
Hash joins and hash teams in Microsoft SQL Server
Goetz Graefe, Ross Bunker, Shaun Cooper

Abstract
The query execution engine in Microsoft SQL Server em-
ploys hash-based algorithms for inner and outer joins,
semi-joins, set operations (such as intersection), grouping,
and duplicate removal. The implementation combines
many techniques proposed individually in the research
literature but never combined in a single implementation,
neither in a product nor in a research prototype. One of
the paper’s contributions is a design that cleanly integrates
most existing techniques. One technique, however, which
we call hash teams and which has previously been de-
scribed only in vague terms, has not been implemented in
prior research or product work. It realizes in hash-based
query processing many of the benefits of interesting or-
derings in sort-based query processing. Moreover, we
describe how memory is managed in complex and bushy
query evaluation plans with multiple sort and hash opera-
tions. Finally, we report on the effectiveness of hashing
using two very typical database queries, including the
performance effects of hash teams.

Introduction
While top-end scalability can be achieved only by data-
base systems that exploit parallel queries and utilities, the
vast majority of all database servers have usually many
fewer available CPUs than concurrently active requests.
For example, one to eight CPUs may serve tens to thou-
sands of concurrent requests. Thus, while intra-query CPU
parallelism is important for. high-end installations, utility
operations, and benchmarks, it is not a panacea for cus-
tomer applications. Instead, we first have to ensure that
sequential query plans can execute as efficiently as possi-
ble, and then combine efficient sequential operations into
parallel plans when warranted.

Joins and groupings are frequently used operations in
relational query processing. Nonetheless, previous re-
leases of the product used only naTve and index nested
loops algorithms for joins and an “index nested loops
grouping” strategy. While these algorithms are suitable for
queries that basically “navigate from record to record”

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the VLDB copyright
notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 24th VLDB Conference New York,
USA, 1998.

through the database, they can be a severe limitation in
data warehouse environments. Moreover, if fast set
matching algorithms are available, some query plans may
become attractive that did not make sense in the past.
Examples include index intersection, union, and differ-
ence, as well as joining two indexes of a single table on a
common unique column, e.g., the record identifier of the
base file, in order to extend the concept of a “covering
index” (also called “index-only retrieval”) from a single
index to multiple indexes. Consider, for example, the sim-
ple query Select A, B From T. It can be executed by scan-
ning the base file for table T or by joining two single-
column indexes on columns A and B. If the two indexes
can be scanned faster than the base file, and if the join
can be performed very efficiently, the latter plan may be
the most efficient one.

For query plans combining multiple indexes as well as for
more traditional join plans, we spent considerable effort on
implementing the fastest join algorithms possible. In addi-
tion to nested iteration, index nested loops, and merge
join, we implemented a hash join that is a unique combi-
nation of techniques and ideas proposed in the research
literature. A description of this hash join implementation is
the main subject of this paper.

The implemented techniques include hybrid hashing, dy-
namic destaging, large units of I/O, partition tuning (also
called bucket tuning), recursive overflow resolution with
three operator phases (input, intermediate, and output
phases similar to input, intermediate, and output phases in
sorting), dynamic role reversal between build and probe
inputs, histogram-guided skew resolution, “bail-out” using
alternative algorithms if inputs contain excessive numbers
of duplicates, multi-disk concurrent read-ahead and write-
behind, cache line alignment of in-memory data structures,
bit vector filtering, and integration into an extensible exe-
cution paradigm based on iterator objects. All these tech-
niques are either fully implemented or designed and pro-
totyped. In addition, this is the first implementation of N-
ary “teams” of hash joins, which realize in hash-based
query processing most of the benefits of interesting or-
derings in sort-based query processing.

If multiple users execute complex query plans with multi-
ple memory-intensive operations such as sorting and hash
join, memory becomes a precious commodity, even at
today’s memory prices, and memory allocation requests
on behalf of competing users and of multiple operators
within a single query plan must be balanced and coordi-
nated. To the best of our knowledge, there is no known
general solution for this problem that considers random
arrival and completion of queries, bushy plans shapes,
execution phases of complex query plans with multiple
“stop and go” operators such as sort and hash join, and,
maybe the most difficult yet most frequently ignored issue,
the notorious inaccuracy in estimating the sizes of inter-
mediate results. Given that we had to implement some

86

solution to this problem, even if we cannot claim or even
prove optimality, we designed what we believe is a prag-
matic and robust solution, which is also described in this
paper.

Related work
Since we are working to ship a robust and maintainable
product, we could not afford to undertake or use very
much unproven research. Our contribution has been to
integrate and to innovate in integration rather than to inno-
vate in specific techniques. Many relevant papers have
been summarized and cited in an earlier survey [Graefe
19931. While hybrid hash join and parallel hash join are
well-known ideas today [Dewitt 1984, Dewitt 19851, our
appreciation for the insights by Bratbergsengen, Sacco,
and Kitsuregawa and their collaborators [Bratbergsengen
1984, Sacco 1986, Kitsuregawa 19891 on hash-based
query evaluation methods has grown since the writing of
that survey, e.g., partition tuning [Kitsuregawa 19891.
Some of the techniques combined in our implementation,
in particular histogram-guided skew management and N-
ary hash join, have been vaguely described in an earlier
paper, which also provides a rationale for preferring hash
join over merge join in very many cases yet for imple-
menting both join algorithms in a product [Graefe 19941.

Among competing products, Tandem’s hash join is one of
the few commercial implementations described in some
detail in the open literature [Zeller 19901. Oracle uses hy-
brid hashing for joins, including dynamic role reversal, but
not for grouping and duplicate removal. lnformix also uses
hybrid hashing, but we believe that this implementation is
not as sophisticated as the hashing algorithm described
here. Red Brick employs hybrid hashing with multi-level
recursion, role reversal, and bit vector filtering [Red Brick
19961. NCR’s Teradata product uses hashing extensively,
including partitioning and merge join on hash values as
well as hash grouping. IBM’s DBZ/400 employs hashing
for grouping and for joins, including bit vector filtering, and
relies on the AS40O’s single-level store instead of hybrid
hashing, partition tuning, and recursive partitioning. IBM’s
DBZ/CS team prototyped a hash join implementation, but
decided not to include it in the product. Sybase has im-
plemented a hash join in the Sybase IQ product and is
rumored to be implementing a hash join in its main rela-
tional database product.

The benefits of hash join and hash
grouping
Implementing hash join and hash grouping operations can
be quite complex. Given that most database systems al-
ready have nested loops join and merge join algorithms as
well as sort- or index-based grouping, what value do hash-
based algorithms add? The truth is that there is no one
overall winner, and each of these algorithms is superior to
its alternatives in certain circumstances.

Since hash-based algorithms process large, unsorted,
non-indexed inputs efficiently, they are particularly useful
for intermediate results in complex queries, for two rea-
sons. First, intermediate results are not indexed (unless
explicitly saved to disk and then indexed) and often are
not produced suitably sorted for the next operation in the
query plan. Second, since query optimizers only estimate
intermediate result sizes, and since estimates can be
wrong by more than an order of magnitude in complex
queries, algorithms to process intermediate results must
not only be efficient but also degrade gracefully if an in-
termediate result turns out to be much larger than antici-
pated.

Once an efficient join algorithm is available that requires
neither sorted nor indexed inputs, some of the query plans
traditionally associated with bitmap indexes can be ex-
ploited, such as index intersection, difference and union.
Bitmap indexes and other types of non-unique non-
clustered indexes differ in their representations of the set
of row identifiers associated with each search key. There
are multiple well-known representations of sets in com-
puter programs; bitmap indexes represent each such set
as a bitmap, whereas conventional database indexes ex-
plicitly enumerate all members of each such set. All op-
erations possible with bitmap indexes are also possible
with conventional indexes; for intersection, difference and
union, hash join is typically the algorithm of choice.

Efficient join algorithms also open two further avenues of
database performance improvement. First, semi-join re-
ductions may apply not only to distributed but also to sin-
gle-site database systems. Second, in many databases,
de-normalization is used achieve better perfomance. In
other words, in order to save join operations, databases
are designed that violate the well-known normal forms, in
spite of the dangers of redundancy such as inconsistent
updates. On the physical level, i.e., on the level of ab-
straction describing disk space and indexes and query
execution plans, de-normalization is often called “master-
detail clustering.” It is usually explained with orders and
their line items, and is a viable and effective technique to
improve database performance. However, on the logical
level, i.e., on the level of abstraction describing tables and
constraints and queries, de-normalization is a bad idea:
the dangers of redundancy and the virtues of normal forms
are well known. With efficient join algorithms, including
hash join, the motivation for de-normalization diminishes
or even vanishes. Taken to the opposite extreme, vertical
partitioning (representing groups of columns from a single
table in separate files or indexes) may become a viable
option for physical database design. We’ll come back to
this point in the performance evaluation.

An overview of hash join tech-
niques and terminology
For completeness, we describe the basic ideas of hash-
based query processing. More detailed descriptions, algo-

a7

rithm variants, cost functions, etc. can be found else-
where, e.g., [Graefe 19931.

As a join operator, a hash join has two inputs, which are
called “build input” and “probe input,” for reasons that will
be apparent shortly. The optimizer assigns these roles
such that the smaller one among the two inputs is the
build input.

Our hash join implementation implements many types of
set matching operations: inner join; left, right, and full outer
join; left and right semi-join: intersection; union; and differ-
ence. Moreover, with some modest modifications, it can
do duplicate removal and grouping (like “sum (salary)
group by department”). These modest modifications boil
down to using the one and only input for both the build and
probe roles. We explain inner join only in this section, and
leave it to the reader to adapt the description to the other
operations.

Hash join (like merge join) can only be used if there is at
least one equality clause in the join predicate. This is usu-
ally not an issue because joins are typically used to re-
assemble relationships, expressed with an equality predi-
cate between a primaly key and a foreign key. Let’s call
the set of columns in the equality predicate the “hash key,”
because these are the columns that contribute to the hash
function. Additional predicates are possible, and are
evaluated as “residual predicate” separately from the
comparison of hash values. Note that the hash key can be
an expression, as long as it can be computed exclusively
from column in a single row. In grouping operations, the
columns of the “group by” list play the role of the hash key.
In set operations such as intersection, as well as in dupli-
cate removal, the hash key consists of all columns.

There are several cases that are interesting to distinguish,
based on input sizes and memory size (for grouping and
duplicate removal operations, the output size also mat-
ters). The simplest case is defined by a build input that is
smaller than the memory allocated to the hash join opera-
tion. In that case, the hash join first consumes (scans or
computes) the entire build input and builds a hash table in
memory (hence the name “build input”). Each record is
inserted into a hash bucket depending on the hash value
computed for the its hash key. Because in this case the
entire build input is smaller than the available memory, all
records can be inserted into the hash table without any
problem. This “build phase” is followed by the “probe
phase.” The entire probe input is consumed (scanned or
computed) one record at a time, and for each probe rec-
ord, the hash key’s hash value is computed, the corre-
sponding hash bucket scanned, and matches produced.

If the build input does not fit in memory, a hash join pro-
ceeds in several steps. Each step has two phases, build
phase and probe phase. In the initial step, the entire build
and probe inputs are consumed and partitioned (using a
hash function on the hash keys) into multiple files. The
number of such files is called the “partitioning fan-out.” In
other words, the two inputs are partitioned into “fan-out”-
many pairs of files. Using the hash function on the hash

keys guarantees that any two joining records must be in
the same pair of files. Therefore, the problem of joining
two large inputs has been reduced to multiple instances of
the same problem, but of smaller size - a prototypical “di-
vide-and-conquer” algorithm. In other words, we simply
apply the same algorithm again to each pair of partition
files -with a modified hash function, of course.

In the worst case, multiple partitioning steps and multiple
partitioning levels are required. Note that this is required
only for very large inputs, i.e., inputs for which a standard
external merge sort would require multiple merge levels.
Also, if only some of the partitions are very large, addi-
tional partitioning steps are used only for those. In order to
make all partitioning steps as fast as possible, large,
asynchronous I/O operations should be used, such that a
single thread can keep multiple disk drives busy with use-
ful work.

The first case above is called “in-memory hash join;” the
second case, “Grace hash join” (after a database machine
research project [Fushimi 19861); the third case, “recursive
hash join.” If the build input is somewhat larger but not a
lot larger than the available memory, it is possible to com-
bine elements of in-memory hash join and Grace hash join
in a single step -this is called “hybrid hash join.” Basically,
some hash buckets are build and probed in memory,
whereas records belonging to all other hash buckets are
spilled to partition files (also called overflow files).

Often, an optimizers estimate of the count of incoming
records is off by a factor or 2 or even 10, in either direc-
tion. Thus, it is not always possible during optimization to
determine reliably which of these cases will occur at run
time. Our implementation (like most others) starts as in-
memory hash join, but gradually transitions to hybrid,
Grace, and recursive hash join if the build input is very
large. This has been aptly called “dynamic destaging” in
the Grace papers, but that name is not universally known
or used.

If a hash bucket has been spilled in the build phase of any
one step, our implementation retains in memory a bit vec-
tor filter. For each build record spilled to an overflow file,
the hash value of the hash key is used to determine a bit
to set “on.” In the probe phase of that step, the bit vector is
checked to determine whether a probe record at hand can
possibly have a match in the build input. If not, the probe
record can either be discarded (e.g., in an inner join) or
produce an output record (e.g., in a full outer join) - in
either case, the probe record doesn’t go to the probe
overflow file and therefore doesn’t incur I/O costs. This
technique is called “bit vector filtering” and can be quite
effective - we believe several hash join implementations
employ this performance enhancement.

If the optimizer anticipates wrongly which of the two inputs
is smaller and therefore should have been the build input,
or if bit vector filtering has reduced the probe overflow file
for some partition so much that it is smaller than its corre-
sponding build overflow file, the two roles (build & probe)
can be reversed in the next step. In other words, before

88

processing a spilled partition, our hash join makes sure
that it uses the smaller overflow file as build input. This
technique is called “role reversal” - many hash join im-
plementations use this technique, too.

Hash join implementation

Data structures
Let us begin the description of our implementation with an
overview of its core data structures. The hash table is a
large array, say 1,000 or 50,000 slots, depending on the
size of the available memory. Each slot anchors a linked
list, which we call a hash bucket. Each element in a linked
list contains a full four-byte hash value and a pointer to a
record pinned in the buffer. Note that we use buffer space
to retain records in memory; in other words, the hash table
proper contains pointers to records, but not actual records.
Multiple elements in a bucket are allocated together, in
units of 64 bytes, to optimize the faulting behavior in CPU
caches by reducing the number of next pointers in the
linked lists. When counting or limiting the memory space
to be used by a hash join, we count both the elements in
the lists and the buffers containing the records.

Each bucket is assigned to a partition’. There is an over-
flow file for each partition and for each input. Thus, a bi-
nary operation such as a join with a partitioning fan-out of
10 will have 20 overflow files, although some of them, in
particular probe overflow files of resident partitions, will be
empty and will not have any disk or buffer space allocated
for them. While a partition is resident, all its records from
the build input are pinned in the buffer, accessible through
their respective hash buckets. When a partition is spilled,
its records are not accessible through the hash table, and
hash table slots for the partition’s buckets are used not as
pointers (anchors of linked lists) but as bit vector filters.
Knowledge and control over which partitions are currently
spilled is delegated to a separate object, in order to facili-
tate “teams” of multiple hash operations for N-ary opera-
tions, as described later.

Each partition includes one overflow file for each of the
operation’s inputs - for example, a unary operation such
as duplicate removal has one input, a join has two inputs,
and an N-ary operation has N inputs such that each parti-
tion is represented as an N-tuple. There are three sets of
overflow partitions. The first set contains partitions that are
currently being built by the current partitioning step. In
hybrid hash join, some of these partitions may be resident,
while others are spilled. After each partitioning step, this
set is emptied and its members discarded or distributed to
the other two sets. The second set contains partitions that
are ready for final processing - those partitions will be
processed with a hybrid hash join step, without recursive

’ While some other authors use the term bucket where we
use partition, we have chosen to use bucket for in-memory
division and partition for dividing inputs into multiple over-
flow files on disk.

overflow resolution. The third set of partitions contains
those partitions that are too large for hybrid hashing, i.e.,
those partitions that require a partitioning step with full fan-
out and recursion. In many practical situations, this set
remains empty throughout execution of a hash operation.

In addition to these data structures that capture and retain
the state of a hash operation, there are also data struc-
tures with control information, e.g., whether the present
operation is an inner or an outer join, which is probably
explained best while describing the algorithm itself.

Basic algorithm
The basic components of the hash join algorithm consists
of three nested loops. The outer-most loop iterates over
partitioning steps, the second loop iterates over the inputs,
and the inner-most loop iterates over records. We try to
explain these loops in outer-to-inner order.

A partitioning step is a general term that can be either the
initial step that consumes the hash operation’s inputs or
an overflow resolution step that consumes overflow parti-
tions created in previous steps, and it can take the form of
a traditional in-memory hashing operation with no overflow
records being written to disk, a hybrid hash join with some
partitions resident in memory and some partitions spilled
to overflow files, or a full partitioning step with no in-
memory hash table. A partitioning step determines its par-
titioning fan-out based on the available memory, creates
an empty hash table, processes all inputs, drains and de-
stroys the hash table, and disposes of all partitions. Parti-
tions are either discarded directly without incurring any I/O
(those that were resident at the end of the partitioning
step, and are therefore completed) or moved to another
set of overflow partitions, either the set ready for final
processing or the set requiring full partitioning steps. This
latter decision is considered in more detail later.

The core of each partitioning step is a loop over the op-
eration’s inputs. This loop permits using a single code
base for both unary operations such as grouping and du-
plicate removal as well as binary operations such as inner
and outer joins. Moreover, the loop avoids multiple copies
of a fair amount of code and, more importantly, of com-
plexity and of code maintenance. An incidental but not
unimportant benefit is that it is trivial to support binary op-
erations such as joins with grouping or duplicate removal
on the build input, which actually is useful quite frequently
because duplicate records can safely and beneficially be
removed for semi-joins and, interestingly, many group-by
clauses are foreign keys to be used in a join following the
grouping operation. Finally, as a matter of curiosity, the
basic algorithm does not require that there be at most two
inputs, although we currently do not exploit this capability.
Candidate operations that could exploit this capability such
as union distincf of more than two inputs are mapped to
alternative plans using concatenation of intermediate re-
sults, and N-ary operations are implemented using
“teams” of multiple unary and binary operations. The role
played by a specific input, i.e., build or probe input, is rep-

89

resented by a small set of control values, in particular for
searching in the hash table, aggregation or insertion into
the hash table, output to the next operator in the query
plan, and for setting or testing the bit vector filter.

For each input, the algorithm opens the record source,
which is an operator in the initial partitioning step or an
overflow file in a subsequent partitioning step, creates and
opens a suitable number of output overflow files, loops
over the input records, and closes record source and
overflow files. Processing an input record begins with de-
termining its hash value, hash bucket, and partition. If the
partition is resident and search is required, the hash
bucket is searched for matches with the current input rec-
ord. If insertion into the hash table is required, possibly
based on the outcome of the search, a record slot is allo-
cated in the partition file and a new linked list element is
inserted into the hash bucket. If output is required, also
possibly depending on the search, an output record is
produced and passed to the next operator in the query
plan. If the input record’s partition is not resident but
spilled, the bit vector filter may be set or tested, the record
may be appended to the partition file, or an output record
may be delivered (in outer joins, based on the bit vector
filter).

Hybrid hashing and dynamic destaging
At the beginning of a step, all buffers assigned to the hash
operation are considered available, and we ensure that
the number of buffers is always equal to or larger than the
number of partitions. While a resident partition may pin
records on and thus occupy an arbitrary number of buffer
pages, a spilled partition uses only one output buffer at a
time; write-behind buffers are allocated for the entire parti-
tioning step as a whole and are not counted here. When a
resident partition requires a new page, one of the available
buffers is assigned to the partition. If no buffer is available,
the largest resident partition is spilled. Note that the larg-
est resident partition occupies at least two pages. When
the largest resident partition is spilled, either some page is
freed, or the partition requiring an additional page is
spilled, in which case its memory requirement drops to a
single page. The second justification for spilling the largest
resident partition is that, in the absence of any knowledge
about skew in the probe input but presuming that the
probe input is larger than the build input, spilling the larg-
est build partition results in the best ratio of saved I/O to
required memory.

Setting the partitioning fan-out as a function of the buffer
size is not simple, because input size estimation may be
inaccurate even by orders of magnitude for very complex
queries. First, some buffers are taken off the top to be
used for asynchronous read-ahead and write-behind. In
general, it doesn’t pay to have more buffers for asynchro-
nous I/O than disks, because each disk can perform only
one I/O action at a time. The remaining buffers can be
used either to increase the fan-out or to increase the size
of the in-memory hash table. If the build input is particu-
larly large and recursive partitioning will be required, the

fan-out should be as large as possible. On the other hand,
if the build input is only a small multiple of the memory
size, a large fan-out requires more output buffers than
necessary and therefore over-restricts the size of the hash
table for the resident partitions. Our pragmatic compro-
mise is to set that fan-out for the initial partitioning step
such that about 50-80% of available buffer space might be
used, depending on our input size estimate as well as our
confidence in that estimate. Partition tuning at the end of
the build phase can alleviate the effects of a fan-out cho-
sen too large and a hash table chosen too small.

More important than the exact fan-out is the size of each
I/O unit. In order to achieve a sustained bandwidth of
about 50% of the disks’ raw transfer speed with random
I/O as needed in partitioning, the data volume for each
disk access has to fairly large; pragmatically, we chose 64
KB as our unit of I/O using scatter-gather I/O of in-memory
pages of 8 KB, our system page size. In general, the goal
is to maximize the product of sustained bandwidth and the
logarithm of the fan-out, because we believe that a merge
step in external merge sort and partitioning in hash-based
algorithms are very closely related, and because this goal
maximizes the number of comparisons per unit time in a
merge step.

Partition tuning
For binary operations such as join (as well as N-ary op-
erations), partition tuning at the end of the build phase
may save substantial I/O for probe overflow files. If some
of the spilled build overflow files are smaller than the
memory allocated for the hash operation, multlple spilled
partitions may be processed concurrently, and it is suffi-
cient to create a single probe overflow file for an entire
group of build overflow files. Thus, output buffer space
may be saved during the probe phase, and the hash table
size may be increased. In our implementation, we employ
a simple first-fit heuristic bin packing algorithm on the
spilled build overflow files, and restore the build overflow
file of as many partitions as possible into memory, restor-
ing the smallest build overflow file first.

While this technique is quite effective, in particular if the
build input size is a small multiple of the available memory
size, recursive overflow resolution, as required for very
large inputs, can use an even more effective method,
based on histograms on hash value distributions.

Recursive over-f/o w resolution, three
phases, and iterator methods
As mentioned above, there is a loop over partitioning
steps, and each partitioning step reads from the input op-
erators (first partitioning step) or from an overflow partition
(all subsequent steps) and writes zero or more overflow
partitions to disk. The important point is that the recursion
in multi-level partitioning, which is a direct dual to multi-
level merging in external sorting, has been rewritten into a
loop using well-known recursion-to-loop tranSfOtmati0t-i

90

techniques using a stack maintained explicitly (see, e.g.,
[Sedgewick 19841). Unfortunately, this is not quite suffi-
cient to integrate recursive partitioning into a single-thread
query execution engine, because the hash operation still
has to fit into the scanning or iterator paradigm, i.e., re-
spond to open, next, and close methods’. To reduce the
complexity in the algorithm, we retained the three explicit
loops and adapted the standard implementation of co-
routines. We map the open, next, and close methods to a
single method, retain all state not on the general call stack
but in a special state object that retains its contents be-
tween invocations of the iterator methods, including the
program counter, and jump to the program counter each
time the co-routine is resumed. Instead of an explicit pro-
gram counter, we combine a variable of an enumerated
data type with a switch statement using a go to statement
in each case, all encapsulated in suitable macros. This
technique can be used both on the input and output side
of iterators, thus creating data- or demand-driven iterators,
even within a single thread, which can be very useful to
“push” the result of a common sub-plan to multiple con-
sumer iterators.

Overflow files themselves might be very large. In that
case, all overflow partitions are divided into two sets, de-
pending on whether processing an overflow partition will
require that all sub-partitions be spilled because they, too,
are larger than memory, or will result in hybrid hashing
with some sub-partitions remaining resident in memory.
This point is sometimes referred to as “memory squared,”
despite the lack of attention to the difference between fan-
out and memory size due to large units of I/O, buffers for
asynchronous I/O, etc. If there are partitions of such large
size, it is important to employ the largest possible fan-out
while partitioning those. During the initial partitioning step,
the hash operation competes for memory with its input
iterators and plans; once the first output item has been
produced, the hash operation competes with its consumer
iterator and plan. However, if the inputs are truly very
large, it is useful to ensure that some partitioning steps
can use the entire memory allocated to the query plan,
without competing with any other iterators in the same
plan. In our implementation, if none of the previous parti-
tioning steps has produced output, i.e., the present hash
operation is still in its open method, any overflow partition
larger than the limit for hybrid hashing is assigned to a
special set of overflow partitions. When choosing the input
partition for the next partitioning step, partitions in this set
are preferred over all other waiting partitions. Moreover,
those partitioning steps set the fan-out to use 100% of the
available buffer space as output buffers (excluding buffers
used for read-ahead and write-behind), and spill all sub-
partitions right from the start, without waiting for dynamic
destaging. It may be interesting to note that partitioning
steps that do not compete with either input nor output
plans for memory and may therefore use all memory

2 We extended this triple with some additional ones, e.g.,
rewind and rebind (with new correlation values or pa-
rameters). The hash operation simply restarts for any of
these.

available to the query to maximize their partitioning fan-out
are a direct dual to the intermediate merge steps in exter-
nal sorting for very large inputs.

Role reversal
Given that selectivity estimation can be rather inaccurate,
and that hash joins derive much of their advantage over
merge joins from their asymmetry, i.e., from using the
smaller of the two inputs as build input, a natural idea is to
defer the assignment of build and probe roles to the two
inputs from compile-time to run-time. Moreover, even if the
two inputs are equal in size, bit vector filtering during the
initial partitioning step may result, for some or all spilled
partitions, in probe overflow files smaller than the corre-
sponding build overflow files. Finally, hash value skew
may also result in this situation for some but not all spilled
partitions. Therefore, when starting to process a spilled
partition, our implementation always considers role rever-
sal. Note that in recursive partitioning, in particular if bit
vector filtering is effective, role reversal back and forth
may be useful in multiple successive recursion levels.

Bail-out
If, after several recursion levels, none of the techniques
above results in build overflow files small enough to permit
in-memory or at least hybrid hashing, both input files
probably contain so many duplicate keys that no partition-
ing method can succeed. In this case, our implementation
resorts to sort- or loops-based join and grouping algo-
rithms. The required alternative execution plans are cre-
ated at compile-time using deterministic algorithms, with-
out optimizating plan search. Note that these algorithms
are applied to individual overflow partitions, not the entire
input. Note also that this case is very rare, and therefore it
is not performance-critical - the primary concern is that
the problem be resolved correctly and in all cases, with the
reasonable development and testing effort.

There are very few alternative bail-out strategies. Other
than sort- and loops-based strategies, one can resort to
additional memory allocations, data compression, or drop-
ping columns from overflow files. Additional memory
grants can disrupt the entire server, as well as lead to
deadlock (waiting for a memory grant while holding a lock
on data). Data compression, in particular data compres-
sion on the fly, is very complex and would have introduced
substantially larger implementation and testing effort.
Dropping columns from partition files (replacing them with
pointers into permanent files, and re-fetching the dropped
column values later) can be very expensive due to the
cost of fetching. Most importantly, however, all three alter-
native strategies only alleviate but do not completely re-
solve the problem. If the set of duplicates is truly very
large, these three alternative strategies might well fail. Our
goal, however, was to find a robust and complete solution
for this rare case.

91

Histogram-guided partitioning
One of the reasons why recursive partitioning might re-
quire multiple levels is skew in the hash value distribution,
both distribution skew and duplicate skew. In order to
avoid the worst cases, we employ histogram-guided re-
cursive partitioning, i.e., while writing a set of partitions, we
gather distribution statistics for the next recursion level. In
fact, if the partitioning fan-out is F, we gather statistics for
as many as 4F future sub-partitions for each output parti-
tion currently being created. Before starting to read such a
partition, a first-fit heuristic bin packing algorithm is used to
create either F real partitions of 4 sub-partitions on aver-
age, or fewer partitions with
smaller than memory, plus
one partition fitting into the
memory not required for out-
put buffers. The histograms
can also be used to plan for
role reversal as well as to
decide earlier, before rather
than after wasting an entire
partitioning step, when to
switch to a sort- or loops-
based algorithm because
partitioning cannot divide an
excessively large set of du-
plicates into sets smaller
than memory.

build overflow files barely
optimizers ever since. Given ~_________________________

j Team manager i - - Hash inner join that teams apply in the same
.---,- fmps ____--_____ :, cases as interesting order-

I ‘\ ings and basically have the
I

Hash left outer join Hash full outer join
same effect, and that most

I
I

query optimizers attempt to

4
exploit interesting orderings,
among the query processors

Hash grouping employing hash-based joins

1

H Data flow and grouping (in commercial
- - + Control flow as well as research database

systems), ours is the only
Figure 1 - Data and control flow between operators query processor to imple-
and team manager ment and exploit teams.

The fundamental idea of N-ary hashing or “hash teams”
has been vaguely described in the past [Graefe 1993,

nized as important to exploit in query optimization [Setin-
ger 19791. Using the same example of joining three tables,
if two merge joins use the same join key, only three sort
operations for the three original tables are required,
whereas four sort operations are required if the two joins
use different keys and therefore require different sort or-
ders.

The essential point is that intermediate sort operations can
be saved if neighboring operations in a query execution
plan require and produce ordering on the same sequence
of columns. This idea is well known ever since the classic
query optimization paper [Selinger 19791, and has been
considered an important technique in all database query

Teams for N-sty hash joins
The most innovative techniques in our hash join imple-
mentation is the notion of “teams,” i.e., multiple hash op-
erations cooperating to process their inputs, often more
than two inputs. These operations can be any of the im-
plemented set matching operations, i.e., joins, grouping
operations, etc., in any combination, even bushy plan
segments. Teams are used if multiple neighboring opera-
tions in a query plan hash on the same column(s), and
ensure that intermediate Ooerators’ tasks

Graefe 19941. The key to implementing hash teams is to
separate control over spilling (overflow) and partitioning
policy decisions from the individual hash operation and to
assign it to a team manager, which performs this control
function for all member operations within the team. As a
result, all team members (which, by definition of a team,
hash on the same set of columns) spill, restore, and proc-
ess the same partitions at the same time, even when re-
cursive partitioning is required. The division of tasks be-
tween the team manager and the team members, i.e.,
Team manaaer’s tasks operators such as hash

inner join, is given Fig-
ures 1 and 2. The im-
portant effect is that,
among two members of a
team that form a pro-
ducer-consumer relation-
ship, the consumer can
be sure that the producer
won’t produce any data
items for a partition once
that partition has been
spilled. Thus, a team
avoids partitioning inter-
mediate results between
team members, and
saves all (or actually al-

most all) I/O to and from overflow files for intermediate
results between members of the same team. Moreover,
the consumer may release all memory, including all output

results between members ’
of the same hash team do Consume input records Map hash values to buckets
not have to be partitioned
by the consumer operator.

Produce output records Map buckets to partitions

For example, if three tables Manage hash table Grant memory requests
are to be joined on a single
common column, a tradi- Manage overflow files Request to spill & to restore

tional pair of binary hash from entire team

joins will partition four in-
puts, namely the three

Request memory grants

original tables as well as Spill partitions on request
the intermediate result,
whereas a team will incur

Restore partitions on request

overflow I/O only on the
three original inputs. Figure 2 -Tasks of operators and team manager

In effect, teams are a dual to interesting orderings in sort-
based query processing, which permit omitting an inter-
mediate sort between joins or grouping operations on the
same keys. Interesting orderings have been well recog-

92

buffers, for a spilled partition. Thus, for a spilled partition,
only one output buffer at a time is required within the en-
tire team, exactly as for the two inputs in a binary hash
join.

It is possible that a partition is spilled after some records
have been forwarded from a producer to a consumer
within the same team. Thus, the consumer must allocate
an overflow files for all of its inputs, even those that are
members of the same team. When a partition spills during
the consumer’s build phase, the records already in the
consumer’s hash table are spilled and the build overflow
file for that partition may be closed without retaining an
output buffer. When the spilled partition is processed in a
later partitioning step, both the overflow file and the input
iterator’s further output for that partition must be con-
sumed. Thus, the loop to consume all records in an input
partition has been augmented to read first any overflow file
and then, if the input is a member of the same team, to
consume any remaining input for the current partition.

Unfortunately, teams can inhibit other performance en-
hancements in some special cases. For example, consider
the case that the producer in a team is a full outer join (but
not inner join or semi-join). Since bit vector filtering might
produce output for spilled partitions, bit vector filtering
must be switched off in the producer. Of course, bit vector
filtering can be used in the root operator of the team, even
if that operator is an outer join.

What’s missing
Among the techniques described, three are designed and
prototyped but not implemented yet in the product, namely
partition tuning, histogram-guided recursion, and caching
results of expensive functions using hybrid caching [Hel-
lerstein 19961. Similar to the. last feature, we implemented
duplicate removal with fast return of the first result rows,
which uses the same control flow, and are missing only a
few mechanisms for record formats and function invoca-
tion. Beyond these techniques, we hope to include several
further improvements in a later release. The most promi-
nent of those is dynamic memory adjustment during the
run-time of a join, including restoring spilled partitions dy-
namically in order to exploit memory made available in the
middle of a partitioning step.

Memory management

Goals
Previous releases have relied very heavily on loops- and
index-based methods for set operations such as joins and
grouping. For any one query, at most one sort operation
could be active at a time. Thus, division of memory be-
tween queries (as well as other types of requests, such as
index creation) as well as within queries was a lot simpler
than the current version, which uses query plans with mul-
tiple concurrent sorts (e.g., two sorts feeding into a merge

join that in turn feeds a third sort operation), multiple con-
current hash operations (within and between teams), as
well as mixed plan with sort and hash operations active
concurrently, feeding data to each other.

For simplicity and robustness, we decided to forgo poten-
tial benefits of dynamic memory adjustment during a
query’s (or a requests) run-time and instead run each
query with an amount of memory set at start-up time.
There are three remaining problems that need to be
solved. First, each query needs to be admitted for proc-
essing. Second, an amount of memory must be set for the
query. Third, memory must be managed among the op-
erators within a query plan.

In this paper, we do not detail our final solution for the first
and second problems. A simple and robust approach is to
set aside a fraction of the buffer pool for query memory,
say 50%, to assign each query with at least one memory-
intensive operation a fixed amount of memory, say 1 MB
or 4 MB, and to admit additional queries until the entire
query memory is assigned to running queries. A slightly
more sophisticated policy also considers CPU load.

The third problem is still quite hard. Our goal was to create
a solution that permits fairly efficient execution of complex
plan trees yet is complete, robust, and simple. These latter
three issues are imperative in a product environment,
even if the policy incurs at times some minor performance
loss. One criterion for robustness is that the policy de-
grades gracefully if the optimizer’s selectivity estimates
are wrong, an issue that has often been ignored in the
literature on resource allocation.

Rejected solutions
We considered a variety of alternative solutions for each of
the problems, but decided to use policies that are simple
and robust rather than optimal but complex, A possible
policy for dividing memory between the general I/O buffer
and query memory is based on furn-over rates and was
inspired by the “five-minute rule” [Gray 19871. Both the l/O
buffer and the memory-intensive operators employ main
memory to hold disk pages and therefore reduce the
amount of I/O. The basic idea of buffer replacement poli-
cies is to retain those pages in memory that are used fre-
quently. The basic idea of the allocation policy considered
here is to ensure that there is a uniform cutoff frequency
for all pages deemed worthy to be retained in memory. For
pages in the general I/O buffer, this frequency is fairly
easy to determine. For pages in the system-wide query
memory, the turn-over frequency is based on the merge
behavior of external sorting or the partitioning behavior of
hash-based algorithms with overflow, and on the total I/O
bandwidth of devices used for run files in sorting and
overflow files in hash algorithms. We presume that all
temporary files are striped to balance the I/O load among
these devices, which is generally a simply and effective
policy. Note that concurrent sort or hash operations multi-
plex both the query memory and these I/O devices with
compensating effect (for the consideration here), so we

ignore concurrent operations. Given that both merge and
hash algorithms need to read and write temporary files,
data pass through the query memory at half the bandwidth
of these I/O devices. The quotient of half this I/O band-
width and the size of the query memory is the turn-over
frequency in the query memory. The proposed policy is to
adjust the division of memory between general I/O buffer
and query memory such that the turn-over rate or fre-
quency in the general I/O buffer and in the query memory
are equal.

A possible policy for dividing memory between competing
queries is to compute upper and lower memory limits for
each query with at least one memory-intensive operator. A
useful upper limit is the maximal useful memory, i.e., the
amount of memory with which, based on the anticipated
sizes of intermediate results, the entire query plan can be
executed in memory, without any hash overflow files or
sort run files being written to disk. Moreover, the upper
limit should be restricted not to exceed the server’s query
memory. The lower limit must be at least large enough to
permit reasonably effective merging in external sort as
well as partitioning in hash operations, which may trans-
late to a fan-in and fan-out of at least 8 or 12 in intermedi-
ate phases of sorting and hash matching. If there is mem-
ory contention, assign all concurrent queries the same
fraction of their maximal useful memory, but no less than
their minimum memory.

Policy
Our solution for managing memory within a query plan first
divides a complex plan in phases based on the input, in-
termediate, and output phases of all stop-and-go opera-
tors in the plan and then, still at compile-time and there-
fore based on expected cardinalities and average record
lengths, assigns to each operator phase a fraction of the
memory available to the query as a whole. Intermediate
phases are always assigned 100% of the available mem-
ory. When multiple operators make up a plan phase,
memory is assigned to each operator proportionally to the
operator’s anticipated input data volume relative to the
total input data volume of all memory-intensive operators
participating in the plan phase. For hash joins, it is pre-
sumed that hybrid hashing is used, i.e., the hash join’s
second phase competes with both the probe input and the
output. The memory assignment for a hash join is the
minimum assignment among its input phases. A team of
hash iterators is treated as a single N-ary hash join with
many phases.

At run-time, each operator phase is permitted to allocate
up to its fraction of the available memory. If an iterator
holds memory, the iterator and its memory are said to be
waiting if the iterator has completed its open method and
is ready for the first invocation of its next method. Simi-
larly, an iterator and its memory are waiting if the iterator
has invoked an open method on one of its inputs which
has not returned yet. For example, if a merge join is sur-
rounded by three sort iterators, both the sort iterator at the
root of the plan segment and the sort iterator for the first

input are waiting while the merge join opens its second
input. As a second example, a hash join and its memory
are waiting while the probe input is being opened.

While an operator is waiting, its memory is registered with
the query memory manager. If some other operator in the
query needs to allocate memory, the query memory man-
ager requests that one of the registered waiting operator
release some or all of its memory. The operator chosen is
the operator registered (and waiting) the longest, because
that operator is probably the furthest away within the query
plan from the plan phase currently active. In other words,
memory-intensive operators that may benefit from holding
data in memory between their open method and the first
invocation of their next method must be able to release
some or all of this memory upon request. For example, if
the first input into a merge join is a sort with a data volume
small enough to fit in memory (and therefore kept in mem-
ory between the sort iterator’s open and next methods),
and if the merge join’s second input is a sort iterator that
needs all available memory for an intermediate merge, the
query memory manager will request that the first sort spill
its memory contents to disk, in a sense turning the in-
memory sort into an external sort with a single run file. The
important issue is that this is done on demand only, be-
cause the optimizer’s size estimates for the second sort’s
input may have been wrong in either direction. Similarly, a
hash join in a complex plan, e.g., a bushy plan, must be
prepared to spill and later restore its hash table if the
probe input is itself a complex plan that requires a lot of
memory. Fortunately, restoring some or even all partitions
after the probe input has been opened, but before it has
been consumed, is one of the operations inherent in parti-
tion tuning, and thus needs to be implemented anyway.

Performance
For our performance study, we chose the TPC-D verifica-
tion database with 100 MB of raw data (scale factor 0.1)
and a desktop PC running Windows NT 4.0. In order to
force memory contention, each query is limited to 1 MB of
memory for sort and hash operations. The buffer is flushed
before each query plan is started. Because our product’s
latest release that includes all the described techniques is
still under development, we cannot report absolute “wall
clock” times. Given the incessant improvements in proc-
essing and I/O hardware, relative times serve our purpose
just as well.

The Line/tern table contains about 600,000 rows of about
120 bytes (about 72 MB), and the Orders table holds
150,000 rows of about 100 bytes (about 15 MB). Our
physical database design is fairly simple but not untypical:
a clustered index on each table’s primary key, a non-
clustered index on each foreign key, and non-clustered
indexes on some further columns, e.g., Or-
ders.O-OrderPriority and Line/tern. CShipDate. Note that
if a clustered index exists for a table, our storage engine
requires that non-clustered indexes for that table contain
the search key of the clustered index, similar to Tandem’s
database products.

94

Rather than reporting on the performance of the original
TPC-D query set, which tests the query optimizer as much
as the execution algorithms, we chose two simple and
typical queries to show interesting alternative plans. Typi-
cally, our optimizer selects the plan with the lowest antici-
pated cost, but specific plans can also be forced using

able here even for tables with records as short as 100
bytes. For larger records in the base table, the benefit
increases.

Join query
hints. The second example query joins two large tables and

computes a grouped summary: Select O-OrderKey,

Sing/e table query
O-OrderDate, Count (*) From Orders, Line/tern Where
O-OrderKey = L-OrderKey And L-ShipDate 2 ‘1994/1/l’

The first example query retrieves and counts rows from
the Orders table: Select O-OrderDate, O-OrderPriority,
Count (‘) From Orders Where O-OrderDate between
‘1994/1/l’ And ‘1994/3/31’ Group l3y O-OrderDate,
O-Orderpriority. This query
summarizes about 3.8% of the Plan

Group Sy O-OrderKey, O-OrderDate. The date restriction
is satisfied by about 72.5% of the Line/tern rows, or
435,000 line items. Note that the indexes on Or-
ders.4OrderDate and Lineltem.L-ShipDate are covering

CPU Elapsed
indexes for this query. There-
fore, the traditional execution

Orders table or 5,700 orders. time time plan is to scan these two in-
The optimizer cannot find a _- ___- - ..___ - __.. -___-.-- .____,. -- .______.._......_..__ -_ _... - _.___

Scan the base table 81.25 100.00
dexes, to join the results on Or-

single covering index for this derKey, and then to group the
query; therefore, it considers Scan index O-OrderDate 38.25 789.85 join result on O-OrderKey,
three plans for retrieving data and fetch from base table O-OrderDate. In many database
from the Orders table. These

Join indexes 0 OrderDate
systems, the optimizer will

plans scan the base file, scan 70.35 73.45 choose this plan. However, our
a non-clustered index on and O-OrderPriority optimizer realizes that
O-OrderDate with subsequent O-OrderDate is functionally de-
record fetch, or join two in- Table 1 -Obtaining records from one table. pendent on O-OrderKey and
dexes as described in the in- removes the dependent column
troduction. Given that the two indexes are not sorted on from the grouping list. Thus, the join and the grouping op-
row identifiers, hash join is used in the third plan. Note that erations hash on the same set of columns (the singleton
the index on O-OrderPriority is scanned in its entirety, all set O-OrderKey), and the two hash operations can be
150,000 index entries, whereas only 3.8% of the index on executed as a team. Moreover, the grouping operation can
O-OrderDate is scanned. The grouping operation is per- be pushed down through the join operation. Finally, since
formed by hash grouping in all three plans. Neither the our hash join operation supports grouping or duplicate
hash join nor the hash grouping spill overflow files to disk. removal on the build input, the optimizer mav choose the

The run times of these
three plans are shown in
Table 1, scaled to compare
with the elapsed time of a
base file scan, which is the
optimal available plan for
this query in most data-
base systems. While
fetching guided by a single
index consumes very little
CPU time, it results in an
excessive elapsed time
due to the large number of
random disk reads. The
fastest plan for this query is
to join the two indexes on
their shared row identifier.
This plan incurs both less
CPU time and less elapsed
time than scanning the

Last opera- Hash Build or CPU Elapsed
tion team outer input time time

Grouping No Orders 30.47 100.00

Grouping No Line items 33.38 101.86

Grouping Yes Orders 19.14 59.62

Grouping Yes Line items 19.73 59.19

Join No Orders 17.74 63.88

Join No Line items 17.68 62.29

Join Yes Orders 15.62 51.46

Join Yes Line items 13.59 46.44

Integrated N/A Line items 12.46 48.16

opposite-to-normal roles of
Orders and Line/tern in the
hash join. Doing so permits
grouping of Line/tern records
and joining with Orders rec-
ords using a single binary
operator with a single hash
table per partitioning step.

Table 2 - Join and grouping from two tables.

Table 2 shows the pet-form-
ante of nine plans. Times
are relative to the elapsed
time of the traditional plan,
which is indicated in the first
row. All nine plans scanning
the two covering indexes and
using hash join and hash
grouping; therefore, per-
formance differences are
due to the join and grouping
strategies, not due to differ-

base file. For this very simple query representing a very ent scans or other plan differences. Comparing the first
well known and understood type of query, this plan two rows, it is interesting to note that the choice of build
achieves savings of 25% over the best plan available in inputs for the join hardly affects the performance, in spite
most database systems. Note that joining two indexes, in of the fact that the Line/tern table is significantly larger
effect a form of vertical partitioning, has been shown vi- than the Orders table, even after the selection on

95

L-ShipDate. The reason is role reversal, which ensures
that the smaller overflow file is used as build input during
each overflow resolution step. Moreover, bit vector filtering
reduces the fraction of Orders rows that are written to
overflow files, in effect transferring the reduction of the
Line/tern table to the Orders table before their join is even
complete.

In a comparison of the first two rows with the subsequent
two rows, it becomes obvious that organizing multiple
hash operations into a team can substantially improve
performance. A team operation saves all or most overflow
I/O for intermediate results within the team. In this query,
the join result is about as large as the two join inputs to-
gether. Thus, saving the I/O for the join result substantially
improves performance. For the example query, teams
reduce both CPU time and elapsed time by about 40%.

The next four rows reflect the optimizer’s ability to invert
the sequence of join and grouping operations. Perform-
ance is consistently better than plans using the traditional
processing sequence. Note that designating the Line/tern
table as build input is now advantageous, because the
result of the grouping operation is smaller than the Orders
table. Again, hash teams are very effective. Their relative
effect of teams is reduced to about 20%, because overflow
I/O is saved for only one of the two join inputs. However,
20% is still substantial, given that this is a fairly simple and
well-studied type of query.

The final row indicates the performance of integrating
grouping on the build input with the join. While CPU con-
sumption is lower than in the most similar plan (the row
above), elapsed time has increased. We suspect that the
reason is that role reversal is inhibited in the integrated
algorithm, and that bit vector filtering and role reversal
combine in the team plan to reduce the total I/O volume
and elapsed time. The important result of this experiment
is that for this very typical query, hash teams or the inte-
grated operation are required to improve the elapsed time
to less than half of the elapsed time of the traditional plan.

Summary and conclusions
In this paper, we have described how we have combined
many of the hashing techniques proposed in the research
literature into a single operator. Based on the reported
experiments using the TPC-D database with 100 MB of
raw data, as well as many other experiments not reported
here, we believe that the performance of our algorithms is
very competitive.

The hash operation described in this paper is novel in two
aspects. First, it is the first implementation of N-ary hash-
ing or teams of hash operations. Second, it cleanly inte-
grates into a single, reasonably clean and extensible im-
plementation a wide array of advanced hashing tech-
niques proposed and prototyped individually by various
research groups. The substantial performance gains for
two very simple, very well studied, and very typical “work
horse” queries clearly demonstrate that this integration as

well as teams are truly worthwhile, yet that no single one
of the techniques is a panacea for high performance
hashing. In other words, for optimal performance, teams
must be integrated with all the other hashing techniques.

The memory management technique described in this
paper is most notable for being simple yet very effective. It
adapts to all types of query plans, including complex
bushy plans with multiple sort and hash operations. It ex-
ploits the execution model based on iterator objects with
open, next, and close methods, divides complex execution
plans into plan phases based on operator phases in stop-
and-go operators, keeps track of active and waiting opera-
tions, and mimics LRU among all active and waiting op-
erators. It is simple, probably not always optimal, but very
robust and on the whole very effective.

References
Bratbergsengen 1984: Kjell Bratbergsengen: Hashing

Methods and Relational Algebra Operations. VLDB
Conf. 1984: 323-333.

Dewitt 1984: David J. Dewitt, Randy H. Katz, Frank
Olken, Leonard D. Shapiro, Michael Stonebraker,
David A. Wood: Implementation Techniques for Main
Memory Database Systems. ACM SIGMOD Conf.
i984: 1-8.

Dewitt 1985: David J. Dewitt, Robert H. Gerber: Multi-
processor Hash-Based Join Algorithms. VLDB Conf.
1985: 151-164.

Dewitt 1993: David J. Dewitt, Jeffrey F. Naughton, J.
Burger: Nested Loops Revisited. PDIS Conf. 1993:
230-242.

Fushimi 1986: Shinya Fushimi, Masaru Kitsuregawa, Hi-
dehiko Tanaka: An Overview of The System Software
of A Parallel Relational Database Machine GRACE.
VLDB Conf. 1986: 209-219.

Graefe 1993: Goetz Graefe: Query Evaluation Techniques
for Large Databases. ACM Computing Surveys 25(2):
73-170 (1993).

Graefe 1994: Goetz Graefe: Sort-Merge-Join: An Idea
whose Time Has(h) Passed? Data Eng. Conf. 1994:
406-417.

Gray 1987: Jim Gray, Gianfranco R. Putzolu: The 5 Minute
Rule for Trading Memory for Disk Accesses and The
10 Byte Rule for Trading Memory for CPU Time. ACM
SIGMOD Conference 1987: 395-398.

Hellerstein 1996: Joseph M. Hellerstein, Jeffrey F.
Naughton: Query Execution Techniques for Caching
Expensive Methods. ACM SIGMOD Conf. 1996: 423-
434.

Kitsuregawa 1989: Masaru Kitsuregawa, Masaya Naka-
yama, Mikio Takagi: The Effect of Bucket Size Tuning
in the Dynamic Hybrid GRACE Hash Join Method.
VLDB Conf. 1989: 257-266.

96

Red Brick 1996: Company Press Release: Red Brick
Launches Red Brick Warehouse 5.0 for Data Ware-
house, Data Mart, Data Mining, Database Marketing
and OLAP Applications, Los Gatos, CA, Oct. 14, 1996;
see www.redbrick.com.

Sacco 1986: Giovanni Maria Sacco: Fragmentation: A
Technique for Efficient Query Processing. ACM TODS
1 l(2): 113-133 (1986).

Schneider 1990: Donovan A. Schneider, David J. Dewitt:
Tradeoffs in Processing Complex Join Queries via
Hashing in Multiprocessor Database Machines. VLDB
Conf. 1990: 469-480.

Sedgewick 1984: Robert Sedgewick, Algorithms, Addison-
Wesley 1984.

Selinger 1979: Patricia G. Selinger, Morton M. Astrahan,
Donald D. Chamberlin, Raymond A. Lorie, Thomas G.
Price: Access Path Selection in a Relational Database
Management System. ACM SIGMOD Conf. 1979: 23-
34.

Zeller 1990: Hansjijrg Zeller, Jim Gray: An Adaptive Hash
Join Algorithm for Multiuser Environments. VLDB Conf.
1990: 186-197.

97

