
Proximity Search in Databases

Roy Goldman, Narayanan Shivakumar,
Suresh Venkatasubramanian, Hector Garcia-Molina

Stanford University
{royg, shiva, suresh, hector}@cs.stanford.edu

Abstract

An information retrieval (IR) engine can rank
documents based on textual proximity of key-
words within each document. In this paper
we apply this notion to search across an entire
database for objects that are “near” other rel-
evant objects. Proximity search enables sim-
ple “focusing” queries based on general rela-
tionships among objects, helpful for interac-
tive query sessions. We view the database as a
graph, with data in vertices (objects) and rela-
tionships indicated by edges. Proximity is de-
fined based on shortest paths between objects.
We have implemented a prototype search en-
gine that uses this model to enable keyword
searches over databases, and we have found it
very effective for quickly finding relevant in-
formation. Computing the distance between
objects in a graph stored on disk can be very
expensive. Hence, we show how to build com-
pact indexes that allow us to quickly find the
distance between objects at search time. Ex-
periments show that our algorithms are effi-
cient and scale well.

1 Introduction

Proximity search is successfully used in information
retrieval (IR) systems to locate documents that have
words occurring “near” each other [Salgg]. In this pa-
per we apply this notion to search across an arbitrary
database for objects that are “near” other objects of
interest. Just as the distance between words in a docu-
ment is an approximation of how related the terms are

Permission to copy without fee all or port of this material is
granted provided that the copies are not made OF distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, of to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

in the text, proximity search across an entire database
gives a rough or “fuzzy” measure of how related ob-
jects are. While some situations demand “precise”
query results, more and more online databases-such
as content databases on the Web-enable users to in-
teractively browse results and submit refining queries.
In these settings, proximity estimates can be very use-
ful for focusing a search. For example, we may be look-
ing for a “person” with a last name that sounds like
“Schwartz” but may not know if this person is an em-
ployee, a manager, or a customer. A search may yield
many people, spread out throughout the database. If
we also know that the target person is somehow re-
lated, say, to a particular complaint record, then we
can narrow down the original set, ranking it by how
closely related each person is to the complaint. Simi-
larly, in a database that tracks overnight package de-
livery, we may wish to locate any information perti-
nent to a lost package (e.g., people that handled it,
locations it went through, customers that signed for
it) ranked by how relevant the information is to the
lost package.

For object-proximity searching, we view the
database simply as a collection of objects that are re-
lated by a distance function. The objects may be tu-
ples, records, or actual objects, or even fields within
these structures, if finer granularity is desired. The
distance function is provided by the system or an ad-
ministrator; it indicates how “closely related” certain
(not necessarily all) pairs of objects are. For instance,
in a personnel database, the number of links that sep-
arate objects may be a good measure of how closely
they are related. Two employees working in the same
department are closely related (each employee is linked
to the same department); if two departments cooper-
ate on the same product, then an employee in one
department is related to an employee in the other, but
to a lesser extent. We can also weight each type of
link to reflect its semantic importance. In a relational
context, tuples related by primary-key/foreign-key de-
pendencies could be considered closely linked, while
tuples in the same relation could also be related, to a
lesser extent.

Traditional IR proximity search is intra-object, i.e.,

26

it only considers word distances within a document.
Our search is inter-object, i.e., we rank objects baaed
on their distance to other objects. This difference in-
troduces two related challenges, which are the main
focus of this paper.

a Distance Computation: Text intra-object distance
is measured on a single dimension. Thus, it is easy
to compute distances between words if we simply
record the position of each word along this one di-
mension. For inter-object search, we measure dis-
tance as the length of the shortest path between
objects.

l Scale of Problem: For efficient inter-object prox-
imity search, we need to build an index that gives
us the distance between any pair of database ob-
jects. Since there can be a huge number of objects,
computing this index can be very time consum-
ing. For intra-object search, on the other hand,
we only need to know the distance between words
within an object, a much smaller problem.

In this paper we describe optimizations and com-
pression schemes that allow us to build indexes that
can efficiently report distances between any pair of
objects. Experiments show that our algorithms have
modest time and space requirements and scale well.

In Section 2, we trace an example over a sample
database, to further motivate inter-object proximity
search. Section 3 then defines our problem and frame-
work in more detail. In Section 4, we illustrate a par-
ticular instance of our general framework, as applied
to keyword searching over databases. Section 5 details
our algorithms for efficient computation of distances
between objects, and experimental results are given in
Section 6. We discuss related work in Section 7.

2 Motivating Example

The Internet Movie Database (www.imdb.com) is a
popular Web site with information about over 140,000
movies and over 500,000 film industry workers. We
can view the database as a set of linked objects, where
the objects represent movies, actors, directors, and so
on. In this application it is very natural to define a
distance function based on the links separating ob-
jects. For example, since John Travolta stars in the
movie “Primary Colors,” there is a close relationship
between the actor and the movie; if he had directed
the movie, the bond might be tighter.

Within our framework, proximity searches are spec-
ified by a pair of queries:

l A Find query specifies a Find set of objects that
are potentially of interest. For our example, let
us say that the find query is keyword-based. For
instance, “Find movie” locates all objects of type
“movie” or objects with the word “movie” in their
body.

Movie
16 FaceKXf
9 She’s So Lovely
9 Priman? Colors
9 ConAir
9 Mad City
9 v XIDV Birthdav Elizabeth: A Celebration of Life
2 O%tidSin
a ‘Nieht Sins’ (199n
a That Old Fe sling,
3 Dancer Upstairs

Figure 1: Results of proximity search over the Internet
Movie Database

l Similarly, a Near query specifies a Near set. The
objective is to rank objects in the Find set ac-
cording to their distance to the Near objects. For
our examples we assume the near query is also
keyword-baaed.

For example, suppose a user is interested in all movies
involving both John Travolta and Nicolas Cage. This
could be expressed as “Find movie Near Travolta
Cage.” Notice that this query does not search for a
single “movie” object containing the “Travolta” and
“Cage” strings. In this database, the person named
“Travolta” is represented by a separate object. Simi-
larly for “Cage.” Movie objects simply contain links
to other objects that define the title, actors, date, etc.
Thus, the proximity search looks for “movie” objects
that are somehow associated to “Travolta” and/or
“Cage” objects.

To illustrate the effect of this query, it is worthwhile
to jump ahead a bit and show the results on our imple-
mented prototype. The details of this system are de-
scribed in Section 4; the database contains the IMDB
subset referring to 1997 films. Figure 1 shows the
query “Find movie Near Travolta Cage” along with the
top 10 results. As we might expect, “Face/Off” scored
highest since it stars both actors. That is, both actor
objects are a short distance away from the “Face/Off”
movie object. The next five movies all received the
same second-place score, since each film stars only one
of the actors. (See Section 3 for a detailed explanation
of how ranking works.) The remaining movies reflect
indirect affiliations-that is, larger distances. “Orig-
inal Sin,” for example, sta.rs Gina Gershon, who also
played a part in “Face/Off.” In Section 4 we give addi-

27

Find Query Find/Near Objects Ranked
Find

Objects
t

Near Query

Figure 2: Proximity search architecture

tional examples of queries and results, over a different
database.

Proximity searches are inherently fuzzy. If one can
precisely describe the desired information (e.g., what
relation it occurs in, the exact path to it, the precise
contents of fields) then traditional database queries
will usually be best. Still, proximity search is very use-
ful when it is impractical to generate a specific query,
or when a user simply wants to search based on the
general relevance of different data objects.

Current database and IR systems do not provide
inter-object proximity search. Often, applications im-
plement particular versions of proximity search. For
example, the IMDB Web site does offer a form for
searching for movies with multiple specified actors.
Our goal is to provide a general-purpose proximity ser-
vice that could be implemented on top of any type of
database system.

3 The Problem

The basic problem is to rank the objects in one given
set (the Find set) based on their proximity to objects
in another given set (the Near set), assuming objects
are connected by given numerical “distances.” We first
discuss our conceptual model in detail, and then we
formalize our notion of proximity.

3.1 Conceptual Model 3.2 Proximity and Scoring Functions

Figure 2 shows the components of our model. An ex-
isting database system stores a set of objects. Ap-
plications generate Find and Near queries at the un-
derlying database. (In our motivating example, these
queries were keyword searches.) The database evalu-
ates the queries and passes Find and Near object result
sets (which may be ranked) to the proximity engine.
Database objects are opaque to the proximity engine,
which only deals with object identifiers (OIDs).’ The
proximity engine then re-ranks the Find set, using dis-
tance information (and possibly the initial ranks of the
Find and Near objects). The distance information is
provided by a distance module. Conceptually, it pro-
vides the proximity engine a set of triplets (X, Y, d),

Recall that our goal is to rank each object f in a Find
set F based on its proximity to objects in a Near set
N. Each of these sets may be ranked by the underlying
database system. We use functions rF and TN to rep-
resent the ranking in each respective set. We assume
these functions return values in the range [0, 11, with 1
representing the highest possible rank. We define the
distance between any two objects f E F and n E N as
the weight of the shortest path between them in the
underlying database graph, referred to as d(f, n). To
incorporate the initial rankings as well, we define the
bond between f and n (f # n):

1 Most relational systems do not expose explicit row identi-
fiers; we can use primary key values or “signatures,” e.g., check-
sums computed over all tuple field values. Individual fields can
be identified simply by their values.

(We set b(f, n) = rF(f)rN (n) when f = n.) A bond
ranges from [0, 11, where a higher number indicates

where d is the known distance between database ob-
jects with identifiers X and Y. (Note that the distance
module uses the same identifiers as the database sys-
tem.) We assume that all given distances are greater
than or equal to 1. The proximity engine then uses
these base distances to compute the lengths of shortest
paths between all objects. Because we are concerned
with “close” objects, we assume the distance between
any two objects to be exact only up to some constant
K, returning 00 for all distances greater than K. This
assumption enables improved algorithms, as described
in Section 5.

To the proximity engine, the database is simply an
undirected graph with weighted edges. This does not
mean that the underlying database system must man-
age its data as a graph. For example, the database
system may be relational, as illustrated by the left
side of Figure 3. This shows a small fragment of a
normalized relational schema for the Internet Movie
Database. The right side of the figure shows how that
relational data might be interpreted as a graph by the
search engine. Each entity tuple is broken into multi-
ple objects: one entity object and additional objects
for each attribute value. Distances between objects
are assigned to reflect their semantic closeness. For
instance, in Figure 3 we assign small weights (indi-
cating a close relationship) to edges between an en-
tity and its attributes, larger weights to edges linking
tuples related through primary and foreign keys, and
the largest weights to edges linking entity tuples in
the same relation. (For clarity, the graph shows di-
rected, labeled edges; our algorithms ignore the labels
and edge directions.) Of course, the distance assign-
ments must be made with a good understanding of the
database semantics and the intended types of queries.
It is simple to model object-oriented, network, or hi-
erarchical data in a similar manner.

28

Movie

Movie/Actor

---V MovieID

Actor

ID 4
Name

Title/l Year/l Title/l Year/l Title/l Year/l

t&l 60 At,
Mad City 1997 Face/Oft 1997 Con Air 1997

Figure 3: A fragment of the movie database relational schema and a database instance as a graph

a stronger bond. The tuning exponent t is a non-
negative real that controls the impact of distance on
the bond.

While a bond reflects the relationship between two
objects, in general we wish to measure proximity by
scoring each Find object based on all objects in the
Near set. Depending on the application, we may wish
to take different approaches for interpreting bonds to
the Near objects. We discuss three possible scoring
functions:

a Additive: In the query from our motivating ex-
ample to “Find movie Near Travolta Cage,” (Sec-
tion 2), our intuition leads us to expect that a film
closely related to both actors should score higher
than a film closely related to only one. To capture
this intuition, we score each object f based on the
sum of its bonds with Near objects:

score(f) = C b(f,n)
nEN

(2)

Here the score can be greater than 1.

l Maximum: In some settings, the maximum bond
may be more important than the total number.
Thus, we may define

score(f) = pEa; b(f, n)

In this case, scores are always between 0 and 1.

l Beliefs: We can treat bonds as beliefs [GooGl]
that objects are related. For example, suppose
that our graph represents the physical connec-
tions between electronic devices, such that two
objects close together in the graph are close to-
gether physically as well. Assume further that
TN gives our belief that a Near device is faulty
(1 means we are sure it is faulty). Similarly, TF

can indicate the known status of the Find devices.
Then, for a device f E F and a device n E N,
b(f, n) may give us the belief that f is faulty due
to n, since the closer f is to a faulty device, the
more likely it is to be faulty. Our belief that f is
faulty (between 0 and l), given the evidence of all
the Near objects, is:

score(f) = 1 - n (1 - b(f, n))
nEN

(4)

Of course other scoring functions may also be use-
ful, depending on the application. We expect that
the proximity search engine will provide several “stan-
dard” scoring functions, and that users submitting
queries will specify their intended scoring semantics.
This is analogous to how users specify what standard
function (e.g., COUNT, MAX, AVG) to use in a sta-
tistical query.

4 Keyword Search Application

This section describes a prototype that implements
our framework, as first mentioned in Section 2. By
connecting to our system on the Web, users can
search databases by specifying Find and Near key-
words. Those keywords are used to generate corre-
sponding input object sets for our proximity engine,
which then ranks Find objects by their relevance to
the Near objects.

We implemented our proximity architecture on top
of Lore [MAG+97], a database system designed at
Stanford for storage and queries of graph-structured
data. Lore’s data model is the Object Exchange Model
(OEM) [PGMW95], originally designed at Stanford
to facilitate integration of data from heterogeneous
sources. An OEM database is essentially a directed
graph, with data objects linked by textually labeled
edges that describe relationships. In OEM, atomic

29

Find picture Near
China

Find publication Near
Garcia

Find publication Near
Garcia Widom

Find group-member
Near September

i

Find publication Near
OEM

Photos of 6 Chinese students, followed
by Prof. Widom, who advises 3 of them,
and Prof. Ullman, who advises 2

All of Prof. Garcia-Molina’s publications,
followed by publications of his students

The top publications are co-authored by
Profs. Garcia-Molina and Widom,
followed by their individual papers

The top results are members born in
September

The top pub. has “OEM” in its title,
followed by a pub. stored in “oem.ps,”
followed by one with keyword “oem”

Figure 4: Stanford Database Group keyword searches

data such as integers, reals, strings, or images are
stored only in leaf objects. An OEM database isn’t
forced to conform to any prespecified schema; hence,
it is useful for semistrvctured data, which may have
some structure but may also contain irregularities.
The graph from Figure 3 is in fact an OEM database,
though we have augmented the model to support
weights on edges.

To generate the Find and Near sets for our prox-
imity measurement, our application simply takes key-
words as input. Note that in an OEM database, a key-
word could identify an object with a specific incoming
edge label, an atomic object whose data contains the
keyword, or both. For each keyword, we use Lore in-
dexes to add to the Find or Near set all objects with
a matching incoming label and all atomic objects con-
taining the specified keyword. Currently, Lore does
not rank the objects returned by a keyword lookup;
hence we assign all objects an initial rank of 1.

Based on informal usability tests, we chose to set
t to 2 in our bond definition (Equation l), to weight
nearby objects more heavily; this setting causes a bond
to drop quadratically as distance increases. To cap-
ture the intuition given in the motivating example, we
use the additive scoring function (Equation 2) to score
each Find object. Together, our choice of tuning pa-
rameter and scoring function will give a Find object fr
that is 1 unit away from a Near object twice the score
of an object fi 2 units away from two objects. In the
user interface, we linearly scale and round all scores to
be integers.

Figure 4 summarizes the results of several keyword
search queries over a database describing the members,
projects, and publications of the Stanford Database
Group (DBGroup). The database has been built from
scratch in OEM, containing about 4200 objects and

3600 edges. Initial supplied distances are similar to
those shown in Figure 3. Examples show that prox-
imity search is a useful complement to traditional
database queries, allowing users to narrow in on rel-
evant data without having to understand the nature
of all database relationships, and without fully spec-
ifying structural queries. In this interactive setting,
users can easily browse results and submit additional
queries. Note that this application reflects just one
particular set of choices for instantiating our proximity
model-how we generate the Find/Near sets, our ini-
tial ranking functions 1‘F and TN, our tuning exponent
t in the bond definition, and our choice of scoring func-
tion. Our keyword search application is available to
the public at http:// www-db.stanford.edu/lore; users
can submit their own searches and browse the results.

5 Computing Object Distances

For our proximity computations to be practical, we
need to efficiently find the distances between pairs of
objects. In this section we discuss the limitations of
naive strategies and then focus on our techniques for
generating indexes that provide fast access at search
time.

First, we discuss the framework for our distance
computations. As described in Section 3.1, the prox-
imity engine takes as input Find and Near sets of OIDs,
and a set of base distances between objects. Let V be
the set of objects. We assume the distances are pro-
vided by the distance module of Figure 2 as an edge-list
relation El, with tuples of the form (u, w, w), if vertices
u, v E V share an edge of weight w. For convenience,
we assume that Er contains (u, V, w), if (v, U, w) is in
El. Let G refer to the graph represented by El.

In graph G, we define dG(u, V) to be the shortest
distance between u and v. (We will drop the subscript
G if it is clear which graph we are referring to.) As
mentioned in Section 3.1, our proximity search focuses
on objects that are “close” to each other. Hence, we
assume all distances larger than some K are treated
as 00. In our prototype, setting K = 12 for the
IMDB and DBGroup databases yields reasonable re-
sults, given the initial supplied distances.

5.1 Naive Approaches

At one extreme, we could answer a distance query by
performing all required computation at search time.
A classical algorithm to compute the shortest distance
between two vertices is Dijkstra’s single-source short-
est path algorithm [Dij59]. While the algorithm is
efficient for graphs in main memory, computing the
shortest distance for an arbitrary disk-based graph
could take as many as IEll random seeks. There have
been recent attempts to reduce I/O in the disk-based
version of the algorithm using tournament trees [KS];
however, these attempts still require many random
seeks.

30

Algorithm: Distance self-join
Input: Edge set El, Maximum required distance: I(
Output: Lookup table Dist supplies the shortest distance (up to K) between any pair of objects
/ki For 2 = 1 to peg, “1,

Copy El into El+,.
Sort El on first vertex. // To improve performance
Scan sorted El:

151 For each (Vi, uj, wk) and (Vi, ~5, w;) in & where Uj # ~5
PI If (Wk + W!, < 2’) and (Wk + W; 5 Ii-)

Sort E;+,
Add (u~,u;,w~ + W;) and (~J,Uj,wk +W;) tO I$+,.

on first vertex, and store in &+I.
PI Scan sorted El+1 :

[:yi Let Dist be the final ,?$+I.
Remove tuple (u, u, w), if there exists another tuple (u, u, w’), with w > w’.

[12] Build index on first vertex in Dist.

Figure 5: “Self-Join” distance precomputation

A better approach would be to precompute short-
est distances between all pairs of vertices and store
them in a lookup table for fast access. The classi-
cal algorithm to compute all-pairs shortest distances
is Floyd-Warshall’s dynamic programming based al-
gorithm [Flo62]. An obvious disk-based extension of
the algorithm requires (Vv(scans of G. Clearly this
is inefficient, and there is no simple way to modify
the algorithm to find only distances no larger than Ii.
There has been much work on the related problem of
computing the transitive closure of a graph. In Sec-
tion 7 we discuss these approaches and why they are
not suitable for our problem.

In the next section, we propose an approach for
precomputing all-pairs distances of at most K that
is efficient for disk-based graphs, using well-known
techniques for processing “self-joins” in relational
databases. Section 5.3 shows how we can exploit avail-
able main memory to further improve both the space
and time requirements of index construction.

5.2 Precomputing Distances Using “Self-
Joins”

We use the following idea as the basic step for precom-
puting all-pairs shortest distances. We will assume
that K is a power of two for ease of exposition; of
course, our algorithms work for general K as well. Let
A be the adjacency matrix of G; for any vi, vj E V,
A[vi][vj] = w if an edge (vi, vj, W) exists. Else, if
i = j, A[vi][vj] = 0, else A[vi][vj] = 00. Given A, we
compute A2, where the matrix multiplication is taken
over the closed semiring of R+ U {co}, with scalar ad-
dition and multiplication replaced by the min opera-
tor and scalar addition respectively [AHU74]. Observe
that for any pair (vi, vj) in G, A2 contains the short-
est distance between vi and vj that goes through at
most one other vertex. Similarly, we can generate A4
by squaring A2, and so on, until we obtain AK.

Figure 5 presents our implementation of the above

idea, using simple self-join techniques. Roughly, Steps
[2] - [lo] correspond to the basic matrix multiplica-
tion idea we just described. El corresponds to the
edge-list representation of A2’-l, and EI corresponds
to the edge-list representation of A2’-l before apply-
ing the min operator. (We will soon see what they
mean intuitively.) In Steps [5] - [7], we are generating
tuple (Vj, vi, wk + w(E), since we know that the short-
est distance between vj and vi cannot exceed Wk + w(,
(due to a path through vi). Step [6] restricts our se-
lection to weights in the desired range. In Steps [8] -
[lo], we eliminate non-shortest distances between ver-
tex pairs. By iterating the above steps [log, K] times
(Step [l]), we square the original A matrix [log,K]
times, obtaining AK. Because all initial distances are
at least 1, the final matrix is guaranteed to contain
all shortest distances at most K. The final output
Did of the above algorithm is a distance lookup table
that stores the K-neighborhoods of all vertices. That
is, the table stores all (vi, Vj, wk) for all vertex pairs
vi, Vj with shortest path length wk units (wk 5 h’).
For convenience, we will sometimes refer to EI as the
unzapped edge-list, and we refer to El as the corre-
sponding zapped edge-list, with non-shortest distances
removed.

The above procedure runs with little I/O overhead,
since sorting the data enables sequential rather than
random accesses. Note that other efficient techniques
are possible for computing the self-join (such as hash
joins), and in fact given El we can use standard SQL
to generate El+1 [GSVGMSB]. Querying for d(v;, vj)
is also efficient-since we index the Dist table, we can
access the neighborhood of vi, and look for a tuple of
the form (vi, vj, Wk). If there is such a tuple, we know
the distance to be wk. If no such tuple exists, the
distance is greater than K, and we return 0~).

However, the construction of Did could be expen-
sive using the above approach, since in Step [5] - [7], we
produce the cross-product of each vertex neighborhood

31

Figure 6: Hub vertices

with itself. The size of such a cross-product could be as
large as IVj2 in the worst-case. For instance, when we
executed the self-join algorithm on the the 4MB edge-
list for the IMDB database described in Section 2 for
K = 8, the edge-list grew to about one gigabyte-250
times larger than the initial input! In the next section,
we propose a technique to alleviate this problem.

5.3 Hub Indexing

We now propose hub indexing, which allows us to en-
code shortest distances in far less space than required
by the self-join algorithm, with little sacrifice in access
time. We use Figure 6 to explain what hubs are and
how they can be used to compute distances efficiently.
If we execute our simple self-join algorithm from the
previous section on the given graph, we will explicitly
store the (Al x (BI p air wise shortest distances from -
vertices in A to those in B. (We also store distances
for pairs of objects both in A or both in B.) Comput-
ing d(a, b) for some a E A and b E B merely involves
checking the Dist table for a tuple of the form (a, b, zo),
as described earlier.

In Figure 6 we see that if we remove p and q, the
graph is disconnected into two sub-graphs A and B.
Rather than storing all IAl x IBI distances, suppose
we store only the \A\ + IB\ shortest distances to p, the
JAJ + IB] shortest distances to q, and the shortest dis-
tance between p and q. Note that space savings are
maximized when (Al = IBI. Of course, the query pro-
cedure for such an approach is slightly more complex.
We can see that the shortest-path between a and b
can be one of a - p - b (not through q), a N q N b
(not through p), a - p - q - b, or a - q - p - b.
We can compute d(a, b) by finding these four distances
and choosing the smallest.

The above description gives the reader a rough idea
of our approach. By finding hubs such as p and q, we
can sharply reduce the storage required for a distance
index, and we will show how to efficiently handle the
more complex query procedure. In addition, we can
store hubs and the shortest distances between them
in main memory. As we allocate more memory for
hub storage, our index shrinks and query times de-

crease as well. Effectively choosing hubs in an arbi-
trary graph is a challenging problem, an issue we defer
to Section 5.3.4. Assuming we have a set of hubs, the
following sections describe how to build a hub index
and then answer distance queries using it.

5.3.1 Constructing Hub Indexes

As suggested by the above discussion, a hub index is
comprised of two key components: a hub set H (and
the shortest distance between each pair of its elements)
and a table of distances between pairs of objects whose
shortest paths do not cross through elements of H.
For simplicity, we redefine the Dist lookup table from
Section 5.2 to be this new table. The correctness of our
hub index creation algorithm (and the corresponding
query procedure given in the next section) is proven
in [GSVGM98].

Given H, we can reuse the algorithm of Figure 5
almost verbatim to construct the new Dist table. The
only required change is to Step [6], which we replace
with

[S’] If (wk + WI, 5 2’) and (wk + w6 < K)
and vi @ H

By checking that vi is not in H we make sure that we
do not consider any paths that cross hubs. (Paths with
hubs as endpoints are still considered.) For each v E
V, Dist stores all vertices reachable within a distance
of K without crossing any hubs; we call this set of
vertices the “hub-bordered” neighborhood of v.

As we will explain in the next section, pair-wise dis-
tances between hubs must be consulted many times
to evaluate a distance query. Fortunately, experi-
ments discussed in Section 6 show that even a small
set of hubs greatly reduces index size. Hence, our
query algorithm assumes that the pair-wise distances
of all hubs are available in main memory. We wish
to build a square adjacency matrix Hubs such that
Hubs[hi][hj] gives the shortest distance between hubs
hi and hj. To do so, we first initialize each entry of
Hubs to 00. Then, with one sequential scan of Dist,
for each edge (hi, hj, IQ), where hi, hj E H, we set
Hubs[hi][hj] = wk. This step “short-cuts” the need to
recompute all distances from scratch. Finally, we use
Floyd-Warshall’s algorithm to compute all-pairs short-
est distances in Hubs. Floyd-Warshall works in-place,
without requiring additional memory. Since H is typ-
ically small and engine initialization occurs rarely, we
are generally not concerned with the time spent com-
puting Hubs from H and Dist. Still, we have the op-
tion of fully materializing Hubs at index creation time
and then loading it directly into memory at engine
initialization.

Since we keep hubs and their distances in mem-
ory, a hub index has the nice property that answering
a distance query requires less work on disk as more
memory is made available. In fact, if the entire adja-

32

Algorithm: Pair-wise distance querying
Input: Lookup table on disk: Dist, Lookup matrix in memory: Hubs,

Maximum required distance: K, Hub set: H
Vertices to compute distance between: u, u (u # u)

Return Value: Distance between u and v: d
[I] If u, u E H, return d =Hubs[u][u].
[2] d = co
[3] If u E H
[43 For each (u, Vi, wk) in Dist

;:;
If vi E H // Path u N vi N v

d = min(d, wk+Hubs[vi][u])
[7] If d > K, return d = co, else return d.
[8] Steps [4] - [7] are symmetric steps if w E H, and u $ H.
[9] // Neither u nor w is in H
[lo] Cache in main-memory (E,) all (u, Vi, wk) from Dist
[ll] For each (w, w:, ~1) in Dist
y; If (4 = u)

d = min(d, w;) // Path u N u without crossing hubs
[14] For each edge (u,v;,wk) in E,

;::;
If W! E H and vi E H // Path u N vi N u: N w through hub vertices

d = min(d, wk + w~+Hubs[u~[vi])
[17] If d > I<, return d = co, else return d.

Figure 7: Pair-wise distance querying

cency matrix fits in memory, we can choose H to be V
and eliminate query-time disk access entirely. Our ap-
proach reveals a smooth transition to Floyd-Warshall’s
algorithm as main memory increases. Engine adminis-
trators can specify a limit for the number of hub points
based on available memory.

5.3.2 Querying Hub Indexes

Given the disk-based Dist table and the in-memory
matrix Hubs, we can compute the distance between
any two objects u and v using the algorithm in Fig-
ure 7. The algorithm performs a case-by-case analysis
when it answers such queries. To help explain the algo-
rithm, we refer back to the graph in Figure 6, assuming
H = {p,q}. Steps [l] through [8] are straightforward,
since these steps handle the case where one or both of
u and u are in H. (In terms of Figure 6, suppose that u
and/or v are in {p, q}.) Steps [lo] through [17] address
the case where neither input vertex is in H. Steps [la]
- [13] consider the case where the shortest path from
u to v does not go through any of the vertices in H
and its distance is therefore explicitly stored in Dist.
(In Figure 6, consider the case where both vertices are
in A.) Steps [14] - [16] handle shortest paths through
vertices in H, such as a path from any a E A to any
b E B in the figure.

If both u and v are in H, no disk I/O is performed.
Recall that Dist is indexed based on the first vertex of
each edge. Hence, in case either u or v is in H, one ran-
dom disk seek is performed to access the hub-bordered
neighborhood of v or u (Steps [4] - [S]). In case nei-
ther is in H, two random disk seeks are performed

to access the hub-bordered neighborhoods of both u
and v (Steps [lo] and Step [ll]), The algorithm im-
plicitly assumes that the hub-bordered neighborhood
for any given vertex can be cached into memory (Step
[lo]). Since we use hubs, and given that K is generally
small, we expect this assumption to be safe. Addi-
tional buffering techniques can be employed if needed.

5.3.3 Generalizing to Set Queries

While the previous section discusses how to use a hub
index to look up the distance between a single pair
of objects, a Find/Near query checks the distance be-
tween each Find and each Near object. For instance,
we may need to.look up the pair-wise distances be-
tween Find = {vr,vug} and Near = {v~,v~,v~} The
naive approach to answering such a query is to check
the hub index for each of {vr,vs}, {vr,v4}, {vr,vs},
and so on. When we have F Find objects and N Near
objects, this approach will require about 2 x F x N
disk seeks, impractical if F and N are large. If the
Dist table data for all of either the Find or the Near
objects fits in main memory, we can easily perform all
Find/Near distance lookups in F + N seeks. If not,
we can still buffer large portions of data in memory to
improve performance.

In some cases, even F + N seeks may still be too
slow. Our movie database, for example, contains
about 6500 actors. Hence, finding the result to a query
like “Find actor Near Travolta” will take at least 6500
seeks. To avoid such cases, we allow engine adminis-
trators to specify object-clustering rules. For exam-
ple, by clustering all “actors” together in Dist we can

33

avoid random seeks and execute the queries efficiently.
Our engine is general enough to cluster data arbitrarily
based on user specifications. In our keyword proximity
search application (Section 4), we cluster based on la-
bels, such as “Actor,” “Movie,” “Producer,” etc. Note
that this approach increases the space requirements of
Dist, because these clusters need not be disjoint. To
mitigate the replication, preliminary investigation sug-
gests that we can significantly compress vertex neigh-
borhoods on disk, discussed further in Section 6.

5.3.4 Selecting Hubs

Recall that we allocate an in-memory matrix of size
M for storage of hubs. Hence, for any graph, we can
select up to &? hubs. In this section, we summarize
our strategy for hub selection.

Consider again the example of Figure 6. Suppose we
had a procedure that could pick p and q as vertices that
disconnect the graph into two “balanced” sub-graphs
A and B. Given such a procedure, we could recur-
sively disconnect both A and B in a similar manner
to gain further savings. This recursion would generate
a hierarchy of vertex sets, each of which disconnects a
graph into two sub-graphs.

The set {p, q} is known as a separator in graph the-
ory. Formal definitions have been developed to char-
acterize hierarchies of balanced separators, which guar-
antee that the disconnected subgraphs are similar in
size. (See [GSVGM98] for more detail.) There exist
linear time algorithms that compute balanced separa-
tors for graphs of constant treewidth [Bod96], and for
planar graphs [LT80]. It can be shown that a balanced
separator yields an optimal graph decomposition for
in-memory distance queries [HKRS94, CZ95, Pe197].
Hence, balanced separators would be ideal candidates
for hubs. For tree-shaped data, such as HTML or XML
[Con971 documents, we can use the aforementioned
tree-based separator algorithm to generate hubs.

Unfortunately, for arbitrary graphs, a nontrivial
balanced separator theorem does not hold. The best
known approximation yields a separator that is a fac-
tor of O(logn) larger than the minimum [AKR93].
Hence, we have designed an heuristic for selecting hubs
that is efficient to implement and performs well in
practice. The heuristic is to select up to z/ii? ver-
tices with highest degree as hubs. We can make this
selection with one scan of the edge-list. Our strat-
egy serves two purposes. Firstly, notice that Steps
[5] - [7] of the original self-join algorithm (Figure 5)
generate deg2(vi) tuples, where deg(vi) is the degree
of vertex vi. In the revised hub version of the algo-
rithm, we avoid generating deg2(v) tuples for vertices
of highest degree. Secondly, it is quite likely that high
degree vertices lie on many shortest paths. Just like
airline hub cities in a route map, vertices that lie on
many shortest paths often effectively divide the graph
into “balanced” subsets. Note that the correctness of

our indexing algorithm does not depend on hubs ac-
tually separating a graph (see [GSVGM98] for proof);
any vertex can in principle be chosen as a hub. Ex-
periments for hub index creation are discussed in the
next section. The results show that our hub selection
heuristic is effective at reducing the time and space
required to build an index.

6 Performance Experiments

We now study some performance related aspects of
building hub indexes. Questions we address in this sec-
tion include (1) Given a small, fixed number of hubs,
what are the space and time requirements of index con-
struction? (2) How do the algorithms scale with larger
datasets? (3) What is the impact of selecting fewer or
more hubs on the index construction time? (4) How
fast is query execution? For our experiments, we used
a Sun SPARC/Ultra II (2 x 200 MHz) running SunOS
5.6, with 256 MBs of RAM, and 18 GBs of local disk
space.

We use the IMDB dataset to illustrate some of the
trade-offs in this paper. We also experimented with
the DBGroup dataset, but due to lack of space we do
not present these results-however, the results were
similar to those of IMDB. Since the IMDB dataset is
small (its edge-list is about 4MB), we built a genera-
tor that takes as input IMDB’s edge-list and scales the
database by any given factor S. Note that we do not
blindly copy the database to scale it; rather we create
a “forest” by computing statistics on the small dataset
and producing a new, larger dataset with similar char-
acteristics. For instance, the percentage of popular
actors will be maintained in the scaled-up version as
well, and this set of actors will be acting in a scaled-up
number of new movies. Similarly, movies will have the
same distribution of actors from the common pool of
S times as many actors; the ratio of “romance” movies
to “action” movies will stay about the same. Since our
generator produces the above graphs based on a real
dataset, we believe it gives us a good testbed to em-
pirically evaluate our algorithms. While we think the
structure of our data is typical of many databases, of
course it does not reflect every possible input graph.

First, we discuss index performance when the num-
ber of hubs is fixed at a “small” number. Recall from
Section 5.3 that the algorithm requires temporary stor-
age (for the unzapped edge-lists) before creating and
indexing the final zapped edge-list. For our experi-
ments, we build an ISAM index over the final edge-
list. Figure 8 shows the temporary and final space
requirements of a hub index for different values of h’.
We define the space required as a multiple of the size
of the original input. For this graph, we set S = 10
and we choose no more than 2.5% of the vertices as
hubs. For this case (about 40MB of data), we re-
quired less than 250K of main memory to store our
Hubs matrix. We see that both the temporary and fi-

34

Temporary &
Final .+. ”

n

3
c2

2 4 6 8 10 12
K

Figure 8: Storage requirements with varying K

2500 -

0 5 10 15 20 25 30 35 40 45 50
Scale

Figure 10: Total storage with varying scale Figure 11: Space ratio with varying number of hubs

nal space requirements can get large. For IL’ = 12 (the
1C used for our prototype in Section 4), the temporary
and final space requirements are about 12 times and
6 times larger than the input edge-list, respectively.
Similarly, Figure 9 reports the total time to create a
hub index for different values of K. We see quadratic
growth of both space and time requirements, due to
the quadratic growth in the size of a vertex neighbor-
hood. Momentarily we will show that increasing the
number of hubs reduces space and time requirements.

Next, we consider how our algorithms scale as the
databases grow in size. In Figure 10 we show the to-
tal storage required to store the final index when we
(again) choose no more than 2.5% of vertices as hubs,
for K = 12. Note that the storage consumption scales
linearly, despite the fact that the large scaled graphs
are tightly interconnected. We also observed that the
index construction times scaled linearly with data sets,
but we do not show the graph here due to lack of space.

In Figure 11, we see that relatively small increases
in the number of hubs can dramatically reduce the
storage requirements of a hub index. Again, we con-
sider the case where S = 10 and K = 12. First,

1600

1400

1200

1000

800

600

400

200
2 4 6 8 10 12

K

Figure 9: Index construction time with varying K

Temporary

0.1 1 10 100
Number of hubs as percentage of vertices

notice that if we choose fewer than 0.5% of vertices
as hubs, we need significantly more space to store
the final index; recall that we degenerate to the self-
join algorithm when no hubs are selected. If we can
choose up to 5% of vertices as hubs we see that the
storage ratio for the final index drops to about 3.93.
As we mentioned earlier, the graph shows that our
algorithm smoothly transitions into a main-memory
shortest-path computation as more memory is made
available. Though not displayed here, the index con-
struction time also follows a trend similar to the space
requirements.

In general, the index edge-lists are still large enough
that any additional compression is useful. By altering
our on-disk representation of edge-lists we can gain
significant savings: we store a given edge-list as an
adjacency list and then use delta-compression, a stan-
dard technique used in information retrieval systems
for compressing sorted data [ZMSD93]. Our experi-
ments showed that when K = 12 and at most 2.5%
of the vertices are hubs, the final index, including
the delta-compressed zapped edge-list, is 2.0 times the
size of the initial edge-list; it is 2.5 times the size of

35

the delta-compressed initial edge-list. (As mentioned
above, without compression the final index was 6 times
larger than the input.) Our index construction algo-
rithms can be easily modified to operate on the delta-
compressed edge-lists.

Finally, we give a couple of examples of query execu-
tion time. As can be expected, query times vary based
on the size of the input sets. Consider yet again the
query “Find movie Near Travolta Cage.” In our (un-
scaled) IMDB dataset, IFind] M 2000 and [Near] = 2.
With “movie” objects clustered together and no more
than 2.5% of the vertices as hubs, the query takes 1.52
seconds (beyond the Find/Near queries executed by
Lore). For the query “Find movie Near location,”
([Find1 M 2000, INear] M 200) execution takes 2.78
seconds. Experiments not shown here indicate that
choosing more hubs reduces query execution time.

7 Related Work

Most existing approaches for supporting proximity
search in databases are restricted to searching only
within specific fields known to store unstructured
text [Ora97, DM97]. Such approaches do not con-
sider interrelationships between the different fields
(unless manually specified through a query). One
company, DTL, markets a technology called DataSpot
(www.dataspot.com) for plain language search over
databases [DGEP98]. DataSpot is also based on a
graph model, using heuristics to significantly prune the
search space; their specific algorithms have not been
made public.

A universal relation [U1189] is a single relational
view of an entire database, which enables users to pose
simple queries over relational data. A universal rela-
tion brings tuples within close “proximity” together.
Still, this approach does not support proximity search
in general, and it provides no mechanism for ranking
relevant results.

There has been extensive work on the problem of
computing the transitive closure of a disk-resident di-
rected graph, strictly more general than the problem
of computing shortest distances up to some K. Work
by Dar and Ramakrishnan [DR94] examines many al-
gorithms for this problem and supplies comparative
performance evaluation, as well as discussion of use-
ful measures of performance. In principle, it would be
possible to apply these algorithms to our problem, but
in practice this cannot be done efficiently. For one, the
algorithms are designed to perform transitive closure
queries at runtime. An input query is a set of ver-
tices Q C V, and the output is the set of all vertices
R C V reachable from this set. Ullman and Yan-
nakakis [UY91] obtain a bound of 0(N3/a)) I/OS
for computing the transitive closure of a graph with N
nodes and main memory M. The runtime performance
hit could be solved by pre-computing the transitive
closure and storing it on disk. However, the space re-

quired by such a scheme would be huge (O(V2)). Our
schemes avoid these pitfalls by not explicitly comput-
ing or storing full neighborhoods.

8 Conclusion and Future Work

We have presented a framework for supporting proxim-
ity search across an entire database. While traditional
IR proximity searches are based on finding keywords
in textual documents, we demonstrated a general ap-
proach for proximity search over any large set of in-
terconnected data objects. We formalized our notion
of proximity and proposed several scoring functions.
As an application of our search techniques, we cre-
ated a system that supports keyword proximity search
over databases, yielding interesting and intuitive re-
sults. Measuring proximity depends on efficient com-
putation of distances between objects for a disk-based
graph. We gave a formal framework and several ap-
proaches for solving the problem, focusing on hub in-
dexing. Experiments showed that creating hub indexes
is reasonably fast, the indexes are compact, and they
can be used to quickly find shortest distances at search
time.

For future work, we are considering the following
directions.

l We plan to continue to enhance our indexing algo-
rithms. We are investigating improved techniques
for selecting hubs, especially when we can deter-
mine certain properties of the input graph. In ad-
dition, we plan to further investigate techniques
for compressing K-neighborhoods on disk. If we
could pre-compute all K-neighborhoods (rather
than just the “hub-bordered” neighborhoods), we
could dramatically improve query time. With-
out compression, however, the space requirements
of such a structure would be enormous. Finally,
we are considering the possibility of improving
performance by maintaining approximate (rather
than exact) distances between objects.

l Users may desire query flexibility beyond basic
Find/Near queries. For example, someone may
want to find the movies that are near Travolta but
not near Cage. As another example, one might be
interested in finding the actors near the movies
near Cage: Find actor Near (Find movie Near
Cage). Implementing such general functionality
requires schemes for combining results from mul-
tiple proximity searches.

l To enable many applications, we want to integrate
proximity search into structured query languages
such as SQL. In the relational setting, we antici-
pate several interesting issues involved in combin-
ing traditional relations with ranked tuples that
may be returned by the proximity search. Sup-

36

.

port for ranked tuples was broached by Fagin
[Fag96], who suggests using fuzzy sets.

We are looking at how to incrementally main-
tain our indexing structures as the underlying
database changes.

Acknowledgements

We are grateful to Vineet Gossain and Jason McHugh
for their helpful comments.

References

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-
Wesley, Reading, MA, 1974.

[AKR93] A. Agrawal, P. Klein, and R. Ravi. Cutting down
on fill using nested dissection: provably good elimina-
tion orderings. In J. A. George, J. R. Gilbert, and
J. Liu, editors, Sparse Matrix Computations: Graph
Theory Issues and Algorithms, IMA Volumes in Math-
ematics and its applications, pages 31-55. Springer-
Verlag, New York, 1993.

[Bod96] H. Bodlaender. A linear-time algorithm for find-
ing tree-decompositions of small tree-width. SIAM
Journal on Computing, 25(6):1305-1317, Dee 1996.

[Con971 World Wide Web Consortium. Extensible markup
language (XML). http://www.w3.org/ TR/WD-xml-
lang-970331.htm1, December 1997. Proposed recom-
mendation.

[CZ95] S. Chaudhuri and C. Zaroliagis. Shortest paths
in digraphs of small treewidth. In Z. Fulop, editor,
Proc. Int. Conference on Automata, Languages and
Programming, pages 244-255, Szeged, Hungary, July
1995.

[DGEP98] S. Dar, S. Geva, G. Entin, and E. Palmon.
DTL’s DataSpot: Database exploration using plain
language. In Proceedings of the Twenty-Fourth Inter-
national Conference on Very Large Data Bases, 1998.

[Dij59] E. W. Dijkstra. A note on two problems in connex-
ion with graphs. Numeriache Mathematik, 1:269-271,
1959.

[DM97] S. DeBloch and N. Mattos. Integrating SQL
databases with content-specific search engines. In
Proceedings of the Twenty-Third International Con-
ference on Very Large Data Bases, 1997.

[DR94] Shaul Dar and Raghu Ramakrishnan. A perfor-
mance study of transitive closure algorithms. In Pro-
ceedings of SIGMOD, pages 454-465, May 1994.

[Fag961 R. Fagin. Combining fuzzy information from mul-
tiple systems. In Proceedings of the Fifteenth Sympo-
sium on Principles of Database Systems, pages 216-
226, Montreal, Canada, June 1996.

IF10621 R. W. Floyd. Algorithm 97 (SHORTEST PATH).
Communications of the ACM, 5(6):345, 1962.

[GooGl] I. J. Good. A causal calculus. British Journal of
the Philosophy of Science, 11:305-318, 1961.

[GSVGM98] R. Goldman, N. Shivakumar, S. Venkatasub-
ramanian, and H. Garcia-MoIina. Proximity search
in databases. (Extended Version). Technical Re-
port, Stanford University. Available at http://www-
db.stanford.edu/pub/papers/proximity.ps, 1998.

[HKRS94] M. Henzinger, P. Klein, S. Rae, and S. Subra-
manian. Faster shortest-path algorithms for planar
graphs. In 26th Annual ACM Symposium on Theory
of Computing, Montreal, Quebec. Canada, May 1994.

[KS] V. Kumar and E. Schwabe. Improved algorithms and
data structures for solving graph problems in external
memory. Algorithmica. Submitted.

[LT80] R. Lipton and R. Tarjan. Applications of a pla-
nar separator theorem. SIAM Journal on Computing,
9(3):615-627, 1980.

[MAGt97] J. McHugh, S. Abiteboul, R. Goldman,
D. Quass, and J. Widom. Lore: A database man-
agement system for semistructured data. SZGMOD
Record, 26(3), September 1997.

[Ora97] Oracle Corp. Managing text with Oracle8 Con-
Text cartridge. http://www.oracle.com/st/o8col-
lateral/html/xctx5bwp.html, 1997. White paper.

[Pe197] D. Peleg. Proximity-preserving labelling schemes.
Manuscript, 1997.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object exchange across heterogeneous in-
formation sources. In Proceedings of the Eleventh In-
ternational Conference on Data Engineering, pages
251-260, Taipei, Taiwan, March 1995.

[Sal891 Gerard Salton. Automatic Text Processing: The
transformation, analysis, and retrieval of information
by computer. Addison-Wesley, 1989.

[Ull89] J. Ullman. Principles of Database and Knowledge-
base systems, Volume II. Computer Science Press,
Rockville, Maryland, 1989.

[UYSl] J. Ullman and M. Yannakakis. The input/output
complexity of transitive closure. Annals of Mathemat-
ics and Artificial Intelligence 3, pages 331-360, 1991.

[ZMSD93] Justin Zobel, Alistair Moffat, and Ron Sacks-
Davis. Searching large lexicons for partially specified
terms using compressed inverted files. In Proceedings
of the Nineteenth International Conference on Very
Large Data Bases, pages 290-301, 1993.

37

