
Resource Scheduling for Composite Multimedia Objects

Minos N. Garofalakis* Yannis E. Ioannidisfl
University of Wisconsin-Madison University of Athens

minos@cs.wisc.edu yannis@di.uoa.gr

Banu azden
Bell Laboratories

ozden@research.bell-labs.com

Abstract
Scheduling algorithms for composite multimedia
presentations need to ensure that the user-defined
synchronization constraints for the various presen-
tation components are met. This requirement gives
rise to task models that are significantly more com-
plex than the models employed in scheduling theory
and practice. In this paper, we formulate the resource
scheduling problems for composite multimedia ob-
jects and develop novel efficient scheduling algo-
rithms drawing on a number of techniques from pat-
tern matching and multiprocessor scheduling. Our
formulation is based on a novel sequence packing
problem, where the goal is to superimpose numeric
sequences (representing the objects’ resource needs
as a function of time) within a fixed capacity bin
(representing the server’s resource capacity). Given
the intractability of the problem, we propose heuris-
tic solutions using a two-step approach. First, we
present a “basic step” method for packing two com-
posite object sequences into a single, combined se-
quence. Second, we show how this basic step can be
employed within different scheduling algorithms to
obtain a playout schedule for multiple objects. More
specifically, we present an algorithm based on Gra-
ham’s list-scheduling method that is provably near-
optimal for monotonic object sequences. We also
suggest a number of optimizations on the base list-
scheduling scheme. Preliminary experimental re-
sults confirm the effectiveness of our approach.

1 Introduction
Next generation database systems will need to provide sup-
port for various forms of multimedia data such as images,

*Part of this work was performed while the first author was visiting
Bell Laboratories.

ton leave from the University of Wisconsin-Madison.
x Partially supported by the National Science Foundation under Grant

111-9157368 (PYI Award), and by grants from IBM, DEC, HP, AT&T,
Informix, and Oracle.

Permission to copy without fee all or part of this material is granted prw-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear. and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise. or to republish.
requires a fee and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

video, and audio. These new data types differ from con-
ventional alphanumeric data in their characteristics, and
hence require different techniques for their organization
and management. A fundamental issue is that digital video
and audio streams consist of a sequence of media quanta
(video frames or audio samples) which convey meaning
only when presented continuously in time. Hence, a mul-
timedia database server needs to provide a guaranteed
level of service for accessing such continuous media (CM)
streams in order to satisfy their pre-specified real-time de-
livery rates and ensure intra-media continuity. Given the
limited amount of resources (e.g., memory and disk band-
width), it is a challenging problem to design effective re-
source scheduling algorithms that can provide on-demand
support for a large number of concurrent continuous media
clients.

An important requirement for multimedia database sys-
tems is the ability to dynamically compose new multimedia
objects from an existing repository of CM streams. Tem-
poral and spatial primitives specifying the relative timing
and output layout of component CM streams provide per-
haps the most powerful and natural method of authoring
such composite multimedia presentations. Thus, to com-
pose tailored multimedia presentations, a user might define
temporal dependencies among multiple CM streams having
various length and display bandwidth requirements. For
example, a story for the evening news can start out by dis-
playing a high resolution video clip with concurrent back-
ground music and narration added after an initial delay. Af-
ter some time into the story, the video screen is split and a
new video clip starts playing on the left half of the screen.
After the second video clip ends, the narration stops and
the story comes to a conclusion with the display of the first
clip and the background music.

In the presence of such composite multimedia objects,
a scheduling algorithm must ensure that the inter-media
synchronization constraints defined by the temporal rela-
tionships among CM components are met. Handling these
synchronization constraints requires a task model that is
significantly more complex than the models employed in
scheduling theory and practice [13, 14, 301. More specifi-
cally, composite multimedia objects essentially correspond
to resource-constrained tasks with time-varying resource
demands. Resource constraints come from the limited
amount of server resources available to satisfy the re-
quirements of CM streams and time-variability stems from
the user-defined inter-media synchronization requirements.
This is a task model that has not been previously studied
in the context of deterministic scheduling theory. Further-

74

more, despite the obvious importance of the problem for
multimedia database systems, our work appears to be the
first systematic study of the problems involved in schedul-
ing multiple composite multimedia objects. We suspect
that this is due to the difficulty of the problems, most
of which are non-trivial generalizations of NP-hard opti-
mization problems. Finally, note that although our discus-
sion in this paper is primarily geared towards composite
objects, our task model also exactly captures the problem
of scheduling the retrievals variable bit rate streams, that
is, CM streams whose bandwidth requirements can vary
over time. This is also a very important application of our
scheduling framework, since real-life CM data is nearly al-
ways variable rate.

To the best of our knowledge, none of today’s multi-
media storage servers offer any clever scheduling support
for composite multimedia presentations. The approach typ-
ically employed is to reserve server resources based on
the maximum (i.e., worst-case) resource demand over the
duration of a composite presentation. Examples of sys-
tems using this worst-case resource reservation method
include the Fellini and CineBlitz multimedia storage
servers developed at Bell Labs [22], Starlight’s StarWorks
(http://www.starlight .com/), and Oracle’s Me-
dia Server (http : / /www . oracle. corn/). Conceptu-
ally, this approach is equivalent to identifying the resource
requirements of the presentation over time with their en-
closing Minimum Bounding Rectangle (MBRJ. Although
this simplification significantly reduces the complexity of
the relevant scheduling problems, it suffers from two major
deficiencies.

l The volume (i.e., resource-time product [16]) in the
enclosing MBR can be significantly larger than the ac-
tual requirements of the composite object. This can
result in wasting large fractions of precious server re-
sources, especially for relatively “sparse” composite
objects.

l The MBR simplification “hides” the timing structure
of individual streams from the scheduler, making it
impossible to improve the performance of a schedule
through clever use of memory buffers.

The only work to address some of the research issues in
scheduling composite multimedia objects is that of Chaud-
huri et al [7] and Shahabi et al. [29]. However, their work
has focused on (1) the use of memory to resolve the prob-
lem of “internal contention”, which occurs when the tem-
poral synchronization constraints cause stream retrievals
for a single object to collide; and, (2) the development of
heuristic memory management policies to distribute a fixed
amount of server memory among multiple competing ob-
jects. More specifically, Chaudhuri et al. suggest a conser-
vative and a greedy heuristic for allocating memory among
multiple binary composite objects, under the assumption
of regular, round-robin striping of component streams [7].
However, extending their heuristics to general, nary ob-
jects appears to be problematic [7]. Shahabi et al. show
how these conservative and greedy methods can be adapted
to the problem of resolving internal contention in a single

nary composite object, again assuming round-robin lay-
out [29]. Although the authors outline some ideas on how
to actually schedule multiple composite objects, they offer
no concrete algorithmic solutions for the problem. Further-
more, their development is based on the assumption of a
round-robin distribution of stream fragments across disks,
whereas we assume a more abstract “black-box” model of
server disk bandwidth.

In this paper, we formulate the resource scheduling
problems for composite multimedia objects and we develop
novel efficient scheduling algorithms, drawing on a number
of techniques from pattern matching and multiprocessor
scheduling. Our formulation is based on a novel sequence
packing problem, where the goal is to superimpose numeric
sequences (representing the objects’ resource needs as a
function of time) within a fixed capacity bin (representing
the server’s resource capacity). We propose heuristic algo-
rithms for the sequence packing problem using a two-step
approach. First, we present a “basic step” method for pack-
ing two object sequences into a single, combined sequence.
Second, we show how this basic step can be employed
within different scheduling heuristics to obtain a playout
schedule for multiple composite objects. More specifically,
we examine greedy scheduling heuristics based on the gen-
eral list-scheduling (,!Z) methodology of Graham [18, 131.
We show that although LS schemes are provably near-
optimal for packing monotonic sequences, they can have
poor worst-case performance when the monotonicity as-
sumption is violated. Based on this result, we: (1) suggest
methods for improving the behavior of simple LS through
the use of extra memory buffers; and, (2) propose a novel
family of more clever scheduling algorithms, termed list-
scheduling with backtracking <cSI3>, that try to improve
upon simple CS by occasional local improvements to the
schedule. Preliminary experimental results with randomly
generated composite objects show that our CS strategy of-
fers excellent average-case performance compared to both
an MBR-based approach and the optimal solution. Finally,
we briefly discuss our ongoing work on how the idea of
stream sharing (i.e., allowing several presentations to share
component streams) can be exploited to improve the qual-
ity of a schedule.

2 Definitions and Problem Formulation

2.1 Composite Objects and Object Sequences

A composite multimedia object consists of multiple CM
streams tied together through spatial and temporal prim-
itives. Since the spatial layout of the output is predeter-
mined by the user and does not affect the resource band-
width requirements of CM streams, we concentrate on the
temporal aspects of CM composition. Following the bulk
of the multimedia systems literature, we also concentrate
on the server disk bandwidth resource which is typically
the bottleneck for multimedia applications [7, 25, 291. To
simplify the presentation, we assume that the stream re-
source demands have been normalized to [0, l] using the
aggregate disk bandwidth of the server B. We also assume
that the time scale is discrete so that both the lengths of

75

CM streams and their lag parameters have integer values.
This is usually the case in practice, since most multimedia
storage servers employ a round-based data retrieval scheme
and thus timing can only be specified at the granularity of
a round’s length, which is typically very small (a few sec-
onds) [25]. Of course, finer-grain synchronization can al-
ways be implemented using extra memory buffering [29].

Following Chaudhuri et al. [7], we define an ni-ary
composite multimedia object Ci as a (2ni - 1)-tuple <
Xi,, Xi,, . . . , Ximi , ti, , . . . , tili > where the Xi, ‘S denote
the component CM streams (m order of increasing start
times) and tij denotes the lug factor of Xij with respect to
the beginning of the display of Xi, (i.e., the beginning of
the composite object). This definition covers the 13 quali-
tative temporal interval relationships of Allen [l] and also
allows us to specify quantitative temporal constraints. Fig-
ure l(a) depicts a 4-ary object corresponding to the news
story example mentioned in Section 1, consisting of two
overlapping video clips with background music and narra-
tion. The height of each stream in Figure l(a) corresponds
to its bandwidth requirement, and the length corresponds
to its duration (in general, the x-axis represents time).

>b : video-2
X3 : music
X2 : narration (a>
XI : video-l

(b)

Figure 1: (a) A 4-ary composite multimedia object. (b) The
corresponding object sequence.

For each component CM stream Xij of Ci, we let Z(Xi,)
denote the time duration of the stream and r(Xij) denote us
resource bandwidth requirements. Similarly, we let Z(Ci)
denote the duration of the entire composite object Ci, i.e.,
Z(Ci) = ma.xj{ti, +Z(Xi,)},andr(Ci,t) denotetheband-
width requirements of Ci at the tth time slot after its start
(0 5 t < Z(Ci)). Table 1 summarizes the notation used
throughout the paper with a brief description of its seman-
tics. Detailed definitions of some of these parameters are
given in the text. Additional notation will be introduced
when necessary.

The bandwidth requirements of our example news story
object can be represented as the composite object sequence
depicted graphically in Figure l(b), where each element
of the sequence corresponds to the object’s bandwidth de-
mand at that point in time (i.e., during that time unit).
Note that the rising and falling edges in a composite object
sequence correspond to CM streams starting and ending,
respectively. Essentially, the object sequence represents
r(Ci, t), that is, the (varying) bandwidth requirements of
the object as a function of time t. Since our scheduling
problem focuses on satisfying the bandwidth requirements
of objects, we will treat the terms “composite object” and

Parameter
l3

T
Ci

I(;;
r(Ci, t)

rmaI: (Ci)

l(Xi,) . r(it)

ki

(Zil , rij)

V(Ci)

d(Ci)

Table 1: Notation

Semantics
Aggregate server disk bandwidth
(in bits per set-bps)
Length of a time unit (i.e., round) (in set)
Composite multimedia object
Number of component streams in C;
Length (i.e., time duration) ‘of C;
Bandwidth requirement of Ci at time
slot t (0 5 t < 1(C))
Maximum bandwidth requirement of C,
The jth component stream of Ci
Length and bandwidth requirement of
stream Xi,
Number of constant bandwidth “blocks”
in the run-length compressed form of Ci
Length and bandwidth requirement of
the jth run-length “block” of Ci
Volume (i.e., resource-time product) of Ci
Density of C;

“sequence” as synonymous in the remainder of the paper.

Typically, CM streams tend to last for long periods of
time. This means that using the full-length, Z(C)-element
object sequence for representing and scheduling a compos-
ite multimedia object is a bad choice for the following two
reasons. First, these full-length sequences will be very long
(e.g., a 2-hour presentation will typically span thousands
of rounds/time units). Second, full-length object sequences
will be extremely redundant and repetitive since they only
contain a small number of transition points. For our pur-
poses, a more compact representation of composite objects
can be obtained by using the run-length compressed form
of the object sequences [3]. Essentially, the idea is to par-
tition the composite object into “blocks” of constant band-
width requirement and represent each such block by a pair
(Zij , rij), where rij represents the constant requirement of
the object over a duration of Ii, time units. This process
is shown graphically in Figure l(b). Thus, we can rep-
resent the n-ary composite object Ci in a compact man-
ner by the sequence: < (Zi,, ril), . . . , (Zi,, , ribi) >, where
Ici << Z(C;). In fact, Ici 5 2 * ni - 1, where ni is the
number of component CM streams in Ci.

We define the volume (V) of a composite object Ci as
the total resource-time product over the duration of Ci [161.
More formally, V(Ci) = CSL1 Zij ri, . The density (d) of
a composite object C; is defined as the ratio of the ob-
iect’s volume to the volume of its MBR, i.e., d(C;) =

2.2 Using Memory to Change Object Sequences:
Stream Sliding

Although inter-media synchronization constraints com-
pletely specify the relative timing of streams at presentation

76

time, the scheduler can use extra memory buffers’ to alter
an object’s retrieval sequence. The idea is to use additional
memory to buffer parts of streams that have been retrieved
before they are actually needed in the presentation and
play them out from memory at the appropriate time. This
method, termed stream sliding, was originally introduced
by Chaudhuri et al. for resolving internal contention un-
der the assumption of round-robin striping [7]. The general
method is depicted in Figure 2(a) which shows our example
4-ary news story object with the second video clip (stream
X4) upslided by 5 time units. In this example, the server
needs to use an extra z-T.B.r(X4) bits of memory in order
to support the object playout as required by the user (Fig-
ure l(a)). Since it is possible for the amount of upsliding to
exceed the actual length of the stream (i.e., z > 1(X4)), the
general expression for the amount of memory required to
upslide X4 by 2 is min{z, 1(X4)} VT. B. r(X,). This ex-
pression says that if z > 1(X1), then we only need enough
memory to buffer the entire stream X4. (Note that multi-
plying by the server bandwidth B is necessary, since r() is
normalized using B.)

x - : stream retrieval
:I:::::: : stream playout

(a)

Figure 2: Upsliding (a) and downsliding (b) stream X4.

Similarly, the server may also choose to downslide a
stream, which means that the retrieval of the stream starts
after its designated playout time in the presentation (Fig-
ure 2(b)). Downsliding introduces latency in the com-
posite object presentation, since it is clearly impossible to
start the playout of a stream before starting its retrieval.
Thus, in Figure 2(b), the entire presentation must be de-
layed by y time units. This also means that once a stream
is downslided, all the other srreams must be buffered unless
they are also downslided by the same amount. Because of
these two problems upsliding is preferable to downsliding,
whenever both options are available [7,29].

2.3 Our Scheduling Problem: Sequence Packing

Given a collection of composite objects to be scheduled
using the server’s resources, a schedule is an assignment of
start times to these objects so that, at any point in time, the
bandwidth and memory requirements of concurrent presen-
tations (to, perhaps, different users) do not violate the re-
source capacities of the server. In this paper, we concen-

1 Assuming round-based retrieval of streams with a round length of T,
each stream Xij requires a minimum buffering of 2. T. B. r (X; j) during

its retrieval [25].

trate on the problem of OF-line makespan (i.e., response
time) minimization, in which the objective is to minimize
the overall schedule length for a given collection of ob-
jects (i.e., tasks) [13, 181. Prior scheduling theory research
has shown how to employ solutions to this problem for
both on-line response time minimization (where tasks ar-
rive dynamically over time) and on-line average response
time minimization [6, 19,301.

Ignoring the flexibilities allowed in stream synchroniza-
tion through additional memory buffering (i.e., sliding),
the bandwidth requirements of each object to be scheduled
are completely specified by its resource demand sequence
(Figure l(b)). Thus, assuming sliding is not an option, our
scheduling problem can be abstractly defined as follows.

l Given: A collection of (normalized) composite object
sequences {Ci} over [0, 11.

l Find: A start time slot s(C;) for each i, such that for
each time slot t

c r(G t - s(G)) _< 1,
{C;:S(Ci)<t<S(Ci)+l(C,)}

and maxi{s(Ci) + Z(Ci)} is minimized.

Conceptually, this corresponds to a sequence packing prob-
lem, a non-trivial generalization of traditional NP-hard
optimization problems like bin packing and multiprocessor
scheduling that, to the best of our knowledge, has not been
previously studied in the combinatorial optimization liter-
ature [9, 10, 18, 131. In bin packing terminology, we are
given a set of items (normalized object sequences) that we
want to pack within unit-capacity bins (server bandwidth)
so that the total number of bins (makespan, used time slots)
is minimized. Our sequence packing problem also gener-
alizes ,multi-dimensional bin packing models known to be
intractable, like orthogonal rectangle packing [4, 5, 111 (a
rectangle is a trivial, constant sequence) and vector pack-
ing [14, 211 (vectors are fixed length sequences with start
times restricted to bin boundaries). Note that rectangle
packing algorithms are directly applicable when the MBR
simplification is adopted. However, it is clear that this sim-
plification can result in wasting large fractions of server
bandwidth when the object densities are low. Given the in-
adequacy of the MBR simplification and the intractability
of the general sequence packing formulation, we propose
novel efficient heuristics for scheduling composite object
sequences using a combination of techniques from pattern
matching and multiprocessor scheduling.

Sliding further complicates things, since it implies that
the scheduler is able to modify the composite object se-
quences at the cost of extra memory. Given a set of object
sequences and a finite amount of memory available at the
server, the problem is how to utilize memory resources for
sliding various object streams around (i.e., modifying the
object sequences) so that the scheduler can effectively min-
imize some scheduling performance metric such as sched-
ule length or average response time. This is obviously a
very complex problem that, in many ways, generalizes re-
cently proposed malleable multiprocessor scheduling prob-
lems [32]. The general sliding problem, as outlined above,

77

has yet to be addressed in the scheduling or multimedia lit-
erature.

Our results for the sequence packing problem indicate
that simple, greedy scheduling algorithms based on Gra-
ham’s list-scheduling method [181 can guarantee provably
near-optimal solutions, as long as the sequences are mono-
tonic. On the other hand, we show that list-scheduling can
perform poorly when the monotonicity assumption is vi-
olated. Based on this result, we examine the problem of
exploiting extra memory and sliding to make object se-
quences monotonic. Although this problem is itself N/p-
hard, we propose a polynomial-time approximate solution.

3 Algorithms for Sequence Packing

Our approach is based on the observation that the result of
packing a subset of the given object sequences is itself an
object sequence. Thus, we begin by presenting a “basic
step” algorithm for obtaining a valid packing of two se-
quences. We then show how this method can be employed
within two different scheduling heuristics to obtain a play-
out schedule for multiple composite objects.

3.1 The Basic Step: Packing ‘&JO Sequences

Our basic algorithmic step problem can be abstractly de-
scribed as follows. We are given two (normalized) object
sequences C, (a new object to be scheduled) and C, (the
partial schedule constructed so far) over [0, 11. We want
to determine a valid packing of the two sequences, that is,
a way to superimpose C, over C, that respects the unit
capacity constraint (i.e., all elements of the combined se-
quence are less than or equal to 1). Given that our overall
scheduling objective is to minimize the length of the re-
sulting composite sequence, the presentation of this sec-
tion assumes a “greedy” basic step that searches for the
jirst point of C, at which C, can be started without caus-
ing capacity constraints to be violated. Since, as we ar-
gued in Section 2.1, the full-length representation of the
object sequences is very inefficient we assume that both
object sequences are given in their run-length compressed
form. That is, C, =< (ZOl,~,l), . . . , (Zok,,rog,) > and
C, =< (lP1, rP1), . . . , (&, rPb,) >. In Figure 3, we
present an algorithm, termed FINDMIN, for performing the
basic sequence packing step outlined above. FINDMIN
is essentially a “brute-force” algorithm that runs in time
O(lc, . kp), where k,, k, are the lengths of the compressed
object sequences.

Since our composite obect sequences can be seen aspat-
terns over the alphabet [0, 11, it is natural to ask whether or
not ideas from the area of pattern matching can be used
to make our basic algorithmic step more efficient. As in
most pattern matching problems [3], the requirement that
all “characters” of both patterns must be examined imposes
a linear, i.e., O(k,+k,) (since we are dealing with the com-
pressed representations), lower bound on the running time
of any algorithm. The question is whether or not this lower
bound is attainable by some strategy. An equivalent for-
mulation of our basic step packing problem comes from

Algorithm FINDMIN(C,, C,)

Input: Sequences c,, C, over [0, l] in run-length compressed
form (i.e., c0 =< (lol,rol), . . . , (lO~O,~OJ > and
‘P =< k’l? ‘PI)> ’ ’ ’ 9 @P,cP 7 rPkp) >)*

Output: The least 0 5 k 5 I(C,) such that C, can be validly
superimposed over C, starting at time slot k.

1. For each constant bandwidth block < l,, , rO, > of C,,
determine the set of feasible starting points S,, for <
l,, , rO, > over C,. For a given j, this can be. done in time
O(k,) and the result is a union of mj = O(k,) disjoint
temporal intervals:

where bj,j = 00 (at the end of the current partial schedule
CP,.

2. Let II = SoI and lprev = 0. Forj = 2 to k, do

2.1. Set lprev = lprev + l,,-, and

Ij = Ij-1 fl ([aj, - lpwvtbjl - lptev) U . . .
U[ajmJ - lprev, bjmj - lprev)).

Let ISI denote the number of intervals in S. Since the inter-
vals in the unions Soj are disjoint and in sorted order, each
intersection 13 can be computed in time 0(Ilj-11 + IS+ I)
using a MERGE-like algorithm, and a simple argument can
establish that IIjl 5 min{lZj-11, IS,,I} = O(k,).

3. At this point, I&, contains the entire set of feasible starting
time slots for C,. Return the earliest slot in Ih, .

Figure 3: Algorithm FINDMIN

considering the complementary sequence G of the par-
tial schedule C,, which informally, corresponds to the se-
pnce of free server bandwidth over time. More formally,
C, is determined by defining T(G, t) = 1 - r(C,, t), for
each time slot t. Thus, our problem is equivalent to find-
ing the earliest time slot at which C,, is completely “cov-
ered”/dominated by G (Figure 4(a)). This is a problem
that has received some attention from the pattern match-
ing research community. Amir and Farach define the
above problem for uncompressed patterns as the “smaller
mutching” problem and give an algorithm that runs in

time 0 (Z(C,) . m.logZ(C,)), where 10 denotes
uncompressed sequence lengths (Table 1) [2]. Muthukr-
ishnan and Palem show that this is in fact a lower bound on
the time complexity of the problem in a special, yet power-
ful convolution-based model; their result implies that faster
algorithms for the smaller matching problem would imply
a faster method than the Fast Fourier Transform for certain
generalizations of convolutions [24]. None of these papers
addressed the problem when the run-length compressed
forms of the patterns are used. Furthermore, it is not
clear whether the rather complicated algorithm of Amir and
Farach will outperform a straightforward O(Z(C,) .1(C,))
solution in a practical implementation 1121. Finally, even

78

if the “optimal” method of Amir and Farach could be ex-
tended to run-length compressed patterns, the asymptotic
performance improvement with respect to FINDMIN would

only be 0(&j, a small gain since the number of streams
in a single composite object k, is typically bounded by a
small constant.

(b) (c)

Figure 4: (a)The “smaller matching” analogy. (b) A col-
lision with a bitonic C,. (c) Resolving the collision by
align-ing (Algorithm BITONIC-FINDMIN).

Thus, prior results from the pattern matching commu-
nity assure us that our “brute-force” FINDMIN algorithm
is a reasonably good strategy for the basic sequence pack-
ing step for general object sequences. However, for spe-
cial cases of object sequences (C,,), we may still be able to
come up with faster algorithms. We now present such an
algorithm for the special case of bitonic object sequences.
Informally, a sequence is bitonic if it can be partitioned into
a monotonically increasing prefix followed by a monotoni-
cally decreasing prefix. This means that no new component
streams can be initiated after the end of a stream in the pre-
sentation. Although one can argue that bitonic objects are
rather common in multimedia practice (e.g., our example
news story composite object shown in Figure 1 is bitonic),
our method can also be used within more complex basic
step algorithms for general sequences. The idea is to par-
tition objects into a (small) number of bitonic components
and schedule each component using our improved strategy
for bitonic objects. We will not pursue this idea further in
this paper.

The basic operation of our improved algorithm for
bitonic objects is similar to that of the Knuth-Morris-Pratt
string matching algorithm, in that it shifts the C, pattern
over C, until a “fit” is discovered [20]. The crucial ob-
servation is that, for bitonic C, patterns, we can perform
this shifting in an efficient manner, without ever having
to backtrack on C,,. This is done as follows. Consider a
particular alignment of C, and C, and let (lpj, rpj) be the
first block of C, at which a “collision” (i.e., a capacity vi-
olation) occurs. Then the earliest possible positioning of
C, that should be attempted (without losing possible inter-
mediate positions) is that which aligns the right endpoint
of block (lpj, rpj) with that of block (Zoij , roij), where ij
is the index of the latest block in the increasing segment
of C, such that,r,, + roZj 5 1. We denote this align-
ment operation by align (j, ij) . An example is depicted
in Figure 4(b,c). To make the presentation uniform, we
assume the existence of a zero block for both sequences,
with I,, = 1,, = 0. Our improved basic step algorithm
for bitonic C,, termed BITONIC-FINDMIN, is depicted in
Figure 5.

The time complexity of algorithm BITONIC-FINDMIN

Algorithm BITONIC-FINDMIN(C,, CJ

Input: Sequences C,, C, over [0, 1) in run-length compressed
form (i.e., C, =< (lol,rol), . . . , (lob,,r,J > and
C, =< (lPl,rPI), . . . , (lpkp ,rpLp) >). Sequence C, is
assumed to be bitonic.

Output: The least 0 5 k 5 1(C,) such that C, can be validly
superimposed over C, starting at time slot k.

1. Preprocess C, to obtain a “partial sums” vector
Sj=Cjm=iI,,forj=l,..., k,.

2. Initialize: align (O,O), j = i = O,l,,, = 0.
3. while (I,,, < 1(G)) do

3.1. Find the least ij such that ai, - 1,,, _> lpj.
3.2. To check for a collision at block (Ipj, rpj) we distin-

guish two cases.
l C, is decreasing after l,,,. (We just need to check
the first block of C, placed over (I,,), rpj).) If rpj +
roij 5 1 (i.e., no collision) then set l,,, = I,,, + ipi,
j = j + 1, i = ij . Else, find the largest block index m
in the increasing part of C, such that ro, 5 1 - rp,,
shiftC,,toalign(j,m),andseti=m,j=jfl,
1 cov = sm.
l C, is increasing after I,,,. If the block index ij is
in the decreasing part of f?,, then check if rpj +
rmoz(Co) 5 1, otherwise check if rp, + rO,j 5 1. If
the condition holds set l,,, = 1,,, + Ip, , i = j + 1,
i = ij. Else, find the largest block index na in the
increasing part of C, such that To,,, 5 1 - rpj , shift
Co to align (j, ml, and set i = m, j = j + 1,
1 cow = &I.

4. Return the starting time slot for the current placement of C,.

Figure 5: Algorithm BITONIC-FINDMIN

is 0 (k, + kp . log IF,). The first term comes from the pre-
processing step for C,. The second term is based on the ob-
servation that both the partial sums vector aj and the band-
width requirements vector for the increasing segment of C,,
are sorted, which means that the “find the least/largest in-
dex s.t. <condition>” steps of BITONIC-FINDMIN can be
performed in time O(log k,), using binary search. More
elaborate search mechanisms (e.g., based on Thorup’s pri-
ority queue structures [3 11) can be employed to reduce the
asymptotic complexity2 of BITONIC-FINDMIN to O(k, +
kp . log log ko).

3.2 A Lit-Scheduling Algorithm

We present a heuristic algorithm that uses the basic pack-
ing step described in the previous section in the man-
ner prescribed by Graham’s greedy list-scheduling strategy
for multiprocessor scheduling 1181. The operation of our
heuristic, termed CS, is as follows. Let L be a list of the
composite object sequences to be scheduled. At each step,

2Note, however, that the practicality of such search structures for the
small domains encountered in this paper is questionable [23].

79

the CS algorithm takes the next object from L and (using
FINDMIN or BITONIC-FINDMIN) places it at the earliest
possible start point based on the current schedule. Note that
this rule is identical to Graham’s list-scheduling rule for
an m-processor system, when all objects have a constant
bandwidth requirement of l/m throughout their duration.

Unfortunately, this simple list-scheduling rule does not
offer a good guaranteed worst-case bound on the subopti-
mality of the obtained schedule. Even for the special case
of bitonic objects, it is easy to construct examples where
the makespan of the list schedule is R(min{l, IL]}) times
the optimal makespan, where 1 LI is the number of objects
and 1 is the length (in rounds) of an object sequence. One
such bad example for CS is depicted in Figure 6. Note that
as the example object sequences become more “peaked”,
the behavior of CS compared to the optimal schedule be-
comes even worse. However, even for this bad example,
LS will behave significantly better than MBR scheduling,
which would not allow any overlap between consecutive
“columns” in the schedule.

all objects:

E ’
(a) (b)

Figure 6: A “bad” example for CS: (a) Schedule produced
by LS. (b) Optimal schedule.

Thus, in the worst case, the behavior of ,%S can be arbi-
trarily bad compared to the optimal schedule. Furthermore,
note that since all the objects in the example of Figure 6 are
identical, ordering the list L in any particular order (e.g., by
decreasing object “height”) will not help worst-case behav-
ior. Assuming the maximum resource requirements of ob-
jects (i.e., rmaz(Ci)‘s) to be bounded by some small con-
stant (a reasonable assumption for large-scale CM servers)
also does not help, as long as the objects are sufficiently
“peaky”. However, as the following theorem shows, the
situation is much better when the object sequences in L are
appropriately constrained. As with all theoretical results
presented here, Theorem 3.1 is stated without proof due to
space constraints. The details can be found in the full ver-
sion of this paper [17].

Theorem 3.1 Let L be a list of monotonically non-
increasing composite object sequences Ci and assume that
Tmoz(Ci) 5 X < 1, for each i. Also, let Imar =
maxi{l(Ci)} and V(L) = ciV(Ci) (i.e., the total VOI-

ume in L), and let ToPT(L) be the makespan of the opti-
mal schedule for L. Then, the makespan returned by ~5.5,
Tcs (L), satisfies the inequality

TU(L) I V(L) l-x + La, CL) I (1+ &) . TOP@).

Cl

It is easy to see that a slightly modified version of LS
can guarantee the same worst-case performance bound for

any list of monotonically non-decreasing objects, as well.
The basic idea is to “time-reverse” each object sequence
and schedule these reversed (non-increasing) sequences us-
ing CS. Of course, the schedule obtained is then played
out in reverse (i.e., from end to start). We can combine
these observations with algorithm CS to obtain the fol-
lowing simple strategy, termed Monotonic LS (MU),
for scheduling monotonic objects. First, schedule all non-
increasing sequences using ICS. Second, reverse all re-
maining objects and schedule them using CS. Third, con-
catenate the two schedules. It is easy to prove the following
corollary.

Corollary 3.1 For any list L of monotonic composite ob-
jects Ci with rmaz(Ci) < X < 1, for each i, algorithm
MCS guarantees a makespan TM~~(L) such that

TMLS(L) 5
V(L) l-x +2.z,,, (L) I (2 + A) .TOPT(L).

cl

With respect to the time complexity of our list-
scheduling algorithms, it is easy to see that the decisive
factor is the complexity of the basic packing step discussed
in Section 3.1. Using the FINDMIN algorithm for gen-
eral object sequences implies an overall time complexity
of C(N2), where N = &EL 1zi is the total number of
streams used in L. If all the sequences are bitonic or mono-
tonic, BITONIC-FINDMIN can be used giving an overall
time complexity of O(N . JLJ . log fi). (Note that that the
number of composite objects IL1 is smaller than the num-
ber of streams N and the average number of streams per
object fi is typically a small constant.)

3.3 Improving over MBRs: Monotonic Covers

Informally, we define a monotonic cover of a composite
object Ci as another composite object Ci that (a) is mono-
tonic, and (b) completely “covers” Ci at any point in time.
More formally:

Definition 3.1 A monotonic cover for Ci =< (li,, Til),
* * f 7 (lihi 7 rik,) > is an object L’i =< (Zi, , fi,), . . . ,

(1. tk , T^ik.) > such that l’i, 2 Tij for each j and T^;] 2 Pij+l
for> = i,... , ki - 1 or ii, 5 Fij+l for j = 1,. . . , ki - 1.

Corollary 3.1 suggests an immediate improvement over
the simplistic MBR assumption for scheduling compos-
ite multimedia objects: Instead of using the MBR of an
object Ci, use a minimal monotonic cover of Ci, that
is, a monotonic cover that minimizes the extra volume.
List-scheduling the monotonic covers of composite objects
(using MCS) is an attractive option because of the fol-
lowing two reasons. First, compared to scheduling the
object sequences unchanged, using the covers implies a
simpler placement algorithm (a special case of BITONIC-
FINDMIN), with reduced time complexity. Second, com-
pared to using MBRs, minimal monotonic covers can sig-
nificantly reduce the amount of wasted volume in the cover.
(Note that a MBR is itself a trivial monotonic cover.) For

80

example, in the case of a bitonic object, a minimal mono-
tonic cover wastes at most half the volume that would be
wasted in an MBR cover. Also note that the minimal mono-
tonic cover of a compressed composite object sequence can
be easily computed in linear time.

3.4 Utilizing Server Memory: Stream Sliding

A different way of employing our near-optimality results
for list-scheduling in the case of monotonic objects is
through the use of the stream sliding techniques described
in Section 2.2. The idea is to use extra server memory to
turn non-monotonic object sequences into monotonic ones.
In this section, we attack the problem of efficiently utiliz-
ing server memory to make composite object sequences
monotonic. More specifically, we concentrate on the use
of stream upsliding to convert an object sequence to a non-
increasing sequence with minimal extra memory. Our tech-
niques are also applicable to the dual problem (i.e., making
sequences non-decreasing by stream downsliding). How-
ever, as we discussed in Section 2.2, downsliding intro-
duces latencies into the schedule and should therefore be
avoided. Possible techniques that combine both upslid-
ing and downsliding are left as an open problem for future
work.

A straightforward way of making an object sequence
non-increasing is to simply upslide all streams with a non-
zero lag to the beginning of the composite object (Fig-
ure 7(a,b)). Given an object Ci, this naive approach will ob-
viously require a total memory of B. ‘& ltij . rij, where
we define ltij = min{l(Xi,), tij} (Section 2.2). However,
we might be able to do significantly better than that. The
idea is that, depending on the object’s structure, it may be
possible for some stream to “shield” the starting edge of
another stream, without requiring the second stream to be
upslided all the way to the beginning of the object. This
is depicted graphically in Figure 7(c). Note that the use of
such clever upsliding methods not only reduces the amount
of memory required for making the object monotonic, but
it also reduces the maximum bandwidth requirement of the
object (i.e., rmraz (Ci)). Th is is obviously important since
it implies smaller X’s in Theorem 3.1 and, consequently,
better worst-case performance guarantees for CS.

(b)

x2-x5\ /” Cd) a
Figure 7: (a)A 5-ary composite object C. (b) “Naive”
stream upsliding. (c) “Clever” stream upsliding. (d) The
shield graph of C. (Thick lines indicate the matching used
in (c).)

Unfortunately, as the following theorem shows, this

problem of optimal (i.e., minimum memory) stream ups-
liding is Np-hard. This result can be proved using the
observation that each stream can “shield” multiple streams
to give a reduction from PARTITION [151.

Theorem 3.2 Given a composite object sequence Ci, de-
termining an optimal (i.e., minimum memory) sequence of
stream upslides to make Ci non-increasing is h/p-hard. q

Given the above intractability result, we now propose a
simple heuristic strategy for improving upon the naive “up-
slide everything” method. Our solution is based on the fol-
lowing definition that simply states the above observations
in a more formal manner.

Definition 3.2 Consider a composite object Ci. We say
that stream Xij can shield stream Xi, (lc # j) if and only if
Z(Xij) < ti, and r(Xi,) 2 r(Xi,). The benejit of shield-
ing Xi, by Xi, is defined as:

b(j, k) =
i

B * r(Xi,) . (It;, - min{l(X;,), t,, - Z(Xi,)}) ,
if Xij can shield X;,

0 , otherwise

The intuition behind Definition 3.2 can be seen from
Figure 7. The benefit b(j, Ic) is exactly the gain in server
memory (compared to the naive “upslide everything” solu-
tion) by using Xij to shield Xi,. Our heuristic strategy for
stream upsliding uses a edge-weighted graph representa-
tion of the “can shield” relationships in a composite object
Ci. Specifically, we define the shield graph of Ci, SG(C;),
as an undirected graph with nodes corresponding to the
streams Xi, of Ci and an edge ejk between node Xi, and
Xi, if and only if Xi, can shield X;, or X;, can shield
Xii. The weight w() of an edge is defined as the max-
imum.gain in memory (compared to the naive approach)
that can result by utilizing that edge. More formally, we
define “(ejk) = max{ b(j, k) , b(lc, j)).

Our heuristic method for stream upsliding builds the
shield graph SG(Cr) for object Ci and determines a
maximum weighted matching M on SG(C1). Essen-
tially, this matching M is a collection of node-disjoint
edges of SG(Cr) with a maximum total weight w(M) =
CejkEM dhd The maximum weighted matching
problem for SG(C1) can be solved in time C(nf), where
ni is the number of streams in Ci [26]. The edges in M
determine the set of “stream shieldings” that will be used
in our approximate upsliding solution. Furthermore, by
our edge weight definitions, it is easy to see that the the
total amount of memory that will be used equals exactly
Be (C;& lti, . ti,) -w(M), that is, the memory required
by the naive approach minus the weight of the matching.

3.5 Local Improvements to CS: List-Scheduling with
Backtracking (.&!?a)

The problem with the stream sliding approach outlined
in the previous section is that it may often require large
amounts of memory per object that the server simply can-
not afford. In such cases, we are still faced with the gen-
eral sequence packing problem. The results of Section 3.2

81

indicate that using a simple list-scheduling approach for
general object sequences can result in arbitrarily bad se-
quence packings, leading to severe underutilization of the
server’s bandwidth resources. The main problem of ,CS is
that by making greedy (i.e., earliest start time) decisions
on the placement of objects at each step, it may end up
with very “sparse” sequence packings (i.e., schedules with
very poor density). This is clearly indicated in the example
of Figure 6. Thus, it appears that a better scheduling rule
would be, instead of trying to minimize the start time of the
new object in the current schedule, try to maximize the den-
sity of the final, combined sequence. However, maximizing
density alone also does not suffice. Returning to the exam-
ple of Figure 6, it is fairly easy to see that the placement that
maximizes the density of the final object is one that simply
juxtaposes all the object peaks (i.e., never places one peak
on top of another). Since our goal is to minimize the over-
all schedule length, this is not satisfactory. Instead of trying
to maximize density alone, the scheduler should also make
sure that the entire bandwidth capacity of the server (i.e.,
height of the bin) is utilized. (Note that using the server’s
bandwidth capacity instead of rmas to define object density
does not help; since the bandwidth is fixed, placing objects
to maximize this new density is equivalent to trying to max-
imize their overlap with the current schedule, i.e., the LS
rule.)

In this section, we propose a novel family of schedul-
ing heuristics for sequence packing, termed list-scheduling
with k-object backtracking (LSB(/c)). Informally, these
new algorithms try to improve upon simple LS by occa-
sional local improvements to the schedule. More specifi-
cally, the operation of LSB(lc) is as follows. The algorithm
schedules objects using simple CS, as long as the incom-
ing objects can be placed in the current schedule without
causing the length of the schedule to increase. When plac-
ing a new object results in an increase in the makespan,
LSB(/c) tries to locally improve the density of the sched-
ule and check if this results in a better schedule. This is
done in four steps. First, the last Ic objects scheduled are
removed from the current schedule. Second, these k object
sequences are combined into a single sequence in a man-
ner that tries to maximize the density of of the resulting
sequence. Third, the “combined” sequence is placed in the
schedule using simple CS. Finally, the length of this new
schedule is compared to that of the original schedule, and
the shorter of the two is retained. The second step in the
above procedure can be performed using a slightly modi-
fied version of FINDMIN (Figure 3). The main idea is to
maintain some additional state with each interval of candi-
date start times (step 1) and update this state accordingly
when taking interval intersections (step 2). We term the
resulting basic step algorithm FINDMIN-D. Similar mod-
ifications can also be defined for the BITONIC-FINDMIN
algorithm for bitonic object sequences C,. The complete
,CSa(k) algorithm is depicted in Figure 8.

Figure 9 shows the operation of the CSB(3) algorithm
on our “bad” example for CS (Figure 6). More specifi-
cally, Figure 9(a) shows the schedule after the placement of
the 5th object, at which point the algorithm is first forced

Algorithm LSf?(k , L)

Input: A list of composite object sequences
L=<C 1, . . . , C,, > and a backtracking parameter k.

Output: A valid packing of the object sequences in L.

1. SetT -o,c, =0. curr -
2. Fori=ltondo

2.1. Schedule C; at time slot FINDMIN(Ci,Cp). Let
T’ C”TP be the length of the resulting schedule.

2.2. If TfUTc = T,,,, continue. Else, do the following.
2.2.1. Remove Ci and the last k - 1 objects from C,,.

(If k exceeds the number of objects in C,, re-
move all objects from C,.)

2.2.2. Set C = 8 and schedule each object Cj removed
from C, using FINDMIN - D(Cj, C).

2.2.3. Schedule C over the remaider of C, using
FINDMIN(C;, C,). Let Tfl,, he the length of
the resulting schedule.

2.2.4. If T’ < T&.,, set Tcurr = Tf,,,, restore curr -
the original C,, and continue with the next Ci.
Else, leave C, as is, set T,,,, = T&, record
that C is now a single object, and continue with
the next Ci .

Figure 8: Algorithm LSf?

to backtrack, trying to locally improve schedule density.
The result of the improved density packing (after using
FINDMIN-D to combine the last three objects) is depicted
in Figure 9(b). Since this schedule is shorter than the one
in Figure 9(a), it is retained and LSB(3) goes back to us-
ing CS. Figure 9(c) shows the schedule after CS places
the 6th and 7th objects. Finally, Figure 9(d) shows the final
schedule obtained by CSB(3), which is in fact the optimal
schedule. Further, note that GD(3) had to backtrack only
once during the whole scheduling process.

(a) (b) CC)

Figure 9: LSB(3) in action: (a)The point of the first back-
tracking. (b) The locally improved schedule. (c) Placing
the next two objects. (d) The final (optimal) schedule.

The extra effort involved in backtracking to improve
schedule density translates to increased time complexity for
CSB(k) compared to simple LS. Specifically, the com-
plexity of of LSD(k) can be shown to be O(lLI . N2),
where 1~51 is the number of objects to be scheduled and N
is the total number of component streams. This, of course,
assuming general object sequences that cannot employ the
more efficient basic step algorithms.

82

4 Experimental Study
In this section, we present the results of several experi-
ments we have conducted in order to compare the average-
case performance of our composite object scheduling algo-
rithms with that of (a) schedulers based on the MBR simpli-
fication; and, (b) the optimal schedule. Given the increased
complexity of our algorithms compared to simple MBR
packing, another interesting issue is the cost/benefit trade-
off involved in choosing a more elaborate scheduler. We
start by presenting our experimental testbed and methodol-
ogy*

4.1 Experimental Testbed

We have experimented with the following algorithms:

l CS: Greedy, list-based scheduling of composite mul-
timedia objects.

l MBR(FFDH): Level-based scheduling of compos-
ite multimedia objects using the MBR simplification
and the First-Fit-Decreasing-Height (FFDH) rectangle
packing method of Coffman et al. [111.

We selected the level-based FFDH rectangle packing algo-
rithm since it is known to be one the best-performing rect-
angle packing methods, both in theory and in practice [11,
9, 51. The average performance of CS was compared to
that of MBR(FFDH) in order to understand the poten-
tial performance benefits of using more clever scheduling
techniques to avoid the MBR simplification. We also com-
pared the performance of the two algorithms to a lower
bound on the response time of the optimal execution sched-
ule. This lower bound (ABOUND) was estimated using
the formula ABOUND = ma,x{ Z,,,(L), V(L) }, where
L is the list of objects to be scheduled, Z,,,(L) is the max-
imum object length in L, and V(L) is the total volume of
all objects in L.

We experimented with randomly generated composite
objects, obtained with the following procedure. First, the
length and bandwidth requirement of the first (i.e., with
zero lag) stream of the object was selected randomly from
a set of possible lengths and rates (see Table 2). Second,
the number of additional component streams was chosen
randomly between 0 and 7. Third, for each of the addi-
tional streams a length and bandwidth demand was again
randomly selected, and a starting point (i.e., lag) was ran-
domly chosen across the length of the first stream. This
scheme ensures that our objects are continuous, i.e., they
have no gaps in the presentation. Note that the MBR as-
sumption is particularly bad for objects with gaps, whereas
our LS algorithm can handle these bandwidth gaps and use
them effectively to schedule other objects. Thus, we expect
CS to outperform MBR-schemes by an even larger mar-
gin when non-continuous objects are allowed. Other than
the continuity restriction, note that the “shape” of the ob-
ject sequences obtained with the above procedure is com-
pletely general; that is, it is not constrained to be bitonic,
monotonic, etc.

The number of objects to be scheduled varied between
400 and 1400, and the server bandwidth ranged between

40 and 400 Megabits per second (Mbps). For each choice
of the number of objects, ten different object lists L were
generated, randomly using the procedure described above
for each object. We used two performance metrics in our
study of CS and MBR(FFDH): (1) the average re-
sponse time of the schedules produced by the two algo-
rithms over all lists of the same size; and, (2) the aver-
age performance ratio defined as the response time of the
schedules produced by the algorithms divided by the cor-
responding lower bound and averaged over all lists of the
same size. (The results presented in the next section are in-
dicative of the results obtained for all values of the number
of objects and server bandwidth.)

In all experiments, stream bandwidth demands were
chosen from a discrete set of choices, ranging from 62.5
Kbps (e.g., low-quality audio) to 5 Mbps (e.g., MPEG-
2 quality video). Similarly, the choice of stream lengths
ranged between 10 min (e.g., a short audio clip) and 5 hrs
(e.g., a long documentary). Table 2 summarizes the param-
eter settings used in our experiments.

Table 2: Experimental Parameter Settings

1 Experimental Parameter] Value I
[Aggregate Server Disk Bandwidth 1 40Mbps - 4OOMbps

(inMegabits Per set - Mbps)
Number of Composite Objects 400-1400
Number of Streams Per Object l-8
Set of Possible Stream Lengths f 10 * 20.30.60.90.
(in min) ’ 120,1s0,240;300}
Set of Possible Stream Bandwidth { 0.0625 ,0.125 , 1 ,
Requirements (in Mbps) 1.5,2,3,4,5}

4.2 Experimental Results

Figure 10(a) depicts the average response time (in minutes)
of the schedules produced by LS and Mf?‘R(FFDH) for
1000 random composite objects. Our numbers show that
CS consistently outperformed MBR(FFDH) over the
entire range of available server bandwidth, offering rela-
tive improvements in the range of 50%-55%. That is, LS
managed to cut down the schedule response time to less
than half of that obtained by MB’R(FFDH). The av-
erage density of the composite objects created during this
experimental run was 0.461448, i.e., on the average, more
than half of an object’s MBR was “empty”. Thus, although
MBR(F F D H) does a very good job of packing the given
rectangles, it is still bounded by the inherent inefficiency of
the MBR simplification. On the other hand, LS takes ad-
vantage of the object shapes and irregularities to achieve
better densities in the final schedule and, consequently, im-
proved schedule response times.

The average performance ratios of CS and
Mf?R(FFDH) obtained over the same experimental run
(i.e., with 1000 composite objects) are shown in Fig-
ure 10(b). Figure 1 l(a) shows the average performance ra-
tios of the two algorithms as a function of the number of
objects for a fixed amount of server bandwidth (2OOMbps).
Note that the performance of CS is consistently within less

83

50 100 150 200 250 300 350 400
Sewer Bandwidth (Mbps)

2.6

2.6
p
a” 2.4

8 2.2
5
E 2 z 2 1.6

4 1.6
B

P
1.4

1.2

1

1000 Composite Objects

MBR(FFDH ABOUND -
L ZL LBOUND -*--..

- - ------I

+..- *___ *._.______..r__ ..__. _..__...*.__* . ..-... r-----------*---*
50 100 150 200 250 300 350 400

Saver Bandwidth (Mbps)

Figure 10: (a) Average schedule response times obtained by LS and MBR(FFDH) for 1000 objects. (b) Average
performance ratios of ,CS and MBR(FFDH) for 1000 objects.

than 15% of the lower bound on the optimal response time.
Thus, even though we have shown that simple LS can be
arbitrarily bad under certain worst-case scenarios, our re-
sults show that it offers excellent average-case behavior
(for randomly generated object sequences). Furthermore,
since CS is so close to optimal, the margin of possible im-
provement becomes very limited. Even if more compli-
cated schemes like CSB could offer some improvement on
the average over LS, the potential benefit certainly does
not seem to warrant the extra complexity. It is still possi-
ble, however, that small local perturbations on the greedy
CS schedule, like the ones performed by CSB(k) with a
small backtracking parameter lc, or stream sliding methods
could prove useful to avoid “bad” scenarios. Such scenar-
ios could occur, for example, when object shapes are not
completely random. We intend to investigate this issue in
our future experimental work.

Finally, the table in Figure 1 l(b) shows the run-
ning times of LS and MBR(FFDH) for scheduling
a list of 1000 composite objects. These times were
recorded on a 1OOMhz SUN SPARCstation. As expected,
MBR(FFDH) is significantly faster than LS, since its
complexity is only O(]L] *log IL]), where IL] is the number
of composite objects to be scheduled. On the other hand,
LS is still fast enough for all practical purposes (the aver-
age scheduling time per object is a few milliseconds) and,
as our results have shown, offers dramatically improved
schedules compared to MBR(FFDH).

5 Ongoing Work: Stream Sharing
Until now, we have implicitly assumed that the composite
multimedia objects to be scheduled are disjoint, in the sense
that their component streams correspond to different data
objects in the underlying repository. However, it is quite
possible for distinct composite objects to have one or more
components in common. Examples of such non-disjoint
composite objects range from simple movie presentations,
where the same video needs to be displayed with different
soundtracks (e.g., in different languages), to complex news
stories authored by different users, that can share a number
of daily event clips.

In the presence of such common components, it is possi-
ble that exploiting stream sharing can lead to better sched-

ules. The basic idea is that by appropriately scheduling
non-disjoint composite objects, the streams delivering their
common component(s) can be shared by all the compos-
ite object presentations. Clearly, stream sharing can re-
duce the aggregate resource requirements of a set of non-
disjoint objects and it is easy to construct examples for
which exploiting stream sharing can drastically improve
the response time of a presentation schedule. On the other
hand, stream sharing possibilities also increase the com-
plexity of the relevant scheduling problems. Even simple
cases of the problem (e.g., when all streams and compos-
ite objects are of unit length) give rise to hard scheduling
problems that have not been addressed in the scheduling
literature [8]. The problem becomes even more challeng-
ing when extra memory is available, since stream sliding
and caching techniques can be used to increase the pos-
sibilities for stream sharing across composite objects. Fi-
nally, note that our stream sharing problem also appears
to be related to the problem of exploiting common subex-
pressions during the simultaneous optimization of multiple
queries [27]. However, the use of a schedule makespan
optimization metric (instead of total plan cost) makes our
problem significantly harder to formulate and solve.

6 Conclusions and Future Work
Effective resource scheduling for composite multimedia
objects is a crucial requirement for next generation mul-
timedia database systems. Despite the importance of the
problem, the complexity of the relevant task scheduling
models has limited prior research to very specific sub-
problems. Furthermore, today’s systems typically employ
worst-case (i.e., MBR) assumptions that can lead to se-
vere wastage of precious server resources. In this pa-
per, we have presented a novel sequence packing formu-
lation of the composite object scheduling problem and we
have proposed novel efficient algorithms drawing on tech-
niques from pattern matching and multiprocessor schedul-
ing. More specifically, we have developed efficient “basic
step” methods for combining two object sequences into a
single, combined sequence and we have incorporated these
methods within: (1) a simple, greedy scheduler base on
Graham’s list-scheduling paradigm (CS); and, (2) a more
complex scheduler (LSD) that tries to improve upon sim-

84

2.8 .
Server Bandwidth - 200 Mbps

2.6
MBR(FFDH ABOUND -+--

L k BOUNQ -.+.-.
.s
L

2.4
Time to sct;$etl 1000 objects

I 2
g
0” 1.8

s”

f

2.21 -------!
1.6

1.4

f-~------.-.+ *_..._._ + _..___.____ * ____.._.____ _

pqzgJ=g

1
400 600 Km 1000 1200 1400

No. of Composite Objecls

1.2

Figure 11: (a) Average performance ratios of CS and MBR(FFDH) for 200 Mbps of server bandwidth. (b) Running
times for LX and MBR(FFDH).

ple CS by occasional local backtracking. We have shown
that although simple list-scheduling schemes are provably
near-optimal for monotonic object sequences, they exhibit
poor worst-case performance for general object sequences.
It is exactly this worst-case behavior that LSB has been de-
signed to avoid. On the other hand, our experimental results
with randomly generated objects have shown that simple
LS offers excellent average-case performance compared to
both an MBR-based approach and the optimal solution.

Besides our ongoing work on stream sharing, our future
research plans include: (1) extending our single-resource
environment (i.e., disk bandwidth) for the sequence pack-
ing problem to a multi-resource setting [28, 161, and (2)
exploiting flexible Quality of Service (QoS) specifications
for streams to obtain more effective schedules.

References
[I] J.F. Allen. “Maintaining Knowledge About TemporaJ Intervals”.

Comm. of the ACM, 26(11):832-843, 1983.
[2] A. Amir and M. Farach. “Efficient 2-dimensional Approximate

Matching of Non-rectangular Figures”. In Proc. of the 2nd Annuat
ACM-SIAM Symp. on Discrete Algorithms, January 1991.

[3] A. Apostohco and 2. Galil, eds. “Pattern Matching Algorithms”.
Oxford University Press, 1997.

[4] B.S. Baker, E.G. Coffman, Jr., and R.L. Rivest. “Orthogonal Pack-
ings in Two Dimensions”. SIAM Journal on Compufing, 9(4):846-855,
1980.

[5] B.S. Baker and J.S. Schwarz. “Shelf Algorithms for Two-
Dimensional Packing Problems”. SIAM Journal on Computing,
12(3):508-525, 1983.

[6] S. Chakrabatti, CA. Phillips, A.S. Schulz, D.B. Shmoys, C. Stein,
and J. Wein. “Improved Scheduling Algorithms for Minsum Criteria”.
In Proc. of the 23rd Intl. Colloquium on Automata, Languages, and
Programming (ICALP’96). July 1996.

[7] S.Chaudhuri, S. Ghandeharizadeh, and C. Shahabi. “‘Avoiding Re-
trieval Contention for Composite Multimedia Objects”. In Proc. of the
21st Intl. Co@ on Very Large Data Bases, September 1995.

[8] E.G. Coffman. Personal Communication, February 1998.
[9] E.G. Coffman, Jr., M.R. Gamy, and D.S. Johnson. “‘Approximation

Algorithms for Bin-Packing -An Updated Survey”. In “Algorithm De-
sign for Computing System Design”, pages 49-106. Springer-Verlag,
New York, 1984.

[lo] E.G. Coffman, Jr., M.R. Gamy, and D.S. Johnson. ‘Approxima-
tion Algorithms for Bin-Packing: A Survey”. In “Approximation Al-
gorithms for NP-Hard Problems”, D. Hochbaum (Ed.), pages 46-93.
PWS Publishing, Boston, 1996.

[1 l] E.G. Coffman, Jr., M.R. Gamy, D.S. Johnson, and R.E. Tarjan. “Per-
formance Bounds for Level-Oriented Two-Dimensional Packing Algo-
rithms”. SIAM Journal on Computing, 9(4):808-826, 1980.

[12] M. Farach. Personal Communication, December 1997.

[131 M.R. Gamy and R.L. Graham. “Bounds for Multiprocessor Schedul-
ing with Resource Constraints”. SIAM Journal on Computing,
4(2):187-200, 1975.

1141 M.R. Gamy, R.L. Graham, D.S. Johnson, and AC. Yao. “Resource
Constrained Scheduling as Generalized Bin Packing”. Journul ofcorn-
binatorial Theory (A), 2 1~257-298, 1976.

[15] M.R. Gamy and D.S. Johnson. “Computers and Intractability: A
Guide to the Theory of NP-Completeness”. W.H. Freeman, 1979.

[16] M.N. Garofalakis and Y.E. Ioannidis. “Parallel Query Scheduling
and Optimization with Time- and Space-Shared Resources”. In Proc.
of the 23rd Intl. Conl: on Very Large Data Bases, August 1997.

[17] M.N. Garofalakis, Y.E. Ioannidis, and B. Ozden. “Resource
Scheduling for Composite Multimedia Objects”. Tech. Memorandum
BLOl12330-980225-03TM, Bell Laboratories, February 1998.

[18] R.L. Graham. “Bounds on Multiprocessing Timing Anomalies”.
SIAM Journal on Computing, 17(2):416-429, 1969.

[19] L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein. “Scheduling to
Minimize Average Completion Time: Off-line and On-Iine Approxi-
mation Algorithms”. Mathematics of Operations Research, 22:5 I3-
544.1997.

[20] D.E. Knuth, J.H. Morris, and V.R. Pratt. “Fast Pattern Matching in
Strings“. SIAM Journal an Computing, 6(2):323-350, 1977.

1211 L.T. Kou and G. Markowsky. “Multidimensional Bin Packing Aigo-
rithms”. IBM Journal of Research and Development, September 1977.

[22] C. Martin, P.S. Narayanan, B. &den, R. Rastogi, and A. Silber-
schatz. ,“The Feellini Multimedia Storage Server”. In “Multimedia
Informa?ion Storage and Management”, S.M. Chung (Ed.). Kluwer
Academic Publishers, 1996.

1231 S. Muthukrishnan. PersonaJ Communication, January 1998.
1241 S. Muthukrishnan and K. Palem. “Non-standard Stringology: Algo-

rithms and Complexity”. In Proc. of the 26th Ann& ACM Symp. on
the Theory of Computing, May 1994.

[25] B. &den, A. Biliris, R. Rastogi, and ASilberschatz. ‘A Low-Cost
Storage Server for Movie on Demand Databases”. In Proc. ojthe 20th
Intl. Co@ on Very Large Data Bases, September 1994.

1261 C. Papadimitriou and K. Steiglitz. “Combinatorial Optimization:
Algorithms and Complexiry”. Prentice Hall, Inc., 1982.

[27] T.K. Sellis. “Multiple-Query Optimization”. ACM Trans. on
Database Systems, 13(1):23-52, 1988.

[28] H. Shachnai and J.J. Turek. “Multiresource Malleable Task Schedul-
ing”. Unpublished Manuscript, July 1994.

[29] C. Shahabi, S. Ghandeharizadeh, and S. Chaudhuti. “On Scheduling
Atomic and Composite Multimedia Objects”. Tech. Report USC-CS-
95-622, Univ. of Southern California, 1995. (To appear in IEEE Trans.
on Knowledge and Data Engineering.).

[30] D.B. Shmoys, J. Wein, and D.P Williamson. “Scheduling Parallel
ygy5v On-line “. SIAM Journal on Computing, 24(6): 1313-133 I,

[31] M. Thorup. “On RAM Priority Queues”. In Proc. #the 7?h Annual
ACM-SIAM Symp. on Discrete Algorithms, January 1996.

[32] J. Turek, W. Ludwig, J.L. Wolf, L. Fleischer, P. Tiwari. J. Glasgow,
U. Schwiegelshohn, and P.S. Yu. “Scheduling Parallelizable Tasks to
Minimize Average Response Time”. In Proc. of the 6th Annual ACM
Symp. on Parallel Algorithms and Architectures, June 1994.

85

