
The Oracle Universal Server Buffer Manager

W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, N. Macnaughton

Oracle Corporation, 500 Oracle Parkway, Box 4OP13, Redwood Shores, CA 94065
{ wbridge, ajoshi, mkeihl, tlahiri, jloaiza, nmacnaug] @us.oracle.com

Abstract

The buffer manager is integral to the perfor-
mance, scalability, and reliability of Oracle’s
Universal Dam Server, a high performance
object-relational database manager that provides
robust data-management services for a variety of
applications and tools. The rich functionality of
the Universal Data Server poses special chal-
lenges to the design of the buffer manager. Buffer
management algorithms must be scalable and
efficient across a broad spectrum of OLTP, deci-
sion support, and multimedia workloads which
impose very different concurrency, throughput
and bandwidth requirements. The need for porta-
bility across a wide range of platforms further
complicates buffer management; the database
server must run efficiently with buffer pool sizes
ranging from 50 buffers to several million buffers
and on a wide variety of architectures including
uniprocessors, shared-disk clusters, message-
passing MPP systems, and shared-memory muhi-
processors.

Introduction

This paper describes the following innovative features of
the Oracle buffer manager that were designed to address
the various requirements described above:
. LRU replacement algorithm: A proprietary approxi-

mate-LRU buffer-replacement algorithm provides
excellent replacement behavior and high hit-rates on a

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or dis-
tributed for direct commercial advantage, the VLDB copy-
right notice and the title of the publication and its date
appear; and notice is given that copying is by permission
of the Very Large Data Base Endowment. To copy other-
wise, or to republish, requires a fee and/or special permis-
sion from the Endowment.
Proceedings of the 231-d VLDB Conference
Athens, Greece, 1997

wide range of workloads with minimal synchroniza-
tion overhead.

. Versioning: A versioning (consistent read) mechanism
makes it possible for readers and writers to simulta-
neously access different versions of the same page.

. Buffer-coherence protocol: A distributed lock man-
ager based coherence protocol extends the above
capabilities to multiple buffer pools in shared-disk
environments.

. Private buffer pools: High-bandwidth operations use
private buffer pools and an asynchronous prefetch
mechanism to achieve high transfer rates.

. Shared-memory recovery: In-memory cleanup mecha-
nisms are implemented for restoring the consistency
and integrity of shared data-structures in the event of
unexpected process failure.

The rest of the paper is organized as follows. We begin
with a brief description of the architecture of the buffer
manager. Next, we provide an overview of some of the
features of the buffer manager that support scalability,
including the versioning capabilities of the buffer manager
which allow users to perform queries without holding
locks. We then present a brief discussion on buffer coher-
ency in a shared disk environment. Following this, we
describe the private buffer-pool based support for I/O
intensive operations. We conclude with a discussion of the
shared data structure recovery techniques.

Architecture of the buffer manager

The buffers managed by the buffer manager are organized
using a variety of tables and linked lists. Operations that
need to scan every buffer in the buffer pool use a table (the
bu$er address table) which is indexed by buffer number.
Operations that need to find a buffer with a specified page
identifier (page-id, data block aaiiress or DBA) use a hash
table (the buffer hash table) that is organized into hash
buckets. Each bucket contains a linked list of all the buff-
ers whose page-ids hash to the same value. Access to each
bucket in the hash table is controlled by a hash latch’.
Buffer replacement operations use a linked list (LRII
chain) of buffers; the hot (recently referenced) buffers are

590

near the head of the list, and the cold (not recently refer-
enced) buffers are near the tail of the list. A latch is used to
control access to the LRU chain. It is possible to create
multiple LRU chains (each with its own LRU latch) in
order to reduce contention. Latch contention is further
reduced by only maintaining approximate LRU informa-
tion as described later. In a shared disk environment, the
buffer manager maintains another set of data structures
(called the global lock stare tables) that contain informa-
tion about the system-wide state of each buffer. These
tables also manage the distributed lock manager (the
DLM) locks that are associated with the buffers in order to
ensure inter-node consistency of the buffer pools.

Each buffer manager uses dedicated processes for writing
buffers to disk and for maintaining a globally coherent
buffer pool in a shared disk environment. The database
writer process (DBWR) is responsible for writing batches
of buffers to disk. A buffer may need to be written to disk
for a variety of reasons including replacement, check-
pointing, and global buffer pool synchronization (called
ping W&S, described later). A set of dedicated processes
(LCKO through LCKn) are used to maintain the global lock
state tables. The LCK processes request and release DLM
locks on buffers and service asynchronous requests from
the DLM. Figure 1 illustrates the buffer manager organiza-
tion in a shared disk environment. Note that the global
lock state tables and LCK processes are required only if
the server is running on a shared disk system.

1. A latch is a light-weight synchronization
primitive used to provide mutual exclusion.

Buffer Pool on node 1 Buffer Pool on node 2
I

-

0 LCK 0 LCK

DBWR G

Jobal lock state tables
rot shown.

11 >
- Shared

disk(s)

I (Detail not shown)

m denotes dirty buffer

Figure 1: Architecture of buffer manager component in shared disk environment.

Scalability features of the bu#er manager

The buffer manager algorithms are designed to be scalable
over a wide range of buffer pool sizes (as small as 50 buff-
ers to as large as several million buffers) in high-conten-

tion environments. SJO major techniques are used to
achieve scalability: partitioning of frequently accessed
data structures and limiting the amount of work done
within each critical section.

591

The hash table used to find a specified buffer and the LRU
chain are the most frequently accessed data structures in
the buffer manager. Oracle permits the user to configure
the number of buckets in the hash table as well as the num-
ber of buffers in the buffer pool. Oracle adjusts the value
for number of hash buckets provided by the user to be a
prime number to eliminate “artificial” conflicts due to
hashing anomalies. In addition, access to each hash bucket
is controlled by a separate hash latch, thus allowing con-
current access to different buckets by multiple users. Fur-
ther, buffers within a hash chain are maintained as a
“mini” LRU chain that ensures that the most recently
accessed buffers within a hash chain are found quickly.
This becomes important in situations in which there are a
large number of buffers in a hash bucket either because of
the pattern of access and the hash function distribution, or
because there are several versions of the same buffer in the
buffer pool (see the section on versioning).

‘Ihe LRU latch is also a high contention latch since it is
necessary to change a buffer’s relative position on the LRU
chain each time it is referenced, and to find a victim for
replacement when a new buffer is needed. The buffer man-
ager allows the user to configure multiple LRU chains in
order to eliminate a single point of contention. Each buffer
contains a pointer to the head of its LRU chain. When a

buffer needs to be moved on its LRU chain, it is possible to
efficiently find and get the LRU latch associated with the
buffer and move the buffer as appropriate. When it is nec-
essary to find a buffer for replacement, the algorithm finds
the first LRU latch that is free and allocates a buffer from
that LRU chain*. These two techniques eliminate most of
the contention for the LRU latch.

In order to further reduce the contention on the LRU
latches, the buffer manager implements a proprietary
“approximate” LRU queue. The basic idea is to logically
partition each LRU queue into a hot region that is main-
tained as a FIFO queue and a cold region that is imple-
mented as a LRU queue. A buffer that is hot is inserted at
the head of the FIFO queue; while it is in the hot region,
repeated references to the buffer do not move the buffer at
all. This technique eliminates a majority of the LRU latch
requests. When a buffer from the cold region is accessed,
it is necessary to move it into the hot region while holding
the appropriate LRU latch. Figure 2 illustrates the LRU
management algorithm for a single LRU queue.

2. Only if all LRU latches are busy does the pro-
cess wait for a LRU latch.

Hot region
I

I

Cold region
Buffers managed as FIFO Buffers managed as LRU

t-n t
. .

MRU end I mmn LRU end
denotes dirty buffer

I
Figure 2: LRU chain management.

Versioning (CR)

The Oracle buffer manager is unique in its ability to sup-
port versioning of buffers in order to permit lock-free
access for read operations. Such versioned buffers are
called clones. A clone is simply a committed or uncom-
mitted version of the page as of a certain timestamp3. At
any given time, it is possible to have multiple versions of

3. In reality, Oracle uses a value that can be used
to generate the appropriate version. The term
rimesrump is used to simplify the explanation.

the same buffer (page-id) in the buffer pool. Obviously, all
such buffers will be on the same hash chain.

A read request has a timestamp associated with it. When-
ever a query requests a buffer for read access, it provides
the page-id as well as the timestamp to the buffer man-
ager. For each buffer that matches the requested page-id,
the buffer manager determines whether the buffer’s ver-
sion is sufficient to satisfy the client’s request. If the
appropriate version is found on the hash chain, the buffer
manager returns the buffer to the client. On tbe other hand,
if the requested version is not available, it is possible to
reconstruct the requested version by starting with the cur-

592

rent version of the page, and applying undo successively to
the buffer until the requested version is generated. Note
that the undo application is only done for in-memory
clones and never to current versions. It would be an error if
a clone were written to disk since committed updates to
the page would be lost. Oracle maintains data structures on
the current page that permit efficient in-memory undo for
generating clones. Once a version is created, it may be
used by multiple readers if it satisfies their timestamp
requirements. Otherwise, the clone is reclaimed by a sub-
sequent LRU replacement operation.

Update operations always access the current version of the
buffer. Such accesses obviousIy do not conflict with
accesses to the clones. Thus, versioning provides an effi-
cient and conflict-free mechanism for read operations.

Maintaining bu..erpool coherency in a shared-
disk system

The Oracle buffer manager manages multiple buffer pools
(one on each machine) in a shared disk environment using
coherency protocols based on a distributed lock manager
(DLM). [Snaman] contains a detailed description of the
features provided by a distributed lock manager. The
buffer coherency protocol is similar to the hardware cache
coherence protocols employed in multi-processor
machines at the hardware level. [Klots] provides addi-
tional details about Oracle’s buffer pool coherency proto-
cols.

In a shared disk environment, it is possible to have multi-
ple current copies of a page in multiple buffer pools, if all
references to the page are for read-only access. If a process
wishes to update the page, it is necessary to invalidate all
current copies of the page, before allowing the writer to
update the page. In this situation, the current copies of the
buffers are converted to versioned buffers (clones), instead
of discarding them from the buffer pool. This allows read-
ers to proceed without interference from the updater.

Similarly, if a reader on one node wishes to access a page
that has been modified by a writer on another node, the
writer must relinquish its write privilege on the page
before the reader can access the page. In addition, it is nec-
essary to write out the latest (current) version of the page
to disk, so that the reader can get the latest version from
disk. This write operation is referred to as a ping write.
Writing the modified page to disk before the reader can
access it simplifies the logging and recovery associated
with the page. It is important to note that it is possible to
ping an uncommitted version of the page, since row-level
locking is used to achieve transaction isolation.

These coherency requirements are enforced using the dis-
tributed lock management primitives. In addition to pro-
viding the standard lock compatibility rules, the DLM
provides a mechanism to notify a holder of a lock when
there is a conflicting lock request (this is known as a block-
ing AST). Every read request acquires a shared DLM lock
on the page. Since read locks are mutually compatible, it
allows multiple readers (on different nodes) to access the
page. When a writer wishes to update the page, it requests
an exclusive DLM lock on the page. This exclusive request
generates a blocking AST notification to every process
that is holding an incompatible (shared) lock on the same
page. In response to the blocking AST notification, the
readers convert the buffer from current to clone, and
release the DLM lock, thus allowing the writer’s request to
be granted. A similar mechanism is used to enforce exclu-
sion between a writer and a reader, with the added caveat
that when a blocking AST notification is received by a
process holding an exclusive buffer lock, it must write out
the page to disk before converting its lock to a mode com-
patible with the requester’s mode.

There are two interesting aspects about this protocol.
When a write request invalidates a read, it is not necessary
discard the buffer from the buffer pool. Instead, it is only
necessary to convert it from the current state to a clone.
This allows most readers (those whose requests can be sat-
isfied by this version of the buffer) to continue even while
the current version of the page is being updated (on a d@-
fmnt node!).

When a read request invalidates a write, Oracle writes out
the buffer to disk before releasing or downgrading the
lock. Though it is possible to send the updated buffer
directly from one buffer pool to another (without writing it
to disk) using inter-process communication primitives, it
may not always be very efficient, especially if more than
one reader requires access to the page, since multiple IPC
exchanges are involved. In addition, the logging and
recovery protocols are significantly simplified, if we guar-
antee that pages are written to disk before they are read
into the buffer pool on another node.

Private buffer pools for I/O intensive opera-
tions

Oracle provides a mechanism to bypass the buffer pool for
I/O intensive operations. This is important for perfor-
mance reasons. If a query issues a table scan or some other
I/O intensive operation, it could very easily consume all
the buffers in the buffer pool, thus starving other users of
the buffer pool. In addition, most I/O intensive operations
do not need the full functionality provided by the buffer

593

manager, and hence, can avoid the additional overhead
imposed for supporting this generality. Such I/O intensive
operations (table scans, bulk loads etc.) allocate and man-
age a private set of buffers in order to satisfy their require-
ments.

The presence of these private buffer pools in addition to
the shared pool poses new complexity in maintaining con-
sistency between the buffers in the shared pools and pri-
vate pools. In the case of I/O intensive read operations, it
is necessary to ensure that the reader accesses the appro-
priate clones as of a certain timestamp viz. the timestamp
obtained at the start of the read operation. Before an I/O
intensive operation on an object is started, it is necessary
to broadcast the object identifier to all the buffer managers
in a shared disk system. Each buffer manager scans the
buffer pool for current, dirty buffers belonging to the spec-
ified object and writes them out to disk. This guarantees
that the reader will always read buffers which are guaran-
teed to be at least as current as its version timestamp. The
reader then performs asynchronous reads of the required
page-ids. It clones the buffers as necessary (in the private
buffer pool) in order to construct the version that it is inter-
ested in. This mechanism allows I/O intensive reads to be
performed without penalizing other users of the shared
buffer pool.

Operations that update a large number of pages are
required to perform their updates through the shared buffer
pool since they are updating the current versions of the
pages. For bulk insert operations, Oracle uses the private
buffer pool to append new pages (containing the newly
inserted data) to the table. Once the insert operation is
committed, the inserted data can be read into the shared
buffer pool as required. Until the insert operation commits,
other users are not affected, since the inserts occur beyond
the committed “high-water mark” of the table.

Shared Resource Recovery

The Oracle Universal Server is unique in its ability to
recover the state of shared resources in the presence of
process failures. The basic idea is to provide in-memory
“logging” of modifications of shared data structures and
using this in-memory log to recover the shared structure to
a consistent state when a process fails abnormally. Shared
data structure recovery is performed by a (per node) dedi-
cated monitor process (PMON). For example, a process
may fail in the middle of a critical section when moving a
buffer from one position to another on the LRU chain.
Unless this change is recovered and the LRU chain
restored to a consistent state, it is not possible for the
server to operate correctly. Note that shared resource

recovery is distinct from transaction recovery.

Shared data structure recovery is enabled by recording a
description of the change to be made in a shared data
structure (this logging has to be an atomic memory opera-
tion) before the change can be applied. In the event of a
process failure, PMON uses the in-memory log to recover
the state of the shared resources and then releases the
shared resources (memory, latches, buffers etc.) belonging
to the aborted process. This guarantees the robustness of
the server in the presence of process failures.

Summary

In this paper, we have described several novel aspects of
the Oracle Universal Server buffer manager which contrib-
ute to the rich functionality, high performance, reliability
and scalability of the server. As the need for information
and data management continues to grow, the buffer man-
ager (as well as other aspects of the server) will continue
to be enhanced and extended in various ways in order to
provide additional benefits.

References

[Oracle] Oracle7 Server Concepts, Part number A20321-
2, Oracle Corporation, March 1995.

[Snaman] Snaman, W., Thiel, D., The VAXNMS Distrib-
uted Lock Manager; Digital Technical Journal, (5):29-44,
Sept. 1987.

[Klots] IClots, B., Cache Coherency In Oracle Parallel
Server, VLDB Conference Proceedings, Sept. 1996.

594

