
1 Introduction

Resource Scheduling in Enhanced Pay-Per-View
Continuous Media Databases

Minos N. Garofalakis*
University of Wisconsin-Madison

minos@cs.wisc.edu

Banu ozden
Bell Laboratories

ozden@research.bell-labs.com

Avi Silberschatz
Bell Laboratories

avi@research.bell-labs.com

Abstract
The enhanced pay-per-view (EPPV) model for provid-
ing continuous-media-on-demand (CMOD) services asso-
ciates with each continuous media clip a display frequency
that depends on the clip’s popularity. The aim is to increase
the number of clients that can be serviced concurrently be-
yond the capacity limitations of available resources, while
guaranteeing a constraint on the response time. This is
achieved by sharing periodic continuous media streams
among multiple clients. In this paper, we provide a com-
prehensive study of the resource scheduling problems as-
sociated with supporting EPPV for continuous media clips
with (possibly) different display rates, frequencies, and
lengths. Our main objective is to maximize the amount
of disk bandwidth that is effectively scheduled under the
given data layout and storage constraints. This formulation
gives rise to NP-hard combinatorial optimization prob-
lems that fall within the realm of hard real-time scheduling
theory. Given the intractability of the problems, we pro-
pose novel heuristic solutions with polynomial-time com-
plexity. Preliminary results from an experimental evalua-
tion of the proposed schemes are also presented.

With all the euphoria surrounding the potential benefits of the
coming multimedia revolution, database researchers are faced
with challenges that are pushing the current hardware and soft-
ware technology to its limits. The fundamental problem in de-
veloping high-performance multimedia servers is that images, au-
dio, and other similar fotms of data differ from numeric data
and text in their characteristics, and hence requite different tech-
niques for their organization and management. The most critical
of these characteristics is that digital audio and video streams con-
sist of a sequence of media quanta which convey meaning only
when presented continuously in time. Hence, in contrast to tradi-
tional storage managers, a multimedia server needs to ensure that

*Work performed while visiting Bell Laboratories.
Permission to copy withoutfee all orpart of this material is grantedpro-
vided that the copies are not made or distributedfor direct commercial ad-
vantage. the VLDB copyright notice and the title of the publication and its
date appear; and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

the retrieval and storage of such continuous media (CM) streams
proceed at their pre-specified real-time rates. Given the limited
amount of resources (e.g., memory, disk bandwidth, and disk stor-
age), it is a challenging problem to design effective resource man-
agement algorithms that can provide on-demand support for a
large number of concurrent continuous media clients. The ser-
vice models supported by such Continuous-Media-On-Demand
(CMOD) servers can be classified into two broad categories: ran-
dom access and enhancedpay-per-view.
l The Random Access service model places resource reserva-
tions to allocate independent physical channels to each individual
client. Under Random Access service, the maximum number of
concurrent clients that can be supported is limited by the avail-
able resources. Such levels of concurrency may not be sufficient to
provide cost-effective services in environments like Movies-On-
Demand, where the client population far exceeds the maximum
number of concurrent streams [lo].
l The Enhanced Pay-Per-View (EPPV) service model aims to
increase the number of clients that can be serviced concurrently
beyond the limitations of available resources while guaranteeing a
constraint on the response time. This is achievedby assigning with
each CM clip (referred to as a clip in the remainder of the paper)
a display frequency, typically determined by the clip’s popular-
ity, and sharing streams among multiple clients. Under the EPPV
service model, the response time for transmission of a clip to a
client is bounded by the reciprocal of the clip’s display frequency
(i.e., its retrievalperiod). From the client’s perspective, perhaps
the most attractive feature of EPPV service is that the client can
be informed exactly when the transmission will start. Thus, even
when resources are scarce the EPPV service model can guaran-
tee predictable response times for all incoming requests. From
the service provider’s perspective, the most attractive feature of
EPPV service is that the number of concurrent clients is not upper-
bounded by resource availability.

The EPPV model for continuous media services is becoming
more and more popular with the telecom, cable, broadcast, and
content companies since it offers the potential to provide scalable,
cost-effective CMOD offerings 1161. Realizing this potential,
however, requires schemes for effectively scheduling the available
disk bandwidth and storage capacity so that high levels of concur-
rency and system utilization can be sustained. Two phenomena
make this a challenging problem - the periodic nature of EPPV
service and the relatively high Iatencies of magnetic disk storage.
The periodicity of clip retrievals in EPPV servers generates a host
of difficult periodic task scheduling problems that fall within the
realm of hard real-time scheduling theory [9]. The high disk la-
tencies complicate effective utilization of disk bandwidth and stor-
age with reasonable amounts of buffer space, which is an impor-

516

tant cost factor in CMOD server design. The use of multiple disks
to handle the high storage volume and bandwidth requirements of
CM data exacerbates the problem. Thus, the need for intelligent
scheduling mechanisms becomes more pronounced as the scale of
the system increases.

A number of schemes for organizing CM data on multiple disks
has been proposedin the literature [2,3,21,23]. However, the ap-
plicability of these data layout schemes to EPPV service remains
an open problem. The matrix-based scheme was designed to sup-
port periodic video retrieval for a given period while minimizing
video buffering requirements [lo]. Extensions to the base scheme
that deal with the varying transfer rates of commonly used SCSI
disks and different video display rates were presented in [12, 133.
However, the issue of videos with different retrieval periods was
not addressed in any of these papers. Only in very recent work,
dzden et al. [14] presented schemes for the periodic retrieval of
videos from disk arrays using striping. Their work, however, ad-
dressed only a restricted form of the EPPV resource scheduling
problems that assumes all clips to have identical display rates.
Furthermore, they assume specific conditions on the video lengths
that limit the usefulness of their results.

In this paper, we address the resource scheduling problems as-
sociated with supporting EPPV service in their most general form.
We present a scheduling framework that handles continuous me-
dia data with (possibly) different display rates, different periods,
and arbitrary lengths. Given a hardware configuration and a col-
lection of clips to be scheduled, we present schemes for determin-
ing a schedulable subset of clips under different assumptions about
data layout:

o Clustering. Each disk is viewed as an independent storage
unit; that is, the data of each clip is stored on a single disk
and multiple clips can be clustered on each disk.

l Striping. Each clip is declustered over all available disks.
In each case, our objective is to maximize the amount of disk band-
width that is effectively scheduled. This is typically the situa-
tion facing large-scale CMOD servers that occasionally need to
re-schedule their offerings to adapt to a changing audience, con-
tent, and popularity profile [8, 161. For the clustering scheme,
we formulate these optimization problems as generalized vari-
ants of the O/l knapsack problem [7, 181. Since the problems
are clearly NP-hard, we present provably near-optimal heuristics
with low polynomial-time complexity. We then present two al-
ternative striping schemes. VerticalStriping (VSJ views the entire
disk array as a single large disk in a manner similar to fine-grained
striping [1 I]. Despite its conceptual simplicity, VS suffers from
increased disk latency overheads that render it impractical, espe-
cially for large disk arrays. Horizontal Striping (HS) is based on a
round-robin distribution of clip data across the disks and has the
potential of offering much better scalability and disk utilization
than VS. This, however, comes at the cost of the more sophisti-
cated scheduling methods required to support periodic stream re-
trieval. Specifically, we demonstrate that the scheduling problems
involved in supporting EPPV service under HS are non-trivial
generalizations of the Periodic Maintenance Scheduling Problem
(PMSP) [22]. Given that PMSP is known to be HP-complete
in the strong sense [11, we propose novel heuristic algorithms for
scheduling the periodic retrieval of horizontally striped clips. We
follow a two-step approach. First, we introduce the novel con-
cept of a scheduling tree structure and demonstrate its use in ob-
taining collision-free schedules for Periodic Maintenance. Next,

we extend our methods to handle the more complex problems
introduced by periodic retrieval under HS. Thus, our work also
contributes to hard real-time scheduling theory by proposing the
scheduling tree structure and algorithms as a new approach to Pe-
riodic Maintenance. Finally, we present preliminary experimental
results that confirm the superiority of our HS-based scheme.

All theoretical results in this paper are stated without proof due
to space constraints. The full proofs, as well as some interesting
extensions to the ideas and results presented here, can be found in
the full version of the paper [5].

2 Notation and System Model
Table 2 summarizes the notation used in this paper with a brief de-
scription of its semantics. Additional notation will be introduced
when necessary. To avoid introducing data layout issues for mul-
tiple disks, we assume a single-disk server for the purposes of
this section. The extension to multi-disk servers is straightforward
once the data layout strategy (clustering, VS. HS) is specified.

Table 1: Clip and Disk Parameters

0 Param. 1 Semantics 0
n Ci Continuous media clip (; = 1, . . . , N)

” . , 4

ndisk 1 Number of disks in CMOD server
PA*b Disk transfer rate II
cdisk Disk storage capacity
tseek Disk seek time

hat Disk latency

2.1 Retrieving Continuous Media Data

We assume that the disk has a transfer rate of t-disk, a storage ca-
pacityofcdiskra(worstcase)seektimeof tseek, anda(worstcase)
latency of hat (which consists of rotational delay and settle time).
A clip Ci is characterized by a display rate ri (the rate at which
data for Ci must be transmitted to clients) and a length li (in units
of time). We refer to the transmission of a clip starting at a given
time as a stream. Data for streams is retrieved from the disk in
rounds of length T. For a stream displaying clip Ci (denoted by
stream(Ci)), a circular buffer of size 2 . T + ri is reserved in the
server’s buffer cache. In each round, while the stream is consum-
ing T. ri bits of data from its buffer, the T. r; bits that the stream
will consume in the next round are retrieved from the disk.

During a round, for streams atream(C1),..., stream(Ck)
for which data is to be retrieved from disk, T. r 1, . . . , T. rk bits are
read using the C-SCAN disk head scheduling algorithm [191. C-
SCAN ensures that the disk heads move in a single direction when
servicing streams during a round. As a result, random seeks are
eliminated and the total seek overhead during a round is bounded
by 2 . i!s,&. Furthermore, retrieval of each non-contiguously
stored piece of data can incur a disk latency overhead of at most
hat during a round. To ensure that no stream starves during a
round, the sum of the total disk transfer time for all data retrieved

517

and the overall latency and seek time overhead cannot exceed the
length T of the round [11, 171. More formally, we require the fol-
lowing inequality to hold:

c
T . ri

(---- (1)
{stream(C;)}

fdisk
+ hat) + 2. tseek _< T.

2.2 Matrix-Based Allocation

EPPV service associates with each clip C, a retrieval period ‘T; that
is the reciprocal of its display frequency. We assume that retrieval
periods are multiples of the round length T. This is a reasonable
assumption, since retrieval periods will typically be multiples of
minutes or even hours and the length of a round (usually bounded
by buffering constraints) will not exceed a few seconds. Matrix-
based allocation [10,131, increases the number of clients that can
be serviced under EPPV by laying out data based on the knowl-
edge of retrieval periods’. The idea is to distribute, for each clip
Ci , the starting points for the [&I concurrent display phases of
Ci uniformly across its length. Each phase corresponds to a differ-
ent stream servicing multiple clients. Conceptually, Ci is viewed
as a matrix consisting of elements of length T (Figure l(a)).

ml...

pulod Ti

(a) W

Figure 1: (a) A clip matrix. (b) Its layout on disk.

We define ni = $! (i.e., the length of the retrieval pe-
riod of C’i in rounds). The matrix for Ci consists of c, =
min{ni, [$I} columns and 1%) rows (corresponding to the
clip’s display phases). Note that we can have ci < ni when the re-
trieval period of the clip exceeds its length (i.e., li < Ti). Finally,
we let di denote the amount of data in a column of Ci ‘s matrix,
thtiS2di = [+I *T-ri.

To support Griodic retrieval, a cfip matrix is stored in cohnnn-
major form and its retrieval is performed in columns (i.e., one col-
umn per round) with each element handed to a different display
phase (Figure 1 @I)). Matrix-based allocation reduces the overhead
of disk latency per stream since, in each round, it incurs a total
overheadof only trat for [$l streams ofCi, rather than [kl -tlat
(using Formula (1)). This means that the matrix-based schemecan
support the periodic retrieval of Cr , . . . , Ck provided that the fol-
lowing inequality holds:

c
di

(---- + hat) + 2 * tseek _< T. (2)
{Gil

rdisk

The disk bandwidth effectively utilized by a clip during a round is
the amount of raw disk bandwidth consumed by the clip without
accounting for the latency overhead. For Ci , this is exactly %, or,
equivalently, [%I . Ti.

1 The scheduling algorithms presented in this paper can also be used
with other data layout schemes. The interested reader is referred to the full
version of the paper [5].

2 Although some columns may actually contain less data than di [131,
in this paper, we are ignoring possible optimizations for smaller columns.

3 Clustering
Clustering views each disk as an autonomous unit - entire clips
are stored on and retrieved from a single disk and multiple clips
can be clustered on each disk. In this scenario, the EPPV t-e-
source scheduling problem reduces to effectively mapping clip
matrices onto the server’s disks so that the bandwidth and storage
requirements of each matrix are satisfied. That is, the inequalities
ci(* + &at) i- 2 . tseek 5 7’ and xi li . ri 5 Cdisk need
to hold for each disk, where the summation is taken over all clips
Ci stored on that disk. We address this scheduling problem in two
stages. First, we present a solution that considers only the band-
width requirements of clips. Next, we extendour approachto han-
dle disk storage limitations. We present the first case separately
since our results for this case will prove useful later in the paper,
when striping is introduced.

3.1 Bandwidth Constraint

We associate two key parameters with each clip:

l A size: size(C,) = &tt’ia’, that captures the normal-
ized contribution of Ci to t&.?ength of a round, or, equiv-
alently, its (normalized) disk bandwidth consumption (see
Formula (2)); and,

l A value: value(Ci) = [kl . ri, that corresponds to the
bandwidth effectively utilized by Ci during a round.

Using these definitions, the problem of maximizing the effec-
tively scheduled disk bandwidth can be formally stated as follows:
Given a collection of clips C = {Cl, . . . , CN}, determine a sub-
set C’ of C and a packing of {size(G) : Ci E C’} in ndisk
unit capacity bins such that the total value xC.EC, value(Ci)
is maximized. This problem is a generalization of the traditional
O/l knapsack optimization problem (which can be seen as a spe-
cial case with ndisk = 1) [7, 181. Thus, it is clearly Np-hard.
Given the intractability of the problem, we present a fast heuristic
algorithm (termed PACKCLIPS) that combines the value density
heuristic rule for the classical knapsack problem [4] with a First-
Fit pa;?“; cttle. We define the value density of clip Ci as the ratio
Pi = -74 rile ,-is . Algorithm PACKCLIPS is depicted in Figure 2.
The following lemma provides an upper bound on the worst-case
performance ratio of our. heuristic.

Lemma 3.1 Algorithm PACKCLIPS runs in time O(N(log N +
ndisk)) and is l/a-approximate; that is, if Opt is the value of
the optimal schedulable subset and VH is the value of the subset
returned by PACKCLIPS then $& >_ 6. 0

3.2 Bandwidth and Storage Constraints

We now extend the PACKCLIPS algorithm to handle the stor-
age capacity constraints imposed by disks. The idea is to de-
fine the size of a clip Ci as a 2-dimensional size vector Si =
[sizer (Ci), sizez(Ci)], where the first component is the normal-
ized bandwidth consumption of the clip (as defined in the previ-
ous section) and the second component is the normalized storage
capacity requirement of the clip. More formally, sizeI =

518

Algorithm PACKCLIPS(C, ndisk)

Input: A collection of CM clips C = {Cl , . . . , C,} and a num-
ber Of disks ndisk.

Output: C’ & C and a packing of C’ in ndisk unit capacity
bins.(Goal: Maximize xCZEC, value(Ci).)

1. Sort the clips in C in non-increasing order of value density
toobtainalist L =< C~,...,CN >wherepi 2 piti.
Initialize load = value(B,) = 0, B, = 0, for each bin
(i.e., disk) B,, j = 1,. . , N.

2. For each clip Ci in L (in that order)
2.1. Let B, be the first bin (i.e., disk) such that

load + size(C) < 1.
2.2. Set load = load + size(Ci), value(B,) =

value(B,) + value(Ci), B3 = Bj U {Ci}, and L =
L - {Ci}.

3. Let B<i>, i = 1,. . . , ndisk be the bins with the
ndisk largest value’s in the final packing. Return C’ =
Uy$‘* B<i>. (The packing of C’ is definedby the B<i>‘s.)

Figure 2: Algorithm PACKCLIPS

Let l(v) denote the maximum component of a vector v (i.e.,
its length). The 2-dimensional extension of the PACKCLIPS al-
gorithm is based on defining the value density of a clip as the ra-
tio pi = !w. The load of a disk is also a 2-dimensional
vector equal to the vector sum of sizes of all clips clustered on
that disk, and the condition in step 2.1 of PACKCLIPS becomes:
Z(load(B,) + Si) 5 1. That is, we require that both the band-
width and storage load on each disk do not exceed the disk’s ca-
pacities. For our worst-case analysis of the 2-dimensional PACK-
CLIPS algorithm we also assume that the storage requirements of
a clip never exceed one half of a disk’s storage capacity, that is,
size2 (Ci) < $. This is a reasonable assumption since current disk
storage capacities are in the order of several gigabytes. The fol-
lowing lemma shows that the extra dimension degrades the worst-
case performance guarantee of our heuristic by a factor of two.

Lemma 3.2 Assuming that the storage requirements of any clip
are always less than or equal to one half of a disk’s storage capac-
ity, the 2-dimensional PACKCLIPS heuristic is l/4-approximate;
that is, if Vop~ is the value of the optimal schedulable subset
and VH is the value of the subset returned by PACKCLIPS then
X>L
vOPT - 4’ 0

4 Disk Striping

A major deficiency of clustered dam layout for large-scale EPPV
service is that it can lead to severe disk storage and bandwidth
fragmentation, and, consequently, underutilization of server re-
sources. This problem is demonstrated in the rather discouraging
worst-case bound of Lemma 3.2 - for “bad” lists of clips, PACK-
CLIPS may be able to utilize only as little as one fourth of the raw
server capacity. Striping schemes eliminate storage fragmentation
by declustering a clip’s data across all available disks. In this sec-
tion, we consider EPPV service under two distinct striping strate-
gies termed Vertical and Horizontal Striping. Since storage frag-
mentation is no longer an issue, we can effectively ignore storage

constraints by assuming that the aggregate storage requirements of
the clips to be scheduled do not exceed the storage capacity of the
server; that is, we assume that xi li . ri 5 ndisk . Cdisk.

4.1 Vertical Striping (VS)

In the Vertical Striping scheme, each column of the clip matrix is
declustered across all ndi.& disks of the server (Figure 3(a)). This
scheme is similar to fine-gmined striping [1 l] or RAID-3 data or-
ganization [151, since each column of the clip has to be retrieved
in parallel from all disks (as a unit). Using the VS layout for clip
matrices, implies that each disk is responsible for retrieving 1
of a clip’s column in each round. Thus, the following cot&&~
must be satisfied on each disk:

N

c

di
+ N . tint 5 T - 2. tseek. (3)

i=l f-disk . ndrsk

Figure 3: (a) Vertical Striping. (b) Horizontal Striping.

To ensure continuous retrieval under VS, all disks in the sys-
tem must satisfy the same condition (namely, Formula (3)). Con-
sequently, the problem of maximizing the effectively scheduled
bandwidth clips under the VS scheme corresponds to a traditional,
single-bin, O/l knapsack problem with clip sizes siza(Ci) =

d,
Pd,** ,j,#k

2-2 tt’ar (from Ineq. (3)), and valuesvalue = 1-Q-l .
ri (as in S&on 3). Thus, PACKCLIPS (with numberof bins/&ks
equal to 1) readily provides a near-optimal heuristic for resource
scheduling under VS.

Despite its conceptual and algorithmic simplicity, VS can lead
to underutilization of available disk bandwidth due to increased
latency overheads. This is because, during each round, all disks
incur a penalty of trat for each clip stored in the entire server.
These latency penalties obviously limit the scalability of a VS-
based EPPV server.

4.2 Horizontal Striping (HS)

In the Horizontal Striping scheme, the columns of a clip matrix are
mapped to individual disks in a round-robin manner (Figure 3(b)).
Consequently, the retrieval of data for a transmission of Ci pro-
ceeds in a round-robin fashion along the disk army. During each
round a single disk is used to read a column of Ci and consecutive
rounds employ consecutive disks3.

Consider the retrieval of a clip matrix Ci from a particular disk
in the array. By virtue of the round-robin placement, during each

3 We assume that a disk has sufficient bandwidthto support the retrieval
of one or more clip columns. If this does not hold, one or more disks can
be viewed as a single composite disk.

519

transmission of Ci, a column of Ci must be retrieved from that
disk periodically, at intervals of ndiJk rounds. From Formula (21,

++ro*
each such retrieval requires a fraction ,r!z;,t,,,L of the disk’s
bandwidth. Furthermore, to support EPPV service, the tmnsmis-
sions of C, are themselves periodic with a period Ti = ni . T.

Thus, the retrieval of a clip matrix C, from a specific disk in
the array can be seen as a collection of periodic real-time tasks [9]
with period Ti (i.e., the clip’s transmissions), where each task
consists of a collection of s&asks that are ndisk . T time units
apart (i.e., column retrievals within a transmission). Moreover, the
computation time of each such subtask is A + ttat. An exam-
ple of such a task is shown in Figure 3(b). 8% that the maximum
number of subtasks mapped to a disk by Ci equals

r-1
,,J,rk . (ci

is the number of columns in Ci.) This number may actually be
smaller for some disks in the array. However, in order to provide
deterministic service guarantees for all disks, we consider only
this worst-case number of subtasks in our scheduling formulation.

We say that two (or more) clip retrievals collide during a round
if they are all reading data off the same disk. Collisions play a cru-
cial role in our scheduling problem. Our algorithms need to ensure
that whenever multiple retrievals collide during a round, their to-
tal bandwidth requirements do not exceed the capacity of the disk.
For the simple case of two clips, we can use the Generalized Chi-
nese Remainder Theorem [6] to prove the following lemma.

Lemma 4.1 Consider two clips CI and CZ, and let (pi =

min{ I$$-1 , ,& }, i = m1,2. The retrieval
of Cr and C2 can be scheduled without collisions ifand only if
(~1 + (~2 I gcd(n1, n2). 0

Lemma 4.1 identifies a necessary and sufficient condition for the
collision-jree scheduling (or, mergeability [23]) of two clip re-
trieval patterns. Our result extends the result of Yu et al. [23] on
merging two simple periodic patterns to the case of periodic tasks
consisting of equidistant subtasks. Furthermore, Lemma 4.1 can
be generalized to any number of clips if their periods can be ex-
pressed as ni = k . mi for all i, where mi and m3 are relatively
prime for all i # j. (For two clips, this condition is obviously true
with k = gcd(nr , nz).)

Lemma 4.2 Consider a collection of clips C = {Cl, . . . , C,},
with retrieval periods ni = k.m+foral!i,wheregcd(mi,mj) =

1 for i # j. Let (ui = mini I& 1 ’ ’ gcd(ksndisk) 1. me
retrieval of C can be scheduled’ without collisions if and only if
Cf”=, ai I k.

. I

0

Unfortunately, Lemma 4.1 cannot be extended to the general case
of multiple clips with arbitrary periods. In fact, in Section 5, we
will show that deciding the existence of a collision-free schedule
for the general case is n/p-complete in the strong sense. Thus,
no efficient necessary and sufficient conditions are likely to exist.
The condition described in Lemma 4.1 can easily be shown to be
sufficient for no collisions in the general case. However, it is not
necessary, as the following example indicates.
Example 1: Consider three clips with periods nr = 4, n2 = 6,
na = 8 and let ndisk = 4. This set can be scheduled with no
collisions, by initiating the retrieval of Cr , Cz, C’s at rounds 0, 1,
and 2, respectively. However, the inequality in Lemma 4.1 (ex-
tended for three clips) fails to hold, since gcd(nt , n2, n3) = 2 <
c:&Y: = 3.

5 The Scheduling ‘Ikee Structure
In this section, we address the problem of scheduling EPPV ser-
vice under HS. We first consider a model of simple periodic real-
time tasks and show that deciding the existence of a collision-free
schedule is equivalent to Periodic Maintenance [1,221, a problem
known to be intractable. Motivated from this result, we define the
novel concept of a scheduling tree and discuss its application in a
heuristic algorithm for Periodic Maintenance. We then show how
the scheduling tree structure can handle the more complex model
of periodic tasks identified in Section 4.2.

5.1 Periodic Maintenance Scheduling

The k-server Periodic Maintenance Scheduling Problem (k-
PMSP) [l] is a special case of the problem of scheduling sim-
ple periodic tasks in a hard real-time environment. Briefly, the
k-PMSP decision problem can be stated as follows: Let C =
{Cl,. . . , C,} be a set of periodic tasks with correspondingpe-
riods P = {nl, . . . , nu}, where each n; is a positive integer Is
there a mapping of the the tasks in C to positive integer time slots
such that successive occurrences of Ci are exactly n; time slots
apart and no more than k tasks ever collide in a slot? Note that
if ui is the index of the first occurrence of Ci in a schedule for P
then the (multi)set of starting time slots {ur , . . . , z(N) uniquely
determines the schedule, since Ci occurs at all slots ui + j . ni,
j 2 0.

Bamah et al. [l] have shown that for any fixed value k 2 1, k-
PMSP is n/p-complete in the strong sense. Consequently, given
a collection of simple periodic tasks with periods P, determining
the existence of a collision-free schedule is intractable (i.e., it is
equivalent to l-PMSP). The existence of a scheduling tree stxuc-
ture (as described below) that contains all the periods in P, guar-
antees the existence of a collision-free schedule. Furthermore, the
starting time slot for eachtask can be determined from the schedul-
ing tree4.

Definition 5.1 A scheduling tree is a tree structure consisting of
nodes and edges with integer weights, where:

1. Each internal node of weight w can have at most w
outgoing edges, each of which has a distinct weight in
{O,l,. . *, 20 - 1); and,

2. Each leaf node represents a period ni such that ni is equal to
the product of weights of the leaf’s ancestor nodes.

We define the level of a node (or, edge) as the number of its proper
ancestor nodes. Thus the level of the tree’s root is 0 and the level
of all edges emanating from the root is 1. For any node n, let w(n)
and e(n) denote the weight and the number of edges of n, respec-
tively. Also, let ancestor-nodej (n) representthe weight of the an-
cestor node of n at level j, and let ancestorsdgaj(n) denote the
weight of the ancestor edge of n at level j, where j 5 level(n).
Finally, define rr3 (n) = nSLo ancestor-node;(n) for 0 5 j 5
level(n).

Consider a leaf node for period ni located at level 1. The first
slot ui in which the corresponding task is scheduled is defined

4 To the best of our knowledge, no similar notion of tree structure for
periodic task scheduling has been proposed in the real-time scheduling lit-
efature[20].

520

from the scheduling tree structure as follows:

Ui = ancestor-~dge,(ni)+~anceslor-~dga~(~i~.rr,_z(ni).
3=2

(4)
Some intuition for the scheduling tree structure and the above for-
mula is provided in Figure 4. The basic idea is that all tasks in a
subtree tooted at some edge emanating from node n at level I will
utilize time slot numbers that are congruent to i (mod nl(n)),
where i is a unique number between 0 and ~l (n) - 1. Satisfying
this invariant recursively at every internal node ensures the avoid-
ance of collisions.

uZ=l

(a) (b)

Figure 4: (a) The scheduling tree structure. (b) An example tree.

Note that the existence of a scheduling tree for a set of periods
P is only a suficienr con&ion for the existence of a collision-free
schedule. For example, the periods 6.10, and 15 are schedulable
using start times of 0, 1, and 2, respectively, although no schedul-
ing tree can be built (since gcd({6,10,15}) = 1). However,
using the Generalized Chinese Remainder Theorem it is straight-
forward to show that the existence of a scheduling forest, as de-
fined below, is both necessary and sufficient for the existence a
collision-free schedule.

Definition 5.2 Let Pi denote a scheduling tree for Pi. The trees
Pi and P3 are consistent if and only if for each n, E P, and
nl E P, we have urn f ur (mod gcd(n,, nl)) . A schedul-
ing forest for P is a collection of pairwise consistent scheduling
trees for some partitioning Pi, . . . , Pk of P.

Lemma 5.1 Determining whether there exists a scheduling forest
for P is equivalent to l-PMSP, and, thus, it is N’P-complete in the
strong sense. 0

Given the above intractability result, we present a heuristic algo-
rithm for constructing scheduling trees for a given (multi)set of
periods. Our algorithm is based on identifying and incrementally
maintaining candidare nodes for scheduling incoming periods.

Definition 5.3 An internal node n at
level 1 is candidate for period ni if and only if rrl-1 (n)ln; and

sd(4n) I *) 2 *;I-

A period ni can be scheduled under any candidate node n in a
scheduling tree. There are two possible cases:

l If nl(n)ln; then Definition 5.3 guaranteesthat n has at least
one free edge at which ni can be placed (Figure 5(a)).

(a) (b)

Figure 5: (a) Placing a periodp under a scheduling tree node with-
out splitting. (b) Period placement when the node is split.

l If Al(n) ,Jni then, in order to accommodate ni under node
n, n must be split so that the defining properties of the
scheduling tree structure are kept intact. This is done as fol-
lows. Let d = gcd(zu(n), .h). Node n is split into a

parent node with weight d and child nodes with weight v,
with the original children of n divided among the new child
nodes, as shown in Figure 5(b); that is, the first batch of ‘“fi?L
children of n are placed under the first child node, and so on.
It is easy to see that this splitting maintains the properties of
the structure. Furthermore, Definition 5.3 guarantees that the
new parent node has at least one free edge for scheduling ni .

The set of candidate nodes for each period to be scheduled can
be maintained efficiently, in an incremental manner. The observa-
tion here is that when a new period n, is scheduled, all remaining
periods only have to check a maximum of three nodes, namely the
two closest ancestors of the leaf for n; and, if a split occurred, the
last child node created in the split, for possible inclusion or exclu-
sion from their candidate sets.

As in Section 3, we assume each task is associated with a value
and we aim to maximize the cumulative value of a schedule. The
basic idea of our heuristic (termed BUILDTREE) is to build the
scheduling tree incrementally in a greedy fashion, scanning the
tasks in non-increasing order of value and placing each period ni
in that candidate node M that implies the minimum value loss
among all possible candidates. This loss is calculated as the to-
tal value of all periods whose candidate sets become empty after
the placement of ni under M. Ties are always broken in favor of
those candidate nodes that are located at higher levels (i.e., closer
to the leaves), while ties at the same level are broken using the pos-
torder node numbers (i.e., left-to-right order). When a period is
scheduled in P, the candidate node sets for all remaining periods
are updated (in an incremental fashion) and the algorithm contin-
ues with the next task/period (with at least one candidate in P).
Algorithm BUILDTREE is depicted in Figure 6.

Let N be the number of tasks in C. The number of internal
nodes in a scheduling tree is always going to be O(N). To see this,
note that an internal node will always have at least two children,
with the only possible exception being the rightmost one or two
new nodes created during the insertion of a new period (depending
on whether splitting was used, see Figure 5). Since the number of
insertions is at most N, it follows that the number of internal nodes
is O(N). Based on this fact, it is easy to show that BUILDTREE
runs in time 0(N3).
Example 2: Consider the list of periods < nr = 2, n2 = 12,
n3 = 30 > (sorted in non-increasing order of value). Figure 7

521

Algorithm BUILDTREE(C, value)

Input: A set of simple periodic tasks C = {Cl, . . . , CN} with
corresponding periods P = {nr , . . . , nN}, and a VahJC!()

function assigning a value to each Ci.
Output: A scheduling tree I’ for a subset C’ of C. (Goal: Maxi-

mize CC,EC, VdUe(Ci).)

1. Sort the tasks in C in non-increasing order of value to ob-
tain a list L =< Ci ,cs,. . . , CN >, where ValUe(ci) 2

value(C,+r). Initially, P consists of a root node with a
weight equal to nt .

2. For each periodic task Ci in L (in that order)
2.1. Let cand(n;, I’) be the set of candidate nodes for ui

in F. (Note that this set is maintained incrementally
as the tree is built.)

2.2. For each n E cand(ni, l?), let l? U {ni}, denote the
tree that results when ni is placed under node n in r.
Let loss(n) = {C, E L - {Ci} (cand(ru {ni},) =
0) andvalue(loss(n)) = &jE,orr(nl value(C,).

2.3. Place ni under the candidate M such that
value(loss(M)) = min,,,dt,,,r-{value(loss(n))}.
(Ties are broken in favor of nodes at higher levels.) If
necessary, node M is split.

2.4. Set r = r u {ni}M, L = L - loss(M).
2.5. For each task C, E L, update the candidate node set

cand(n,, I?).

Figure 6: Algorithm BUILDTREE

illustrates the step-by-step construction of the scheduling tree us-
ing BUILDTREE. Note that period ns splits the node with weight
6 into two nodes with weights 3 and 2.

0 2
0 1

2 3
0 I

%

2 5
0 0

I2 30

(a) (b) Cc) W

Figure 7: Construction of a scheduling tree.

5.2 Scheduling Equidistant Subtasks

In Section 4.2, we identified a clip retrieval under Horizontal Strip-
ing as a periodic real-time task Ci with period ni = ?$ (in rounds)

that consists of a collection of
F-1

& subtasks that need to be
scheduled ndidk rounds apart. The basic observation here is that
all the subtasks of Ci are themselves periodic with period n,, SO

the techniques of the previous section can be used for each indi-
vidual subtask. However, the scheduling algorithm also needs to
ensure that all the subtasks are scheduled together, using time slots
(i.e., rounds) placed regularly at intervals of ndisk. In this section,
we propose heuristic methods for building a scheduling tree in this
generalized setting.

An important requirement of this more general task model is

that the insertion of new periods cannot be allowed to distort the
relative placement of subtasks already in the tree. The splitting
mechanism described in the previous section for simple periodic
tasks does not satisfy this requirement, since it can alter the start-
ing time slots for all subtasks located under the split node. We
describe a new rule for splitting nodes without modifying the re-
trieval schedule for subtasks already in the tree. The idea is to use
a different method for “batching” the children of the node being
split, so that the starting time slots for all leaf nodes (as specified
by Equation (4)) remain unchanged. This new splitting rule is as
follows: Ifthe node n is split to give a newparentnode with weight
d, then place at edge i of the new node (i = 0, . . . , d - 1) all
the children of the old node n whose parent edge weight was con-
gruent to i (mod d). Our claim that retrieval schedules are kept
intact under this rule is a direct consequence of Equation (4).
Example3: Figure 8(a) illustrates a schedulingtree with two tasks
with periods nr = 6, ns = 6 assigned to slots 0 and 1. Figure 8(b)
depicts the scheduling tree after a third task with period ns = 15 is
inserted. Although there is enough capacity for both nr and ns in
the subtree connected to the root with edge 0, the new split forces
ns to be placed in the subtree connected to the root with edge 1.

uI=O
ul=O u2=1 u3=2

(a) (b)
Figure 8: Illustration of the new splitting rule

In this setting, candidate nodes are defined as follows.

Definition 5.4 An internal node n at level I is candidate for
period n; if and only if nr-r(n)lni and there exists an i E

, d - 1) such that all edges of n with weights congruent
$’ ’ (mod d) are free, where d = gcd(zo(n), a).

However, under our generalized model of periodic tasks, a candi-
date node for ni can only accommodate a subtask of Ci . This is
clearly not sufficient for the entire task. The temporal dependency
among the subtasks of Ci means that our scheduling tree scheme
must make sure that all the subtasks of C’i are placed in the tree at
distances of ndiJk.

One way to deal with this situation is to maintain candidate
nodes for subtasks based on Definition 5.4, and use a simple predi-
cate based on Equation (4), for checking the availability of specific
time slots in the scheduling tree. The scheduling Of Ci can then be
handled as follows. Select a candidate node for ni and a time slot
u, for ni under this candidate. Place the first subtask of Ci in ui
and call the predicate repeatedly to check if ni can be scheduled

in slot ui + j . ndirk, for j = 1,. . . , r-1 ,& . If the predicate
succeeds for all j, then Ci is scheduled starting at ui . Otherwise,
the algorithm can try another potential starting slot ui . In the full
version of the paper [5], we describe a predicate for checking slot
availability that can be used in this scheme.

A problem with the approach outline above is that even if the
number of starting slots tried for Ci is restricted to a constant,
scheduling each subtask individually yields pseudo-polynomial

522

time complexity. This is because the number of scheduling oper-
ations in a trial will be 0(
of the problem input.

&), where c; = min{n,, $} is part

We propose a polynomial time heuristic algorithm for the prob-
lem. To simplify the presentation, we assume that every period ni
is a multiple of ndiak. Although it is possible to extend our heuris-
tic to handle general periods, we believe that this assumption is not
very restrictive in practice. This is because we typically expect
round lengths T to be in the area of a few seconds and periods T,
to be multiples of some number of minutes (e.g., 5, 10,30, or 60
minutes). Therefore, it is realistic to assume the smallest period in
the system can be selected to be a multiple of ndisk. Our goal is
to devise a method that ensures that if thefirst subtusk of a task Ci
does not collide with the first subtask of any other task in the tree,
then no other combination of subtasks can cause a collision to oc-
cur. This means that once the first subtask of Ci is placed in the
scheduling tree there is no need to check the rest of Ci’s subtasks
individually.

Our algorithm sets the weight of the root of the scheduling tree
to n&Sk. (This iS possible since the Ui’S are multiples of ndisk.)
By Equation (4), this implies that consecutive subtasks of a task
will require consecutive edges emanating from nodes at the first
level (i.e., the direct descendants of the root). The basic idea of
our method is to make sure that when the first subtask of a task is
placed at a leaf node, a number of consecutive edges of the first-
level ancestor node of that leaf are disabled, so that the slots un-
der those edges cannot be used by the first subtask of any future
task. By our previous observation, si - 1 = [A] - 1 con-
secutive edges of the first-level ancestor of the lea”f”fb: n, must be
disabled, starting with the right neighbor of the edge under which
that leaf resides. (si is the number of subtasks of Ci .) This “edge
disabling” is implemented by maintaining an integer distance for
each edge e emanating from a first-level node that is equal to the
number of consecutive neighbors of e that have been disabled.
Our placement algorithm has to maintain two invariants. First,
the distance of an edge e of a first-level node is always equal to
maxc, { si} - 1, where the maximum is taken over all tasks placed
under e in the tree. Second, the sum of the weight of an edge e of
a first-level node n and its distance is always less than the weight
of n (so that the defining properties of the tree are maintained).
The formal definition of our algorithm is omitted due to spacecon-
straints. The full details can be found in [5].

5.3 Handling Slots with Multi-Task Capacities

The scheduling tree formulation can easily be extended to handle
time slots that can fit more than one subtask (i.e., can allow for
some tasks to collide). As we saw in Section 4.2, this is exactly
the case for the rounds of EPPV retrieval under HS. Using the no-
tation of Section 3, we can think of the subtasks of C, as items of
size size(C) 5 1 (i.e., the fraction of disk bandwidth required for
retrieving one column of clip Ci) that are placed in unit capacity
time slots. In this more general setting, a time slot can accommo-
date multiple tasks as long as their total size does not exceed one.
Note that this problem is a generalization of the k-server Periodic
Maintenance Scheduling Problem (k-PMSP), where all items are
assumed to be of the same size (i.e., ith of the capacity).

The problem can be visualized as a collection of unit capac-
ity bins (i.e., time slots) located at the leaves of a scheduling tree,
whose structure determines the eligible bins for each task’s sub-

tasks (based on their period). With respect to our previous model
of tasks, the main difference is that since slots can now accommo-
date multiple retrievals it is possible for a leaf node that is already
occupied to be a candidate for a period. Hence, the basic idea for
extending our schemes to this case is to keep track of the available
slot space at each leaf node and allow leaf nodes to be shared by
tasks. Thus, our notion of candidate nodes can simply be extended
as follows.
Definition 5.5 Let n be a leaf node for of a scheduling tree F cor-
responding to period p. Also, let S(n) denote the collection of
tasks (with period p) mapped to n. The loud ofleaf n is defined
as: load(n) = ‘&ES(n) size(C).
Definition 5.6 A node n at level 1 is candidate for a task of Ci
(with period ni) if and only if:

1. n is internal, conditions in Definition 5.4 hold, or
2. n is external (leaf node) corresponding to ni (i.e., al(n) =

n,), and load(n) + size(C) 5 1.
With these extensions, it is easy to see that the methods of Sec-
tion 5.2 can be used without modification to produce a scheduling
tree for the multi-task capacity case.

6 Combining Multiple Scheduling ‘Ikees
To construct forests of multiple non-colliding scheduling trees,
trees already built can be used to restrict task placement in
the tree under construction. By the Generalized Chinese Re-
mainder Theorem, the scheduling algorithm needs to ensure
that each subtask of task Ci is assigned a slot oi such that
ui $ u, (mod gcd(ni,nj))foranysubtaskofanytaskC,that
is scheduled in slot uj in a previous tree within the same forest.
This obviously is a very expensive method and efficient heuristics
for constructing scheduling forests still elude our efforts. In this
section, however, we provide a general packing-basedschemethat
can be used for combining independently built scheduling forests.
Of course, for our purposes, a forest can always consist of a single
tree. Our goal is to improve the utilization of scheduling slots that
can accommodate multiple tasks.

Given a collection of tasks, scheduling forests are constructed
until each task is assigned a time slot. We know that no pair
of tasks within a forest will collide at any slot except for tasks
with the same period that are assigned to the same leaf node as
described in Section 5.3. A simple conservative approach is to
assume a worst-case collision across forests. That is, we define
the size of a forest as size(Fi) = max,,; EF, { load(raj)} where
n3 is any leaf node in Fi, and the load of a leaf node is as in
Definition 5.5. Further, a forest Fi has a value: valua(Fi) =

CC .EF value(C,). Thus, under the assumption of a worst-case
collision, the problem of maximizing the total scheduled value for
a collection of forests is a traditional O/l knapsack optimization
problem. A packing-based heuristic like PACKCLIPS can be used
to provide an approximate solution.

In some cases, the worst-case collision assumption across
forests may be unnecessarily restrictive. For example, consider
two scheduling trees Ft and I?2 that are constructedindependently.
Let e 1 be an edge emanating from the root node nr of I?1 and ez
be an edge emanating from the root node nz of Fz. If er mod
(gcd(nr, nz)) # ez mod (gcd(nt, n2)) holds, then the tasks

scheduled in the subtrees rooted ate 1 and e2 can never collide. Us-
ing such observations, we can devise more clever packing-based
schemes for combining forests [5].

523

7 Experimental Performance Evaluation

7.1 Experimental Testbed

For our experiments, we used two basic workload components,
modeling typical scenarios encountered in today’s pay-per-view
video servers.

l Workload #l consisted of relatively long MPEG-1 com-
pressed videos with a duration between 90 and 120 minutes
(e.g., movie features). The display rate for all these videos
was equal to ri = 1.5 Mbps. To model differences in video
popularity, our workload comprised two distinct regions: a
“hot region” with retrieval periods selected randomly be-
tween 40 and 60 minutes and a “cold region” with periods
between 150 and 180 minutes. Different type # 1 workloads
were generated by varying the size of the hot region between
5% and 50% of the total number of clips.

l Workload #2 consisted of small video clips with lengths be-
tween 2 and 10 minutes (e.g., commercials or music video
clips). The display rates for these videos varied between 2
and 4 Mbps (i.e., MPEG-1 and 2 compression). Again, clips
were divided between a “hot region” with periods selected
randomly between 20 and 30 minutes and a “cold region”
with periods between 40 and 60 minutes. Different type #2
workloads were generated by varying the size of the hot re-
gion between 5% and 50% of the total number of clips.

We experimented with each component executing in isolation
and with mixed workloads consisting of mixtures of type #l and
type #2 workloads. We concentrated on scaleup experiments in
which the total expected storage requirements of the offered work-
load were approximately equal to the total storage capacity of the
server. This allowed us to effectively ignore the storage capacity
constraint for the striping-based schemes. For clustering, storage
capacities were accounted for by using the 2-dimensional version
of PACKCLIPS (Section 3.2). Our basic performance metric was
the effectively scheduleddisk bandwidth (in Mbps) for each of the
resource scheduling schemes presented in this paper. (The graphs
presented in the next section are indicative of the results obtained
over the ranges of the workload parameters.)

The results discussed in this paper were obtained assuming a
bandwidth capacity of ‘disk = 80 Mbps and a storage capacity of
cdisk = 4 GBytes for each disk in the server. The (worst-case) disk
seek time and latency were set at tseek = 24 ms and hat = 9.3 ms,
respectively, and the round length was T = 1 sec. As part of our
future work, we plan to examine the effect of these parameters on
the performance of our scheduling schemes.

7.2 Experimental Results

The results of our experiments with type #1 workloads with hot
regions of 30% and 10% are shown in Figures 9(a) and 9(b), re-
spectively. Clearly, the HS-based scheme outperforms both clus-
tering and VS over the entire range of values for the number of
disks. Observe that for type #l workloads and for the disk param-
eter values used in our study, the maximum number of clips that
can be scheduled is limited by the aggregate disk storage. Specif-
ically, it is easy to see that the maximum number of clips that can
fit in a disk is 3.95 and the average number of concurrent streams
for a clip is (0.3 . 3 + 0.7 1) = 1.6. Thus the maximum band-
width that can be utilized on a single disk for this mix of accesses
is 1.6. 3.95 . 1.5 = 9.48Mbps. This explains the low scheduled

bandwidth output shown in Figure 9. We should note that in most
cases our scheduling tree heuristics were able to schedule the en-
tire offered workload of clips. On the other hand, the performance
of VS schemes quickly deteriorates as the size of the disk array
increases. This confirms our remarks on the limited scalability of
VS in Section 4.1. The performance of our clustering scheme un-
der Workload #l suffers from the disk storage fragmentation due
to the large clip sizes. We also observe a deterioration in the per-
formance of clustering as the access skew increases (i.e., the size
of the hot region becomes smaller). This can be explained as fol-
lows: PACKCLIPS first tries to pack the clips that give the high-
est profit (i.e., the hot clips). Thus when the hot region becomes
smaller the relative value of the scheduled subset (as compared to
the total workload value) decreases.

The relative performance of the three schemes for a type #2
workload with a 50% hot region is depicted in Figure 10(a).
Again, the HS-based scheme outperforms both clustering and VS
over the entire range of ndisk. Note that, compared to type #I
workloads, the relative performance of clustering and VS schemes
under this workload of short clips is significantly worse. This is
because both these schemes, being unaware of tbe periodic nature
of clip retrieval, reserve a specific amount of bandwidth for every
clip C, during every round of length T. However, for clips whose
length is relatively small compared to their period this bandwidth
will actually be needed only for small fraction of rounds. Fig-
ure 10(a) clearly demonstrates the devastating effects of this band-
width wastage and the need for periodic scheduling algorithms.

Finally, Figure 10(b) depicts the results obtained for a mixed
workload consisting of 30% type #l clips and 70% type #2 clips.
HS is once again consistently better than VS and clustering over
the entire range of disk array sizes. Compared to pure type#l or #2
workloads, the clustering-based scheme is able to exploit the non-
uniformities in the mixed workload to produce much better pack-
ings. This gives clustering a clear win over VS. Still, its wasteful-
ness of disk bandwidth for short clips does not allow it to perform
at the level of HS.

8 Conclusions

In this paper we have addressed the resource scheduling and data
organization problems associated with supporting EPPV service
in their most general form; that is, for clips with possibly differ-
ent display rates, periods, lengths. We studied three different ap-
proaches to utilizing multiple disks: clustering, vertical striping
(VS) and horizontal striping (HS). In each case, the periodic na-
ture of the EPPV service model raises a host of interesting resource
scheduling problems. For clustering and VS, we presented a knap-
sack formulation that allowed us to obtain a provably near-optimal
heuristic with low polynomial time complexity. However, both
these data layout schemes have serious drawbacks: Clustering can
suffer from severe storage and bandwidth fragmentation, and VS
incurs high disk latency overheads that limit its scalability. HS, on
the other hand, avoids these problems but requires sophisticated
hard real-time scheduling methods to support periodic retrieval.
Specifically, we showed the EPPV scheduling problem for HS to
be a generalization of the Periodic Maintenance Scheduling Prob-
lem [22] and developed a number of novel concepts and algorith-
mic solutions to address the issues involved. Finally, we presented
a preliminary set of experimental results that verified our expecta-
tions about the average performance of the three schemes: Clus-

524

Figure 9: (a) Workload #l, 30% hot. (b) Workload #l, 10% hot.

Figure 10: (a) Workload #2,50% hot. (b) Mixed Workload (30%-70%), 10% hot.

tering can lead to fragmentation and underutilization of resources
and the performance of VS does not scale linearly in the number of
disks due to increased latencies. Our novel tree-based algorithm
for HS emerged as the clear winner under a variety of randomly
generated workloads.

References
[l] S. Baruah, L. Rosier, I. Tulchinsky, and D. Varvel. “The Complexity

of Periodic Maintenance”. In Proc. of the 1990 Intl. Computer Symp.,
Taiwan, 1990.

[Z] S. Betson, S. Ghandehatizadeh, R. Muntz, and X. Ju. “Staggered
Striping in Multimedia Information Systems”. In Proc. of the 1994
ACM SIGMOD Intl. Conf , May 1994.

[3] M.-S. Chen, D. D. Kandlur, and P S. Yu. “Optimization of the
Grouped Sweeping Scheduling (GSS) with Heterogeneous Multimedia
Streams”. In Proc. of ACMMultimedia ‘93, August 1993.

[4] M.R. Gamy and D.S. Johnson. “Computers and Intractability: A
Guide to the Theory of NP-Completeness”. W.H. Freeman, 1979.

[5] M. N. Garofalakis, B. &den, and A. Silberschatz. “Resource
Scheduling in Enhanced Pay-Per-View Continuous Media Databases”.
Tech. MemorandumBLO112330-970107-01, Bell Laboratories, 1997.

[6] D. E. Knuth. The Art of Computer Programming (Vol. 2 /Seminu-
merical Algorithms) *‘. Addison-Wesley, 198 1,

[7] E. L. Lawler. “Fast Approximation Algorithms for Knapsack Prob-
lems”. Math. of Operations Research, 4(4):339-356,1979.

[8] T.D.C. Little and D. Venkatesh. “Popularity-Based Assignment of
Movies to Storage Devices in a Video-on-Demand System”. ACM Mul-
timedia Systems, 2:280-287.1995.

[9] C. L. Liu and J. W. Layland. “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment”. Journal of the ACM,
20(1):46-61,1973.

[lo] B. iizden, A. Biliis, R. Rastogi, and A. Silberschatz. “A Low-Cost
Storage Server for Movie on Demand Databases”. In Proc. of the 20th
Jntl. VLDE Con&. September 1994.

[ll] B. Gzden, R. Rastogi, and A. Silberschatz. ‘Disk Striping in Video
Server Environments”. IEEE Data Engineering Bulletin, 18(4):4-16,
1995.

[12] B. &den,R. Rastogi, and A. Silberschatz. “On the Design of a Low-
Cost Video-on-Demand Storage System”. ACM Multimedia Systems,
4:40-54,1996.

[13] B. bzden, R. Rastogi, and A. Silberschatz. “The Storage and Re-
trieval of Continuous Media Data”. In “Multimedia Database Systems:
Issues and Research Directions”, VS. Subrahmanian and S. Jajodia
(Eds.lZ, Springer-Verlag. 1996.

[14] B. Ozden, R. Rastogi, and A. Silberschatz. “Periodic Retrieval of
Videos from Disk Arrays”. In Proc. of the 13th Intl. Conf on Data En-
gineering, April 1997.

[15] D. A. Patterson, G. A. Gibson, and R. H. Katz. “A Case for Redun-
dant Arrays of Inexpensive Disks (RAID)“. In Proc. of the 1988 ACM
SIGMOD Intl. Cot& June 1988.

1161 PRECEPT Software, Inc. IPfTV Datasheets. (http://
www.precept.com/datasheets/html/iptvdsl.htm).

[171 P V. Rangan and H. M. Vin. “Efficient Storage Techniques for Digi-
tal Continuous Multimedia”. IEEE 7’run.s. on Knowledge and Data En-
gineering, 5(4):564-573.1993.

[181 S. Sahni. “Approximate Algorithms for the O/l Knapsack Problem”.
Journalof the ACM, 22(1):115-124,1975.

[19] A. Silberschatz and P Galvin. “Operating System Concepts”.
Addison-Wesley, 1994.

[20] J. A. Stankovic and K. Ramamritham, eds. “Advances in Real-lime
Systems”. IEEE Computer Society Press, 1993.

1211 F. A. Tobagi, J. Pang, R. Baird, and M. Gang. “Streaming RAID:
A Disk Storage System for Video and Audio Files”. In Proc. of ACM
Multimedia ‘93, August 1993.

1221 W.D. Wei and C.L. Liu. “On a Periodic Maintenance Problem”. Op-
erations Research Letters, 2(2):90-93.1983.

[23] C. Yu, W. Sun, D. Bitton, Q. Yang, R. Bruno, and J. Tullis. “Effi-
cient Placement of Audio Data on Optical Disks for Real-Time Appli-
cations”. Conzm. of the ACM, 32(7):862-871,1989.

525

