
Determining Text Databases to Search in the Internet

Weiyi Meng’, King-Lup Liu 2, Clement Yu2, Xiaodong War&, Yuhsi Chang’, Naphtali Rishe3
1 Dept. of Computer Science 2 Dept. of EECS 3 School of Computer Science

SUNY - Binghamton University of Illinois Florida International Univ.
Binghamton, NY 13902 Chicago, IL 60607 Miami, FL 33199

meng@cs.binghamton.edu {yu, kliu}@eecs.uic.edu rishen@cs.fiu.edu

Abstract

Text data in the Internet can be partitioned
into many databases naturally. Efficient re-
trieval of desired data can be achieved if we
can accurately predict the usefulness of each
database, because with such information, we
only need to retrieve potentially useful docu-
ments from useful databases. In this paper,
we propose two new methods for estimating
the usefulness of text databases. For a given
query, the usefulness of a text database in this
paper is defined to be the number of doc-
uments in the database that are sufficiently
similar to the query. Such a usefulness mea-
sure enables naive-users to make informed de-
cision about which databases to search. We
also consider the collection fusion problem.
Because local databases may employ similar-
ity functions that are different from that used
by the global database, the threshold used by
a local database to determine whether a doc-
ument is potentially useful may be different
from that used by the global database. We
provide techniques that determine the best
threshold for a given local database.

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distribrted for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a jee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

1 Introduction

How to find desired data in the Internet in a timely
manner is a problem with wide interest. In this paper,
we focus on the retrieval of text data. One popular
way to find desired information in the Internet is to
query a search engine. To support querying, an in-
verted file index is usually created for all documents.
However, since the amount of data accessible through
the Internet is huge and is increasing at a very high
rate, it is not realistic to use a single index for all data
in the Internet.

Data in the Internet are often organized into
databases naturally. For example, all posts associated
with a newsgroup can be considered as a database,
so are all html files associated with an organization.
Larger (global) databases can be constructed from
many smaller (local) databases. Typically, a global
database does not maintain its own index. A global
database is actually an interface (we will use the
phrase global interface in this paper) created to pro-
vide uniform and integrated access to underlying local
databases. When a global interface receives a user
query, it first passes the query to its local databases,
then merges the results from local databases and fi-
nally presents the merged result to the user.

Many global interfaces have been built but most of
them pass each query to all underlying databases indis-
criminately (e.g., MetaCrawler [SeEt95, SeEt97] and
NCSTRL [NCS]). If 1 a ocal database contains no use-
ful documents to a query, then passing the query to the
database causes unnecessary network traffic and local
resource waste. A better approach is to first identify
those local databases that are most likely to provide
useful results to the query and then search only the
identified local databaSes for desired documents. Ex-
amples of systems that employ this approach are WAIS
[KaMeSl], ALIWEB [Kost94], gGlOSS [GrGM95a],
SavvySearch [HoDr97] and D-WISE [YuLe97]. With
such an approach, the problem of processing a user

14

query consists of the following two subproblems:

1. Select local databases that need to be searched
and estimate the number of globally most similar
documents in each local database.

2. Decide which documents from each selected lo-
cal database to retrieve. Even when the num-
ber of globally most similar documents in a local
database with respect to a query can be estimated
correctly, the documents to be retrieved have yet
to be determined, due to possibly different simi-
larity functions or term weights used by the global
interface and by the local database. The problem
of deciding which documents should be retrieved
from local databases is known as the collec2ion
fusion problem.

In this paper, we attack both of the above two sub-
problems, namely, the database selection problem and
the collection fusion problem.

The current solutions to the database selection
problem is to rank all underlying databases for each
query using some metadata that describe the contents
of each database. Often, the ranking is based on some
measure which ordinary users may not be able to uti-
lize to fit their needs. In other words, for a given query,
the current approach can tell the user to some degree
of accuracy which database is likely to be the most
useful, the second most useful, etc. While such a rank
can be helpful, it cannot tell the user how useful any
particular database is. In this paper, the usefulness of
a database to a query is defined to be the number of
documents in the database that have high potentials
to be useful to the query, that is, the similarities be-
tween the query and the documents as measured by
a certain global similarity function are higher than a
specified threshold’. This usefulness can be defined
precisely as follows:

usefulness(T, q, D) = I{dld E D and sim(q, d) > T}I

(1)
where T is a threshold, D is a database, sim(q,d) is
the similarity (closeness) between a query q and a doc-
umentdinD,and (X(d enotes the cardinality of set X.
A query is simply a set of words submitted by a user.
It is transformed into a vector of terms by eliminating
non-content words, stemming, etc [SaMc83]. In prac-
tice, users may not know how to relate thresholds to

1 Ideally, for a given query, the usefulness of a database should
be defined as the number of relevalzl documents in the database.
However, the relevance of documents is highly subjective as it
can only be determined by the issuer of the query. As a result,
this definition is not suitable for our problem in practice, i.e.,
the global interface cannot determine whether a document is
relevant. Similarity-based measure is also used in [GrGM95a].

the number of documents they like to retrieve. There-
fore, users are more likely to tell the system the num-
ber of most similar documents (to their query) they
like to retrieve directly. Such a number can be trans-
lated into a threshold by computing the usefulnesses
of each database in decreasing thresholds.

For the collection fusion problem, most existing
global interfaces do not guarantee that all (or a high
percentage of all) globally most similar documents be
retrieved from each local database (see next section
for more discussion). In this paper, we also study the
problem of guaranteeing all globally most similar doc-
uments from each local database be retrieved. Such
a guarantee could be important for legal and medi-
cal applications. Suppose the global interface sets a
threshold T and uses a global similarity function G
such that any document d satisfying G(q, d) > T is
to be retrieved, where q is the user query. A local
database may use a different similarity function, say
L. The problem is to determine a proper threshold
T’ used by the local database such that all globally
most similar documents which can be found in the
database can be retrieved using L, i.e., if G(q, d) > T,
then L(q,d) > T’ and T’ is as large as possible.

The contributions of this paper are:

l We provide two new estimation methods to esti-
mate the usefulness of a database. The methods
have solid theoretical foundations. Experimental
results are obtained to demonstrate the superior-
ity of these methods over existing methods.

l We provide two techniques to obtain the best local
threshold (i.e., the largest T’) while guaranteeing
all globally most similar documents be retrieved
from the local database. By an example used by
others, we show that the threshold computed by
one of our techniques is much better than the one
computed using an earlier methodology.

l We provide two techniques to retrieve documents
in a local database when the similarity func-
tions for both the global interface and the local
database are the same popular Cosine function
[SaMc83] (although the functions are identical,
the weight of a term which depends on the num-
ber of documents having the term may change
from the local database to the global interface).
The first one modifies the query so that the local
database computes the global similarity for each
local document. The second one computes an op-
timal local threshold.

The rest of the paper is organized as follows.
Section 2 reviews related work. Section 3 presents
our methods for estimating the usefulness of text

databases as well as experimental results. The prob-
lem of how to find globally most similar documents for
any given query from multiple text databases will be
studied in Section 4. Section 5 concludes the paper.

2 Related Work

To be able to identify useful databases to a query, the
global interface must keep some characteristics infor-
mation about each database. We call such information
the representative of a database. Different database
selection methods can be developed based on the rep-
resentatives used.

Database selection has been employed by several
systems. However, the database representatives used
in most systems cannot be used to estimate the num-
ber of globally most similar documents in each lo-
cal database [CLBC95, Kost94, KaMe91, MaBi97,
YuLe97]. In gGlOSS [GrGM95a], each database is rep-
resented by the document frequency of each term and
the sum of the weights of each term over all docu-
ments in the database. The database usefulness used
in gGlOSS is different from the one defined in For-
mula (1). However, the representative of gGlOSS
can be used to estimate the number of useful docu-
ments in a database [GrGM95b]. The methods used
in gGlOSS are very different from ours. The estima-
tion methods employed in [GrGMgSa, GrGM95b] are
based on two very restrictive assumptions. One is the
high-correlation assumption (for any given database, if
query term j appears in at least as many documents
as query term k, then every document containing term
k also contains term j) and the other is the disjoint
assum.ption (for a given database, for all term j and
term k, the set of documents containing term j is dis-
joint with the set of documents containing term k).
Due to the restrictiveness of the above assumptions,
the estimates provided by these two methods are not
accurate.

[YuLS78] p ro ose a method to estimate the num- p d
ber of useful documents in a database for the binary
and independent case. In this case, each document d is
represented as a binary vector such that a 0 or 1 at the
ith position indicates the absence or presence of term
ti in d; and the occurrences of terms in different doc-
uments are assumed to be independent. This method
was later extended to the binary and dependent case
in [LaYu82], where dependencies among terms are in-
corporated. A substantial amount of information will
be lost when documents are represented by binary vec-
tors. As a result, it is seldom used in practice. Our
proposed solutions to the usefulness estimation prob-
lem are extensions of those in [YuLS78, LaYu82] by
permitting the use of arbitrary term weights in repre-
senting documents and by incorporating term depen-

dencies.
The collection fusion problem has received a lot of

attention recently. For a given query, most existing
global interfaces, after the number of documents to
retrieve from a local database is determined (let k
denote the number), the global interface lets the lo-
cal database retrieve the top k documents from the
local database, based on the local similarity func-
tion. For example, MetaCrawler [SeEt95, SeEt97]
and SavvySearch [HoDr97] let the user specify the
maximum number of documents to be retrieved from
each local database. D-WISE [YuLe97] and CORI
net [CLBC95] t re reeve proportionally more documents
from databases that are ranked higher or have higher
ranking scores. [TVGJ95, VGJL95] provides several
learning based approaches. A problem common to
all the above approaches is that none of them guar-
antees that all globally most similar documents from
each database will be retrieved. The algorithm in
[GrGM97] while guaranteering that all globally most
similar documents will be retrieved may unnecessarily
retrieve many documents that are not globally most
similar. Our proposed solutions in this paper aim
at minimizing the number of documents that are not
globally most similar to be retrieved while guarantee-
ing that all globally most similar documents are re-
trieved.

3 Two New Methods for Usefulness
Estimation

In section 3.1, we consider a special case - the Non-
binary and Independent case, where non-binary means
that term weights are not limited to 0 or 1 (can be any
real numbers) and zndependent means that the occur-
rences of different terms in each document are indepen-
dent. Under two assumptions, one is the “term inde-
pendence” and the other is that all documents having a
term have the same weight for the term in a database,
our method can accurately estimate the usefulness of
a database. In section 3.2, we relieve the former as-
sumption by incorporating term dependence into the
basic solution. In section 3.3, we relieve the latter
assumption by allowing dynamic adjustment to term
weights. As a result, our estimation becomes more
accurate. In summary, our first estimation method is
for the non-binary and independent case with dynamic
adjustment to term weights and other relevant infor-
mation, and our second method is for the non-binary
and dependent case with dynamic adjustment to term
weights and other relevant information. Experimental
results are reported in section 3.4. The applicability
of the two methods in practice is discussed in section
3.5.

16

3.1 The Non-binary and Independent Case

Consider a database D with m distinct terms. Each
document d in this database can be represented as a
vector d = (dl,...,dm), where di is the weight (or
significance) of the ith term ti in representing the doc-
uments, 1 < i 5 m. Each query can be similarly rep-
resented. Consider query q = (ul,us, u,,,), where
ui is the weight of ti in the query, 1 5 i 5 m. The
similarity between q and document d can be defined
as the dot product of their respective vectors, namely
sim(q, d) = u1 * dl + . . . + u, * d, (note that nor-
malization that yields similarities between 0 and 1, for
example using the Cosine function [SaMc83], can be
incorporated by re-defining the weights d’s and u’s.
Normalization is used in our experiments (see section
3.4)).

Database D is represented as m pairs {(pi, 2ui)},
i=l , “‘> m, where pi is the probability that term ti
appears in a document in D and wi is the average
weight of the weights of ti in the set of documents con-
taining ti. For a given query q = (ul,u2,um). the
database representative is used to estimate the useful-
ness of D. Without loss of generality, we assume that
only the first r ui’s are non-zero, 0 < r 5 m. There-
fore, q becomes (~1~~2,u~) and sim(q,d) becomes
ul*dl+.. . + up * d,. This implies that only the first
T terms in each document in D need to be considered.

Consider the following generating function:

P

Ha * xw,*zI, + (1 - pi)] (2)
d=l

where X is a dummy variable. The following proposi-
tion relates the coefficients of the terms in the above
function with the probabilities that documents in D
have certain similarities with q.

Proposition l2 Let q and D be defined as above. If
the terms are independent and the weight of term ti
whenever present in a document is wd, which is given
in the database representative (1 5 i 5 T), then the
coefficient of X5 in function (2) is the probability that
a document in D has similarity s with q.

Example 1 Let q = (1, 1, 1) be a query with three
terms with all weights equal to 1. Suppose database
D has five documents and their vector representations
are (only components corresponding to query terms
are given): (2, 0, 2), (0, 1, l), (2, 0, 0), (0, 0, 3) and
(0, 0, 0). Namely, the first document has query term
1 and query term 3, and their corresponding weights
(e.g., the numbers of occurrences of the terms in the
document) are both 2. Other document vectors can be
interpreted similarly. From the five documents in D,

2All proofs in this paper can be found in [MLYW98].

(pi, WI) = (0.4, 2), (~2, ~2) = (0.2, l), and (~3, wg) =
(0.6, 2) can be computed. Therefore, the correspond-
ing generating function is:

(0.4*X2 +0.6)(0.2*X +0.8)(0.6*X2 + 0.4) (3)

Consider the coefficient of X3 in the function.
Clearly, it is the sum of pl * p2 * (1 - ps) and (1 -
~1) * p2 * ps. The former is the probability that a doc-
ument in D has exactly the first two query terms and
the corresponding similarity with q is w1 + w2 (=3).
The latter is the probability that a document in D has
exactly the last two query terms and the corresponding
similarity is w2 + wg (=3). Therefore, the coefficient of
X3, namely,pl*p2*(l-p3)+(l-pl)*p2*p3 = 0.104,
is the estimated probability that a document in D has
similarity 3 with q. n

Suppose after generating function (2) has been ex-
panded and the terms with the same X” have been
combined, we obtain:

a1 * Xb’ + u2 * Xb2 + . . + a, * Xb’ (4)

where bl > b2 > . . . > b,. By Proposition 1, aa is
the probability that a document in D has similarity bi
with q. For a given similarity threshold T, let C be the
largest integer to satisfy bc > T. Let n be the num-
ber of documents in D. Then, the usefulness of D for
query q based on threshold T (i.e., expected number
of documents in D whose similarities with query q are
greater than T) can be estimated as:

estimate(T,q,D) =cn*ai =nkai (5)
i=l i=l

Example 2 (Continue Example 1). When formula
(3) is expanded, we have:

0.048 * X5 + 0.192 * X4 + 0.104 * X3 + 0.416 * X2

+ 0.048 * X + 0.192 (6)

Using formula (5), the usefulness of D with respect
to q and T = 2 can be estimated as estimate(2, q, D) =
5 * (0.048 + 0.192 + 0.104) = 1.72. It is interesting to
note that the true usefulness usefuZness(2, q, 0) = 2
since there are two documents having similarity higher
than 2 with q (the first and the fourth, and the simi-
larities are 4 and 3, respectively). n

3.2 The Non-binary and Dependent Case

In this case, in addition to the pi’s and wi’s as in
the Non-binary and Independent case, the database
representative also includes term dependency informa-
tion. We use co-variances to measure the dependencies
among different terms. The co-variance between term
i and term j is denoted by aij and t,he co-variance

17

among terms i, j, and Ic is denoted by aijk. This no-
tation can be generalized for co-variances among any
number of terms.

For query Q = (~1,. . . , u,), let x’ be a vector of
random variables (Xi, X2,. . .,X,.). x’ maps each doc-
ument d in database D to a binary vector T(d) =
(X,(d),Xa(d), .,X,.(d)), where Xi(d) = 1, if docu-
ment d has term ti, and 0 otherwise (i = 1,. . . , r).
Denote by pi the expected value of Xi (i = 1, . . . , r).
For terms tJ1, t,2,. . . , t,*, we measure their degree of
dependency by the co-variance of Xj,, Xj,, . . . , XjS,
which is the expected value of the product l-I,“=, (Xj, -

k,).
Let P(Z) be the probability that x’ maps a docu-

ment in D to a given binary vector I = (x1, x2, xr).
If the terms are mutually independent, this proba-
bility, denoted by PO(g), is n:=, p:’ * (1 - pt) - . 1 xt

When terms are not independent, then the Bahadur-
Lazarsfeld Expansion [DuHa73] can be used to derive
the following expression for P(Z) [LaYu82]:

p(z) = po(z)

(

1 + c uij (Xi - PaNx:j -pj)

i<j PiPj(l -Pi)(l -Pj>

+ c rijk
(Xi - Pi)(Xj - pj)(xk - pk)

i<j<k
PipjPk(l -I%)(1 -Pj)(l -pk)

+... + UlZ...r
(Xl -Pl)~.~(xc, -pr>

Pl ..,I&(1 -&)...(l -p,)
(7)

where Uij is the co-variance of Xi and Xj, aijk is the
co-variance of X;, Xj and Xk, etc. Expansion (7) can
be interpreted as follows. If the terms in D are more or
less independent, then P(Z) can be approximated by
PO(Z). Otherwise, dependencies between terms can be
added for a better approximation. Usually, the more
dependency information we add, the better the ap-
proximation will be. If all possible combinations of
term dependencies are taken into consideration, then
P(Z) is accurately represented.

In Proposition 1, we have shown that function (2)
can be used to find the probability that a document in
D has similarity s with 4 when terms are independent.
It can be shown (see Proposition 2 below) that when
terms are not independent, the following generating
function can be used for the P(Z) as expressed in (7)
above.

Ibt *XW’*u*+(l-pt)]+Caij n [Pt*XW’*“’
t=1 i<j t#i,t#j

+(l - pt)](Xw**“t - l)(Xwj*uj - 1)

+... + fllZ...r n(x-l*uf - 1) (8)

t=1

Proposition 2. Let q and D be defined as above.
Based on expansion (7), if the weight of term t; when-
ever present in a document is wi which is given in the
database representative (1 5 i 5 r), then the coeffi-
cient of XS in function (8) is the probability that a
document in D has similarity s with Q.

Note that the first subexpression in (8) is identical
to expression (2). In other words, expression (8) is
obtained by first assuming that all terms are indepen-
dent and then incorporating the dependencies among
terms into the expression. If term i and term j are in-
dependent, then aij is zero. Similarly, if a set of terms
are independent, then the corresponding co-variance is
zero. Thus, in practice, it is usually sufficient to incor-
porate the 0(T most significant co-variances between)
all term pairs for a query with r distinct terms; other
less significant ones can be ignored.

By expanding (8) and combining terms with the
same X’, a function similar to (4) can be obtained.
After this, the process for deriving the formula for es-
timating the usefulness of a database is identical to
that discussed in section 3.1.

3.3 Incorporating More Accurate Weight In-
formation Dynamically

In the database representative for database D, wi is
the average weight of the weights of term ti among
the documents that contain ti. Based on Propositions
1 and 2, generating functions (2) and (8) can accu-
rately estimate the usefulness of D under their respec-
tive assumptions on term dependence if the weight of
term ta whenever present in a document is wi. This
assumption about the weight of a term being uniform
among documents containing the term may not be re-
alistic. As a result, the estimated usefulness may be
inaccurate.

The following impact of using the average weight
of each term in the database representative on the es-
timation accuracy can be observed. Typically, docu-
ments whose similarities with a query exceed a large
threshold must have large weights for the terms that
also appear in the query. However, when the aver-
age weights are used, documents having large weights
on query terms may fail to be recognized as the av-
erage operation brings down weights that are above
the average to compensate weights that are below the
average. To overcome the bad impact of using the
average weights on the estimation accuracy for large
thresholds, we also store, for each term ti, the standard
deviation (denoted ui) of the weights of ti in the set of
documents containing ti. With the deviation added,
the representative of each database will be a set of
triplets (wi, pi, ui). If dependence information among
terms are to be incorporated, then some co-variances

18

among terms will also be in the database representa-
tive.

The idea is to use the standard deviation of each
term to dynamically adjust (i.e., increase) the aver-
age weight of the term when large thresholds are used.
For larger thresholds, larger increases should be made.
The following formula for obtaining the new weight,
wi, from the original average weight, wi, and the stan-
dard deviation, ui, can be used:

where T is the threshold used and T,,, is the maxi-
mum value that should be used as a threshold for the
query, i.e., if a threshold larger than T,,, is used, then
no document in the database can be retrieved. There
are several justifications for using formula (9). First,
it is a monotonically increasing function of T. As a re-
sult, a larger new average weight can be obtained for a
larger threshold used. Second, when T = 0, w: = wi,
meaning that the original average weight is used when
T = 0. Third, when cri = 0, w{ is reduced to wi.
Fourth, when T = Tmaz, w: = wi +c*(T~, meaning that
the maximum term weight for term ti is wi + c * cri.
When normalized term weights for a term satisfies the
normal diskz&lion, then most term weights will fall
in the interval [wi - 3 * ci, wi + 3 * vi]. Consequently,
c should be chosen to be close to 3. Furthermore, for
a given query q = (~1, u,) and a threshold T, T,,,
can beset to (w1+3*~,)*211+...+(w,+3*~,)*11,.

Intuitively, using a larger average weight for each
term can be considered as using the average of larger
term weights (i.e., first discard small weights and then
average the remaining larger weights). When more
small weights are discarded, the new average will be
larger. When some small weights are not used to com-
pute the new average weight w:, the probability that
term ti appears in those documents whose weights are
used to compute w: needs to be computed. This prob-
ability, pi, should be used to replace pi, just as WI is to
replace wi, in the generating functions for usefulness
estimation. pa can be estimated by pi *pk,, where iii is
the value such that when the weights for term ti that
are smaller than Ici are not used, the average of the
remaining positive weights will yield w{, and pk, is the
probability that a positive weight of term ti is greater
than or equal to ki. Similarly, for the dependent case,
new co-variances should be estimated based on the un-
derstanding that term ti is considered to appear in a
document only if the weight of ti in the document is
greater than or equal to ki. The new co-variances are
used to replace the original co-variances in generating
function (8). See [MLYW98] for details about these
estimations.

3.4 Experimental Results

Three databases, Dl, D2, and D3, and a collection of
6,597 queries are used in the experiment. Dl, con-
taining 761 documents, is the largest among the 53
databases that are collected at Stanford University for
testing the gGlOSS system. The 53 databases are
snapshots of 53 newsgroups at the Stanford CS De-
partment news host and the queries are real queries
submitted by users to the SIFT Netnews server
[GrGM95a]. D2, containing 1,466 documents, is ob-
tained by merging the two largest databases among
the 53 databases. D3, containing 1,014 documents, is
obtained by merging the 26 smallest databases among
the 53 databases. As a result, the documents in D3
are more diverse than those in D2 and the documents
in D2 are more diverse than those in Dl.

For all documents and queries, non-content words
such as ‘(the”, “of”, etc. are removed. The similarity
function is the normalized dot product function. The
normalization guarantees that the similarity between
any query and document will be between 0 and 1. As a
result, no threshold larger than 1 is needed. When the
dependent case is tested, 8,477, 12,482 and 13,658 co-
variances are collected for Dl, D2 and D3, respectively,
for incorporating the dependencies among the terms.
More co-variances are used for D2 and D3 because they
contain more distinct terms (25,846 for D2 and 29,780
for D3 versus 16,065 for Dl).

Consider database Dl. For each query and each
threshold, five usefulnesses are obtained. The first is
the true usefulness obtained by comparing the query
with each document in the database. The other four
are estimated based on the database representatives
and estimation formulas for the following cases: (1)
The high-correlation case. (2) The disjoint case. (3)
The non-binary and independent case with dynamic
adjustment to WI’s and pi’s. (4) The non-binary and
dependent case with dynamic adjustment to wa’s, pi’s
and co-variances. All estimated usefulnesses, if they
are not integers, are rounded to integers. The experi-
mental results for Dl are summarized in Table 1.

Table 1: Comparison of Different Methods Using Dl

In Table 1, T is threshold and U is the number
of queries that identify Dl as useful (the true use-
fulness of the database with these queries is at least
one). When T = 0.1, 1,655 out of 6,597 queries iden-
tify Dl as useful. Now consider the column for the
high-correlation case. “m/mis/diff” is a shorthand for

19

“match/mismatch/average difference”. “460/72/20”
means that out of the 1,655 queries that identify Dl
as useful based on the true usefulness, 460 queries also
identify Dl as useful based on the estimated useful-
ness by the high-correlation approach; there are 72
queries that identify Dl as useful based on the high-
correlation approach but in reality, Dl is not useful
to these 72 queries; and 20 is the average difference
between the true usefulness and estimated usefulness
over the 1,655 queries that identify Dl as useful based
on the true usefulness. Clearly, a good estimation
method should have its “match” close to “U” and
its “mismatch” and “average difference” close to zero
for any threshold. In other words, a better estima-
tion should yield a larger “match” value and smaller
“mismatch” and “average difference” values. In prac-
tice, correctly identifying a useful database is often
more significant than incorrectly identifying a useless
database as a useful database. This is because miss-
ing a useful database does more harm than searching
a useless database. Therefore, if estimation method A
has a larger “match” component than method B while
A’s “mismatch” component is not too much larger
than B’s “mismatch” component, then A should be
considered better than B.

The experimental results for D2 and D3 are sum-
marized in Tables 2 and 3, respectively.

Table 2: Comparison of Different Methods Using D2

Table 3: Comparison of Different Methods Using D3

The following can be observed from Tables 1, 2 and 3.

1. Our methods are much more accurate in esti-
mating the database usefulness than the meth-
ods proposed in [GrGM95b] for all thresholds (see
values under the “ditf” category in the above
tables). The error is typically reduced by a
large percentage. Dramatic improvement for the
match/mismatch category is also obtained at ev-
ery threshold.

2. The dependent case is consistently better than
the independent case. This indicates the useful-
ness of using co-variance information in estimat-
ing database usefulness. Note that for queries

3f-l

that actually use co-variances, the improvements
are typically larger than those shown in the above
tables. This is because the averages are computed
for all queries that identify the database as use-
ful based on the true usefulness, including those
queries that do not use co-variances (i.e., single
term queries or queries for which no co-variances
are collected for their terms; nearly 30% of the
6,597 queries are single term queries).

3. While in all three databases, the two proposed es-
timation methods are more accurate than existing
methods, the “mismatch” components are smaller
for database 1, larger for database 2 and largest
for database 3. This is likely due to the increased
degrees of inhomogeneity of these three databases
by their construction.

3.5 Discussion on Applicability

We now discuss several issues concerning the applica-
bility of the two new methods in practice.

Scalability

If the representative of a database used by an esti-
mation method has a large size relative to that of the
database, then this estimation method will have a poor
scalability as such a method is difficult to scale to thou-
sands of text databases. Suppose each term occupies
four bytes. Suppose each number (probability, aver-
age weight, standard deviation and co-variance) also
occupies 4 bytes. Consider a database with le differ-
ent terms. For the independent case, k probabilities, k
average weights, k standard derivations are stored in
the database representative, resulting in a total stor-
age overhead of 16 * k bytes. For the dependent case,
we also need to store some co-variances. We intend to
use no more than k co-variances as obtaining and using
the information is expensive. Thus, for the dependent
case, the total storage overhead for the database rep-
resentative is 20*k bytes. The following table shows,
for several document collections, the percentage of the
sizes of the database representatives based on our ap-
proach for the independent case relative to the sizes of
the original document collections.

In the above table, all sizes are in pages of 2
KB. The statistics of the first three columns of the
first three document collections, namely, WSJ (Wall
Street Journal), FR (Federal Register) and DOE (De-
partment of Energy), were collected by ARPA/NIST

[Harm93]. Clearly, the sizes of database representa-
tives based on our approaches are only a very small
fraction of those of original databases. Therefore, our
approaches are fairly scalable. Also, typically, the
percentage of space needed for a database represen-
tative relative to the database size will decrease as the
database grows. This is because when new documents
are added to a large database, the number of distinct
terms either remain unchanged or grows slowly. In
comparison, if a global inverted file index is built, the
size of the index is usually comparable to that of the
actual database. As a result, our proposed solution
requires much less space.

Comparing to the database representative used in
gGlOSS, the size of the database representative for
the independent case is 33% larger (due to storing
the standard deviation for each term) and the size of
database representative for the dependent case is 67%
larger. Clearly, there is a tradeoff between space and
accuracy.

Easiness of Obtaining Representative

The representative of a database for the indepen-
dent case can be obtained easily and efficiently. This
is because the terms’ probabilities appearing in a doc-
ument, the average weights and their standard devi-
ations can all be readily computed from the inverted
file entries maintained by the local system. As a result,
the local system can provide the information.

In contrast, obtaining the largest co-variances for
the dependent case could be time-consuming due to
typically a very large number of co-variances. How-
ever, the computation can be done off-line. Another
possibility is to obtain co-variances adaptively. Specif-
ically, initially, the database representative does not
contain any co-variance information. Whenever a
user query yields substantially more or fewer similar
documents from a database than estimated, the co-
variances of the terms in the query are computed and
the significant ones are incorporated into the database
representative. This method computes only significant
co-variances. The global interface may also request
those databases that barely missed the cutoff for being
considered useful for the query to supply the depen-
dency information. In any case, if a local database is
incapable or unwilling to supply the co-variance infor-
mation, the estimation will be performed based on the
independence model as discussed in section 3.1.

Query Processing Overhead

It is known that a typical query submitted by a
user in the Internet environment contains two to three
terms only [ALSF97, Kow97]. The average number
of terms in the queries used in our experiments and
collected from Stanford University is also slightly less

than 3. For such short queries, the computation cost of
the estimation process for a query against a database
representative is negligible. It was already mentioned
previously that not too many database representatives
need to be compared against a given query since the
representatives could be arranged into a hierarchy.

4 Retrieval of Globally Most Similar
Documents

In this section, we focus on the collection fusion prob-
lem. Its challenge stems from the fact that local sys-
tems are often autonomous and heterogeneous units.
The problem arises in two forms: (1) The similarity
function in a local database is different from that in
the global interface. (2) The similarity functions in
the local database and the global interface are identi-
cal but the weights of terms are different in the local
database and the global interface. Both forms of the
problem will be tackled in this section. Various ap-
proaches to solving this problem have been attempted
(e.g., [CLBC95, GrGM97, VGJL951). However, none
of them can minimize the number of documents that
are not globally most similar to be retrieved while
guarantee that all globally most similar documents will
be retrieved. In a recent paper [GrGM97], an algo-
rithm is provided to retrieve all globally most similar
documents from a local database. However, this algo-
rithm has a shortcoming. For a given global threshold
of a query q, the local threshold of q computed by this
algorithm is often lower than necessary. As a result, a
large number of documents that are not globally most
similar may be retrieved. It is very desirable to get
a tight local threshold to reduce communication cost,
local processing cost and the cost of merging partial re-
sults. In this section, we first describe the construction
of a tight local threshold for a given global threshold
of a query. Next, we discuss how to retrieve all glob-
ally most similar documents in local databases when
both the local database and the global interface use
the same popular Cosine similarity function.

4.1 Construction of Tight Local Threshold

Let sim, (q, d) b e a function that computes the local
similarity between a query q and a document d in a
local database .C and sim,(q, d) be a function that
computes the global similarity between q and d. Let
T be a global threshold. A document d is considered
to be desired (or globally most similar) with respect
to a query q if sim, (q, d) 2 T. (In earlier sections, d
is desired if sim,(q, d) > T. This small change in the
meaning of a desired document in this section is made
only for the ease of presentation and does not affect the
actual results.) Our objective is to determine a local
threshold L(T) so that all desired documents in L will

2

be retrieved locally. Clearly, L(T) is a non-decreasing
function of the global threshold T.

Consider a Cartesian plane. Let the z-axis and y-
axis of this plane represent the global and local sim-
ilarities, respectively. Then, the global similarity a
and the local similarity ,B of a document can be rep-
resented by a point (a,/?). Suppose the global and
local similarities of all documents in local database L
are distributed as depicted in Figure 1. Each point
representing a document is marked with a ‘+’ symbol.
Then, all the documents in L with global similarities
greater than or equal to T are those represented in
the figure by points lying on or to the right of the line
x = T. Let A(T) be the set of the y-coordinates of
these points (or the local similarities of all these glob-
ally desired documents in C). That is,

A(T) = {sim, (q, 4lT L sic. (q, 4, d E Cl (10)

In order not to miss any of the desired documents in L,
the local threshold L(T) must not be larger than any
similarity value in A(T). At the same time, we want
the local threshold to be as large as possible so that
as few documents as possible in C with global similar-
ities less than T will be retrieved (those represented
by points to the left of z = T). Hence, we choose the
minimum local similarity value in A(T) to be the local
threshold for L. That is,

L(T) = min{sim,(q,d)]T 5 sim,(q,d),d E L} (11)

As can be seen in Figure 1, the local threshold L(T)
is the minimum of the y-coordinates of those points
lying on or to the right of the line 2 = T.

A I +
Y I +

I++ +
s$,(q, d) I

I +
+ 8.

I + , ,
L(T) ,, .+, *.: +,,‘T...

+ + I ,
I ,

+ + +
I
1 ,’

/y = x - &

+
T-E ,k

,

+ +’ I ,
+ d*+’ I

,

E 1
>

X

sim,$. d)

Figure 1: Local and Global Similarities of Documents
in a Local Database L

From (11) (and F g i ure l), it is clear that all doc-
uments in L with global similarities greater than or
equal to T also have local similarities greater than or
equal to L(T). Thus, using L(T), all desired docu-
ments in L will be retrieved.

Proposition 3. For a given global threshold T of
a query q, let local threshold L(T) be defined as in
(11) for a local database L. Let H(T) be any local
threshold that will retrieve all documents with global
similarities greater than or equal to T from L, i.e., for
any documents d in L, whenever the global similar-
ity sim,(q, d) 2 T, the local similarity sim, (q, d) 2
H(T). Then H(T) < L(T). That is, the local thresh-
old L(T) is the tightest.

We now explain the difference between our ap-
proach and that used in [GrGM97] by means of Figure
1. In [GrGM97], a constant E is determined such that
the following inequality

sim, (q, d) 2 sim, (q, d) - E (12)

holds for every document d in a local system L. Re-
ferring to Figure 1, this is equivalent to finding an t
such that all the points are either on or above the line
y = 2 - E. For a global threshold T, in [GrGM97], the
local threshold is computed as T - E. In the situation
shown in the figure, d” is a document represented by a
point lying on the line y = x - E and no points are un-
der y = X-E. Thus, the value of E shown is admissible.
However, the c cannot be made smaller, otherwise the
point representing d* will fall below y = x -E. That is,
the local threshold T--E, shown in Figure 1, is the best
(highest) that can be determined using the method in
[GrGM97]. As can be seen in the figure, the difference
between the two thresholds L(T) and T - E can be
quite large; and the number of undesirable documents
retrieved from L is three using L(T) versus ten using
T-E.

For a given query q and a given global threshold T,
the optimal local threshold is the minimum of A(T)
(see (10)). In a local system, we do not know before-
hand which documents have global similarities greater
than or equal to T. As a result, it is not possible to
determine A(T). H ence, instead of finding the mini-
mum of A(T), we seek as the local threshold L(T) the
minimum possible local similarity that can be attained
by a document d with global similarity greater than or
equal to T. In effect, our attempt to find the local
threshold L(T) b ecomes that of solving the following
problem.

(*) For a given query q, minimize, over all possible
documents d in L, the function sim, (q, d) subject to
sim, (q, d) > T.

Various techniques can be employed to solve prob-
lem (*), In the following, we give two methods that
can be used for a great variety of similarity functions.

(a), Linear Programming Techniques

Consider a common situation in which both the lo-
cal and global similarity functions are the dot product

22

function. Let r be the number of terms in a given
query Q. Let the local query vector I be (11, . , Ip)
and the global query vector g be (gi, . , g,.), where li
and gi are the local weight and global weight of the
i-th term in q, respectively. Let document d be repre-
sented by the vector (~1, ws, . , wr), where wi is the
weight of the i-th term and (pi < wi 5 ,f?i for some con-
stant LU; and /3;. Then, sim, (q, d) = 1 l d = ~~=, liwi
and sim, (q, d) = g l d = Ci=i gi wi, where l denotes
dot product. Our problem to find the local threshold
L(T) becomes the following minimization problem:

f r
minimize C liwi subject to C gawa 2 T and cxyi 5

i=l i=l
Wi<&,i=l,..., r.

This is a standard linear programming problem
[Gass69]. Note that the set of inequalities era 5 wi 2
pi, i = 1, . . , r, defines the space of all possible d and
is problem dependent.

In general, problem (*) will be amenable to linear
programming techniques if both the local and global
similarity functions are some linear functions of the
terms of a document.

Example 3 In the real-estate example of [GrGM97],
the local similarity function weighs price (0.9) much
more than location (O.l), while the global similar-
ity function weighs them equally. For both location
and price, it is assumed that a similarity between two
houses can be computed. Specifically, the local similar-
ity function is sim, (q, d) = 0.11+ 0.9p and the global
similarity function is sim, (q, d) = 0.51+ 0.5p, where 1
and p are the similarities due to the location and price
of a house, respectively. Given a global threshold T,
to compute the local threshold L(T) is equivalent to

minimizing 0.11+ 0.9p subject to 0.51+ 0.5~ > T
and 0 5 I,p 2 1.

Using linear programming techniques, we obtain

L(T) =
1.8T - 0.8

c .

if 0.5 < T 5 1
0 2T if T < 0.5

In [GrGM97], th e relationship between sim, (q, d)
and sim, (q, d) is determined to be sim,(q, d) 2
sim, (q, d) - 0.4. The best local threshold that can
be obtained based on this inequality is T - 0.4. For
a global threshold T = 0.8, the local threshold is
0.8 - 0.4 = 0.4, whereas L(T), the local threshold ac-
cording to our computation, is 1.8 x 0.8 - 0.8 = 0.64.
It can be easily shown that L(T) > T - 0.4 except for
T = 0.5 (when T = 0.5, L(T) = T - 0.4). n

(b). Lagrange’s Multipliers

The computation of L(T) can be reformulated as the
following two-step process.

1. Find the function f(t), the minimum of the local
similarity function sim, (q, d), over all documents
d in C, subject to t = sim, (q, d).

2. Minimize f(t) in the range t 1 T.

Note that in step 1, t is fixed and d varies over all
possible documents in C, whereas in step 2, t varies
in the range t > T. It can be easily checked that
the minimum of f(t) obtained in step 2 is the desired
threshold L(T). Let {td} be the set of terms specified
in the query q. If both sim, (q, d) and sim,(q, d) are
differentiable functions with respect to the weight wi
of each term ti of document d, then step 1 to find
f(t) can generally be achieved using the method of
Lagrange in calculus [Widd89]. Once f(t) is found, its
minimum value in the range t >_ T can be computed
using calculus method or other algebraic techniques.
If f(t) is non-decreasing, L(T) is simply f(T). Since
many similarity functions are differentiable, the above
technique can be used to find the local threshold L(T)
for many different combinations of local and global
similarity functions.

Example 4 Let d = (WI,. . . , w,) be a document and
II = (W,..‘, ur) be a query. Let the global similarity
function sim, (q, d) = Cl=i uiwi and a local similar-
ity function sim,(q,d) = (Cl=, uTwp)t (known as
p-norm in [SaMc83]) (p 2 1).

Step 1 to find f(t) requires us to minimize
(CL==, z$‘wp)+ subject to ~~=, uiwi = t.

Using the Lagrange method, f(t) is found to be
t&-l). Asth’ f t’ is unc ion is an increasing function of
t, for a global threshold T, the local threshold L(T) is
then T . n(t-l). W

4.2 Retrieval of Globally Most Similar Docu-
ments Using the Cosine function

In this subsection, we provide a technique to re-
trieve all globally most similar documents from a lo-
cal database when both the local and global simi-
larity functions are the widely used Cosine function
[SaMc83]. Let q = (vi,. , v,) be a query, vj being
the weight of the j-th query term. Let d be a docu-
ment having weight wj for the j-th query term. The
similarity between q and document d, computed us-
ing the Cosine function, is (C”-l vjwj)/(qd), where
q and d are the norms of q an d- d, respectively.

A common term weighting scheme is employed. In
this scheme [BuSA93, VGJL95], for the j-th query
term tj, its weight in the query, vi, is computed as
uj x Ij, where uj is the weight of tj specified by the
user (if the user does not specify the weight, then the
weight is the number of times that term occurs in the
query) and Ij is the inverse document frequency weight

23

(IDF) of the term. Recall that the IDF of a term t in a
database of N documents is defined as log 5, where nt
is the number of documents in the database containing
the term t. The IDF of a term in a local database ,C
depends on all the documents in C whereas the global
IDF of the same term depends on all the documents
in all databases. Thus, for a query term, its local
and global IDFs, and hence its local and global query
weights, are usually different. As for a term in a docu-
ment, the weight of the term is determined using only
document-dependent information; thus, a document
has the same representation both locally and globally.

Let qu = (~1,. .,u,) be a query, where uj is
the user-specified weight of the j-th query term.
For the j-th query term, let lj and I(i be its IDF
in a local database C and its global IDF, respec-
tively. Thus, for query qU, the local query vector
for 4 qc, is (uilr, , ~~1,); and the global query
vector qc is (uirl,, . . . , Unlk). Let qr and qG be
the norms of qr and qc, respectively. Using the
Cosine function, for query qU, the local similarity for
a document d = (WI,. , wn) in C is sim, (q,, d) =
(C,“,, ujljwj)/(qrd); while the global similarity for d

is sim,(q,,d) = (Cy=, ujljwj)/(qcd).

Below, we present two methods to retrieve docu-
ments from a local database C. The first computes
the exact global similarity for each document in C
through query modification. The second determines a
local threshold to obtain all the globally desired doc-
uments in Is.

(a). Local Document Retrieval Using Query
Modification

In this approach, the global interface, upon receiving
the user query qU = (~1, , ura), modifies the query
as follows. The weight of the j-th query term is first
multiplied by (/(i//j). Let mj = uj x ([i//j) be the
product obtained for the j-th query term. Then, the
modified query q; = (ml, . , m,) is submitted to L
instead of qU.

Upon receiving the modified user query q:, local
database C computes the local query weight for the
j-th term in qh as the product mj x lj, which equals
t0 Uj X (l(i/lj) X lj or ujli The resulting local query
vector is q: = (ulll,, . . ., unl:), which is the same as
the global query vector qG for the original user query
qu. As mentioned above, in the term weighting scheme
we are using, the local and global weight of a term in a
document d are identical. In effect, the local similarity
computed between q> and a document d, sim, (q: , d),
is the same as sim, (q,, d), the global similarity be-
tween qO and d. Thus, all the globally desired docu-
ments in L can be determined and only these need to
be retrieved.

(b). Local Document Retrieval by Determining
a Local Threshold

An alternative approach is to construct a local thresh-
old for local database C to retrieve all the globally
desired documents. As described in the previous sub-
section, for a given global threshold T, to find the local
threshold L(T), we

minimize the local

wj , over all possible d,

The above minimization problem (**) can be solved
using the method of Lagrange. In [MLYW98], we solve
this problem with no restriction on the document term
weights. (The usual situation is that all document
term weights are non-negative.) The local threshold
L(T) obtained is CT- d(l - T2)(1 - C2), where C =
QG . Qr p, and qc l qL = C,“,, ujljli is the dot product

b%A:n qG and q ic. This threshold is optimal if the
values of wj, j = 1,. , n, at which the minimum is
attained are non-negative.

5 Conclusions

In this paper, we proposed two new methods for esti-
mating the number of potentially useful documents in
a database. Our estimation methods are based upon
established statistical theory and general database rep-
resentation framework. Our experimental results indi-
cate that these methods can yield substantial improve-
ments over existing techniques. We also provided solu-
tions to the collection fusion problem. Specifically, we
reformulated the problem so that optimal local thresh-
olds can be determined. Two techniques, the first in-
volving linear programming and the second using La-
grange’s method, are suggested to yield optimal local
thresholds. By applying the techniques to three ex-
amples (the real-estate example, the p-norm, and the
popular Cosine function), optimal solutions are ob-
tained in each case. When both the global and lo-
cal databases use the Cosine function, we also gave
a query modification technique to compute the global
similarity for a document in the local database.

Acknowledgment: We are grateful to Luis Gravano
and Hector Garcia-Molina of Stanford University for
providing us with the database and query collections
used in [GrGM95a]. We also like to thank Yonghe
Zhang and Xiaolan Liu for writing part of the code
used for the experiment. This research is supported
by the following organizations: NSF (IRI-9509253,
CDA-9711582, HRD-9707076), Air Force (AFOSR 93-

24

l-0059), NASA (NAGW-4080, NAG5-5095) and AR0
(NAAH04-96-1-0049, DAAH04-96-1-0278).

References

[ALSF97] G. Abdulla, B. Liu, R. Saad, and E. Fox.
Characterizing World Wide Web Queries, TR-97-
04, Virginia Polytechnic Institute, 1997.

[BuSA93] C. Buckley, G. Salton, and J. Allan. Au-
tomatic Retrieval with Locality Information US-
ing SMART. First Text REtrieval Conference
(TREC-l), pp. 59-72. NIST Special Publication
500-207, March 1993.

[CLBC95] J. Callan, Z. Lu, and W. Bruce Croft.
Searching Distributed Collections with Inference
Networks. ACM SIGIR, 1995.

[DuHa73] R. D u d a, and P. Hart. Pattern Classifica-
tion and Scene Analysis, Chapter 4. Wiley, New
York, 1973.

[Gass69] S. I. Gass. Linear Programming, Methods
and Applications. McGraw-Hill, New York, 1969.

[GrGM95a] L. G ravano, and H. Garcia-Molina. Gen-
eralizing GlOSS to Vector-Space Databases and
Broker Hierarchies. VLDB, 1995.

[GrGM95b] L. Gravano, and H. Garcia-Molina. Gen-
eralizing GlOSS to Vector-Space Databases and
Broker Hierarchies. Technical Report, Computer
Science Dept., Stanford University, 1995. (This
report discussed how to estimate the database
usefulness defined in this paper for the high-
correlation and disjoint scenarios. Such discussion
did not appear in [GrGM95a].)

[GrGM97] L. G ravano, and H. Garcia-Molina. Merg-
ing Ranks from Heterogeneous Internet Sources.
VLDB, 1997.

[Harm931 D. Harman. Overview of the First Tezt Re-
trieval Conference. Computer Systems Technol-
ogy, U.S. Department of Commerce, NIST, 1993.

[HoDr97] A. H owe, and D. Dreilinger. SavvySearch:
A Meta-Search Engine that Learns Which Search
Engines to Query. AI Magazine, 18(2), 1997.

[KaMeSl] B. Kahle, and A. Medlar. An Information
System for Corporate Users: Wide Area informa-
tion Servers. Technical Report TMC199, Think-
ing Machine Corporation, April 1991.

[Kost94] M. K OS er. t ALIWEB: Archie-Like Indexing
in the Web. Computer Net-
works and ISDN Systems, 27:2, 1994, pp. 175-182
(http://www.cs.indiana.edu/aliweb/form.html).

[Kow97] G. Kowalski. Information Retrieval Systems,
Theory and Implementation. Kluwer Academic
Publishers, 1997.

[LaYu82] K. Lam, and C. Yu. A Clustered Search Al-
gorithm Incorporating Arbitrary Term Dependen-
cies. ACM TODS, September 1982.

[MaBi97] U. Manber, and P. Bigot. The Search Bro-
ker. USENIX Symposium on Internet Technolo-
gies and Systems (NSITS’97), Monterey, 1997.

[MLYW98] W. Meng, K. Liu, C. Yu, X. Wang, Y.
Chang, and N. Rishe. Determine Text Databases
to Search in the Internet. Technical Report,
Dept. of CS, SUNY at Binghamton, 1998
(http://panda.cs.binghamton.edu/-meng/pub.d/
vldb98s.ps).

[NCS] Networked Computer Science Technical Re-
ports Library, http://lite.ncstrl.org:3803/.

[SaMc83] G. Salton and M. McGill. Introduction
to Modern Information Retrieval. McGraw-Hill,
1983.

[Salt891 G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Infor-
mation by Computer. Addison Wesley, 1989.

[SeEt95] E. Selberg, and 0. Etzioni. Multi-Service
Search and Comparison Using the MetaCrawler.
4th Int’l World Wide Web Conference, Dec. 1995.

[SeEt97] E. Selberg, and 0. Etzioni. The MetaCrawler
Architecture for Resource Aggregation on the
Web. IEEE Expert, 1997.

[TVGJ95] G. T owell, E. Voorhees, N. Gupta, and
B. Johnson-Laird. Learning Collection Fusion
Strategies for Information Retrieval. 12th Int’l
Conf. on Machine Learning, 1995.

[VGJL95] E. V oor ees, h N. Gupta, and B. Johnson-
Laird. Learning Collection Fusion Strategies.
ACM SIGIR Conference, 1995.

[Widd89] D. V. Widder. Advanced Calculus. 2nd Edi-
tion, Dover Publications, Inc., New York, 1989.

[YaGM95] T. W. Yan, and H. Garcia-Molina. SIFT
- A Tool for Wide-Area Information Dissemina-
tion. USENIX 1995 Technical Conference, 1995.

[YuLS78] C. Yu, W. Luk and M. Siu. On the Estima-
tion of the Number of Desired Records with respect
to a Given Query. ACM TODS, March 1978.

[YuLe97] B. Yuwono, and D. Lee. Server Ranking for
Distributed Text Resource Systems on the Inter-
net. 5th Int’l Conf. On Database Systems For Ad-
vanced Applications (DASFAA’97), Melbourne,
April 1997.

25

