computes a grouped summary: Select O-OrderKey, 

Sing/e table query 
O-OrderDate, Count (*) From Orders, Line/tern Where 
O-OrderKey = L-OrderKey And L-ShipDate 2 ‘1994/1/l’ 

The first example query retrieves and counts rows from 
the Orders table: Select O-OrderDate, O-OrderPriority, 
Count (‘) From Orders Where O-OrderDate between 
‘1994/1/l’ And ‘1994/3/31’ Group l3y O-OrderDate, 
O-Orderpriority. This query 
summarizes about 3.8% of the Plan 

Group Sy O-OrderKey, O-OrderDate. The date restriction 
is satisfied by about 72.5% of the Line/tern rows, or 
435,000 line items. Note that the indexes on Or- 
ders.4OrderDate and Lineltem.L-ShipDate are covering 

CPU Elapsed 
indexes for this query. There- 
fore, the traditional execution 

Orders table or 5,700 orders. time time plan is to scan these two in- 
The optimizer cannot find a _- ___- - ..___ - __.. -___-.-- .____,. -- .______.._......_..__ -_ _... - _.___ 

Scan the base table 81.25 100.00 
dexes, to join the results on Or- 

single covering index for this derKey, and then to group the 
query; therefore, it considers Scan index O-OrderDate 38.25 789.85 join result on O-OrderKey, 
three plans for retrieving data and fetch from base table O-OrderDate. In many database 
from the Orders table. These 

Join indexes 0 OrderDate 
systems, the optimizer will 

plans scan the base file, scan 70.35 73.45 choose this plan. However, our 
a non-clustered index on and O-OrderPriority optimizer realizes that 
O-OrderDate with subsequent O-OrderDate is functionally de- 
record fetch, or join two in- Table 1 -Obtaining records from one table. pendent on O-OrderKey and 
dexes as described in the in- removes the dependent column 
troduction. Given that the two indexes are not sorted on from the grouping list. Thus, the join and the grouping op- 
row identifiers, hash join is used in the third plan. Note that erations hash on the same set of columns (the singleton 
the index on O-OrderPriority is scanned in its entirety, all set O-OrderKey), and the two hash operations can be 
150,000 index entries, whereas only 3.8% of the index on executed as a team. Moreover, the grouping operation can 
O-OrderDate is scanned. The grouping operation is per- be pushed down through the join operation. Finally, since 
formed by hash grouping in all three plans. Neither the our hash join operation supports grouping or duplicate 
hash join nor the hash grouping spill overflow files to disk. removal on the build input, the optimizer mav choose the 

The run times of these 
three plans are shown in 
Table 1, scaled to compare 
with the elapsed time of a 
base file scan, which is the 
optimal available plan for 
this query in most data- 
base systems. While 
fetching guided by a single 
index consumes very little 
CPU time, it results in an 
excessive elapsed time 
due to the large number of 
random disk reads. The 
fastest plan for this query is 
to join the two indexes on 
their shared row identifier. 
This plan incurs both less 
CPU time and less elapsed 
time than scanning the 

Last opera- Hash Build or CPU Elapsed 
tion team outer input time time 

Grouping No Orders 30.47 100.00 

Grouping No Line items 33.38 101.86 

Grouping Yes Orders 19.14 59.62 

Grouping Yes Line items 19.73 59.19 

Join No Orders 17.74 63.88 

Join No Line items 17.68 62.29 

Join Yes Orders 15.62 51.46 

Join Yes Line items 13.59 46.44 

Integrated N/A Line items 12.46 48.16 

opposite-to-normal roles of 
Orders and Line/tern in the 
hash join. Doing so permits 
grouping of Line/tern records 
and joining with Orders rec- 
ords using a single binary 
operator with a single hash 
table per partitioning step. 

Table 2 - Join and grouping from two tables. 

Table 2 shows the pet-form- 
ante of nine plans. Times 
are relative to the elapsed 
time of the traditional plan, 
which is indicated in the first 
row. All nine plans scanning 
the two covering indexes and 
using hash join and hash 
grouping; therefore, per- 
formance differences are 
due to the join and grouping 
strategies, not due to differ- 

base file. For this very simple query representing a very ent scans or other plan differences. Comparing the first 
well known and understood type of query, this plan two rows, it is interesting to note that the choice of build 
achieves savings of 25% over the best plan available in inputs for the join hardly affects the performance, in spite 
most database systems. Note that joining two indexes, in of the fact that the Line/tern table is significantly larger 
effect a form of vertical partitioning, has been shown vi- than the Orders table, even after the selection on 
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L-ShipDate. The reason is role reversal, which ensures 
that the smaller overflow file is used as build input during 
each overflow resolution step. Moreover, bit vector filtering 
reduces the fraction of Orders rows that are written to 
overflow files, in effect transferring the reduction of the 
Line/tern table to the Orders table before their join is even 
complete. 

In a comparison of the first two rows with the subsequent 
two rows, it becomes obvious that organizing multiple 
hash operations into a team can substantially improve 
performance. A team operation saves all or most overflow 
I/O for intermediate results within the team. In this query, 
the join result is about as large as the two join inputs to- 
gether. Thus, saving the I/O for the join result substantially 
improves performance. For the example query, teams 
reduce both CPU time and elapsed time by about 40%. 

The next four rows reflect the optimizer’s ability to invert 
the sequence of join and grouping operations. Perform- 
ance is consistently better than plans using the traditional 
processing sequence. Note that designating the Line/tern 
table as build input is now advantageous, because the 
result of the grouping operation is smaller than the Orders 
table. Again, hash teams are very effective. Their relative 
effect of teams is reduced to about 20%, because overflow 
I/O is saved for only one of the two join inputs. However, 
20% is still substantial, given that this is a fairly simple and 
well-studied type of query. 

The final row indicates the performance of integrating 
grouping on the build input with the join. While CPU con- 
sumption is lower than in the most similar plan (the row 
above), elapsed time has increased. We suspect that the 
reason is that role reversal is inhibited in the integrated 
algorithm, and that bit vector filtering and role reversal 
combine in the team plan to reduce the total I/O volume 
and elapsed time. The important result of this experiment 
is that for this very typical query, hash teams or the inte- 
grated operation are required to improve the elapsed time 
to less than half of the elapsed time of the traditional plan. 

Summary and conclusions 
In this paper, we have described how we have combined 
many of the hashing techniques proposed in the research 
literature into a single operator. Based on the reported 
experiments using the TPC-D database with 100 MB of 
raw data, as well as many other experiments not reported 
here, we believe that the performance of our algorithms is 
very competitive. 

The hash operation described in this paper is novel in two 
aspects. First, it is the first implementation of N-ary hash- 
ing or teams of hash operations. Second, it cleanly inte- 
grates into a single, reasonably clean and extensible im- 
plementation a wide array of advanced hashing tech- 
niques proposed and prototyped individually by various 
research groups. The substantial performance gains for 
two very simple, very well studied, and very typical “work 
horse” queries clearly demonstrate that this integration as 

well as teams are truly worthwhile, yet that no single one 
of the techniques is a panacea for high performance 
hashing. In other words, for optimal performance, teams 
must be integrated with all the other hashing techniques. 

The memory management technique described in this 
paper is most notable for being simple yet very effective. It 
adapts to all types of query plans, including complex 
bushy plans with multiple sort and hash operations. It ex- 
ploits the execution model based on iterator objects with 
open, next, and close methods, divides complex execution 
plans into plan phases based on operator phases in stop- 
and-go operators, keeps track of active and waiting opera- 
tions, and mimics LRU among all active and waiting op- 
erators. It is simple, probably not always optimal, but very 
robust and on the whole very effective. 
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