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Abstract 

The increasing performance and decreasing cost 
of processors and memory are causing system 
intelligence to move into peripherals from the 
CPU. Storage system designers are using this 
trend toward “excess” compute power to perform 
more complex processing and optimizations 
inside storage devices. To date, such optimiza- 
tions have been at relatively low levels of the stor- 
age protocol. At the same time, trends in storage 
density, mechanics, and electronics are eliminat- 
ing the bottleneck in moving data off the media 
and putting pressure on interconnects and host 
processors to move data more efficiently. We pro- 
pose a system called Active Disks that takes 
advantage of processing power on individual disk 
drives to run application-level code. Moving por- 
tions of an application’s processing to execute 
directly at disk drives can dramatically reduce 
data traffic and take advantage of the storage par- 
allelism already present in large systems today. 
We discuss several types of applications that 
would benefit from this capability with a focus on 
the areas of database, data mining, and multime- 
dia. We develop an analytical model of the speed- 
ups possible for scan-intensive applications in an 
Active Disk system. We also experiment with a 
prototype Active Disk system using relatively 
low-powered processors in comparison to a data- 
base server system with a single, fast processor. 
Our experiments validate the intuition in our 
model and demonstrate speedups of 2x on 10 
disks across four scan-based applications. The 
model promises linear speedups in disk arrays of 
hundreds of disks, provided the application data is 
large enough. 
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1 Introduction 

In this paper we evaluate the performance advantages of 
exploiting the processors embedded in individual storage 
device for some of the data-intensive applications common 
in data mining and multimedia databases. This system is 
architecturally similar to the processor-per-disk database 
machines dismissed in the literature 15 years ago as expen- 
sive and unnecessary. In the intervening years, technology 
trends have made possible commodity storage devices with 
excess general-purpose computational power and applica- 
tion trends are creating massive, complex data sets com- 
monly processed with scans. It will soon be possible for 
collections of commodity storage devices to couple paral- 
lel processing and high-selectivity filtering to dramatically 
reduce execution time for many of these applications. 

General purpose microcontrollers with 100-200 MHz 
processing speeds are common in disk array controllers 
and are already being incorporated into high-end commod- 
ity disk drives. Vendors of storage devices would welcome 
new uses for this largely underutilized processing power if 
it allowed their products to compete on metrics beyond 
simple capacity and cost ($/MB). We propose a storage 
device called an Active Disk that combines in-the-field 
software downloadability with recent research in safe 
remote execution of code for execution of application-level 
functions directly at the device. 

In this paper, we emulate an Active Disk with a six- 
year-old workstation and contrast host-resident to Active- 
Disk-assisted processing of four applications: nearest 
neighbor search in a high dimensionality database, fre- 
quent set counting to discover association rules, edge 
detection in images, and image registration in a medical 
database. These applications all process large volumes of 
data, ensuring substantial storage parallelism simply to 
accommodate the volume of data, and often operate with a 
relatively small number of instructions per byte of storage 
accessed. The processing in all these applications is scan- 
intensive, either due to the nature of the application and 
data, or because the high-dimensionality queries being pro- 
cessed are not accelerated by traditional indices. 

Active Disks benefit I/O-bound scans in two principle 
ways: 1) parallelism - massive amounts of data partitioned 
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over many disks allows “embarrassingly parallel” scans to 
convert a group of Active Disks into a programmable par- 
allel-scan database machine, 2) bandwidth reduction - 
scans that filter data with a high degree of selectivity or 
compute only summary statistics transfer a very small frac- 
tion of the data from the disks to the host. For highly selec- 
tive scans, a group of Active Disks can process data at the 
aggregate disk rate in a machine whose interconnect band- 
width was designed for applications demanding much less 
bandwidth. 

Section 2 compares our work with past research on 
database processing performed at storage (i.e. database 
machines), discusses the trends in storage systems that 
have brought us to this point, and motivates the areas of 
data mining and multimedia as fertile ground for applica- 
tions of Active Disks. Section 3 provides an analytical 
model to illustrate the potential benefit of using Active 
Disks and give some intuition on the speedups possible. 
Section 4 outlines the four representative applications we 
have chosen for detailed study. Section 5 describes our 
experimental setup and compares the performance of an 
existing server system to a prototype system using Active 
Disks. Section 6 further explores issues of performance 
and the characteristics of applications that make theni suc- 
cessful on Active Disks. Section 7 discusses related work 
in the area. Finally, Section 8 concludes and briefly dis- 
cusses areas of future work. 

2 Bat kground 

The prevailing counter-arguments to the database 
machines of the 80s were that 1) for a significant fraction 
of database operations, such as sorts and joins, simple 
select filters in hardware did not provide significant bene- 
fits, 2) special-purpose hardware increased the design time 

and cost of the machine, and 3) a single general purpose 
host processor was sufficient to execute select at the full 
data rate of a single disk [Dewitt8 1, Boral831. 

Boral and Dewitt concluded that aggregate storage 
bandwidth was the principle limitation of database 
machines. Fortunately, as shown in Table 1, in the inter- 
vening years aggregate storage bandwidth has dramatically 
improved. The improvement comes from disk array hard- 
ware and software that enable individual database opera- 
tions to exploit disk parallelism [Livny87, Patterson881 
and because databases are now large enough to justify hun- 
dreds of disks. Moreover, high-end disk rates are now 
15 MB/s sustained [Seagate97] and continue to grow at 
40% per year [Grochowski96]. In place of raw disk band- 
width limitations, modern systems have a limited periph- 
eral interconnect bandwidth, as seen in the system bus 
column of Table 1. We see that more MB/s can be read into 
the memory of a large collection of disk controllers than 
can be delivered to a host processor. In this case, the power 
of the host is irrelevant to the overall bandwidth limitation 
for large scans. 

If we next consider the objection to the cost and com- 
plexity of special-purpose hardware in database machines, 
technology trends again change the trade-offs. The increas- 
ing transistor count possible in inexpensive CMOS micro- 
chips today is driving the use of microprocessors in 
increasingly simple and inexpensive devices. Network 
interfaces, peripheral adapters, digital cameras, graphics 
adapters, array controllers and disk drives all have micro- 
controllers whose processing power exceeds the host pro- 
cessors of 15 years ago. For example, Quantum’s high-end 
disk drives today contain a 40 MHz Motorola 68000-based 
controller that manages the high-level functions of the 
drive. 

System Component Processor 
On-Disk 

Processing 
System Bus 

Storage 
Throughput 

Compaq TPC-C Compaq ProLiant 7000 6/200 800 MHz 2,825 MHz 133 MB/s 1,130 MB/s 
4 200 MHz Pentiums, I PC1 (4 x 200 MHz) 
1 I3 disks = 708 GB (113 x 25 MHz) (113 x 10 MB/s) 

Table 1: If we estimate that current disk drives have the equivalent of 2.5 MHz of host processing speed available, large 
database systems today already contain more processing power on their combined disks than at the server processors. 
Assuming a reasonable 10 MB/s for sequential scans, we also see that the aggregate storage bandwidth is more than twice the 
backplane bandwidth of the machine in almost every case. Data from [TPC98] and [Barclay97]. 
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Figure 1: The trend in drive electronics is toward higher and higher levels of integration. The Barracuda drive on the left contains 
separate chips for servo control, SCSI processing, ECC, and the control microprocessor. The Trident chip in the center has 
combined many of the individual specialized chips into a single ASK, and the next generation of silicon makes it possible to both 
integrate the control processor and provide a significantly more powerful embedded core while continuing to reduce total chip 
count and cost. 

In Figure 1 we show the effects of increasing transistor 
counts on disk electronics. Figure la reminds us that the 
electronics of a disk drive include all the components of a 
simple computer: a microcontroller, some amount of 
RAM, and a communications subsystem (SCSI), in addi- 
tion to the specialized hardware for drive control. 
Figure lb shows that this special control hardware has 
already been largely integrated into a single chip in cur- 
rent-generation disks. Extrapolating to the next generation 
of technology (from .68 micron to .35 micron CMOS in 
the ASIC), the specialized drive hardware will occupy 
about one quarter of the chip, leaving sufficient area to 
include a 200 MHz Digital StrongARM microprocessor 
[Turley96], for example. Commodity disk and chip manu- 
facturers are already pursuing processor-in-ASIC technol- 
ogy. Siemens has announced a chip that offers a 100 MHz 
32-bit microcontroller, up to 2 MB of on-chip RAM with 
up to 800 MB/s bandwidth, external DRAM and DMA 
controllers and customer-specific logic (that is, die area for 
the functions of Figure lb) in a .35 micron process 
[TriCore97]. Fundamentally, VLSI technology has evolved 
to the point that significant additional computational power 
comes at negligible cost. 

Processing power inside drives and storage sub- 
systems has already been successfully used to optimize 
functions behind standardized interfaces such as SCSI. 
This includes many innovative optimizations for storage 
parallelism, bandwidth and access time [Patterson88, 
Drapeau94, Wilkes95, Cao94, StorageTek941 and for dis- 

tributed file system scalability [Lee96, VanMeter96, 
Gibson971. With Active Disks, excess computation power 
in storage devices is available directly for application-spe- 
cific function in addition to supporting these existing stor- 
age-specific optimizations. Instead of etching database 
functions into silicon as envisioned I5 years ago, Active 
Disks are programmed in software and use general purpose 
microprocessors. 

Downloading application code directly into devices 
has significant implications for language, safety, and 
resource management [Riedel97]. With block-oriented 
application codes, it is efficient to exploit standard mem- 
ory management hardware at the drive and provide pro- 
tected address spaces for applications as in standard 
multiprogrammed systems today. For the cases where effi- 
ciency, space or cost constraints require that application 
code be co-located with “core” drive code, recent research 
offers a range of efficient and safe remote execution facili- 
ties that provide innovative ways to ensure proper execu- 
tion of code and safeguard the integrity of the drive 
[Gosling96, Necula96, Romer96, Bershad95, Sma1195, 
Wahbe93]. Some of these mechanisms also promise a 
degree of control over the resource usage of remote func- 
tions to aid in balancing utilization of the drive between 
demand requests, opportunistic optimizations such as read- 
ahead, and demand requests. 

The third objection to database machines was the lim- 
ited utility of full scan operations. However, a variety of 
emerging applications require sequential scanning over 
large amounts of data. We focus on two sets of applica- 
tions: multimedia and data mining. In multimedia, applica- 
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ADDlication Parameters System Parameters Active Disk Parameters 
N, = number of bytes processed 

N 0”I = number of bytes produced 

w = cycles per byte 

t = run time for traditional system 

‘acrivr = run time for active disk system 

s 
CPU 

= CPU speed of the host Scpu ’ = CPU speed of the disk 

active disk raw read rate rd = disk raw read rate rdq = 

r,, = disk interconnect rate ‘n ’ = active disk interconnect rate 

Traditional vs. Active Disk Ratios 
a N = Ni,‘N,,, cid = rdq/rd a, = rn’/r, ur = %p”“$-,” 

tions such as searching by content [Flickner%, Virage981 
are particularly good candidates. The user provides a desir- 
able image and requests a set of similar images. The gen- 
eral approach to such a search is to extract feature vectors 
from every image, and then search these feature vectors for 
nearest neighbors [Faloutsos96]. The dimensionality of 
these vectors may be high (e.g. moments of inertia for 
shapes [Faloutsos94], colors in histograms for color 
matching, or Fourier coefficients). It is well-known 
[Yao85], but only recently highlighted in the database liter- 
ature [Berchtold97], that for high dimensionalities, sequen- 
tial scanning is competitive with indexing methods because 
of the “dimensionality curse.” Conventional database wis- 
dom is that indices always improve performance over scan- 
ning. This is true for low dimensionalities, or for queries 
on only a few attributes. However, in high dimensionality 
data and nearest neighbor queries, there is a lot of “room” 
in the address space and the data points are far from each 
other. The two major indexing methods, grid-based and 
tree-based, both suffer in high dimensionality data. Grid- 
based methods require exponentially many cells and tree- 
based methods group similar points together, resulting in 
groups with highly overlapping bounds. One way or 
another, a nearest neighbor query will have to visit a large 
percentage of the database, effectively reducing the prob- 
lem to sequential scanning. This is exactly the idea behind 
recent high-dimensionality indexing methods such as X- 
trees [Berchtold96] which deliberately revert to sequential 
scanning for high dimensionalities. 

In data mining, algorithms such as association discov- 
ery and classification also require repeated scans of the 
data [Agrawal96]. 

In addition to supporting complex, scan-based queries, 
trends are toward larger and larger database sizes. One 
hour of video requires approximately 1 GB of storage and 
video databases such as daily news broadcasts can easily 
contain over 1 TB of data [Wactlar96]. Such databases can 
be searched by content (video, text, or audio) and utilize 
both feature extraction and a combination of the searching 
algorithms mentioned above. Medical image databases 
also impose similarly heavy data requirements [Arya94]. 
In data mining applications, point-of-sale data is collected 
over many months and years and grows continually. Tele- 

communication companies maintain tens of TB of histori- 
cal call data. Large databases mean many disks, and 
therefore, highly parallel Active Disk systems. 

3 Basic Approach 

The basic characteristics of successful remote functions for 
Active Disks are that they 1) can leverage the parallelism 
available in systems with large numbers of disks, 2) oper- 
ate with a small amount of state, processing data as it 
“streams past” from the disk, and 3) execute a relatively 
small number of instructions per byte. 

In this section we develop an analytical model for the 
performance of such applications. The purpose of this 
model is to develop an intuition about the behavior of 
Active Disk systems relative to a traditional server. 

To keep the model simple, we assume that our appli- 
cations have the three characteristics mentioned above, 
that disk transfer, disk computation, interconnect transfer 
and host computation can be pipelined and overlapped 
with negligible startup and post-processing costs, and that 
interconnect transfer rates always exceed single disk rates. 

Starting with the traditional server, overall run time is 
the largest of the individual pipeline stages: disk read time, 
disk interconnect transfer time, and server processing time 
which gives: 

throughput = r = min s,pu d. rd, r,,, y 
> 

For the Active Disks system, the comparable times for disk 
read, interconnect transfer, and on-disk processing are: 

t = “‘TlV‘y Mux and 

t~o@wtac~jve 

Each of these throughput equations is a minimum of three 
limiting factors: the aggregate disk bandwidth, the storage 
interconnect bandwidth, and the aggregate computation 
bandwidth. 
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,I’ 0,- I , active disks 
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Figure 2: A simple model of the throughput of an application running in an Active 
Disk system compared to a traditional single server system. There are several 
regions of interest, depending on characteristics of the application and the 
underlying system configuration. The raw media rate of the disks in both cases is 
plotted as line A. The raw computation rate in the Active Disk system is line B, 
which varies by application. Line C shows the saturation of the interconnect between 
the Active Disks and host, which varies with the selectivity of the application 
processing. Line D represents the saturation of the server CPU or interconnect in the 
traditional system, above which no further gain is possible as additional disks are 
added. To the left of point Y, the traditional system is disk-bound. Below the 
crossover point X, the Active Disk system is slower than the server system due to its 
less powerful CPU. Above point Z, even the Active Disk system is network- 
bottlenecked and no further improvement is possible. 

If we rewrite the equation for throughput with Active 

Disks in terms of the parameters of the traditional server 

and the ratios between traditional and Active Disk parame- 
ters - the total data moved (the selectivity a,), the disk 

bandwidth (ad, which should be l), the interconnect band- 

width (a, ), and the relative CPU power ( as ), we have: 

thrwWtacllve = min ad.(d.rd),aN.a,,(r~),d.a,. 
! ( 1) 

ST 

This equation captures the basic advantages of Active 
Disks. Applications with high selectivity (large a,,,) expe- 

rience less restrictive interconnect limitations, and configu- 
rations with many disks (d. a,v> 1 ) can achieve effective 

parallel processing. 

3.1 Estimating System Ratios 

The kinds of applications we discuss here exhibit selectivi- 

ties ( aN) of 100 to lo8 or more, providing throughput pos- 

sible only with effectively infinite interconnect bandwidth 
in the traditional system. Practically, this allows system 

cost to be reduced with lower bandwidth interconnects 
while maintaining high throughput. Therefore, we allow 
for slower Active Disk interconnects on the order of 
0.1 < a, < 1.0. Active Disk processors will be slower than 

traditional server CPUs. In our experiments, first genera- 
tion Active Disk CPUs cannot scan data at disk rates. 

The final and critical system parameter is the ratio of 
Active Disk to server processor speed. We expect 100 and 
200 MHz microcontrollers in near-term high-end drives, 
and individual server CPUs of 500 to 1,000 MHz in the 
same time frame, so a ratio of about a, = I/S may be prac- 
tical. In this case, the aggregate Active Disk processing 
power exceeds the server processing power once there are 
more than 5 disks working in parallel. 

3.2 Implications of the Model 

Figure 2 illustrates the basic trade-offs for Active Disk sys- 
tems. The slope of line A represents the raw disk limitation 
in both systems. Because we expect that Active Disks will 

not be able to keep up with the disk transfer rates for many 
applications ( s,ru’ < w r; ), their aggregate throughput will 

have the somewhat lower slope shown by line B on the 
chart. 

Active Disks saturate their interconnects at line C, 
with throughputactiVe = r,’ a,< min(d. ri, d. scpu’/w) . Since 

x 2 min(x, y) and interconnect bandwidth is assumed to be 
greater than a single disk’s bandwidth (r,’ > r& ), the num- 

ber of disks must be larger than the selectivity of the appli- 
cation ( rn’ aN < rn’ d ) before this limit sets in. This is 

shown to the right of point Z in the figure. With the large 
selectivities of the applications discussed here, we would 
expect our perfect overlap assumption to fail (Amdahl’s 
Law) before this point is reached. 

Traditional server systems are likely to exhibit both 
interconnect and server CPU bottlenecks, represented by 
line D in the figure. The point X in the figure, at which the 
Active Disk throughput exceeds the traditional server sys- 
tem is determined by X. s,ru’/~ = min(r,, scpu/~) , so 

XI s,~~/s,~~’ = I/a, . 

If we combine all of the above analysis and define 
speedup as Active Disk throughput over server throughput, 
we find that for d < l/a,r , the traditional server is faster. For 
l/a,<d<a,, the speedup is: 

d’ (scpu’h) 
s= mrn(r,, scpu/w) 

2 d a,, 

and for d > aN , is: 

T= (r,’ a,) 

min sCp” ( 1 rn, - w 

= max 
( 

w 1,’ 
aN’ a,, aN’ as’ I 

( 1) .rcpu 
> aN max(a,, a,) 

for at least the first few generations of Active Disks. 
We do not consider the “slowdown” of Active Disks 

when d < t/a,$ (the area to the left of point X in the figure), 
because this condition is independent of the application 
parameters, so a query optimizer can determine upriori 
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when to prefer traditional execution of the scan for a par- 
ticular system configuration, rather than executing the scan 
at the drives. 

Finally, if we consider the prevailing technology 
trends, we know that the processor performance (B) 
improves by 60% per year and disk bandwidth (A) by 40% 
per year. This will cause the ratio of processing power to 
disk bandwidth in both systems to increase by 
15% per year, narrowing the gap between line A and B, 
bringing Active Disks closer to the ideal total storage 
bandwidth. 

We now look in greater detail at some specific applica- 
tions that benefit from Active Disks. 

4 Applications 

In this study, we examine four real-world data-intensive 
data mining and multimedia applications that meet the 
assumptions of our Active Disks model. 

4.1 Database - Nearest Neighbor Search 

Our first application is a variation on a standard database 
search that determines the k items in a database of 
attributes that are closest to a particular input item. We use 
synthetic data from the Quest data mining group at IBM 
Almaden [Quest971 which contains records of individuals 
applying for loans and includes information on nine inde- 
pendent attributes: <age>, <education>, <salary>, 
<commission>, <zip code>, <make of car>, <cost 
of house>,<loan amount>,and <years owned>. In 
searches such as this across a large number of attributes, it 
has been shown that a scan of the entire database is as effi- 
cient as building extensive indices [Berchtold97]. There- 
fore, an Active Disk scan is appropriate. The basic 
application uses a target record as input and processes 
records from the database, always keeping a list of the k 
closest matches so far and adding the current record to the 
list if it is closer than any already in the list. Distance, for 
the purpose of comparison is the sum of the simple carte- 
sian distance across the range of each attribute. For cate- 
gorical attributes we use the Hamming distance, a distance 
of 0.0 is assigned if the values match exactly, otherwise 1 .O 
is assigned. 

For the Active Disks system, each disk is assigned an 
integral number of records and the comparisons are per- 
formed directly at the drives. The central server sends the 
target record to each of the disks which determine the ten 
closest records in their portions of the database. These lists 
are returned to the server which combines them to deter- 
mine the overall ten closest records. Because the applica- 
tion reduces the records in a database of arbitrary size to a 
constant-sized list of ten records, selectivity is arbitrarily 

large. Finally, the state required at the disk is simply the 
storage for the list of k closest records. 

4.2 Data Mining - Frequent Sets 

The second application is an implementation of the Apriori 
algorithm for discovering association rules in sales transac- 
tions [Agrawal95]. Again, we use synthetic data generated 
using a tool from the Quest group to create databases con- 
taining transactions from hypothetical point-of-sale infor- 
mation. Each record contains a <transaction id>, a 
<customer id>, and a list of <items> purchased. The 
purpose of the application is to extract rules of the form “if 
a customer purchases item A and B, then they are also 
likely to purchase item X” which can be used for store lay- 
out or inventory decisions. The computation is done in sev- 
eral passes, first determining the items that occur most 
often in the transactions (the l-itemsets) and then using this 
information to generate pairs of items that occur often (2- 
itemsets) and larger groupings (k-itemsets). The threshold 
of “often” is called the support for a particular itemset and 
is an input parameter to the application (e.g. requiring sup- 
port of 1% for a rule means that 1% of the transactions in 
the database contain a particular itemset). Itemsets are 
determined by successive scans over the data, at each phase 
using the result of the k-itemset counts to create a list of 
candidate (k+l)-itemsets, until there are no k-itemsets 
above the desired support. 

For the Active Disks system, the counting portion of 
each phase is performed directly at the drives. The central 
server produces the list of candidate k-itemsets and pro- 
vides this list to each of the disks. Each disk counts its por- 
tion of the transactions locally, and returns these counts to 
the server. The server then combines these counts and pro- 
duces a list of candidate (k+l)-itemsets which are sent 
back to the disks. The application reduces the arbitrarily 
large number of transactions in a database into a single, 
variably-sized set of summary statistics - the itemset 
counts - that can be used to determine relationships in the 
database. The state required at the disk is the storage for 
the candidate k-itemsets and their counts at each state. 

4.3 Multimedia - Edge Detection 

For image processing, we looked at an application that 
detects edges and corners in a set of grayscale images 
[Smith95]. We use real images from Almaden’s CattleCam 
[Almaden97] and attempt to detect cows in the landscape 
above San Jose. The application processes a set of 256 KB 
images and returns only the edges found in the data using a 
fixed 37 pixel mask. The intent is to model a class of image 
processing applications where only a particular set of fea- 
tures (e.g. the edges) in an image are important, rather than 
the entire image. This includes tracking, feature extraction, 

67 



and positioning applications that operate on only a small 
subset of the original images data. This application is sig- 
nificantly more computation-intensive than the compari- 
sons and counting of the first two applications. 

Using the Active Disks system, edge detection for 
each image is performed directly at the drives and only the 
edges are returned to the central server. A request for the 
raw image in Figure 3 returns only the data on the right, 
which can be represented much more compactly. The 
application reduces the amount of data transferred to the 
server by a large fraction (from 256 KB to 9 KB for this 
particular image). The state required on disk is the storage 
for a single image that is buffered and processed as a 
whole. 

4.4 Multimedia - Image Registration 

Our second image processing application performs the 
image registration portion of the processing of an MRI 
brain scan analysis [Welling98]. Image registration deter- 
mines the set of parameters necessary to register (rotate 
and translate) an image with respect to a reference image in 
order to compensate for movement of the subject during 
the scanning. The application processes a set of 384 KB 
images and returns a set of registration parameters for each 
image. This application is the most computationally inten- 
sive of the ones studied. The algorithm performs a Fast 
Fourier Transform (FFT), determines the parameters in 
Fourier space and computes an inverse-FFT on the result- 
ing parameters. In addition to this, the algorithm may 
require a variable amount of computation since it is solving 
an optimization problem using a variable number of itera- 
tions to converge to the correct parameters. Unlike the 
other applications, the per byte cost of this algorithm varies 
significantly with the data being processed. The average 
computation cost of each of the algorithms discussed in 
this section is shown in Table 2 in the next section. 

For the Active Disks system, this application operates 
similarly to the edge detection. The reference image is pro- 
vided to all the drives and the registration computation for 
each processed image is performed directly at the drives 
with only the final parameters (1.5 KB for each image) 
returned to the central server. The application reduces the 

amount of data transferred to the server by a large, fixed 
fraction. The state required at the disk is the storage for the 
reference image and the current image. 

5 Prototype / Experiments 

Our experimental testbed contains ten prototype Active 
Disks, each one a six-year-old DEC Alpha 3000/400 
(133 MHz, 64 MB, Digital UNIX 3.2g) with two 2.0 GB 
Seagate ST52160 Medalist disks. For the server case, we 
use a single DEC AlphaStation 500/500 (500 MHz, 
256 MB, Digital UNIX 3.2g) with four 4.5 GB Seagate 
ST34501W Cheetah disks on two Ultra-Wide SCSI busses 
(with more bandwidth than the server can use). All these 
machines are connected by an Ethernet switch and a 
155 Mb/s OC-3 ATM switch. 

Our experiments compare the performance of a single 
server machine with directly-attached SCSI disks against 
the same machine with network-attached Active Disks, 
each of which is a workstation with two directly-attached 
SCSI disks in our prototype. In the Active Disk experi- 
ments, as we increase the number of disks we increase the 
total amount of data processed, so the results we report are 
the throughputs (MB/s) for both systems. These results all 
show significant improvements with Active Disks and con- 
firm the intuition provided by the mode1 of Section 3. 

5.1 Database - Nearest Neighbor Search 

Figure 4 compares the performance of the single server 
system against a system with Active Disks as the number 
of disks is increased from 1 to 10. As predicted by our 
model, we see that for a small number of disks, the single 
server system performs better. The server processor is four 
times as powerful as a single Active Disk processor and 
can perform the computation at full disk rate. We see that 
the server system CPU saturates at 25.7 MB/s with two 
disks and performance does not improve as two additional 
disks are added, while the Active Disks system continues 
to scale linearly to 58 MB/s with 10 disks. Our prototype 
system was limited to 10 Active Disks by the amount of 
hardware we had available, and four traditional disks by 
the length limitations of Ultra SCSI, but if we extrapolate 
the data from the prototype to a larger system with 60 
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application shows linear scaling to 
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Figure 5b: The amount of memory 
necessary for the frequent sets 
application increases as the level of 
support required for a particular rule 
decreases. Very low support values 
may require multiple megabytes of 
memory at each Active Disk. 

disks, the smallest of the systems in Table 1, we would 
expect throughput near the 360 MB/s that our model pre- 
dicts for this configuration. 

5.2 Data Mining - Frequent Sets 

In Figure 5, we show the results for the first two passes of 
the frequent sets application (the I-itemsets and 2-item- 
sets). We again see the crossover point at four drives, 
where the server system bottlenecks at 8.4 MB/s and per- 
formance no longer improves, while the Active Disks sys- 
tem continues to scale iinearly to 18.9 MB/s. Figure 5b 
illustrates an important property of the frequent sets appli- 
cation that affects whether or not a particular analysis is 
appropriate for running on Active Disks. The chart shows 
the memory requirements across a range of input support 
values on two different databases. The lower a support 
value, the more itemsets are generated in successive phases 
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of the algorithm and the larger the state that must be held 
on disk. We expect that the support will tend toward the 
higher values since it is difficult to deal with a large num- 
ber of rules, and the lower the support, the less compelling 
the generated rules will be. For very low values of the sup- 
port, though, the limited memory at Active Disk may 
become an issue. Modern disk drives today contain 
between 1 MB and 4 MB of cache memory, so we might 
expect 4 - 16 MB in the timeframe in which Active Disks 
could become available. This means that care must be 
taken in designing algorithms and in choosing when to take 
advantage of execution at the disks. 

5.3 Multimedia 

Figure 6 shows the results for the image processing appli- 
cations. As we see in Table 2, the image processing appli- 
cations require much more CPU time than search or 

Figure 6a: The edge detection 0.80 
application shows linear scaling with 
number of disks while the server 
system bottlenecks at about - 0.60 
1.4 MB/s. 4 
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Figure 6b: The image registration 5 040 
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detection and image registration do not precisely tit the assumptions of our model. 
Both applications suffer additional, unmodelled l/O stall time because they read from 

= 040 - 
,a x’ 

the disks in image-sized chunks, rather than streaming in sequential accesses as 
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I databases used in search and frequent sets, but shows up in the image processing 
applications that process less total data. The gray lines on the figures estimate the 

0.00 2 4 6 8 IO expected performance when these factors are accounted for. This estimated 
Number of Disks performance is now within 15%. 

frequent sets do, leading to much lower throughputs on 

both systems. The edge detection bottlenecks the server 

CPU at 1.4 MB/s, while the Active Disk system scales to 

3.2 MB/s with 10 disks. Image registration is the most 
CPU-intensive of the applications we have considered. It 

achieves only 225 KB/s on the server system, and scales to 
650 KB/s with 10 Active Disks. 

5.4 Model Validation 

The graphs of Figure 4, 5, and 6 confirm the shape of the 

model in Section 3. To confirm the values, we need the 

specific parameters of this testbed. We have 

CX,~ = 133/500 = t/3.8 (estimated directly from the clock 

rates because the processors use the same basic chip, and 

the code is identical for both cases). Ideally, we would have 

a ,, = an = I for our tests, but this was not possible in our 

testbed. Instead rd = 14 MB/s , rd’ = 1.5 MB/s, rn = 60 MB/s 

and rn’ = 10 MB/s . 

Estimating the applications’ selectivity was a straight- 

forward exercise of counting bytes and these are shown in 

Table 2. Estimating the number of cycles per byte was not 
so straightforward. We began by instrumenting the server 

implementation of each application to determine the total 

number of cycles spent for the entire computation when all 

code and data are locally cached, and dividing this by the 

total number of bytes processed. This ignores the cost of 

forming, issuing and completing the physical SCSI disk 

operations, measured in a previous study as 0.58 microsec- 

onds on a 150 MHz Alpha or 10.6 cycles per byte 

[Patterson95]. We add this to our “hot cache” numbers and 

report the resulting estimate of the cycles per byte required 

by each application in Table 2. 

Figure 7 combines the results for all four applications 
and superimposes the predictions of the model based on 
these system and application parameters. The search and 
frequent sets applications show strong agreement between 
the model and the measurements. The largest error, a 14% 

Table 2: Parameters of the applications presented in the text: computation time per byte of 
data, memory required at each Active Disk, and the selectivity factor in the network. 
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disagreement between the server model and implementa- 
tion of the search may reflect an overestimate of the cycles 
per byte devoted to disk processing because the estimate is 
based on an older machine with a less aggressive supersca- 
lar processor. The other two applications, however, differ 
significantly from the model predictions. The problem 
with these applications is that they do not yet overlap all 
disk accesses with computation, as our model assumes. For 
example, the edge detection application reads 256 KB 
images as a single request and, since the operating system 
read-ahead is not deep enough, causes additional stall time 
as each image is fetched. Using asynchronous requests or 
more aggressive prefetching in the application should cor- 
rect this inefficiency. An additional contributor to this 
error is the serial portion of the applications which affects 
the image processing applications more seriously since 
they process less total data than the other two. To estimate 
the performance of these applications if the overlapping 
were improved, we estimated the total stall time experi- 
enced by each application and subtracted it from the appli- 
cation run time.We report these “improved” prototype 
estimates as additional lines in Figure 7c and d. With this 
modification, our model predicts performance within 15% 
for all applications. Given our goal of using the model to 
develop intuition about the performance of Active Disks 
applications, these are strong results. 

6 Discussion 

The largest single benefit from using Active Disks, and the 
principle effect in our experiments, is the parallelism avail- 
able in large storage systems. Although processing power 
on disk drives will always be less than on top-of-the-line 
server CPUs, there will very often be more aggregate CPU 
power in the disks than the server. Applications that can be 
partitioned to take advantage of this parallelism, and that 
can be “split” across the server and drive CPUs, have avail- 
able a much higher total computational power than appli- 
cations running only on the server. 

The other large benefit of Active Disks is the ability to 
dramatically reduce interconnect bandwidth by filtering at 
the disks. In many systems in use today, interconnect band- 
width is at a premium compared to computational power, 
and is all too often a significant bottleneck. If an applica- 
tion is scanning large objects in order to select only spe- 
cific records or fields or gather summary statistics, a large 
fraction of the data otherwise moved across the intercon- 
nect will simply be discarded, dramatically reducing the 
bottleneck. 

These two advantages are the focus of this paper 
because they promise orders of magnitude potential 
improvements. In storage systems research, however, the 
most common application-specific optimizations are 
scheduling, batching and prefetching of disk operations 
[Bitton88, Ruemmler911. Active Disks can be expected to 

execute these types of remote functions as well. In particu- 
lar, we might expect Active Disks to participate as part of a 
disk-directed I/O model, where scatter/gather accesses are 
optimized using local information at the disks [Kotz94]. Or 
in prefetching systems where disks are provided with hints 
about future accesses [Patterson95]. 

A promising variant of these common optimizations is 
interconnect transfer scheduling. While network schedul- 
ing alone cannot be expected to yield benefits like we have 
seen in this paper, it can be an integral part of Active Disk 
computations for complex operations such as hash-join 
[Kitsuregawa83, Dewitt851 or variants of sort [Salzberg90, 
DeWitt911. The key observation is that if data is going to 
move through the network after it is read from disk, it may 
be possible to send it to the “right” place under Active 
Disks control, reducing network traffic through scheduling 
at the disk, rather than sending it to the “wrong” place and 
then communicating among the processing nodes. 

Consider a parallel sample sort algorithm running 
across a network of workstations similar to the setup of 
NowSort [Arpaci-Dusseau971. The algorithm is composed 
of a sample phase and a sort phase [Blelloch98]. During 
the sample phase, a subset of the total data is read and a 
histogram is created allowing the key space to be divided 
into n buckets of roughly equal size. In the parallel server 
(cluster) version of this sort, the entire data set is then 
1) read as is into the nodes from their local disks, 2) 
exchanged across the network according to the key space 
distribution, 3) sorted locally at each node, and 4) written 
back to the assigned disks. 

Using network scheduling in an Active Disks system, 
we can remove the need for step 2 by having the drives per- 
form the read and distribution operations at the same time. 
Instead of sending all data to a particular node, the drive is 
given the key ranges determined in the sample phase and 
responds to a request from client n with only the data 
“belonging” to client n as its portion of the key space. This 
means that data destined for a particular node will get to 
that node as soon as possible, and will never need to be 
exchanged among nodes. This reduces the number of tran- 
sits of all the data across the network from three to two. In 
systems where the network is the bottleneck resource, this 
will improve overall performance of the algorithm by up to 
one-third. 

7 Related Work 

The basic idea of executing functions in processing ele- 
ments directly attached to individual disks was explored 
extensively in the context of database machines such as 
CASSM [Su75], RAP [Ozkarahan75], and numerous oth- 
ers [DeWitt81]. These machines fell out of favor due to the 
limited performance of disks at the time and the complex- 
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ity of building and programming special-purpose hardware 
that could only handle limited functions. Instead, database 
research has developed large-scale, shared-nothing data- 
base servers with commodity processing elements. It has 
recently been suggested that the logical extension is to per- 
form all database processing inside programmable, 
“smart” system peripherals [Gray97]. 

Our work on Active Disks follows from our prior 
work on network-attached secure disks (NASD), in which 
we exploit computational power at storage for parallel and 
network file system functions, as well as traditional storage 
optimizations [Gibson97, Gibson981. Our initial work dis- 
cussed several classes of applications that can benefit from 
Active Disks - including filters, multimedia, batching, and 
storage management - and enumerated the challenges to 
providing an execution environment on commodity disk 
drives [Riedel97]. 

Work at Santa Barabara and Maryland has applied 
Active Disk ideas to a set of similar applications, including 
database select, external sort, datacubes, and image pro- 
cessing, using an extended-firmware model for next-gener- 
ation SCSI disks [Acharya98]. Similarly, a group at 
Berkeley has independently estimated the benefit of Active 
(Intelligent in their terminology) Disks for improving the 
performance of large SMP systems running scan, hash- 
join, and sort operations in a database context [Keeton98]. 

8 Conclusions and Future Work 

Commodity disks drives with an excess of computational 
power are visible on the horizon. Active Disks take advan- 
tage of this trend to provide an execution environment for 
application-specific code inside individual disk drives. 
This allows applications to take advantage of the parallel- 
ism in storage, greatly increasing the total computational 
power available to them, and circumventing the limited 
interconnect bandwidth, greatly increasing the apparent 
storage data rate. 

We have demonstrated an important class of applica- 
tions that will see significant gains (linear scaling in the 
number of devices added to the system) from the use of 
Active Disks. We have also provided an analytical model 
for estimating traditional server and Active Disk perfor- 
mance. Our prototype Active Disk system realizes speed- 
ups of more than 2 over a comparable single server system 
with up to 10 disks. Our system should easily scale to 
speedups of more than 10x in reasonably-sized systems 
similar to those already in use for large databases today. 

Emerging applications such as data mining, multime- 
dia feature extraction, and approximate searching involve 
the huge data sets, on the order of 100s of GB or TB, justi- 
fying large numbers of Active Disks. Many of these appli- 
cations have small CPU and memory requirements and are 
attractive for execution across Active Disks. 

There are a variety of areas to be explored before the 
benefits presented here can be put into practice. Providing 
a safe environment for application code inside the drive in 
order to both protect the integrity of data on the drive and 
ensure proper function in the presence of misbehaved 
application code is critical. The issue of resource manage- 
ment becomes considerably more complex as the computa- 
tion becomes more distributed. Active Disks will need to 
make more complex scheduling decisions than disk drives 
do today, but they also open many new areas for optimiza- 
tion by exploiting the much richer interfaces they provide. 
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