
Distributed Processing over Stand-alone Systems and 
Applications 

Gustav0 Alonso Claus Hagen Hans-JSrg Schek Markus Tresch 
Institute of Information Systems 

Swiss Federal Institute of Technology (ETH) 
Ziirich, CH-8092, Switzerland 

{alonso,hagen,schek,tresch}@inf.ethz.ch 

Abstract 
This paper describes the architecture of OPERA, a 
generic platform for building distributed systems over 
stand alone applications. The main contribution of 
this research effort. is t,o propose a “kernel” system 
providing the “essentials” for distributed processing 
and to show the important role database technology 
may play in supporting such functionality. These in- 
clude a powerful process management environment. 
created as a generalization of workflow ideas and incor- 
porating transactional notions such as spheres of iso- 
lation, atomicit.y, and persistence and a transactional 
engine enforcing correctness based on the nested and 
multi-level models. It also includes a tool-kit provid- 
ing externalized database functionality enabling phys- 
ical database design over heterogeneous data reposito- 
ries. The potential of the proposed platform is demon- 
strated by several concrete applications currently be- 
ing developed. 

1 Introduction 

One of the basic platforms in which to implement 
generic multiprocessor systems is commodity hardware 
and software, usually in the form of clusters of work- 
stations connected via a network. In such environ- 
ments, scalability and reliability are ideally only lim- 
ited by the number of elements in the system, with 
the added advantage that most of the necessary in- 
frastructure is already in place. Unfortunately, there 
is also the problem of building something coherent out 
of systems. that were not necessarily designed to work 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 23rd VLDB Conference 
Athens, Greece, 1997 

together. A great. deal of effort has been devoted to 
address this issue, specially in the form of middleware: 
federated and multi-databases systems, TP-monitors, 
persistent queuing systems, CORBA implementations, 
workflow management systems, or process centered 
environments for software engineering. These efforts 
seem to indicate that the difficulty may not lay on 
the lack of solutions but on the lack of integrated so- 
lutions. As a matter of fact, the need to integrate 
the different, approaches in practical systems is very 
clear: CORBA needs the transactional services a TP- 
monitor provides: a TP-monitor could greatly bene- 
fit from the standard interface defined by CORBA; 
both TP-monitors and CORBA implementations need 
a workflow tool to help specifying complex sequences 
of interactions between the different system compo- 
nents; distributed execution over the internet needs 
transactional guarantees; and so forth. The synergy 
is not, surprising since most middleware systems have 
a lot, in common: logging, directory and name ser- 
vices, accounting, indexing, classification, record keep 
ing, or failure recovery, to mention a few issues. This 
shared functionality is used to provide properties such 
as persistent execution, transactional guarantees, for- 
ward and backward navigation, high level compensa- 
tion, and process synchronization, which are at the 
core of any distributed system. The main hypothe- 
sis behind this paper is that it should be possible to 
design a kernel system capable of providing such core 
functionality. 

Following this idea, the paper describes OPERA, 
a basic kernel for distributed processing over clus- 
ters of workstations. OPERA incorporates ideas and 
technology from areas such as distributed and parallel 
databases, transaction processing systems, and work- 
flow management. It also takes advantage of previous 
results in expoxting database functionality [BRS96] 
and transa.ctional middleware systems [ABFS97]. 

575 



(4 (b) 
Figure 1: (a) System architecture of OPERA; (b) Th e 2 d’ff erent language representations in OPERA 

The paper is organized as follows. Section 2 
presents OPERA, its general goals, architecture, and 
most relevant aspects. Section 3 discusses a number of 
application areas in which OPERA is being used by ex- 
tending and tailoring the basic system with additional 
functionality. Section 4 provides additional informa- 
tion regarding the status of the project and concludes 
the paper. 

2 The OPERA Kernel 

2.1 Functionality 

We are particularly interested in the aspects in a dis- 
tributed system that can be supported by database 
technology, among these: 

Process management. Processes are arbitrary 
sequences of application invocations over different lo- 
cations and platforms. Hence, the kernel should play 
the roles of scheduler and resource allocator for such 
processes. The kernel should also provide sufficient re- 
liability, availability and scalability and, for this pur- 
pose, should take advantage of the underlying hard- 
ware platform to distribute its functionality. Ideally, 
all the components could be moved from node to node 
to enhance the overall robustness, availability, and 
scalability. 

Execution Guarantees. The kernel should guar- 
antee correct results in spite of the fact that the execu- 
tion is concurrent and involves autonomous and often 
uncooperative systems. Correctness includes concepts 
such as atomicity, “exactly once” semantics, concur- 

rency control, recoverability, etc. Thus, the kernel 
should place a significant emphasis on the transac- 
tional aspects of distributed computations (spheres of 
isolation, atomicity, and persistence). 

Externalized Database Functionality. In 
many applications running over clusters of worksta- 
tions, most data does not reside within databases, forc- 
ing the applications to implement their own database 
services. Part of the basic support the kernel should 
provide is database functionality such as indexing and 
query processing [BRSSG]. The advantage of export- 
ing database functionality is that it provides a very 
powerful mechanism to interact with data and appli- 
cations residing outside of the system. It not only 
alleviates the task of writing new applications but 
it also establishes the basis for keeping track of the 
many elements involved in distributed environments 
[AH97, AHST96]. 

2.2 Architecture of OPERA 

OPERA is being designed as a kernel providing the 
core functionality described above [AH97, AHST96]. 
Its architecture is organized around three service lay- 
ers (Figure 1.a): database services, process services 
and interface services. The database service layer acts 
as the storage manager. It encompasses the actual 
databases used as repositories and the database ab- 
straction layer. The storage layer is divided into five 
spaces: template, instance, object, history, and con- 
figuration, each of them dedicated to a different type 
of system data. Templates contain the structure of 

576 



the processes. For each running instance of a process 
the instance space contains a copy of the correspond- 
ing template. Objects are used to store information 
about externally defined data. The history space is 
used to store information about already executed in- 
stances. The configuration space is used to record sys- 
tem related information. 

The database abstraction layer implements the 
mechanisms necessary to make the system database 
independent. The experience with workflow systems 
shows that this is a crucial issue affecting scalabil- 
ity and the overall openness of the system [AAEM97]. 
Hence, OPERA uses internally a canonical representa- 
tion [KAGM96]. Th is canonical representation is not 
suitable, however, for either commercial databases or 
user interaction. Thus, the database abstraction layer 
translates the canonical representation to the private 
representations of the underlying repositories (SQL, 
C++, system calls) as required by the physical imple- 
mentation of the underlying database. 

The process service layer contains all the compo- 
nents required for coordinating and monitoring the 
execution of processes. The most relevant compo- 
nents for the purposes of this paper are the dispatcher, 
the navigator, the object manager, the query manager, 
and the exported database functionality module. The 
dispatcher acts as resource allocator for process exe- 
cution. The navigator acts as the overall scheduler. 
It also enforces the transactional aspects of the ex- 
ecution. The system interacts with the data spaces 
through the query manager. The query manager pro- 
vides a suitable interface for complex queries about 
the status of the processes, which in many cases are 
standard. We expect that most of these queries will 
be executed over the history space, hence the advan- 
tage of separating the instance space, used to drive the 
execution of processes, and the history space, used for 
record keeping purposes. 

Interaction with external objects takes place 
through the object manager and the exported database 
functionality module. The latter is based on CON- 
CERT [BRS96], a system designed to provide database 
functionality to data external to the database. The 
former is much more application dependent, acting as 
the repository for metadata information [AH97]. Fi- 
nally, the interface service layer encompasses all the 
mechanisms that allow OPERA to interact with appli- 
cations in different hardware and software platforms. 

2.3 Process Management 

The notion of process is central to OPERA. Typical 
examples of processes are business processes, software 
processes, manufacturing processes, scientific experi- 
ments, and geographic modeling. The problem with 

existing process management systems is that they tend 
to focus on a particular type of process and it is is diffi- 
cult to use them in areas other than the ones for which 
they were designed. A generic notion of process would 
alleviate the task of defining the control flow between 
different applications by providing a common interface 
to process management tools. 

In order to provide a generic notion of process, 
OPERA contains a hierarchy of process representa- 
tions rather than a single model (Figure 1.b). At the 
top of the hierarchy, and used at the interface service 
layer, is the application specific language. OPERA 
works internally using OCR (Opera Canonical Repre- 
sentation), which constitutes the second level of pro- 
cess representation. The third level appears when 
OCR is translated into the private representations of 
the underlying databases (currently ObjectStore and 
Oracle). The following are the most relevant compo- 
nents of OCR. 

A process consists of a set of tasks and a set af 
data objects. Tasks can be activities, blocks, or pro- 
cesses. The data objects store the input and output 
data of tasks and are used to pass information around. 
Activities are the basic execution steps. An activity 
provides a navigation interface to access information 
about its state. In addition, each activity has an e.r- 
ternal binding, which specifies the program(s) to be 
executed, users responsible for the execution, and/or 
resources to be allocated for its executioa. 

Blocks are sub-processes defined only in the con- 
text of a process. They are used for two purposes, for 
modular design and as specialized language constructs 
such as loop blocks (for, do-until, while, fork), spheres 
of atomicity, spheres of isolation, or spheres of persis- 
tence. Subprocesses are processes used as components 
of other processes. Subprocesses allow, like blocks, the 
hierarchical structuring of complex process structures. 

Control flow inside a process is based on guards at- 
tached to each task. The guard concept borrows heav- 
ily from the ECA rule mechanism of active databases. 
A guard consists of an event description describing the 
process state(s) that activate the execution of a task. 
The task’s execution can be restricted by an activation 
condition expressed as a predicate on output data of 
other tasks. Event descriptions can only refer to ex- 
ecution states and events raised by tasks within the 
same process. This helps to avoid many of the com- 
plexity problems associated to ECA rules. Data flow 
is possible between tasks and between processes. Each 
task has an input data structure describing its input 
parameters and an output data structure to store any 
return values. All input and output data structures 
are mapped to the blackboard, which acts as the global 
data area for each process. 

Events are used to allow processes to communicate 

577 



as well as the externalization of intermediate results 
of activities. Processes and activities must declare the 
events they may signal during their execution. Pro- 
cesses subscribe to these events, with the process en- 
gine behaving as a broker that notifies subscribers of 
relevant events. Exceptions are raised by tasks when 
unexpected situations occur, or when external inter- 
vention is needed to either decide on the further flow 
of control or to change data values passed to a task 
[HA97]. E xce pt ions serve as a unique mechanism to 
parameterize the behavior of processes. 

2.4 Transactional Execution Guarantees 

The transactional aspects of OPERA are embedded in 
the notion of spheres and in the scheduling performed 
by the navigator. Currently, there are three types of 
spheres in OPERA, spheres of atomicity, spheres of 
isolation and spheres of persistence. In all cases, the 
spheres must be defined by the user when the process 
is created. Spheres of atomicity generalize the stan- 
dard all or nothing semantics in that they guarantee 
controlled termination including alternative execution 
paths in case of failures or exceptions [HA97]. OPERA 
distinguishes among several classes of these spheres 
depending on how atomicity is maintained (an issue 
also important when considering both atomicity and 
isolation): Basic (non-atomic), Semi-atomic, Atomic, 
Restartable, or Compensatable. Spheres of persistence 
are used to avoid the overhead incurred by storing all 
process information in the instance space. When a 
task or a group of tasks is embedded within a sphere 
of persistence, every step of the execution is recorded 
in the instance space. This guarantees forward recov- 
ery in the event of failures. By default, all tasks are 
embedded within a sphere of persistence. The seman- 
tics behind the notion of spheres of isolation general- 
ize the ideas suggested in [AAE96], which point out 
the need for a notion of synchronization in the tradi- 
tional operating systems sense, and recent work that 
extends the existing notions of nested and multilevel 
transactions and applies them to composite systems 
[ABFS97]. The relation between spheres of atomicity 
and spheres of isolation is treated following the con- 
cepts of the unified theory of concurrency control and 
recovery [AVA+94]. 

2.5 Availability and Scalability 

Availability and scalability are crucial aspects of dis- 
tributed processing environments [AAEM97]. To in- 
crease scalability, OPERA uses several mechanisms. 
OPERA can use several databases as the underlying 
repositories (the current prototype can use Oracle and 
Object Store simultaneously) and allows the separa- 
tion of spaces across these databases, which is probable 

one of the most significant factors when performance 
and scalability is considered. This also opens up the 
possibility for OPERA to perform automatic load bal- 
ancing by spawning new navigators and new instance 
spaces at other sites as the load increases. Several 
OPERA systems can also be interconnected to form 
a larger system. As in [KAGM96], the user can chose 
among three levels of availability for each process. The 
highest level of availability (critical), guarantees a hot- 
standby, 2-safe backup. If the primary system fails, 
the backup can take over immediately. The intermedi- 
ate level of availability (important) guarantees a cold- 
standby, 2-safe backup. After a failure at the primary, 
execution can be resumed at the backup once the state 
of the process is brought up to date. It is also possible 
to run processes as normal processes, in which case no 
backup mechanism is used (but the process is still per- 
sistent, thereby allowing to resume execution as soon 
as the failure is repaired). These same mechanisms 
can be used to implement dynamic process migration. 

3 Applications of OPERA 

OPERA is currently being used in three research 
projects: Geo-OPERA, HLOM, and DOM. 

Geo-OPERA is a process support system tailored 
to spatial modeling and GIS engineering [AH97]. It 
facilitates the task of coordinating and managing the 
development and execution of large, computer-based 
geographic models. It also integrates a flexible en- 
vironment for experiment management, incorporating 
many characteristics of workflow management systems 
as well as a simple but expressive process modeling 
language, exception handling, and data and metadata 
indexing and querying capabilities, which are provided 
by OPERA. 

HLOM (High Level Object Management) is a re- 
search project exploring parallelism in systems built 
out of stand-alone, off-the-shelf, commercial database 
systems which are treated as black boxes providing 
database services. Contrary to federated databases, 
HLOM is designed top-down, i.e., the designer has con- 
trol over the data placement strategies, data partition, 
schema organization, etc. Some of the advantages of 
this approach have been demonstrated recently by im- 
plementing an object oriented database on top of a 
relational system [RNS96] and a document manage- 
ment system using a TP-Monitor on top of a relational 
database [KS96]. In HLOM, OPERA acts as the global 
database scheduler and distribution engine. 

A similar idea to that of HLOM can be applied 
to heterogeneous data repositories. While HLOM is 
based on homogeneous components, the DOM project 
aims at integrating heterogeneous repositories by rep- 
resenting the information contained in them as vir- 

570 



tual global objects which can be manipulated using 
an object algebra [TS94, Tre96]. The idea is to pro- 
vide database services to data residing outside the 
database. Such services include uniform object data 
modeling, view definition over multiple repositories, 
physical database design, query processing and opti- 
mization, and integrity constraint management. Some 
of these aspects have already been implemented as 
part of the Concert prototype, specially those related 
to physical database design [BRS96], in which the 
database is seen as a data-less repository exporting 
its services to data residing in external repositories. 
Thus, the extensions to OPERA necessary to imple- 
ment DOM involve mainly those necessary to interact 
with heterogeneous data repositories. 

4 Project Status and Conclusions 

Surprisingly, and to our knowledge, there is no real 
attempt at tackling the general problem of designing 
and building a general platform for distributed pro- 
cessing using stand alone systems and applications. 
Many partial solutions exist, but there is an urgent 
need to integrate these solutions. The ideas described 
in this paper are to be seen as a work of synthesis 
and integration trying to explore the potential uses of 
databases as basic components of distributed systems. 
Many of the ideas discussed in the paper have already 
been implemented and tested. Currently we are in the 
process of completing the first prototype, and using it 
in the Geo-Opera [AH97], HLOM and DOM projects. 

What is new and interesting about OPERA is that 
it brings together ideas from many areas within one 
single system. The paper has tried to specifically mo- 
tivate OPERA taking as starting point the current sit- 
uation of middleware products. Any serious analysis of 
this situation points out the need to integrate all this 
functionality. This is not just a hypothesis, many com- 
mercial and research efforts are moving towards such 
a goal. But, to our knowledge, there is no in depth 
study of how such systems should be built and what 
functionality they should incorporate. The proposed 
system is a first step towards evaluating such ques- 
tions, also hoping to stimulate the discussion about 
the role of databases in the future. 

Acknowledgements 

Part of this work has been funded by ETH Zurich and 
by the Swiss Science Foundation within the TRAMS 
project. For reasons of space, references not directly 
related to the project have not been included. These 
references can be found in the extended version of the 
paper [AHST96] 1 a so available in our WEB server: 
http://www-dbs.inf.ethz.ch/. 

References 
[AAE96] 

[AAEM97] 

[ABFS97] 

[AH971 

[AHST96] 

[AVA+ 941 

[BRS96] 

[KAGM96] 

[KS961 

[RNS96] 

[Tre96] 

[TS94] 

G. Alonso, D. Agrawal, and A. El Abbadi. Pro- 
cess Synchronization in Workflow Management Sys- 
tems. In 8th IEEE Symposium on Parallel and 
Distributed Processing (SPDS’96). New Orleans, 
USA., October 1996. 

G. Alonso, D. Agrawal, A. El Abbadi, and C. Mo- 
han. Functionality and Limitations of Current 
Workflow Management Systems. IEEE Expert, 
12(5), September-October 1997. 

G. Alonso, S. Blott, A. Fessler, and H.-J. Schek. 
Correctness and Parallelism of Composite Systems. 
In Proceedings of the 16th ACM Symposium on 
Principles oj Database Systems, Tucson, Arizona, 
USA. May 1%15., May 1997. 

G. Alonso and C. Hagen. Geo-Opera: Work- 
flow Concepts for Spatial Processes. In Proceed- 
ings of the 5th International Symposium on Spatial 
Databases, Berlin, Germany, July 1997. 

G. Alonso, C. Hagen, H.J. Schek, and M. Tresch. 
Towards a Platform for Distributed Application De- 
velopment. 1997 NATO Advance Studies Insti- 

tute (ASI). A. Dogac, L. Kalinichenko, T. Ozsu, 
A. Sheth (editors). August 12 -21, 1997, Istanbul, 
Turkey, 1996. 

G. Alonso, R. Vingralek, D. Agrawal, Y. Breitbart, 
A. El Abbadi, H.J. Schek, and G. Weikum. A Uni- 
fied Approach to Concurrency Control and Transac- 
tion Recovery. In Proceedings EDBT’94. Springer- 
Verlag LNCS 779, pages 123-130, March 1994. 

Stephen Blott, Lukas Relly, and Hans-J&g Schek. 
An open abstract-object storage system. In Proceed- 
ings of the ACM SIGMOD International Conjer- 
ence on Management of Data, Montreal, Canada, 
June 1996. 

C. Hagen and G. Alonso. Flexible Exception Han- 
dling in the OPERA Process Support System. 1997. 
In preparation. 

M. Kamath, G. Alonso, R. Giinthijr, and C. Mohan. 
Providing High Availability in Very Large Work- 
flow Management Systems. In In Proceedings of 
EDBT’96, Avignon, France, March 1996. Springer- 
Verlag, LNCS 1057. 

H. Kaufmann and H.-J. Schek. Extending TP- 
Monitors for Intra-Transaction Parallelism. In Proc. 
of the 4th Int. Conj. on Parallel and Distributed 
Information Systems (PDIS’96), Miami Beach, 
Florida, USA, December 1996. 

M. Rys, M.C. Norrie, and H.-J. Schek. Intra- 
Transaction Parallelism in the Mapping of an Ob- 
ject Model to a Relational Multi-Processor Sys- 
tem. In Proceedings of the 22nd VLDB Conference, 
Mumbai (Bombay), India, September 1996. 

M. Tresch. Principles of distributed object database 
languages. Technical Report 248, ETH Ziirich, 
Dept. of Computer Science, July 1996. 

M. Tresch and M. H. Scholl. A classification 
of multi-database languages. In Proc. 3rd Int’l 
Conj. on Parallel and Distributed Information Sys- 
tems (PDIS). Austin, Texas, September 1994. IEEE 
Computer Society Press. 

579 


