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Abstract 

A number of techniques have been developed for 
maximizing disk utilization in media servers, in- 
cluding disk arm scheduling and dam placement 
ones. Instead, in this paper we focus on how to ef- 
ficiently utilize the available memory. We present 
techniques for best memory use under different disk 
policies, and derive precise formulas for computing 
memory use. We show that with proper memory 
use, maximizing disk utilization does not neces- 
sarily lead to optimal throughput. In addition, we 
study the impact of data placement policies includ- 
ing disk partitioning and multiple disks. Finally, 
our analysis shows that maximizing disk utilization 
and disk striping incur high system costs, and are 
not advisable in a media server. 

1 Introduction 

The storage system of a multimedia system faces more chal- 
lenges than a conventional one. First, media data must be 
retrieved from the storage system at a specific rate - if not, 
the system exhibits “jitter” or “hiccups.” This timely data 
retrieval requirement is also referred to as the continuous 
requirement or the real-time constraint [17]. Second, the 
required data rate is very high. For example, an MPEG-1 
compressed video requires an average data rate of 1 S Mbps 
and MPEG-2 4 Mbps. Guaranteeing real-time supply at this 
high data rate for concurrent streams is a major challenge 
for multimedia storage systems. 

Most multimedia storage research has focused on op- 
timizing disk bandwidth via scheduling policies and data 
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placement schemes. However, there is a second critical re- 
source that has not received as much attention: the main 
memory that holds data coming off the disk. In this paper 
we carefully analyze how memory is used and shared among 
concurrent media requests. Our analysis provides more ac- 
curate results than prior analysis, and suggests novel ways in 
which memory should be shared for maximum performance. 
Our evaluation also contrasts the gains achievable by disk 
latency techniques and those achievable by efficient memory 
use, and shows that with effective memory use, techniques 
that have higher disk overhead may actually achieve better 
throughput! 

In addition to studying the maximum throughput sup- 
ported by media servers, we also consider the resources 
required and the per stream dollar cost. Our results show 
that achieving high throughput often comes at a huge cost 
in memory. Most research in the area has tended to ignore 
this, focusing on how to reduce seek overheads. Instead, we 
propose to limit throughput to less than what is feasible in 
order to minimize per stream costs. We also briefly study 
the worst case initial latency before a new media request can 
be satisfied, which can be an important factor in an inter- 
active system. The disk scheduling policies that allow the 
disk arm to move freely between requests (incurring lower 
bandwidth) surprisingly yield much lower initial latencies. 

The rest of this paper is organized into seven sections. 
Section 2 presents our evaluation model and analyzes a tra- 
ditional system with an elevator disk scheduling algorithm, 
which we call Sweep. In Section 3 we present the princi- 
ples behind effective memory sharing, formally proving that 
memory use can be minimized by spacing out 10s. (This had 
been hypothesised earlier, but not proven.) We also show 
how scheme Sweep can best use memory and derive precise 
formulas for its memory use. 

Next (Section 4) we consider a disk scheduling scheme 
that generates 10s in a fixed order, independent of the loca- 
tion of the data on disk. (In each period, the disk services 
requests in a fixed order.) If one implements this scheme in 
a straightforward way, the performance is terrible because 
in the worst case each IO may require moving the disk arm 
across the disk. However, because the order of IO requests 
is fixed, one can enhance this scheme so that data arrives in 
memory in a more regular fashion, and this, together with ef- 
fective memory management, can lead to better performance 
than Sweep’s. We call our modified scheme Fixed-Stretch, 
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and we again present performance formulas that precisely 
account for memory sharing. 

The third scheme we consider is a Group Sweeping 
Scheme (GSS) [NJ, which can be considered a hybrid be- 
tween Sweep and Fixed-Stretch. We discuss how memory 
can be effectively used by this scheme (something that was 
not clearly spelled out in the original paper). In Section 6 we 
compare the schemes in a realistic case study, highlighting 
the basic disk bandwidth and memory use tradeoffs. 

Section 7 analyizes data placement policies that are not 
considered in the first six sections. We consider the impact of 
partitioning the disk into regions, and of using multiple disks. 
Partitioning and multiple disks can impact performance, but 
they do not alter the conclusions of our study. Finally, we 
offer our conclusions in Section 8. 

2 Scheme Sweep 

In this section we briefly describe a well known multimedia 
delivery scheme, which we call Sweep. Scheme Sweep uses 
an elevator policy for disk scheduling in order to amortize 
disk seek overhead. It is representative of a class of schemes 
[6,8, 11, 13, 151 that optimize throughput by reducing disk 
seek overhead. Study [13] shows that an elevator policy is 
superior for retrieving continuous media data in comparison 
to a policy in which requests with the earliest deadlines are 
serviced first. We will use scheme Sweep as a benchmark 
for comparing with other schemes. 

For now, let us assume a single disk and let us make no 
assumptions as to the data placement policies. (We discuss 
data placement and multiple disks in Section 7.) We tirst 
present Sweep under the assumption that each request is 
allocated its own private memory buffer with no memory 
sharing among the requests. (Buffer sharing among requests 
is discussed in Section 3.) 

During a sweep of the disk, Sweep reads one segment of 
data for each of the requested streams. The data for a stream 
is read into a memory buffer for that stream, which must be 
adequate to sustain that stream until its next segment is read 
during the following disk elevator sweep. To analyze the 
performance of Sweep, we typically are given the following 
parameters: 

. TR: the disk’s data transfer rate. 
l y(d): a concave function that computes the rotational and 

seek overhead given a seek distance d. For convenience, 
we will refer to the combined seek and rotational overhead 
as the seek overhead. 

l M~TTL~~~~[: the storage system’s available memory. 
. N: the number of stream requests. Each request is denoted 

as RI, Rz. . . . . RN. Each stream requires a display rate of 
DR (DR < TR). (For simplicity we assume that the display 
rates are equall) The value of N must be less than ~~~~~~ 

‘The techniques we discuss in this paper can be adapted to work with 
differing display rates in some cases. One alternative is to design for the 
maximal rate, which is safe and does not hurt perfonuance if the differences 
between rates am small. Another option is to use the greatest common 

as explained below. 

Scheme Sweep has the following tunable parameters. 
They can be adjusted, within certain bounds, to optimize 
system throughput. 

. T: the period for servicing a round of requests. We as- 
sume that T is constant, i.e., it does not vary depending on 
N, the number of streams being serviced at a given time. 
As discussed below, T must be made large enough to ac- 
commodate the maximum number streams we expect to 
handle. (Although we do not discuss it here, allowing T to 
vary from cycle to cycle does not improve throughput and 
may actually hurt latency.) 

. s: the segment size, i.e., the number of bytes read for a 
stream with one contiguous disk IO. Since T is constant, s 
must also be constant over time. 

. NLtmit: the maximum number of concurrent requests the 
media server allows. The media server implements an 
admission control policy that turns away requests when 
the system is already handling NLimit requests. 

2.1 Analysis 

We assume that the media server services the requests in 
rounds. During a round of service (time T), the media server 
reads one segment of data (sized S) for each of the NLim,t 
requested streams. We can run Sweep with many possible 
values for T, S, and NLlmita However, some values will 
make it impossible to deliver data for each stream at the 
appropriate rate due to the violation of certain constraints. 
Other values will lead to suboptimal performance. For ex- 
ample, we wish to set NL,mit as high as possible. For optimal 
feasible performance, parameters T, S, and NLim,t need to 
satisfy the equations we derive next. 

In a feasible system, the amount of data retrieved in a 
period, s, must be at least as large as the amount of data 
displayed. That is, s 2 DR x T. However, if we want a 
stable system, the input rate should equal the output rate, 
else every period we would accumulate more and more data 
in memory. Thus, we have the equation 

S=DRxT. (1) 

In a feasible system, the period T must be large enough so 
that all necessary 10s can be performed. Since T is fixed and 
cannot vary depending on the number of concurrent requests 
in the system at a particular moment, we must make T large 
enough to accommodate NL,mit seeks and transfer NL,mrt 
segments. Furthermore, in computing these seek times, we 
have to assume a worst case situation, so that no matter where 
the segments are located on disk, we will have enough time 
to read them. 

The total seek overhead for NLtmit requests is 
CfV_Llimtt r(cyli)v h w ere y gives the seek delay for the P 

divisor of the display rates as the unit display rate, and to treat each display 
rate as a multiple of the unit one. For example, if the display rates are 6 and 
4 Ivfbps, we can treat a 6 Mbps request logically as 3 requests of 2 Mbps 
each, and we can treat a 4 Mbps request as 2 of 2 Mbps. Thus, all our base 
requests am of the same rate. 
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request. Since y is a concave function [9, 14, 161, the 
largest value of the total seek overhead for Sweep oc- 
curs when the segments are equally spaced on the disk, or 
Cyli = CYL/NL,,,,~. Thus, the worst case seek (and rota- 
tional) time is: 

TSeek = N~tmit X r(CYL/NLirnit). (2) 

The total transfer time for NLzmtt requests, each of size s, at 
a transfer rate TR, is 

T Transfer = NLimit X SITR. (3) 

As we stated above, the period T must be larger or 
equal than the worst case seek and transfer times, i.e., 
T 2 Tseek + Tivansfev For optimal performance, how- 
ever, we take the smallest feasible T value, since otherwise 
we would be wasting both disk bandwidth and memory re- 
sources. That is, 

T=N~imit X (y(CYL/Nti,it)+S/TR). (4) 

The third equation that must be satisfied by scheme Sweep 
is obtained from our physical memory limit. Although in a 
period we only read s bytes for each stream, it turns out we 
need a buffer of twice that size for each stream to cope with 
the variability in read times. To see this, consider a particular 
stream in progress, where we call the next three disk arm 
sweeps A, B, and c. Assume that the segments needed by 
our stream are a, b, and C. It so happens that because of its 
location on disk segment a is read at the beginning of sweep 
A, while b is read at the end of B, 2 x T time units after a is 
read. At the point when a is read we need to have in memory 
2 x s data, to sustain the stream for 2 x T time. 

When segment b is read, we will only have s bytes in 
memory, which is only enough to sustain us for T seconds. 
Fortunately, because b was at the end of its sweep, the next 
segment c can be at most T seconds away, so we are safe. 
Actually, c could happen to be the very first segment read 
in sweep c, in which case we would again fill up the buffer 
with roughly 2 x s data (minus whatever data was played 
back in the time it takes to do both reads). 

Intuitively, what happens is that half of the 2 x s buffer is 
being used as a cushion to handle variability of reads within 
a sweep. Before we actually start playing a stream we must 
ensure that this cushion is filled up. In our example, if this 
stream were just starting up, we could not start playback 
when a was read. We would have to wait until the end of 
sweep A (the sweep where first segment a was read) before 
playback started. Then, no matter when b and c and the 
rest of the segments were read within their period, we could 
sustain the DR playback rate. (This startup delay will be 
important when we analyze initial latencies in Section 6.3.) 

Adding a cushion buffer for each request doubles the 
memory required. So, to support NLtmit requests, we must 
have MWZ~ va,l 2 2 x NL,~,~ x s. For optimal performance, 
however, we should use all available memory. (By using 
all available memory we make segments larger. This lets 
US increase T (Eq. l), which then lets US increase NLimit in 
Equation 4, since TR > DR.) Thus, we have that for optimal 
feasible performance, 

Mem~vatl = 2 X NLimit X S. (5) 

In summary, scheme Sweep has three tunable parame- 
ters, and we have derived three equations they must satisfy 
(Equations 1, 4, 5) for optimal performance. From these 
equations we GUI SOhe for T, S, ad NLimits 

2.2 Minimizing Memory 

We can derive a closed form for the minimum memory re- 
quirement as follows. We assume that NLimit is given and 
that ~em~“~,, is unknown, and we solve for it. Substituting 
T = S/DR (Eq. 1) into Equation 4, we can solve for s, the 
segment size needed to support the NLtmtt requests: 

s= NLtmit X $CYLINLsmit) x TR X DR 
TR-(DRX NLimit) ' (6) 

(WeasSumethatTR-(DRxNLtmlt) > 0,dSenOSegrYEntSiZe 

is sufficient. Some literature refers to this as disk bandwidth 
constraint.) Multiplying this value by 2 x NLimit (Eq. 5), we 
obtain the minimum amount of memory, 

kfemMtn = 
2 X N'ji,,,it X y(CYL/NLi,it)X TRX DR 

TR - (DR X NLsmit ) (7) 

It is important to note in Equation 7 that MemM,,, does not 
grow linearly with the desired NLimit. First, the numerator 
grows quadratically with NLimite Second, as NLim,t grows 
the denominator of Equation 7 approaches zero, causing 
MemM,,, to grow without bound. As the denominator gets 
close to zero, we are driving the system to its physical limits: 
NLtmit Streams at a DR rate rfX@Z NLimit x DR bytes per 
second, and the disk can only read at most TR per second. 
When NLtmit x DR approaches TR, the system needs a huge 
amount of memory to support an additional request. As we 
will discuss in Section 6.4, even if the system can support 
NLimit concurrent S~RZUM, doing SO is not cost effective. 

In addition to deriving the minimum memory require- 
ment, we can also derive the maximum system throughout 
for a given amount of memory (MCf?LAvai*)* Please see [4] 
for details. 

3 Reducing Req+red Memory 

In scheme Sweep each request is allocated a fixed private 
buffer of size 2 x s. One way to reduce the memory require- 
ments is to have requests share their buffer space [lo, 161. 
That is, we create a shared memory pool, and as the space 
used by one request frees up, it can be used to hold data 
from other requests. Various papers have estimated that 
sharing can cut the memory requirements by “roughly half.” 
However, these estimates are obtained with very strong as- 
sumptions, in particular that all seek times must be zero. In 
this section we revisit how exactly memory sharing works 
(without strong assumptions), and in doing so prove under 
what conditions maximal sharing can be obtained, and what 
the savings actually are. 

Figure 1 depicts the amount of memory used by a request 
in a period T. An IO starts shortly before the data staged 
into memory in the previous period is used up. The data 
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Figure 1: Memory Required in A Period 
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Figure 2: Memory Requirement Function 

accumulates in memory at the rate of TR - DR until the IO 
completes. 

For our analysis we make two simplifying assumptions. 
First, we assume that memory can be freed in a continuous 
fashion, In other words, Figure 1 shows the actual memory 
used by a request. In practice, of course, memory is released 
in pages, so Figure 1 would have a sequence of small de- 
creasing steps, each one page in size. This implies that our 
estimates for memory use may be up to one memory page off 
for each request. Thus, our continuous release assumption 
is an optimistic one for buffer sharing schemes. However, if 
as expected the page size is small compared to the segment 
size, the difference will be negligible. 

Our second assumption is to approximate the memory 
use function by a right triangle. Our assumption causes us 
to overestimate memory use: we will assume that the peak 
in Figure 1 is s (at time 0 in the figure), while in reality it 
is s x (I - DRITR). This is a pessimistic assumption, but 
since typically the data transfer rate TR is much larger than 
the display rate DR, the difference is very small. 

Notice that the small differences caused by our two as- 
sumptions tend to cancel out each other. In particular, if 
the page size is s x DRITR, the effects will cancel. If the 
page size is less than this value, as is probably the case, then 
overall our results will be slightly pessimistic for memory 
sharing.2 

3.1 Optimal Delays 

Before discussing memory sharing under Sweep, it is in- 
structive to analyze an ideal case where 10s for a given 
stream occur in a regular fashion, as shown in Figure 2. In 

‘When an IO is initiated, the physical memory pages for the data it 
reads may not be contiguous due to the way buffers are shared. There are 
several ways to handle these 10s. One idea is to map the physical pages 
to a contiguous virtual address, and then initiate the transfer to the virtual 
space (if the disk supports this). Another idea is to break up the segment IO 
into multiple IOs, each the size of a physical page. The transfers are then 
chained together and handed to an IO processor or intelligent DMA unit 
that executes the entire sequence of transfers with the same performance as 
a larger IO. Other ideas am discussed in [lo]. 

this scenario the data for a request is fully played back just 
as the next IO completes, so there is not need for cushion 
buffers. 

Let us denote the periodic function in Figure 2 as p, (t - T, ) , 
where t represents time and T, is the displacement from the 
beginning of the period (e.g., the example shown in Figure 2 
has a displacement of 0). The memory use function p(t) 
for NLtmit COnCUrrent reqUeStS iS a SUperpOSitiOn of NLimlt 

such periodic functions, or p(t) = C2;mit ri(l- 7,). Notice 
that each function pi (t - Ti ) has a different displacement. TO 
minimize the memory requirement of a system, one has to 
minimize the largest value of p(t). The only parameters that 
can be adjusted in p(t) are the T,‘s. The following results tell 
us what these displacements should be for optimal memory 
sharing among requests. 

Theorem 1: We are given a multimedia storage system that 
supports NLimit continuous streams with equal display rate 
DR 3. Minimizing memory usage requires the IO start times 
to be spaced equally in T. 

Corollary 1: The minimum memory space required to 
suPPort NLmt streams with equal display rate DR is 
Sx(N d. (Keep in mind that this does not include 
cushioi buffer requirements.) 

We provide in [2,4] the proofs of Theorem 1 and Corol- 
lary. These results suggest that even if one cannot perfectly 
separate in time the IO sequences, it is desirable to space out 
requests as much as possible. This is precisely what we do 
in order to optimize the memory use of Sweep. 

3.2 Scheme Sweep* 

We refer to scheme Sweep with memory sharing as Sweep*. 
With a sweeping scheme we cannot control when 10s occur 
within a period, since they are done in the order found as 
the head sweeps the disk. In the worst case, all the 10s 
in a period will be bunched together (if all the segments 
needed in a period happen to be nearby on the disk.) This 
means that the memory peaks are summed, leading to poor 
memory sharing. However, the 10s need to be separated 
by at least the time it takes to read a segment, so the peaks 
are not fully added. In addition, the last IO of a period 
can be delayed and separated from a cluster of 10s further 
improving memory sharing. Finally, it is also possible to 
share the cushion buffers used by each stream to account 
for IO variability, leading to even better memory utilization. 
All these effects are carefully analyzed in [4], where we also 
show the following result. Incidentally, note that various 
papers had earlier “guessed” how much memory a scheme 
like Sweep* uses, but these estimates were not accurate. 

Theorem 2: The minimum memory space required to sup- 
POlT NLimit StWill’lS under scheme sweep* is (NLtmit - 1) x 
S+NLzmrt xDRx(T-w). Ifwereplacetheright 
hand side of Equation 5 by tl% expression, we can derive the 
formula for the minimum memory requirement of Sweep*. 

3For the theorem that deals with streams with different display rates 
please see [2]. 
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Figure 3: Service Slots of Fixed-Stretch* 

4 Scheme Fixed-Stretch* 

In order to reduce the variability between the 10s of a re- 
quest, in this section we consider a scheme where 10s are 
performed in a fixed order from period to period. We call 
this scheme Fixed-Stretch* because in addition the 10s are 
spaced out as described next. For completeness, a version 
of this scheme that does not use memory sharing, Fixed- 
Stretch, is discussed at the end of this section. 

To eliminate the need for cushion buffers entirely and 
maximize memory sharing (Theorem l), we must separate 
the 10s of a request by a constant time T. However, since 
the data on disk for the requests are not necessarily separated 
by equal distance, we must add time delays between 10s to 
space them equally in time. 

For instance, if the seek distances in a disk sweep are C& , 
cylz,..., and cyfNLimit cylinders, and cy[i is the maximum of 
these, then we must separate each IO by at least the time it 
takes to seek to and transfer this maximum ;th request. One 
can choose a different separator for each period, depending 
on the maximum seek distance for the requests of that pe- 
riod. However, as we have argued earlier, there is no benefit 
allowing T to vary from cycle to cycle. To have a constant 
T and simplify the algorithms, scheme Fixed-Stretch* uses 
the worst possible seek distance ( CY L) and rotational delay, 
together with a segment transfer time, as the universal IO 
separator, A, between any two 10s. The length of a period, 
T, will be NLtmit times A. 

Figure 3 shows an example with three requests that thusly 
separated. The time on the horizontal axis is divided into 
service cycles each lasting T units. Each service cycle T (the 
shaded area) is equally divided into three service slots, each 
lasting A units (delimited by two up-arrows). The vertical 
axis in Figure 3 represents the amount of memory utilized 
by an individual stream. 

Fixed-Stretch* executes in the following steps: 

1. At the start of a service slot (indicated by the up-arrow 
in Figure 3), set the end of slot timer to expire in A. 
2. If there is no request to be serviced in the service slot, 
skip to Step 6. 
3. Allocate s amount of memory for the request serviced 
in this time slot.’ 

4When an IO is initiated, the physical memory pages for the data it 
reads may not be contiguous due to the way buffers are shared. There are 

4. Set the IO timer to expire in -,(cY L), the worst possible 
seek overhead, and start the disk IO. Since the actual seek 
overhead cannot exceed Y( CY L), when the10 timer expires 
the data transfer must have begun. 
5. When the IO timer expires, the playback starts consum- 
ing the data in the buffer (indicated by the “playback point” 
pointers in Figure 3), and the memory pages are released 
as the data is consumed. 
6. When the end ofslot timer expires, the data transfer (if 
issued in Step 4) must have completed.5 Go to Step 1 to 
start the next service slot. 
As its name suggests, the basic Fixed-Stretch* scheme 

has two distinguishing features: 

. Fixed-order scheduling: A request is scheduled in a fixed 
service slot from cycle to cycle after it is admitted into the 
server. For instance, if a request is serviced in the Ph slot 
when it lirst arrives, it will be serviced in the same kth slot 
in its entire playback duration, regardless if other requests 
depart or join the system. 

. Stretched out 10s: The allocated service slot assumes the 
worst possibledisk latency y( CY L) so that the disk arm can 
move freely to any disk cylinder to service any request. 
This property ensures that the fixed-order scheduling is 
feasible no matter where the data segments are located on 
the disk. As we discuss in Section 6.3, allowing the disk 
arm to move freely to service any request also leads to a 
very small initial latency, much better than that of the seek 
reduction schemes. 

Scheme Fixed-Stretch* actually saves memory in two 
ways. First, because 10s in a period are spaced out, mem- 
ory sharing is at its best. Second, because there is almost 
no time variability between the 10s of a given request, we 
need tiny cushion buffers (discussed shortly). Fixed-Stretch* 
does require larger segments (T is artificially enlarged, and 
s = DR x T), but in our analysis we will see that over- 
all Fixed-Stretch* does save substantial amounts of mem- 
ory and actually leads to improved throughput over scheme 
Sweep! This result is surprising since Fixed-Stretch* is un- 
derutilizing bandwidth by slowing down the disk, doing just 
the opposite of what previous scheduling schemes do. 

4.1 Analysis 

In scheme Fixed-Stretch*, a period T is composed of three 
elements: seek overhead, padding, and transfer time for 
the maximum possible NLimit requests. The transfer time, 

- NLimrt XS/TR,~S thesameasforschemeSweep. 
%rG&vidiscussedd, each individual seek plus padding de- 
lay must be as large as the worst case seek of CY L cylinders. 

several ways to handle these 10s. One idea is to map the physical pages 
to a contiguous virtual address, and then initiate the transfer to the virtual 
space (if the disk supports this). Another idea is to break up the segment IO 
into multiple IOs, each the size of a physical page. The transfers are then 
chained together and handed to an IO processor or intelligent DMA unit 
that executes the entire sequence of transfers with the same performance as 
a larger IO. Other ideas are discussed in [lo]. 

5The accuracy of the timers used by Fixed-Stretch* can be tuned peri- 
odically by cross-checking the amount of data in the stream buffers. 
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The total seek overhead and delay for NLtmit requests is 
NL ,m,t timesthisvalue,soTsesk+TDalay = NL;,;~xY(cYL). 
Thus T can be written as 

which replaces Equation 4 we had obtained earlier for 
scheme Sweep. 

According to Corollary l,schemeFixed-Stretch* requires 
Sx(NLi,it+l) memory. In addition, since the release of the 
memo& allocated by each request at the beginning of a ser- 
vice slot does not start until at the playback point of the slot 
(see Figure 3 and execution step 5), each request needs to 
retain the data for extra ~(CY L) time. This delay of data 
consumption (and hence memory deallocation) requires that 
each request has an additional 7 (cY L) x D R amount of buffer 
space. (This extra space requirement is very small: for the 
parameters values of Section 6, the extra buffer requirement 
is about 0.5% of the segment size.) The required mem- 
ory must be smaller than or equal to the available memory 
MemAvaiI- For optimal performance, we try to give each 
request as much memory as possible to maximize NLtmit. 
Thus, we have the memory resource constraint 

MW7Z lf3 x (NLtmit + 1) 
Avatl = 

2 +(NLtmitXY(CYL)XDR)v (9) 

which replaces our old equation 5. 

In summary, scheme Fixed-Stretch* also has three tun- 
able parameters: T, S, and NLtmit; and we have derived 
three equations they must satisfy (Equations 1,8,9) for op- 
timal performance. From these equations we can solve for 
T, S, and N~mrt. Following the same derivation steps in 
Section 2.2, we get the minimum memory requirement as 
follows: 

MemM,,, = S x (N~rmtt + 1) 

2 (10) 

Please see 141 for the detailed derivations. If memory is 
not shard among the requests, we simply replace Equation 9 
with 

M emAvatl = S X NLimrt + (N~tmit X r(CYL) X DR). 

We call this scheme Fixed-Stretch (without the *), and the 
steps to derive MemMi,, are the same. 

5 Group Sweeping Scheme* (GSS*) 

So far we have presented two extreme schemes: Sweep* 
minimizes seek overhead with high memory requirement, 
and Fixed-Stretch* maximizes memory sharing and mini- 
mizes cushion buffer requirement with the worst seek over- 
head. In this section we consider a hybrid scheme that lies 
between Sweep* and Fixed-Stretch*. 

The Group Sweeping Scheme (GSS) proposed in [18] 
divides NLimit streams into G groups, with N~,,,,,,/G streams 
serviced in each group by a disk sweep. (For simplicity, 
we assume that NLimit is divisible by G.) The groups are 
serviced in a round-robin fashion. A request is assigned to a 
single group from the start to the end of its playback. 

In the published descriptions of GSS it is not clear to us 
how memory sharing is handled nor how much time tran- 
spires between reading the last request in a group and reading 
the lirst one of the next group. Here we clarify these issues, 
and improve GSS with the techniques we developed for 
Fixed-Stretch*. We call the resulting scheme GSS *, to dif- 
ferentiate it from other possible interpretations of the scheme 
in [18]. 

In GSS* we assume that a period T is divided into G 
epochs, each of duration T/G exactly. During an epoch i, we 
perform a single disk sweep, reading NLi,s,/G segments. 
(Epochs are long enough so that this can always be accom- 
plished.) After an epoch starts, we start performing the 6rst 
(N~,~~~/G) - 110s as we sweep thedisk. Before we perform 
the last of the 10s for this epoch, however, we wait until the 
epoch is about to finish, and then we perform the last IO, 
just as the epoch finishes. 

Scheme GSS* is like Fixed-Stretch*, in that it introduces 
artificial delays to spaceout 10s. In fact,if G = NL,mitr GSS* 
is identical to Fixed-Stretch*: each GSS* epoch corresponds 
to one of the 10s of Fixed-Stretch*. If G = 1, GSS* is like 
Sweep*. Hence, GSS* is a parameterized hybrid between 
Fixed-Stretch* and Sweep*. 

5.1 Analysis 

The worst total seek overhead for an epoch occurs when its 
segments are equally spaced on the disk (see Section 2.1). 
Since each epoch under GSS* services NL,%,~/G requests, 
the worst case seek distance cyl, is CYL x G/NLimtta Thus, 
the worst case seek (and rotational) time is: Tseek = NLtmrt x 

r(CY L x G/NL,,it ). Following the same steps in Section 2.2, 
we obtain the segment size: 

s= N~rm,t x Y(CYL x G/N~,rn,t) x 7-13~ DR 

TR - (DR x NLtmtt) (11) 

The following theorem gives the memory requirements 
for GSS*, taking into account sharing of all memory (in- 
cluding any cushions needed to cope with IO variability). 

Theorem 3: The minimum space required to support NLImrt 
streams under scheme GSS* is 

((NLimztIG) X s X (G + l)/2) - s 

+N~rm,t x DR x (T/G - (NL,,,JG - 2)S/TR). 

Please refer to [4] for the proof. 
(12) 

6 Evaluation 

To evaluate and compare the performance about various 
schemes discussed in this paper, we use the Seagate Bar- 
racuda 4LP disk [l]; its parameters are listed in Table 4. 
We also assume a display rate DR of 1.5 Mbps, which is 
sufficient to sustain typical video playback. For the seek 
overhead we follow closely the model developed in [9, 141 
that is proven to be asymptotically close to the real disks. The 
seek overhead function is a concave function as following: 

y(d) = al+@1 x J;i)+ 8.33 if d < 400 
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Figure 4: Seagate Barracuda 4 
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Figure 5: Memory Requirement 

-y(d)= a2+(p2 x d)+8.33 ifd 2 400 

Note that the seek time is proportional to the square root 
of the seek distance when the distance is small, and is linear 
to the seek distance when the distance is large. 

In each seek overhead we have included a full disk ro- 
tational delay of 8.33 ms. The rotational delay depends on 
a number of factors, but we believe that one rotation is a 
representative value. One could argue that rotational delay 
could be eliminated entirely if a segment is an exact multiple 
of the track size. (In that case we could start reading at any 
position of the disk.) However, the optimal segment size de- 
pends on the scenario under consideration, so it is unlikely 
it will divide exactly into tracks. If we assume that the first 
track containing part of a segment is not full, then in the 
worst case we need a full rotation to read that lirst portion, 
even with an on-disk cache. If we assume that the last track 
could also be partially empty, then we could need a second 
rotational delay, and our 8.33ms value may be conservative! 
Note incidentally that we use a full rotational delay (not 
average) since we are estimating a worst case scenario. 

6.1 Memory Requirements 

We set a desired throughput, and study how much mem- 
ory each scheme needs to support it. Figure 5 shows the 
minimum amount of memory required, MemMinr to support 
a given number of requests (NLimit). Figure 5(a) shows only 

the no-memory-sharing schemes, while the (b) part shows 
for all schemes the ratio of its memory requirement to that 
of Sweep. For GSS and GSS* we use an optimal G value. 

With no memory sharing, scheme GSS requires about 
75% of the memory of the other schemes, so it is clearly su- 
perior. With memory sharing, GSS* is still the best, but the 
gap with Fixed-Stretch* is reduced. Interestingly, Sweep* 
performs quite poorly even compared to Fixed-Stretch*, un- 
less we require a very high throughput. As we argue next, 
we probably do not wish to operate at a very high throughput 
level, so Sweep* does not seem attractive. Thus, Sweep*, 
in its attempt to optimize disk movement, uses memory less 
effectively, and ends up being not desirable. 

As expected, Figure 5(a) shows that as NLimct increases, 
the required memory grows rapidly. For example, say we 
are running scheme Sweep without sharing memory with 
160 MB, supporting up to 47 concurrent streams. If we wish 
to add memory to bump our limit to 48 concurrent requests, 
we need to add about 100 MB of memory! Even an efficient 
scheme like GSS* would require a huge amount of memory 
to increase throughput by one. 

For all schemes, the marginal memory requirement starts 
dramatically increasing around NLimit = 3s to 40. From 
NLimit = 38 to the maximum achievable throughput 49, the 
memory requirement grows almost 20 fold. This suggests 
that although it is theoretically possible to use memory to 
reduce seek overhead and improve throughput, it may be 
economically unwise. We examine the cost issues in greater 
detail in Section 6.4. 

6.2 Throughput 

Instead of showing the minimum memory requirement, we 
can also show the maximum throughput the server can sup- 
port given an amount of memory. The throughput is the max- 
imum NLimlt the system can achieve given a memory config- 
uration MemAuatl. Figure 6 presents the throughput of our 
schemes for various memory sizes. Again, the (a) part of the 
figure shows only the no-memory-sharing schemes, while 
the (b) part shows for all schemes the ratio of its throughput 
to that of Sweep. For GSS and GSS l we again use an optimal 
G value. With no memory sharing, the throughput of Sweep 
andFixed are almost identical. This is because Sweep’s ben- 
efit from the reduced seek overhead is canceled out by its 
large cushion buffer requirement. As expected, GSS is able 
to achieve better throughput by balancing the seek time and 
cushion buffer requirements. However, Figure 6(a) shows 
that the gap between the best and worst schemes is not very 
significant: two to three streams at best under most memory 
configurations. 

Figure 6(b) shows the throughput improvement that each 
scheme offers over the basic Sweep with no memory sharing. 
The ratios shown are the performance of each scheme divided 
by the Sweep throughput. Thus, Sweep has a constant ratio 
of 1. A ratio greater than 1 means that the scheme performs 
better than Sweep. 

In the figure we can easily see that as memory increases, 
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Figure 6: Throughput Comparison 
the throughput of all schemes converges. It is also clear that 
for limited memory, memory sharing pays off in terms of 
improved throughput. However, even with limited memory, 
the differences among the memory sharing schemes are not 
very significant. That is, as long as memory is shared effi- 
ciently, disk scheduling policies do not have a great impact 
on throughput. Earlier studies had predicted greater differ- 
ences, partly because memory sharing had not been carefully 
analyzed or considered. 

6.3 Initial Latency 

In this section we briefly consider a third important perfor- 
mance metric for multimedia storage systems. We define 
initial latency to be the time between the arrival of a single 
new request (when the system is unsaturated) and the time 
when its lirst data segment becomes available in the server’s 
memory. (For more discussion about why reducing initial 
latency is important, please consult references [3,5] .) 

For scheme Sweep (and Sweep*), the worst initial latency 
happens when a request arrives just after the disk head has 
passed over the first segment of the media The request must 
wait for a cycle (T) until its first segment can be retrieved. As 
discussed in Section 2.1, playback cannot start right away, 
since this first segment just fills up the playback cushion. 
Actual playback can start at the end of the first cycle, which 
in the worst case can be another T seconds away. The worst 
initial latency is therefore ~~~~~~~~ = 2 x T. Since T = DR x s 
and we have shown that s cm grow withoutbound as NLim,t 
increases, ~~~~~~~~ can also grow without bound. 

In reference [3] we propose a resource management 
scheme, named Bubble@, that builds upon Fixed-Stretch* 
to minimize the initial latency for servicing a newly arrived 
request. BubbleUp always makes the available disk band- 
width and memory resource ready for servicing a new re- 
quest. This is achieved by using idle slots to execute “early” 
requests that are scheduled in the very near future. This cre- 
ates some free time in the near future to handle new requests. 
If no new requests arrive, then those idle slots can also be 
used to service future scheduled requests. The worst latency 
to service a newly arrived is 2 x Y( CY L) + SITR, independent 
Of NLimst- The evaluation in [3] shows that when the media 
server is heavily loaded (NLimit = KZ), BubbleUp that builds 
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Figure 7: Per Stream Cost by Throughput 

upon Fixed-Stretch* has a worst case initial latency of only 
a quarter of a second, while Sweep* suffers from more than 
eight seconds of delay. The GSS* scheme has even worse 
delay since its segment size is larger than that of Sweep*. 
Thus, for interactive applications that require fast response 
time, the results in Sections 6.1 and 6.2 together with the 
results in [3] show that a Fixed-Stretch* based scheme may 
be the choice. 

6.4 Minimize Per Stream Cost 

One important measure for a multimedia system storage 
system is the per stream cost. This is composed of the 
hardware cost, including CPU, buses, disks, and memory. 
Assuming common retail prices, a low-end computer with 
a two-gigabyte disk drive is about $3,500, and the memory 
cost is $20 per MByte (including other associated cost such 
as memory board). We refer to the non-memory cost as the 
fixed cost. The fixed cost is amortized by NLimit: The larger 
N~,,,,,~ is, the lower the per stream fixed cost. On the other 
hand, the per stream memory cost grows rapidly with NLimrt 
as illustrated in Figure 5. Figure 7 plots the per stream fixed, 
memory, and total cost for scheme Sweep, as a function of 
N~trntt. 

Since we are using the same fixed cost in all cases, we 
see that the per-stream fixed cost decreases as the number 
of streams grows. However, as the number of supported 
streams grows, we need to purchase additional memory, 
so the per-stream memory cost grows. Notice that when 
NLimzt = 40, the per-stream total cost is at its lowest for 
scheme Sweep. If we try to increase throughput beyond 
that, our costs will start increasing. If we continue to push 
performance past say 45 concurrent streams, we must pay a 
high premium. 

Of course, the actual numbers we give here are just ex- 
amples for our current scenario. If we use a different cost 
factor, then the values will be different. However, the shape 
of the curves and the overall conclusions will be similar. 
Although we do not show cost results for our other schemes, 
they display the same pattern. 

In closing this section we make two important points. 
First, our cost analysis considered a single disk. Clearly, if 
we are considering how much money to spend to increase 
throughput, we should also consider buying more disks, as 
this may be a better investment than buying more memory. 
However, as we argue in Section 7 a multi-disk system can 
be analyzed as a collection of single disk systems. Thus, 
for each disk we purchase we need to consider how much 
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Figure 8: Disk Partition 

memory to purchase to support that one disk. This means 
that a single disk graph like Figure 7 can still be useful in 
making our decision. 

Second, the results of this section are for a specific hard- 
ware scenario. However, we believe that our general con- 
clusions hold even under different disk parameters. Refer- 
ence [4] presents results that support this claim, but due to 
space limitations they cannot be given here. 

7 Data Placement Policies 

We have studied disk scheduling and memory policies and 
their impact on throughput, startup latency, and cost. To 
complete our study, this section discusses some data place- 
ment policies. We evaluate the impact of a placement policy, 
called disk partitions,on memory use and startup latency. We 
also discuss the layout of data across multiple disks. 

7.1 Disk Partitions 

Reference [8] proposes a partition scheme that divides a disk 
into P concentric regions. The idea is that in each period T 
the disk arm services only one region. Dividing the disk into 
P regions reduces the worst seek distance by a factor of P. 

For scheme Sweep*, the worst seek distance can be re- 
duced from CYL/NL,,,~ to NLy’,y,txp. For scheme Fixed- 
Stretch*, the worst seek distance is bound by 9 rather 
than CY L. Seek times are also reduced by P for GSS *. The 
rest of the analysis for schemes Sweep*, Fixed-Stretch*, and 
GSS* is identical to what we already have, except that the 
reduced seek times are used. Notice that since the worst seek 
distance for scheme Sweep* is much shorter to start with, 
we expect the partition scheme to benefit Fixed-Stretch* (and 
GSS* with large G) more than it does Sweep*. 

To illustrate the effect of partitions, we return to the case 
study of Section 6. Figure 8(a) shows the amount of memory 
required for up to 16 partitions at NLtmlt = 45 for schemes 
Sweep*, Fixed-Stretch*, and GSS*. Disk partitioning does 
save memory under each scheme. For instance, at P = 2, 
the memory savings are 22% for scheme Fixed-Stretch*, and 
about 7% for both GSS* and Sweep*. As expected, Fixed- 

Stretch* benefits more dramatically from partitions since it 
depends directly on the maximum seek distance. Notice that 
the gains for all schemes flatten out when P > 6. 

Figure 8(b) plots the throughput achievable with 32 
MBytes of available memory and up to 16 partitions. In 
terms of throughput, using 5 or more partitions makes Fixed- 
Stretch* perform the same as GSS*. Again, Fixed-Stretch* 
benefits more from partitions than GSS* because it is more 
sensitive to the maximum seek overhead. For all schemes, 
however, disk partitions do not help too much in improv- 
ing throughput. This is because even though disk partitions 
help save memory, the memory required to support addi- 
tional requests is huge at the tail of the memory requirement 
curve (see Figure 5(a)). Note that since initial latency grows 
with P [5], a disk partition scheme may not be suitable for 
interactive applications. 

7.2 Multiple Disks 

There are two common ways to allocate data when multiple 
disks are available in a system. With the first, which we 
call independent disks, a segment of a presentation is always 
stored within a single disk. (Although different segments 
of a presentation can be stored on multiple disks for the 
purpose of balancing workload.) Thus, when a segment of 
a presentation is retrieved, only one disk is involved in the 
transfer. If we playback presentations from different disks, 
their 10s can take place concurrently. 

The second way to use disks, called striped disks [71, 
treats a group of disks as one storage unit, with each segment 
broken into several subsegments, each stored on a separate 
disk. The time to transfer one segment into memory is 
reduced since the subsegments can be fetched in parallel. 
With striping, a group of disks services one request at a 
time. 

Several factors must be considered in choosing between 
independent and striped disks. For example, if we have a 
display rate that cannot be supported by a single disk, then 
striping is a must. Also, independent disks may not work 
well if we cannot balance the load across them well, e.g., 
because presentations in one disk are much more popular 
than others. (The study of [12] proposes a coarse-grained 
striping technique that stores data on muhiple disks but oper- 
ates disks independently to balance workload and conserve 
memory.) However, from the point of view of memory uti- 
lization, which is the focus of our paper, independent disks 
are much superior under normal circumstances. The follow- 
ing theorem shows that with M disks striping requires M 
times as much memory as independent disks for equivalent 
throughput. 
Theorem 4: Say we are given M disks with equal transfer 
rate TR and we wish to support NLimit requests. Assuming 
that we can balance the load with independent disks, striping 
requires M times as much memory as independent disks do. 
Please refer to [4] for the proof. 

Notice that this result is independent of the scheduling 
scheme used. It shows that at least as far a memory is used, 

504 



60 

20 30 40 50 60 70 60 90 100 

. 5i 120 

s 

z 100 - 

5 
P 60 . 

B 
60 . 

40 - 

0 
111 

121 
(a) 2 Disks (b) 4 Disks 

Figure 9: Per Stream Cost With Multiple Disks 

striping is not desirable. 

131 

To illustrate the impact of multiple disks, in our next 141 

experiment we compare the per stream costs for independent 
and striped disks when we have M = 2 and M = 4 disks. We 
only show the per stream costs for Fixed-Stretch, but all 
schemes display the similar pattern. We use the same cost 
figures as before except we add $500 for each additional disk. 
Figure 9(a) shows the case with two disks, while Figure 9(b) 
shows the four disk scenario. The minimum per stream cost 
for disk striping over two disks is 15% (76 versus 65) higher 
than for independent disks. The minimum per stream cost 
for striping over four disks is 44% (65 versus 45) higher than 
with independent disks. This confirms the higher memory 
costs of disk striping as shown in Theorem 4. 

For the analysis of a multi-disk system with no striping, 
we need to partition the available memory among the disks, 
and assume there is no sharing between the partitions. This 
is because we are analyzing for the worst case, and this 
occurs when the memory consumption peaks for each disk 
overlap exactly. This means we can decouple of our analysis: 
first we can evaluate how many requests a single disk can 
support at minimal cost (using an evaluation like the one 
in Section 6.4), and then we can determine how many total 
disks we need to support the required throughput. 

8 Conclusion 

In this paper we have shown that disk latency reduction 
is secondary to optimizing memory use in video delivery 
schemes. Stretching out 10s with “artificial” delays for the 
disk surprisingly leads to much more effective memory use, 
and subsequently better throughput. This is because stretch- 
ing out 10s minimizes the cushion buffer requirement and 
maximizes memory sharing among streams. In an analogous 
way, stop lights at freeway entrance ramps can slow down 
input traffic, and lead to better throughput. Of course, the 
reason why traffic lights work in a freeway is different from 
why a scheme like Stretch works, but intuitively the result is 
the same: pacing inputs can improve throughput. 

We also briefly pointed out that allowing the disk arm to 
move freely to service any request can reduce initial latency 
drastically, an important performance requirement of inter- 

active applications. As a part of our evaluation, we have 
noted that achieving high throughput often comes at a huge 
cost in memory. Most research in the area has tended to 
ignore this, focusing on how to reduce seek overheads. In- 
stead, we have proposed to limit throughput to less than what 
is feasible in order to make the system more cost effective. 
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