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Abstract 

An information retrieval (IR) engine can rank 
documents based on textual proximity of key- 
words within each document. In this paper 
we apply this notion to search across an entire 
database for objects that are “near” other rel- 
evant objects. Proximity search enables sim- 
ple “focusing” queries based on general rela- 
tionships among objects, helpful for interac- 
tive query sessions. We view the database as a 
graph, with data in vertices (objects) and rela- 
tionships indicated by edges. Proximity is de- 
fined based on shortest paths between objects. 
We have implemented a prototype search en- 
gine that uses this model to enable keyword 
searches over databases, and we have found it 
very effective for quickly finding relevant in- 
formation. Computing the distance between 
objects in a graph stored on disk can be very 
expensive. Hence, we show how to build com- 
pact indexes that allow us to quickly find the 
distance between objects at search time. Ex- 
periments show that our algorithms are effi- 
cient and scale well. 

1 Introduction 

Proximity search is successfully used in information 
retrieval (IR) systems to locate documents that have 
words occurring “near” each other [Salgg]. In this pa- 
per we apply this notion to search across an arbitrary 
database for objects that are “near” other objects of 
interest. Just as the distance between words in a docu- 
ment is an approximation of how related the terms are 
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in the text, proximity search across an entire database 
gives a rough or “fuzzy” measure of how related ob- 
jects are. While some situations demand “precise” 
query results, more and more online databases-such 
as content databases on the Web-enable users to in- 
teractively browse results and submit refining queries. 
In these settings, proximity estimates can be very use- 
ful for focusing a search. For example, we may be look- 
ing for a “person” with a last name that sounds like 
“Schwartz” but may not know if this person is an em- 
ployee, a manager, or a customer. A search may yield 
many people, spread out throughout the database. If 
we also know that the target person is somehow re- 
lated, say, to a particular complaint record, then we 
can narrow down the original set, ranking it by how 
closely related each person is to the complaint. Simi- 
larly, in a database that tracks overnight package de- 
livery, we may wish to locate any information perti- 
nent to a lost package (e.g., people that handled it, 
locations it went through, customers that signed for 
it) ranked by how relevant the information is to the 
lost package. 

For object-proximity searching, we view the 
database simply as a collection of objects that are re- 
lated by a distance function. The objects may be tu- 
ples, records, or actual objects, or even fields within 
these structures, if finer granularity is desired. The 
distance function is provided by the system or an ad- 
ministrator; it indicates how “closely related” certain 
(not necessarily all) pairs of objects are. For instance, 
in a personnel database, the number of links that sep- 
arate objects may be a good measure of how closely 
they are related. Two employees working in the same 
department are closely related (each employee is linked 
to the same department); if two departments cooper- 
ate on the same product, then an employee in one 
department is related to an employee in the other, but 
to a lesser extent. We can also weight each type of 
link to reflect its semantic importance. In a relational 
context, tuples related by primary-key/foreign-key de- 
pendencies could be considered closely linked, while 
tuples in the same relation could also be related, to a 
lesser extent. 

Traditional IR proximity search is intra-object, i.e., 
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it only considers word distances within a document. 
Our search is inter-object, i.e., we rank objects baaed 
on their distance to other objects. This difference in- 
troduces two related challenges, which are the main 
focus of this paper. 

a Distance Computation: Text intra-object distance 
is measured on a single dimension. Thus, it is easy 
to compute distances between words if we simply 
record the position of each word along this one di- 
mension. For inter-object search, we measure dis- 
tance as the length of the shortest path between 
objects. 

l Scale of Problem: For efficient inter-object prox- 
imity search, we need to build an index that gives 
us the distance between any pair of database ob- 
jects. Since there can be a huge number of objects, 
computing this index can be very time consum- 
ing. For intra-object search, on the other hand, 
we only need to know the distance between words 
within an object, a much smaller problem. 

In this paper we describe optimizations and com- 
pression schemes that allow us to build indexes that 
can efficiently report distances between any pair of 
objects. Experiments show that our algorithms have 
modest time and space requirements and scale well. 

In Section 2, we trace an example over a sample 
database, to further motivate inter-object proximity 
search. Section 3 then defines our problem and frame- 
work in more detail. In Section 4, we illustrate a par- 
ticular instance of our general framework, as applied 
to keyword searching over databases. Section 5 details 
our algorithms for efficient computation of distances 
between objects, and experimental results are given in 
Section 6. We discuss related work in Section 7. 

2 Motivating Example 

The Internet Movie Database (www.imdb.com) is a 
popular Web site with information about over 140,000 
movies and over 500,000 film industry workers. We 
can view the database as a set of linked objects, where 
the objects represent movies, actors, directors, and so 
on. In this application it is very natural to define a 
distance function based on the links separating ob- 
jects. For example, since John Travolta stars in the 
movie “Primary Colors,” there is a close relationship 
between the actor and the movie; if he had directed 
the movie, the bond might be tighter. 

Within our framework, proximity searches are spec- 
ified by a pair of queries: 

l A Find query specifies a Find set of objects that 
are potentially of interest. For our example, let 
us say that the find query is keyword-based. For 
instance, “Find movie” locates all objects of type 
“movie” or objects with the word “movie” in their 
body. 

Movie 
16 FaceKXf 
9 She’s So Lovely 
9 Priman? Colors 
9 ConAir 
9 Mad City 
9 v XIDV Birthdav Elizabeth: A Celebration of Life 
2 O%tidSin 
a ‘Nieht Sins’ (199n 
a That Old Fe sling, 
3 Dancer Upstairs 

Figure 1: Results of proximity search over the Internet 
Movie Database 

l Similarly, a Near query specifies a Near set. The 
objective is to rank objects in the Find set ac- 
cording to their distance to the Near objects. For 
our examples we assume the near query is also 
keyword-baaed. 

For example, suppose a user is interested in all movies 
involving both John Travolta and Nicolas Cage. This 
could be expressed as “Find movie Near Travolta 
Cage.” Notice that this query does not search for a 
single “movie” object containing the “Travolta” and 
“Cage” strings. In this database, the person named 
“Travolta” is represented by a separate object. Simi- 
larly for “Cage.” Movie objects simply contain links 
to other objects that define the title, actors, date, etc. 
Thus, the proximity search looks for “movie” objects 
that are somehow associated to “Travolta” and/or 
“Cage” objects. 

To illustrate the effect of this query, it is worthwhile 
to jump ahead a bit and show the results on our imple- 
mented prototype. The details of this system are de- 
scribed in Section 4; the database contains the IMDB 
subset referring to 1997 films. Figure 1 shows the 
query “Find movie Near Travolta Cage” along with the 
top 10 results. As we might expect, “Face/Off” scored 
highest since it stars both actors. That is, both actor 
objects are a short distance away from the “Face/Off” 
movie object. The next five movies all received the 
same second-place score, since each film stars only one 
of the actors. (See Section 3 for a detailed explanation 
of how ranking works.) The remaining movies reflect 
indirect affiliations-that is, larger distances. “Orig- 
inal Sin,” for example, sta.rs Gina Gershon, who also 
played a part in “Face/Off.” In Section 4 we give addi- 
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Figure 2: Proximity search architecture 

tional examples of queries and results, over a different 
database. 

Proximity searches are inherently fuzzy. If one can 
precisely describe the desired information (e.g., what 
relation it occurs in, the exact path to it, the precise 
contents of fields) then traditional database queries 
will usually be best. Still, proximity search is very use- 
ful when it is impractical to generate a specific query, 
or when a user simply wants to search based on the 
general relevance of different data objects. 

Current database and IR systems do not provide 
inter-object proximity search. Often, applications im- 
plement particular versions of proximity search. For 
example, the IMDB Web site does offer a form for 
searching for movies with multiple specified actors. 
Our goal is to provide a general-purpose proximity ser- 
vice that could be implemented on top of any type of 
database system. 

3 The Problem 

The basic problem is to rank the objects in one given 
set (the Find set) based on their proximity to objects 
in another given set (the Near set), assuming objects 
are connected by given numerical “distances.” We first 
discuss our conceptual model in detail, and then we 
formalize our notion of proximity. 

3.1 Conceptual Model 3.2 Proximity and Scoring Functions 

Figure 2 shows the components of our model. An ex- 
isting database system stores a set of objects. Ap- 
plications generate Find and Near queries at the un- 
derlying database. (In our motivating example, these 
queries were keyword searches.) The database evalu- 
ates the queries and passes Find and Near object result 
sets (which may be ranked) to the proximity engine. 
Database objects are opaque to the proximity engine, 
which only deals with object identifiers (OIDs).’ The 
proximity engine then re-ranks the Find set, using dis- 
tance information (and possibly the initial ranks of the 
Find and Near objects). The distance information is 
provided by a distance module. Conceptually, it pro- 
vides the proximity engine a set of triplets (X, Y, d), 

Recall that our goal is to rank each object f in a Find 
set F based on its proximity to objects in a Near set 
N. Each of these sets may be ranked by the underlying 
database system. We use functions rF and TN to rep- 
resent the ranking in each respective set. We assume 
these functions return values in the range [0, 11, with 1 
representing the highest possible rank. We define the 
distance between any two objects f E F and n E N as 
the weight of the shortest path between them in the 
underlying database graph, referred to as d(f, n). To 
incorporate the initial rankings as well, we define the 
bond between f and n (f # n): 

1 Most relational systems do not expose explicit row identi- 
fiers; we can use primary key values or “signatures,” e.g., check- 
sums computed over all tuple field values. Individual fields can 
be identified simply by their values. 

(We set b(f, n) = rF(f)rN (n) when f = n.) A bond 
ranges from [0, 11, where a higher number indicates 

where d is the known distance between database ob- 
jects with identifiers X and Y. (Note that the distance 
module uses the same identifiers as the database sys- 
tem.) We assume that all given distances are greater 
than or equal to 1. The proximity engine then uses 
these base distances to compute the lengths of shortest 
paths between all objects. Because we are concerned 
with “close” objects, we assume the distance between 
any two objects to be exact only up to some constant 
K, returning 00 for all distances greater than K. This 
assumption enables improved algorithms, as described 
in Section 5. 

To the proximity engine, the database is simply an 
undirected graph with weighted edges. This does not 
mean that the underlying database system must man- 
age its data as a graph. For example, the database 
system may be relational, as illustrated by the left 
side of Figure 3. This shows a small fragment of a 
normalized relational schema for the Internet Movie 
Database. The right side of the figure shows how that 
relational data might be interpreted as a graph by the 
search engine. Each entity tuple is broken into multi- 
ple objects: one entity object and additional objects 
for each attribute value. Distances between objects 
are assigned to reflect their semantic closeness. For 
instance, in Figure 3 we assign small weights (indi- 
cating a close relationship) to edges between an en- 
tity and its attributes, larger weights to edges linking 
tuples related through primary and foreign keys, and 
the largest weights to edges linking entity tuples in 
the same relation. (For clarity, the graph shows di- 
rected, labeled edges; our algorithms ignore the labels 
and edge directions.) Of course, the distance assign- 
ments must be made with a good understanding of the 
database semantics and the intended types of queries. 
It is simple to model object-oriented, network, or hi- 
erarchical data in a similar manner. 
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Movie 

Movie/Actor 

---V MovieID 

Actor 

ID 4 
Name 

Title/l Year/l Title/l Year/l Title/l Year/l 

t&l 60 At, 
Mad City 1997 Face/Oft 1997 Con Air 1997 

Figure 3: A fragment of the movie database relational schema and a database instance as a graph 

a stronger bond. The tuning exponent t is a non- 
negative real that controls the impact of distance on 
the bond. 

While a bond reflects the relationship between two 
objects, in general we wish to measure proximity by 
scoring each Find object based on all objects in the 
Near set. Depending on the application, we may wish 
to take different approaches for interpreting bonds to 
the Near objects. We discuss three possible scoring 
functions: 

a Additive: In the query from our motivating ex- 
ample to “Find movie Near Travolta Cage,” (Sec- 
tion 2), our intuition leads us to expect that a film 
closely related to both actors should score higher 
than a film closely related to only one. To capture 
this intuition, we score each object f based on the 
sum of its bonds with Near objects: 

score(f) = C b(f,n) 
nEN 

(2) 

Here the score can be greater than 1. 

l Maximum: In some settings, the maximum bond 
may be more important than the total number. 
Thus, we may define 

score(f) = pEa; b( f, n) 

In this case, scores are always between 0 and 1. 

l Beliefs: We can treat bonds as beliefs [GooGl] 
that objects are related. For example, suppose 
that our graph represents the physical connec- 
tions between electronic devices, such that two 
objects close together in the graph are close to- 
gether physically as well. Assume further that 
TN gives our belief that a Near device is faulty 
(1 means we are sure it is faulty). Similarly, TF 

can indicate the known status of the Find devices. 
Then, for a device f E F and a device n E N, 
b( f, n) may give us the belief that f is faulty due 
to n, since the closer f is to a faulty device, the 
more likely it is to be faulty. Our belief that f is 
faulty (between 0 and l), given the evidence of all 
the Near objects, is: 

score(f) = 1 - n (1 - b(f, n)) 
nEN 

(4) 

Of course other scoring functions may also be use- 
ful, depending on the application. We expect that 
the proximity search engine will provide several “stan- 
dard” scoring functions, and that users submitting 
queries will specify their intended scoring semantics. 
This is analogous to how users specify what standard 
function (e.g., COUNT, MAX, AVG) to use in a sta- 
tistical query. 

4 Keyword Search Application 

This section describes a prototype that implements 
our framework, as first mentioned in Section 2. By 
connecting to our system on the Web, users can 
search databases by specifying Find and Near key- 
words. Those keywords are used to generate corre- 
sponding input object sets for our proximity engine, 
which then ranks Find objects by their relevance to 
the Near objects. 

We implemented our proximity architecture on top 
of Lore [MAG+97], a database system designed at 
Stanford for storage and queries of graph-structured 
data. Lore’s data model is the Object Exchange Model 
(OEM) [PGMW95], originally designed at Stanford 
to facilitate integration of data from heterogeneous 
sources. An OEM database is essentially a directed 
graph, with data objects linked by textually labeled 
edges that describe relationships. In OEM, atomic 
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Find picture Near 
China 

Find publication Near 
Garcia 

Find publication Near 
Garcia Widom 

Find group-member 
Near September 

i 

Find publication Near 
OEM 

Photos of 6 Chinese students, followed 
by Prof. Widom, who advises 3 of them, 
and Prof. Ullman, who advises 2 

All of Prof. Garcia-Molina’s publications, 
followed by publications of his students 

The top publications are co-authored by 
Profs. Garcia-Molina and Widom, 
followed by their individual papers 

The top results are members born in 
September 

The top pub. has “OEM” in its title, 
followed by a pub. stored in “oem.ps,” 
followed by one with keyword “oem” 

Figure 4: Stanford Database Group keyword searches 

data such as integers, reals, strings, or images are 
stored only in leaf objects. An OEM database isn’t 
forced to conform to any prespecified schema; hence, 
it is useful for semistrvctured data, which may have 
some structure but may also contain irregularities. 
The graph from Figure 3 is in fact an OEM database, 
though we have augmented the model to support 
weights on edges. 

To generate the Find and Near sets for our prox- 
imity measurement, our application simply takes key- 
words as input. Note that in an OEM database, a key- 
word could identify an object with a specific incoming 
edge label, an atomic object whose data contains the 
keyword, or both. For each keyword, we use Lore in- 
dexes to add to the Find or Near set all objects with 
a matching incoming label and all atomic objects con- 
taining the specified keyword. Currently, Lore does 
not rank the objects returned by a keyword lookup; 
hence we assign all objects an initial rank of 1. 

Based on informal usability tests, we chose to set 
t to 2 in our bond definition (Equation l), to weight 
nearby objects more heavily; this setting causes a bond 
to drop quadratically as distance increases. To cap- 
ture the intuition given in the motivating example, we 
use the additive scoring function (Equation 2) to score 
each Find object. Together, our choice of tuning pa- 
rameter and scoring function will give a Find object fr 
that is 1 unit away from a Near object twice the score 
of an object fi 2 units away from two objects. In the 
user interface, we linearly scale and round all scores to 
be integers. 

Figure 4 summarizes the results of several keyword 
search queries over a database describing the members, 
projects, and publications of the Stanford Database 
Group (DBGroup). The database has been built from 
scratch in OEM, containing about 4200 objects and 

3600 edges. Initial supplied distances are similar to 
those shown in Figure 3. Examples show that prox- 
imity search is a useful complement to traditional 
database queries, allowing users to narrow in on rel- 
evant data without having to understand the nature 
of all database relationships, and without fully spec- 
ifying structural queries. In this interactive setting, 
users can easily browse results and submit additional 
queries. Note that this application reflects just one 
particular set of choices for instantiating our proximity 
model-how we generate the Find/Near sets, our ini- 
tial ranking functions 1‘F and TN, our tuning exponent 
t in the bond definition, and our choice of scoring func- 
tion. Our keyword search application is available to 
the public at http:// www-db.stanford.edu/lore; users 
can submit their own searches and browse the results. 

5 Computing Object Distances 

For our proximity computations to be practical, we 
need to efficiently find the distances between pairs of 
objects. In this section we discuss the limitations of 
naive strategies and then focus on our techniques for 
generating indexes that provide fast access at search 
time. 

First, we discuss the framework for our distance 
computations. As described in Section 3.1, the prox- 
imity engine takes as input Find and Near sets of OIDs, 
and a set of base distances between objects. Let V be 
the set of objects. We assume the distances are pro- 
vided by the distance module of Figure 2 as an edge-list 
relation El, with tuples of the form (u, w, w), if vertices 
u, v E V share an edge of weight w. For convenience, 
we assume that Er contains (u, V, w), if (v, U, w) is in 
El. Let G refer to the graph represented by El. 

In graph G, we define dG(u, V) to be the shortest 
distance between u and v. (We will drop the subscript 
G if it is clear which graph we are referring to.) As 
mentioned in Section 3.1, our proximity search focuses 
on objects that are “close” to each other. Hence, we 
assume all distances larger than some K are treated 
as 00. In our prototype, setting K = 12 for the 
IMDB and DBGroup databases yields reasonable re- 
sults, given the initial supplied distances. 

5.1 Naive Approaches 

At one extreme, we could answer a distance query by 
performing all required computation at search time. 
A classical algorithm to compute the shortest distance 
between two vertices is Dijkstra’s single-source short- 
est path algorithm [Dij59]. While the algorithm is 
efficient for graphs in main memory, computing the 
shortest distance for an arbitrary disk-based graph 
could take as many as IEll random seeks. There have 
been recent attempts to reduce I/O in the disk-based 
version of the algorithm using tournament trees [KS]; 
however, these attempts still require many random 
seeks. 
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Algorithm: Distance self-join 
Input: Edge set El, Maximum required distance: I( 
Output: Lookup table Dist supplies the shortest distance (up to K) between any pair of objects 
/ki For 2 = 1 to peg, “1, 

Copy El into El+,. 
Sort El on first vertex. // To improve performance 
Scan sorted El: 

151 For each (Vi, uj, wk) and (Vi, ~5, w;) in & where Uj # ~5 
PI If (Wk + W!, < 2’) and (Wk + W; 5 Ii-) 

Sort E;+, 
Add (u~,u;,w~ + W;) and (~J,Uj,wk +W;) tO I$+,. 

on first vertex, and store in &+I. 
PI Scan sorted El+1 : 

[:yi Let Dist be the final ,?$+I. 
Remove tuple (u, u, w), if there exists another tuple (u, u, w’), with w > w’. 

[12] Build index on first vertex in Dist. 

Figure 5: “Self-Join” distance precomputation 

A better approach would be to precompute short- 
est distances between all pairs of vertices and store 
them in a lookup table for fast access. The classi- 
cal algorithm to compute all-pairs shortest distances 
is Floyd-Warshall’s dynamic programming based al- 
gorithm [Flo62]. An obvious disk-based extension of 
the algorithm requires (Vv( scans of G. Clearly this 
is inefficient, and there is no simple way to modify 
the algorithm to find only distances no larger than Ii. 
There has been much work on the related problem of 
computing the transitive closure of a graph. In Sec- 
tion 7 we discuss these approaches and why they are 
not suitable for our problem. 

In the next section, we propose an approach for 
precomputing all-pairs distances of at most K that 
is efficient for disk-based graphs, using well-known 
techniques for processing “self-joins” in relational 
databases. Section 5.3 shows how we can exploit avail- 
able main memory to further improve both the space 
and time requirements of index construction. 

5.2 Precomputing Distances Using “Self- 
Joins” 

We use the following idea as the basic step for precom- 
puting all-pairs shortest distances. We will assume 
that K is a power of two for ease of exposition; of 
course, our algorithms work for general K as well. Let 
A be the adjacency matrix of G; for any vi, vj E V, 
A[vi][vj] = w if an edge (vi, vj, W) exists. Else, if 
i = j, A[vi][vj] = 0, else A[vi][vj] = 00. Given A, we 
compute A2, where the matrix multiplication is taken 
over the closed semiring of R+ U {co}, with scalar ad- 
dition and multiplication replaced by the min opera- 
tor and scalar addition respectively [AHU74]. Observe 
that for any pair (vi, vj) in G, A2 contains the short- 
est distance between vi and vj that goes through at 
most one other vertex. Similarly, we can generate A4 
by squaring A2, and so on, until we obtain AK. 

Figure 5 presents our implementation of the above 

idea, using simple self-join techniques. Roughly, Steps 
[2] - [lo] correspond to the basic matrix multiplica- 
tion idea we just described. El corresponds to the 
edge-list representation of A2’-l, and EI corresponds 
to the edge-list representation of A2’-l before apply- 
ing the min operator. (We will soon see what they 
mean intuitively.) In Steps [5] - [7], we are generating 
tuple (Vj, vi, wk + w(E), since we know that the short- 
est distance between vj and vi cannot exceed Wk + w(, 
(due to a path through vi). Step [6] restricts our se- 
lection to weights in the desired range. In Steps [8] - 
[lo], we eliminate non-shortest distances between ver- 
tex pairs. By iterating the above steps [log, K] times 
(Step [l]), we square the original A matrix [log,K] 
times, obtaining AK. Because all initial distances are 
at least 1, the final matrix is guaranteed to contain 
all shortest distances at most K. The final output 
Did of the above algorithm is a distance lookup table 
that stores the K-neighborhoods of all vertices. That 
is, the table stores all (vi, Vj, wk) for all vertex pairs 
vi, Vj with shortest path length wk units (wk 5 h’). 
For convenience, we will sometimes refer to EI as the 
unzapped edge-list, and we refer to El as the corre- 
sponding zapped edge-list, with non-shortest distances 
removed. 

The above procedure runs with little I/O overhead, 
since sorting the data enables sequential rather than 
random accesses. Note that other efficient techniques 
are possible for computing the self-join (such as hash 
joins), and in fact given El we can use standard SQL 
to generate El+1 [GSVGMSB]. Querying for d(v;, vj) 
is also efficient-since we index the Dist table, we can 
access the neighborhood of vi, and look for a tuple of 
the form (vi, vj, Wk). If there is such a tuple, we know 
the distance to be wk. If no such tuple exists, the 
distance is greater than K, and we return 0~). 

However, the construction of Did could be expen- 
sive using the above approach, since in Step [5] - [7], we 
produce the cross-product of each vertex neighborhood 
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Figure 6: Hub vertices 

with itself. The size of such a cross-product could be as 
large as IVj2 in the worst-case. For instance, when we 
executed the self-join algorithm on the the 4MB edge- 
list for the IMDB database described in Section 2 for 
K = 8, the edge-list grew to about one gigabyte-250 
times larger than the initial input! In the next section, 
we propose a technique to alleviate this problem. 

5.3 Hub Indexing 

We now propose hub indexing, which allows us to en- 
code shortest distances in far less space than required 
by the self-join algorithm, with little sacrifice in access 
time. We use Figure 6 to explain what hubs are and 
how they can be used to compute distances efficiently. 
If we execute our simple self-join algorithm from the 
previous section on the given graph, we will explicitly 
store the (Al x (BI p air wise shortest distances from - 
vertices in A to those in B. (We also store distances 
for pairs of objects both in A or both in B.) Comput- 
ing d(a, b) for some a E A and b E B merely involves 
checking the Dist table for a tuple of the form (a, b, zo), 
as described earlier. 

In Figure 6 we see that if we remove p and q, the 
graph is disconnected into two sub-graphs A and B. 
Rather than storing all IAl x IBI distances, suppose 
we store only the \A\ + IB\ shortest distances to p, the 
JAJ + IB] shortest distances to q, and the shortest dis- 
tance between p and q. Note that space savings are 
maximized when (Al = IBI. Of course, the query pro- 
cedure for such an approach is slightly more complex. 
We can see that the shortest-path between a and b 
can be one of a - p - b (not through q), a N q N b 
(not through p), a - p - q - b, or a - q - p - b. 
We can compute d(a, b) by finding these four distances 
and choosing the smallest. 

The above description gives the reader a rough idea 
of our approach. By finding hubs such as p and q, we 
can sharply reduce the storage required for a distance 
index, and we will show how to efficiently handle the 
more complex query procedure. In addition, we can 
store hubs and the shortest distances between them 
in main memory. As we allocate more memory for 
hub storage, our index shrinks and query times de- 

crease as well. Effectively choosing hubs in an arbi- 
trary graph is a challenging problem, an issue we defer 
to Section 5.3.4. Assuming we have a set of hubs, the 
following sections describe how to build a hub index 
and then answer distance queries using it. 

5.3.1 Constructing Hub Indexes 

As suggested by the above discussion, a hub index is 
comprised of two key components: a hub set H (and 
the shortest distance between each pair of its elements) 
and a table of distances between pairs of objects whose 
shortest paths do not cross through elements of H. 
For simplicity, we redefine the Dist lookup table from 
Section 5.2 to be this new table. The correctness of our 
hub index creation algorithm (and the corresponding 
query procedure given in the next section) is proven 
in [GSVGM98]. 

Given H, we can reuse the algorithm of Figure 5 
almost verbatim to construct the new Dist table. The 
only required change is to Step [6], which we replace 
with 

[S’] If (wk + WI, 5 2’) and (wk + w6 < K) 
and vi @ H 

By checking that vi is not in H we make sure that we 
do not consider any paths that cross hubs. (Paths with 
hubs as endpoints are still considered.) For each v E 
V, Dist stores all vertices reachable within a distance 
of K without crossing any hubs; we call this set of 
vertices the “hub-bordered” neighborhood of v. 

As we will explain in the next section, pair-wise dis- 
tances between hubs must be consulted many times 
to evaluate a distance query. Fortunately, experi- 
ments discussed in Section 6 show that even a small 
set of hubs greatly reduces index size. Hence, our 
query algorithm assumes that the pair-wise distances 
of all hubs are available in main memory. We wish 
to build a square adjacency matrix Hubs such that 
Hubs[hi][hj] gives the shortest distance between hubs 
hi and hj. To do so, we first initialize each entry of 
Hubs to 00. Then, with one sequential scan of Dist, 
for each edge (hi, hj, IQ), where hi, hj E H, we set 
Hubs[hi][hj] = wk. This step “short-cuts” the need to 
recompute all distances from scratch. Finally, we use 
Floyd-Warshall’s algorithm to compute all-pairs short- 
est distances in Hubs. Floyd-Warshall works in-place, 
without requiring additional memory. Since H is typ- 
ically small and engine initialization occurs rarely, we 
are generally not concerned with the time spent com- 
puting Hubs from H and Dist. Still, we have the op- 
tion of fully materializing Hubs at index creation time 
and then loading it directly into memory at engine 
initialization. 

Since we keep hubs and their distances in mem- 
ory, a hub index has the nice property that answering 
a distance query requires less work on disk as more 
memory is made available. In fact, if the entire adja- 

32 



Algorithm: Pair-wise distance querying 
Input: Lookup table on disk: Dist, Lookup matrix in memory: Hubs, 

Maximum required distance: K, Hub set: H 
Vertices to compute distance between: u, u (u # u) 

Return Value: Distance between u and v: d 
[I] If u, u E H, return d =Hubs[u][u]. 
[2] d = co 
[3] If u E H 
[43 For each (u, Vi, wk) in Dist 

;:; 
If vi E H // Path u N vi N v 

d = min(d, wk+Hubs[vi][u]) 
[7] If d > K, return d = co, else return d. 
[8] Steps [4] - [7] are symmetric steps if w E H, and u $ H. 
[9] // Neither u nor w is in H 
[lo] Cache in main-memory (E,) all (u, Vi, wk) from Dist 
[ll] For each (w, w:, ~1) in Dist 
y; If (4 = u) 

d = min(d, w;) // Path u N u without crossing hubs 
[14] For each edge (u,v;,wk) in E, 

;::; 
If W! E H and vi E H // Path u N vi N u: N w through hub vertices 

d = min(d, wk + w~+Hubs[u~[vi]) 
[17] If d > I<, return d = co, else return d. 

Figure 7: Pair-wise distance querying 

cency matrix fits in memory, we can choose H to be V 
and eliminate query-time disk access entirely. Our ap- 
proach reveals a smooth transition to Floyd-Warshall’s 
algorithm as main memory increases. Engine adminis- 
trators can specify a limit for the number of hub points 
based on available memory. 

5.3.2 Querying Hub Indexes 

Given the disk-based Dist table and the in-memory 
matrix Hubs, we can compute the distance between 
any two objects u and v using the algorithm in Fig- 
ure 7. The algorithm performs a case-by-case analysis 
when it answers such queries. To help explain the algo- 
rithm, we refer back to the graph in Figure 6, assuming 
H = {p,q}. Steps [l] through [8] are straightforward, 
since these steps handle the case where one or both of 
u and u are in H. (In terms of Figure 6, suppose that u 
and/or v are in {p, q}.) Steps [lo] through [17] address 
the case where neither input vertex is in H. Steps [la] 
- [13] consider the case where the shortest path from 
u to v does not go through any of the vertices in H 
and its distance is therefore explicitly stored in Dist. 
(In Figure 6, consider the case where both vertices are 
in A.) Steps [14] - [16] handle shortest paths through 
vertices in H, such as a path from any a E A to any 
b E B in the figure. 

If both u and v are in H, no disk I/O is performed. 
Recall that Dist is indexed based on the first vertex of 
each edge. Hence, in case either u or v is in H, one ran- 
dom disk seek is performed to access the hub-bordered 
neighborhood of v or u (Steps [4] - [S]). In case nei- 
ther is in H, two random disk seeks are performed 

to access the hub-bordered neighborhoods of both u 
and v (Steps [lo] and Step [ll]), The algorithm im- 
plicitly assumes that the hub-bordered neighborhood 
for any given vertex can be cached into memory (Step 
[lo]). Since we use hubs, and given that K is generally 
small, we expect this assumption to be safe. Addi- 
tional buffering techniques can be employed if needed. 

5.3.3 Generalizing to Set Queries 

While the previous section discusses how to use a hub 
index to look up the distance between a single pair 
of objects, a Find/Near query checks the distance be- 
tween each Find and each Near object. For instance, 
we may need to.look up the pair-wise distances be- 
tween Find = {vr,vug} and Near = {v~,v~,v~} The 
naive approach to answering such a query is to check 
the hub index for each of {vr,vs}, {vr,v4}, {vr,vs}, 
and so on. When we have F Find objects and N Near 
objects, this approach will require about 2 x F x N 
disk seeks, impractical if F and N are large. If the 
Dist table data for all of either the Find or the Near 
objects fits in main memory, we can easily perform all 
Find/Near distance lookups in F + N seeks. If not, 
we can still buffer large portions of data in memory to 
improve performance. 

In some cases, even F + N seeks may still be too 
slow. Our movie database, for example, contains 
about 6500 actors. Hence, finding the result to a query 
like “Find actor Near Travolta” will take at least 6500 
seeks. To avoid such cases, we allow engine adminis- 
trators to specify object-clustering rules. For exam- 
ple, by clustering all “actors” together in Dist we can 
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avoid random seeks and execute the queries efficiently. 
Our engine is general enough to cluster data arbitrarily 
based on user specifications. In our keyword proximity 
search application (Section 4), we cluster based on la- 
bels, such as “Actor,” “Movie,” “Producer,” etc. Note 
that this approach increases the space requirements of 
Dist, because these clusters need not be disjoint. To 
mitigate the replication, preliminary investigation sug- 
gests that we can significantly compress vertex neigh- 
borhoods on disk, discussed further in Section 6. 

5.3.4 Selecting Hubs 

Recall that we allocate an in-memory matrix of size 
M for storage of hubs. Hence, for any graph, we can 
select up to &? hubs. In this section, we summarize 
our strategy for hub selection. 

Consider again the example of Figure 6. Suppose we 
had a procedure that could pick p and q as vertices that 
disconnect the graph into two “balanced” sub-graphs 
A and B. Given such a procedure, we could recur- 
sively disconnect both A and B in a similar manner 
to gain further savings. This recursion would generate 
a hierarchy of vertex sets, each of which disconnects a 
graph into two sub-graphs. 

The set {p, q} is known as a separator in graph the- 
ory. Formal definitions have been developed to char- 
acterize hierarchies of balanced separators, which guar- 
antee that the disconnected subgraphs are similar in 
size. (See [GSVGM98] for more detail.) There exist 
linear time algorithms that compute balanced separa- 
tors for graphs of constant treewidth [Bod96], and for 
planar graphs [LT80]. It can be shown that a balanced 
separator yields an optimal graph decomposition for 
in-memory distance queries [HKRS94, CZ95, Pe197]. 
Hence, balanced separators would be ideal candidates 
for hubs. For tree-shaped data, such as HTML or XML 
[Con971 documents, we can use the aforementioned 
tree-based separator algorithm to generate hubs. 

Unfortunately, for arbitrary graphs, a nontrivial 
balanced separator theorem does not hold. The best 
known approximation yields a separator that is a fac- 
tor of O(logn) larger than the minimum [AKR93]. 
Hence, we have designed an heuristic for selecting hubs 
that is efficient to implement and performs well in 
practice. The heuristic is to select up to z/ii? ver- 
tices with highest degree as hubs. We can make this 
selection with one scan of the edge-list. Our strat- 
egy serves two purposes. Firstly, notice that Steps 
[5] - [7] of the original self-join algorithm (Figure 5) 
generate deg2(vi) tuples, where deg(vi) is the degree 
of vertex vi. In the revised hub version of the algo- 
rithm, we avoid generating deg2(v) tuples for vertices 
of highest degree. Secondly, it is quite likely that high 
degree vertices lie on many shortest paths. Just like 
airline hub cities in a route map, vertices that lie on 
many shortest paths often effectively divide the graph 
into “balanced” subsets. Note that the correctness of 

our indexing algorithm does not depend on hubs ac- 
tually separating a graph (see [GSVGM98] for proof); 
any vertex can in principle be chosen as a hub. Ex- 
periments for hub index creation are discussed in the 
next section. The results show that our hub selection 
heuristic is effective at reducing the time and space 
required to build an index. 

6 Performance Experiments 

We now study some performance related aspects of 
building hub indexes. Questions we address in this sec- 
tion include (1) Given a small, fixed number of hubs, 
what are the space and time requirements of index con- 
struction? (2) How do the algorithms scale with larger 
datasets? (3) What is the impact of selecting fewer or 
more hubs on the index construction time? (4) How 
fast is query execution? For our experiments, we used 
a Sun SPARC/Ultra II (2 x 200 MHz) running SunOS 
5.6, with 256 MBs of RAM, and 18 GBs of local disk 
space. 

We use the IMDB dataset to illustrate some of the 
trade-offs in this paper. We also experimented with 
the DBGroup dataset, but due to lack of space we do 
not present these results-however, the results were 
similar to those of IMDB. Since the IMDB dataset is 
small (its edge-list is about 4MB), we built a genera- 
tor that takes as input IMDB’s edge-list and scales the 
database by any given factor S. Note that we do not 
blindly copy the database to scale it; rather we create 
a “forest” by computing statistics on the small dataset 
and producing a new, larger dataset with similar char- 
acteristics. For instance, the percentage of popular 
actors will be maintained in the scaled-up version as 
well, and this set of actors will be acting in a scaled-up 
number of new movies. Similarly, movies will have the 
same distribution of actors from the common pool of 
S times as many actors; the ratio of “romance” movies 
to “action” movies will stay about the same. Since our 
generator produces the above graphs based on a real 
dataset, we believe it gives us a good testbed to em- 
pirically evaluate our algorithms. While we think the 
structure of our data is typical of many databases, of 
course it does not reflect every possible input graph. 

First, we discuss index performance when the num- 
ber of hubs is fixed at a “small” number. Recall from 
Section 5.3 that the algorithm requires temporary stor- 
age (for the unzapped edge-lists) before creating and 
indexing the final zapped edge-list. For our experi- 
ments, we build an ISAM index over the final edge- 
list. Figure 8 shows the temporary and final space 
requirements of a hub index for different values of h’. 
We define the space required as a multiple of the size 
of the original input. For this graph, we set S = 10 
and we choose no more than 2.5% of the vertices as 
hubs. For this case (about 40MB of data), we re- 
quired less than 250K of main memory to store our 
Hubs matrix. We see that both the temporary and fi- 
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nal space requirements can get large. For IL’ = 12 (the 
1C used for our prototype in Section 4), the temporary 
and final space requirements are about 12 times and 
6 times larger than the input edge-list, respectively. 
Similarly, Figure 9 reports the total time to create a 
hub index for different values of K. We see quadratic 
growth of both space and time requirements, due to 
the quadratic growth in the size of a vertex neighbor- 
hood. Momentarily we will show that increasing the 
number of hubs reduces space and time requirements. 

Next, we consider how our algorithms scale as the 
databases grow in size. In Figure 10 we show the to- 
tal storage required to store the final index when we 
(again) choose no more than 2.5% of vertices as hubs, 
for K = 12. Note that the storage consumption scales 
linearly, despite the fact that the large scaled graphs 
are tightly interconnected. We also observed that the 
index construction times scaled linearly with data sets, 
but we do not show the graph here due to lack of space. 

In Figure 11, we see that relatively small increases 
in the number of hubs can dramatically reduce the 
storage requirements of a hub index. Again, we con- 
sider the case where S = 10 and K = 12. First, 
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Figure 9: Index construction time with varying K 
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notice that if we choose fewer than 0.5% of vertices 
as hubs, we need significantly more space to store 
the final index; recall that we degenerate to the self- 
join algorithm when no hubs are selected. If we can 
choose up to 5% of vertices as hubs we see that the 
storage ratio for the final index drops to about 3.93. 
As we mentioned earlier, the graph shows that our 
algorithm smoothly transitions into a main-memory 
shortest-path computation as more memory is made 
available. Though not displayed here, the index con- 
struction time also follows a trend similar to the space 
requirements. 

In general, the index edge-lists are still large enough 
that any additional compression is useful. By altering 
our on-disk representation of edge-lists we can gain 
significant savings: we store a given edge-list as an 
adjacency list and then use delta-compression, a stan- 
dard technique used in information retrieval systems 
for compressing sorted data [ZMSD93]. Our experi- 
ments showed that when K = 12 and at most 2.5% 
of the vertices are hubs, the final index, including 
the delta-compressed zapped edge-list, is 2.0 times the 
size of the initial edge-list; it is 2.5 times the size of 
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the delta-compressed initial edge-list. (As mentioned 
above, without compression the final index was 6 times 
larger than the input.) Our index construction algo- 
rithms can be easily modified to operate on the delta- 
compressed edge-lists. 

Finally, we give a couple of examples of query execu- 
tion time. As can be expected, query times vary based 
on the size of the input sets. Consider yet again the 
query “Find movie Near Travolta Cage.” In our (un- 
scaled) IMDB dataset, IFind] M 2000 and [Near] = 2. 
With “movie” objects clustered together and no more 
than 2.5% of the vertices as hubs, the query takes 1.52 
seconds (beyond the Find/Near queries executed by 
Lore). For the query “Find movie Near location,” 
([Find1 M 2000, INear] M 200) execution takes 2.78 
seconds. Experiments not shown here indicate that 
choosing more hubs reduces query execution time. 

7 Related Work 

Most existing approaches for supporting proximity 
search in databases are restricted to searching only 
within specific fields known to store unstructured 
text [Ora97, DM97]. Such approaches do not con- 
sider interrelationships between the different fields 
(unless manually specified through a query). One 
company, DTL, markets a technology called DataSpot 
(www.dataspot.com) for plain language search over 
databases [DGEP98]. DataSpot is also based on a 
graph model, using heuristics to significantly prune the 
search space; their specific algorithms have not been 
made public. 

A universal relation [U1189] is a single relational 
view of an entire database, which enables users to pose 
simple queries over relational data. A universal rela- 
tion brings tuples within close “proximity” together. 
Still, this approach does not support proximity search 
in general, and it provides no mechanism for ranking 
relevant results. 

There has been extensive work on the problem of 
computing the transitive closure of a disk-resident di- 
rected graph, strictly more general than the problem 
of computing shortest distances up to some K. Work 
by Dar and Ramakrishnan [DR94] examines many al- 
gorithms for this problem and supplies comparative 
performance evaluation, as well as discussion of use- 
ful measures of performance. In principle, it would be 
possible to apply these algorithms to our problem, but 
in practice this cannot be done efficiently. For one, the 
algorithms are designed to perform transitive closure 
queries at runtime. An input query is a set of ver- 
tices Q C V, and the output is the set of all vertices 
R C V reachable from this set. Ullman and Yan- 
nakakis [UY91] obtain a bound of 0(N3/a)) I/OS 
for computing the transitive closure of a graph with N 
nodes and main memory M. The runtime performance 
hit could be solved by pre-computing the transitive 
closure and storing it on disk. However, the space re- 

quired by such a scheme would be huge (O(V2)). Our 
schemes avoid these pitfalls by not explicitly comput- 
ing or storing full neighborhoods. 

8 Conclusion and Future Work 

We have presented a framework for supporting proxim- 
ity search across an entire database. While traditional 
IR proximity searches are based on finding keywords 
in textual documents, we demonstrated a general ap- 
proach for proximity search over any large set of in- 
terconnected data objects. We formalized our notion 
of proximity and proposed several scoring functions. 
As an application of our search techniques, we cre- 
ated a system that supports keyword proximity search 
over databases, yielding interesting and intuitive re- 
sults. Measuring proximity depends on efficient com- 
putation of distances between objects for a disk-based 
graph. We gave a formal framework and several ap- 
proaches for solving the problem, focusing on hub in- 
dexing. Experiments showed that creating hub indexes 
is reasonably fast, the indexes are compact, and they 
can be used to quickly find shortest distances at search 
time. 

For future work, we are considering the following 
directions. 

l We plan to continue to enhance our indexing algo- 
rithms. We are investigating improved techniques 
for selecting hubs, especially when we can deter- 
mine certain properties of the input graph. In ad- 
dition, we plan to further investigate techniques 
for compressing K-neighborhoods on disk. If we 
could pre-compute all K-neighborhoods (rather 
than just the “hub-bordered” neighborhoods), we 
could dramatically improve query time. With- 
out compression, however, the space requirements 
of such a structure would be enormous. Finally, 
we are considering the possibility of improving 
performance by maintaining approximate (rather 
than exact) distances between objects. 

l Users may desire query flexibility beyond basic 
Find/Near queries. For example, someone may 
want to find the movies that are near Travolta but 
not near Cage. As another example, one might be 
interested in finding the actors near the movies 
near Cage: Find actor Near (Find movie Near 
Cage). Implementing such general functionality 
requires schemes for combining results from mul- 
tiple proximity searches. 

l To enable many applications, we want to integrate 
proximity search into structured query languages 
such as SQL. In the relational setting, we antici- 
pate several interesting issues involved in combin- 
ing traditional relations with ranked tuples that 
may be returned by the proximity search. Sup- 
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port for ranked tuples was broached by Fagin 
[Fag96], who suggests using fuzzy sets. 

We are looking at how to incrementally main- 
tain our indexing structures as the underlying 
database changes. 
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