
Caprera: An Activity Framework for Transaction Processing on Wide-Area Networks

Suresh Kumar Eng-Kee Kwang

Vice President, Engineering Chief Technology Officer
Tactica Corporation Tactica Corporation
suresh@tactica.com engkee@tactica.com

Divyakant Agrawal

Associate Professor
UC Santa Barbara

agrawal@cs.ucsb.edu

Caprera is an open framework for designing
client/server applications that operate over a
wide-area network. The activity model of

Caprera used to extend transaction processing
and transaction-oriented application in an open

environment including mobile and remote clients
connected by wireless, phone lines, or Internet is

described here. Since Caprera enables off-line
users on mobile platforms to interact with

corporate transaction processing systems, Tactica
Corporation markets its product as a

programmable server software for off-line
transaction processing (OFTP). This paper

describes the design rationale and the product
architecture of Caprera.

Introduction
Under the existing model of data processing, referred to as
on-line transaction processing (OLTP), all user
interactions, called transactions, are executed directly on
the machine that stores the enterprise database. The
OLTP model is extremely rigid in the way in which it
provides access to the information for its users. There are
at least two important changes which require a complete
overhaul of the traditional OLTP model. The first is the
increasing reliance on re-engineered business processes
and worktlow automation for transaction processing. The
second is extending the enterprise database connectivity to
the employees in the field. Current OLTP systems provide
excellent support to execute a high volume of
independent, short-duration transactions.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 231d VLDB Conference
Athens, Greece, 1997

Unfortunately, minimal support is available in most
OLTP systems for controlling the execution of inter-
dependent activities within a business process. Systems
that provide support to manage business processes are
referred to as workflow management systems (WINS).
Most WFMSs provide a tool to model workflow and a
run-time system to control the execution of activities
within the workBow. However, none of the WFMSs
provide significant support or tools to design the
activities themselves.

Due to advances in networking technology, most
employees of an enterprise have some level of
connectivity to the enterprise-wide information systems.
In spite of this connectivity, inefficiencies result under
the current OLTP paradigm because only those users
who are directly connected can access the enterprise-
wide databases. Tactica’s goal is to develop a family of
products that will allow transaction processing from
mobile/remote platforms. This model of operation, which
can be loosely termed as off-line transaction processing
(OFTP), will enable remote and mobile users to integrate
with the enterprise-wide information infrastructure. In
this paper, we describe the design and implementation of
Caprera, software primarily developed to extend database
connectivity to mobile and remote users.

Caprera Activity Model
The Caprera system consists of an open, standards-

based software framework that provides a complete set of
software tools to efficiently build, deploy, and manage
transaction-oriented applications that operate over wide-
area networks. In this section we describe the Caprera
activity model, as well as the rationale behind various
design choices.

Design Rationale

A key goal of Caprera is to provide transaction
processing capability from mobile/remote platforms on
host or corporate databases. Since there exist billions of
dollars worth of investments in legacy applications in
such databases, it is clear that Caprera goals must be
achieved without any modifications to either the host

585

DBMS software or the host databases. The most widely
used OLTP solution to ensure data integrity is to lock data
objects until transaction termination (often referred to as
strict two-phase locking [1,3]). Although locks and two-
phase locking are universally used in commercial DBMSs,
it is commonly agreed that long duration locking may
result in a significant performance degradation. Since
Caprera user interactions are expected to be long duration,
due to slow network links as well as asynchrony due to
mobility, Caprera cannot afford to use locking as the only
means to solve the data integrity problem. Another
requirement for the Caprera design is to provide a uniform
solution to fulfill the needs of all classes of Caprera users,
i.e., mobile (or intermittently connected) as well as remote
(connected over slow links) clients.

Since user interactions in Caprera are long-duration,
the term acriviry is used to distinguish Caprera interactions
from the standard transaction concept in databases. An
activity enables Caprera users to execute applications with
transactional guarantees from mobile and remote client
platforms. Traditionally, the transaction paradigm has
been used to ensure atomicity of user interactions with the
database. Concurrency control protocols such as two-
phase locking [1,3] are used to ensure execution atomicity
of transactions, and recovery mechanisms typically based
on write-ahead logging [5] are used to support failure
recovery in database systems. A general consensus among
database system researchers and practitioners is that
ensuring atomicity of long-lived transactions [2,6] at the
system level may result in significant performance
degradation. Also, it is commonly agreed that execution
atomicity and failure recovery (to a lesser extent) for long-
lived transactions can be handled best at the application
level itself. Caprera is designed to provide a framework
that can be used to control the degree of atomicity at the
application level.

Concurrency Control in Caprera

Figure 1 illustrates the layered architecture in which
the Caprera system is deployed. As shown in this figure,
the host database is now configured so that OLTP users
interact with the database via the standard transactional
interface using TP monitors and WAN users interact with
the host database via activities that execute in a distributed
manner on Caprera clients and servers. Figure 2 shows a
distributed multi-tier environment for OFTP using
Caprera. In a multi-tier environment, rules and events can
be used to create the workflow necessary for complex
transactions in a business process. From the correctness
point of view, the Caprera framework must ensure
execution atomicity not only of concurrent Caprera
activities but also with respect to the transactions that are
being executed at the host database. Caprera uses two
different approaches to control the concurrent execution

of transactions and Caprera activities. These approaches
can be classified as pessimistic and optimistic approaches
to concurrency control [1,3].

Figure 1

- -
Figure 2

In the pessimistic approach, Caprera activities are
encapsulated in a transaction block. The semantics of a
transaction block are such that all interactions (i.e., read
and write operations) from the activity to the host
database are done by conforming to the host concurrency
control mechanism. This ensures that the Caprera activity
is serializable with respect to host database transactions.

In the optimistic approach, Caprera activities are
executed without performing any synchronization with
respect to the concurrent host transactions. A
certification check is performed before committing the
updates of a Caprera activity. Unlike in optimistic
concurrency control protocols [4], failed certification
does not necessarily result in the abortion of Caprera. An
exception is raised and it is up to the application
designers to appropriately handle the exception at the
application level. For example, the application may
choose to ignore the exception, may take some action to
resolve the conflicts’, may redo the activity, or may abort
the activity.

’ Caprera provides a conflict resolution editor.

586

In order to accommodate both approaches, Caprera
activities are designed so that updates to the host database
are deferred until commit time. An advantage of this
approach is that when an activity is executed as a
transaction block, only read locks are held during the life-
time of the activity. Write locks are needed for relatively
short duration.

Updates from Caprera activities are incorporated in
the host database either when there were no conflicts
(hence, the overall execution is serializable from the
concurrency control point of view) or when the update
conflicts have been resolved (indicating that there are no
data inconsistencies at the application level even though
the execution is not serializable). The certification check
is the standard validation test from the optimistic
concurrency control method [4] :

The read set of a Caprera activity is validated
against committed writes in the host database.2

In order to avoid execution anomalies after the
certification, an application designer must execute the
certification and the commitment of a Caprera activity as a
transaction block. In effect, this results in the Caprera
activity obtaining read and write locks during the
termination phase which is significantly shorter than the
entire life span of Caprera activities.

Failure Recovery in Caprera

In contrast to the problem of concurrency control,
where an unconstrained execution of a Caprera activity
may potentially leave the host database inconsistent, the
impact of failed Caprera activities on the host database is
not critical. A recovery mechanism is used in database
management systems to eliminate the effects of partially
executed transactions that failed due to system crash or
transaction aborts. Write-ahead logging [5] is the most
common technique to implement failure recovery in
database management systems.

Caprera activities are structured so that all updates to
the host database are deferred until termination3.
Furthermore, a Caprera activity is either completely
executed as a transaction block or the certification and
update phase is executed as a transaction block. From the
point of view of the host database, a Caprera activity is
vulnerable to failure only after it performs its first update
to the host database. Until then, failure of a Caprera
activity has no effect on the host database. If transaction

’ The current implementation ensures that the data read from the host
database is indeed the same at commit time.
’ Although it is expected that most Caprera activities will be structured
in this manner, the current implementation is not constrained to adhere
to this design philosophy. If an application chooses to update the host
database in the middle of an activity it is permitted in the current
Caprera implementation. This approach, however, weakens the failure
recovery guarantees provided by Caprera and must be strengthened at
the application level.

blocks are used to encapsulate the updates within an
activity, then the updates are subject to the concurrency
control and failure recovery mechanism of the host
database. Hence, the recovery mechanism of the host
database is sufficient for undoing the updates of aborted
Caprera activities, as well as redoing the missing updates
of committed Caprera activities during crash recovery.

Although the failure of a Caprera activity prior to the
update phase does not impact the host database, it results
in lost work for Caprera clients. In order to minimize
communication between Caprera clients and servers, it is
expected that Caprera activities will be designed to
accomplish a significant amount of work as compared to
host transactions. Hence it is necessary to provide a
mechanism in Caprera to facilitate forward recovery4 of
failed Caprera activities. Furthermore, since Caprera
activities are long-lived, it may be useful to support
partial backout or backward recovery’ of Caprera
activities.

Viewing a Caprera activity as a sequential program
(for example, a shell script or a C++ program), the
progress of an activity should be logged at every
primitive statement level in this sequential program.
Logging at such a fine granularity will enable the Caprera
users to minimize the amount of lost work as a result of
failures or rollbacks of activities. Unfortunately,
statement-level logging results in a significant overhead,
since the program state must be saved on stable storage
after the execution of every statement. Caprera strikes a
balance in the tradeoff between logging overhead versus
lost work due to failures and rollback by structuring
Caprera activities as a sequence of coarse logical stages.

A Caprera activity is a distributed object that
embodies business rules and data. It is distributed
because the execution of the Caprera activity involves
multiple sites in the network. For example, a typical
activity may be initiated at a Caprera server, followed by
data collection or extraction from the host database.
After the activity is ready, it may then migrate to an
assigned Caprera cIient, which may be a mobile or
remote platform, where the associated tasks are
performed by the Caprera user. Once the tasks are
completed by the user at a Caprera client site, the activity
migrates back to the server for termination. The Caprera
server terminates the activity by incorporating the
updates into the host database.

The various stages of an activity in Caprera are as
follows:

4 A resumption of a failed transaction from an intermediate point of
execution is referred to as a forward recovery.
5 When an execution of a transaction is rolled back to a prior control
point - it is referred to a backward recovery. Most database
management systems support a simple notion of backward recovery by
backing out a transaction completely when it is aborted.

587

Prolog: This stage of the activity involves initializing
the state and the meta-information associated with the
activity.
Assignment: At this stage the input parameters, the
business rules, and the initial state of the activity are
used to assign the activity to an appropriate Caprera
client. The assignment determines the client where
the task associated with the activity will be
performed.
Extraction: The input parameters, the assignment,
and the business rules are used to extract the data that
will be needed from the host database to execute the
activity.
Client Task(s): At this stage, the activity migrates to
the client machine where the client tasks are
performed.
Update: The activity migrates back to the Caprera
server and business rules are used to update the data
in the host database using the data that was returned
from the client machine.
Epilog: The activity is completed after performing all
the necessary clean up.

Failure recovery in Caprera involves providing
resiliency to both site and communication failures. A
local persistent store (LPS) is used to log the run-time
information associated with Caprera activities.
Transactional queuing mechanisms are used to deal with
communication failures between Caprera clients and
servers. In addition, control mechanisms are available to
partially or completely rollback an activity. A user-
initiated abort or rollback request is admitted either to
rollback an activity completely or to the beginning of any
of the six stages in the activity.

Caprera Architecture

Caprera is a client/server application-development
environment for building transaction-oriented
applications. An activity is the basic building block of a
Caprera application. Applications are built as a collection
of persistent objects in the Caprera system. These objects
are activities, subset tables, views, rules, and events.
Subset tables define the data subsets that are selectively
replicated to the clients using the activity framework.
Views are the form definitions for presenting the subset
data on the client. Rules and events are the triggers for
initiating activities on the client or the server and can be
used to design workflows in the application. Activities are
transactional objects that encapsulate the business rules
using a Java-like scripting language called CapreraScript.
Activity objects use subset tables, views, rules, and event
objects to represent a business process.

Figure 3 represents the layered architecture of a
Caprera server. Each of the blocks in the diagram
represents a major functional module of Caprera. The

persistent store for all of the Caprera objects is a
relational database called Local Persistent Store (LPS).
LPS is also the keeper of the activity log on the server as
well as the client. All six stages of an activity are logged
into the LPS, so that each stage can be recovered or
rolled back in case of failure. All interactions with the
LPS, as well as the host database, are handled by
Database Manager. Database Manager provides a
number of native and ODBC adapters to the host
databases. Database Manager makes use of the
concurrency control and failure recovery mechanisms
provided by the LPS as well as the host database. All the
Caprera objects, like activities, subset tables, views,
rules, and events, are maintained as persistent objects in
the LPS through the Persistent Object Manager.

CapreraServer

@ii3 -W-W-
=

-
I

Rnuntobhrtulyr

Figure 3

Activity Manager is primarily responsible for
scheduling the activities on the server. Each stage of the
activity is executed in its own process space. Activity
Manager can perform load balancing by distributing
activity execution to multiple servers on the network
using a scheme based on the owner of the activity.
Dynamic load balancing is achieved by distributing the
activities to other servers based on the load of the
currently executing activities. Activity Manager supports
forward recovery by providing a framework for executing
compensating activities in case of data conflicts while
checking data into host DBMS from the client.

Caprera Object Distributor is responsible for
distributing the activity execution between the server and
client. After the execution of the Prolog, Assignment, and
Extraction stages, the activity is handed over to Caprera
Object Distributor for distribution to the client. Caprera
Object Distributor uses the Security Manager to encrypt
activity objects using RSA public/private encryption
algorithms and then hands over the secure activity object

to Communication Manager. Communication Manager
transports the secured/compressed activity object to the
client using a transactional messaging queue built on top
of SMTP, MAPI, VIM, or TCP/IP. Communication
Manager provides adapters for a number of
communication, as well as transactional messaging,
protocols.

CapreraClient

Figure 4

Figure 4 shows the layered architectural diagram of a
Caprera client. There are a number of modules that are
common between the server and the client. The
counterpart of Activity Manager on the client is Client
Manager. Client Manager receives the activity object from
client Communication Manager, uncompresses and
decrypts the activity object and brings the activity object
back to life. Then the task stage of the activity is executed
on the client. On completion of the client task, the activity
is shipped back to the server securely. At the server, the
Update and the Epilog stages of the activity are scheduled
for execution by the Activity Manager.

The CapreraScript engine is a virtual machine that
executes the code contained in the activity object.
CapreraScript is a Java-like scripting language that
provides constructs for developing transactional
applications.

Security Manager uses algorithms from the RSA suite
to provide extensive security mechanisms for transporting
activities over a public data network. Caprera supports
user login authentication while invoking the server or the
client.

Transaction Manager provides the interface support
for TP monitors with applications that need the additional
transactional guarantees of a TP Monitor.

Inter-application communication is provided through
DCOM and CORBA. Caprera client components can be
integrated into applications using ActiveX and JavaBeans.

Future releases of Caprera will also provide a Java-based
interface for embedding Caprera client functionalities in
a Web browser. The Web browser will obtain the Web
contents from Caprera server through CGI hooks
between Caprera server and the Web Server.

Concluding Remarks

In summary, Caprera is a commercial product that
provides host database connectivity to mobile and remote
users over a wide-area network. We refer to this as OFIP
(ofS-line transaction processing) in contrast to the
traditional OLTP. The foundation of Caprera transaction
and recovery architecture and the activity model is based
on traditional database theory and concepts.

References

[l] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Systems,
Addison Wesley, Reading, Massachusetts, 1987.

[2] H. Garcia-Molina and K. Salem. Sagas. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pages 249--259, May 1987.

[3] I. Gray and A. Reuter. Transaction Processing:
Concepts ana’ Techniques. Morgan Kaufmann, 1993.

[4] H. T. Kung and J. T. Robinson. On Optimistic
Methods for Concurrency Control. ACM Transactions on
Database Systems, 6(2):213-226, June 1981.

[5] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P.
Schwarz. ARIES: A Transaction Recovery Method supporting
fine-granularity Locking and Partial Rollbacks using Write-
ahead Logging. ACM Transactions on Database Systems,
17(1):94-162, March 1992.

[6] A. Reuter and H. Wachter. The ConTract Model. In
Ahmed K. Elmagarmid, editor, Database Transaction Models
for Advanced Applications, pages 219-263, Morgan
Kaufamann Publishers, 1992.

589

