
Effective Memory Use in a Media Server

Edward Chang and Hector Garcia-Molina
Department of Computer Science

Stanford University

Abstract

A number of techniques have been developed for
maximizing disk utilization in media servers, in-
cluding disk arm scheduling and dam placement
ones. Instead, in this paper we focus on how to ef-
ficiently utilize the available memory. We present
techniques for best memory use under different disk
policies, and derive precise formulas for computing
memory use. We show that with proper memory
use, maximizing disk utilization does not neces-
sarily lead to optimal throughput. In addition, we
study the impact of data placement policies includ-
ing disk partitioning and multiple disks. Finally,
our analysis shows that maximizing disk utilization
and disk striping incur high system costs, and are
not advisable in a media server.

1 Introduction

The storage system of a multimedia system faces more chal-
lenges than a conventional one. First, media data must be
retrieved from the storage system at a specific rate - if not,
the system exhibits “jitter” or “hiccups.” This timely data
retrieval requirement is also referred to as the continuous
requirement or the real-time constraint [17]. Second, the
required data rate is very high. For example, an MPEG-1
compressed video requires an average data rate of 1 S Mbps
and MPEG-2 4 Mbps. Guaranteeing real-time supply at this
high data rate for concurrent streams is a major challenge
for multimedia storage systems.

Most multimedia storage research has focused on op-
timizing disk bandwidth via scheduling policies and data

Permission to copy withoutfeeall orpart of this material i grantedprovided
that the copies are not made ordtktributedfordirect commercialadvankzge,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

placement schemes. However, there is a second critical re-
source that has not received as much attention: the main
memory that holds data coming off the disk. In this paper
we carefully analyze how memory is used and shared among
concurrent media requests. Our analysis provides more ac-
curate results than prior analysis, and suggests novel ways in
which memory should be shared for maximum performance.
Our evaluation also contrasts the gains achievable by disk
latency techniques and those achievable by efficient memory
use, and shows that with effective memory use, techniques
that have higher disk overhead may actually achieve better
throughput!

In addition to studying the maximum throughput sup-
ported by media servers, we also consider the resources
required and the per stream dollar cost. Our results show
that achieving high throughput often comes at a huge cost
in memory. Most research in the area has tended to ignore
this, focusing on how to reduce seek overheads. Instead, we
propose to limit throughput to less than what is feasible in
order to minimize per stream costs. We also briefly study
the worst case initial latency before a new media request can
be satisfied, which can be an important factor in an inter-
active system. The disk scheduling policies that allow the
disk arm to move freely between requests (incurring lower
bandwidth) surprisingly yield much lower initial latencies.

The rest of this paper is organized into seven sections.
Section 2 presents our evaluation model and analyzes a tra-
ditional system with an elevator disk scheduling algorithm,
which we call Sweep. In Section 3 we present the princi-
ples behind effective memory sharing, formally proving that
memory use can be minimized by spacing out 10s. (This had
been hypothesised earlier, but not proven.) We also show
how scheme Sweep can best use memory and derive precise
formulas for its memory use.

Next (Section 4) we consider a disk scheduling scheme
that generates 10s in a fixed order, independent of the loca-
tion of the data on disk. (In each period, the disk services
requests in a fixed order.) If one implements this scheme in
a straightforward way, the performance is terrible because
in the worst case each IO may require moving the disk arm
across the disk. However, because the order of IO requests
is fixed, one can enhance this scheme so that data arrives in
memory in a more regular fashion, and this, together with ef-
fective memory management, can lead to better performance
than Sweep’s. We call our modified scheme Fixed-Stretch,

496

and we again present performance formulas that precisely
account for memory sharing.

The third scheme we consider is a Group Sweeping
Scheme (GSS) [NJ, which can be considered a hybrid be-
tween Sweep and Fixed-Stretch. We discuss how memory
can be effectively used by this scheme (something that was
not clearly spelled out in the original paper). In Section 6 we
compare the schemes in a realistic case study, highlighting
the basic disk bandwidth and memory use tradeoffs.

Section 7 analyizes data placement policies that are not
considered in the first six sections. We consider the impact of
partitioning the disk into regions, and of using multiple disks.
Partitioning and multiple disks can impact performance, but
they do not alter the conclusions of our study. Finally, we
offer our conclusions in Section 8.

2 Scheme Sweep

In this section we briefly describe a well known multimedia
delivery scheme, which we call Sweep. Scheme Sweep uses
an elevator policy for disk scheduling in order to amortize
disk seek overhead. It is representative of a class of schemes
[6,8, 11, 13, 151 that optimize throughput by reducing disk
seek overhead. Study [13] shows that an elevator policy is
superior for retrieving continuous media data in comparison
to a policy in which requests with the earliest deadlines are
serviced first. We will use scheme Sweep as a benchmark
for comparing with other schemes.

For now, let us assume a single disk and let us make no
assumptions as to the data placement policies. (We discuss
data placement and multiple disks in Section 7.) We tirst
present Sweep under the assumption that each request is
allocated its own private memory buffer with no memory
sharing among the requests. (Buffer sharing among requests
is discussed in Section 3.)

During a sweep of the disk, Sweep reads one segment of
data for each of the requested streams. The data for a stream
is read into a memory buffer for that stream, which must be
adequate to sustain that stream until its next segment is read
during the following disk elevator sweep. To analyze the
performance of Sweep, we typically are given the following
parameters:

. TR: the disk’s data transfer rate.
l y(d): a concave function that computes the rotational and

seek overhead given a seek distance d. For convenience,
we will refer to the combined seek and rotational overhead
as the seek overhead.

l M~TTL~~~~[: the storage system’s available memory.
. N: the number of stream requests. Each request is denoted

as RI, Rz. RN. Each stream requires a display rate of
DR (DR < TR). (For simplicity we assume that the display
rates are equall) The value of N must be less than ~~~~~~

‘The techniques we discuss in this paper can be adapted to work with
differing display rates in some cases. One alternative is to design for the
maximal rate, which is safe and does not hurt perfonuance if the differences
between rates am small. Another option is to use the greatest common

as explained below.

Scheme Sweep has the following tunable parameters.
They can be adjusted, within certain bounds, to optimize
system throughput.

. T: the period for servicing a round of requests. We as-
sume that T is constant, i.e., it does not vary depending on
N, the number of streams being serviced at a given time.
As discussed below, T must be made large enough to ac-
commodate the maximum number streams we expect to
handle. (Although we do not discuss it here, allowing T to
vary from cycle to cycle does not improve throughput and
may actually hurt latency.)

. s: the segment size, i.e., the number of bytes read for a
stream with one contiguous disk IO. Since T is constant, s
must also be constant over time.

. NLtmit: the maximum number of concurrent requests the
media server allows. The media server implements an
admission control policy that turns away requests when
the system is already handling NLimit requests.

2.1 Analysis

We assume that the media server services the requests in
rounds. During a round of service (time T), the media server
reads one segment of data (sized S) for each of the NLim,t
requested streams. We can run Sweep with many possible
values for T, S, and NLlmita However, some values will
make it impossible to deliver data for each stream at the
appropriate rate due to the violation of certain constraints.
Other values will lead to suboptimal performance. For ex-
ample, we wish to set NL,mit as high as possible. For optimal
feasible performance, parameters T, S, and NLim,t need to
satisfy the equations we derive next.

In a feasible system, the amount of data retrieved in a
period, s, must be at least as large as the amount of data
displayed. That is, s 2 DR x T. However, if we want a
stable system, the input rate should equal the output rate,
else every period we would accumulate more and more data
in memory. Thus, we have the equation

S=DRxT. (1)

In a feasible system, the period T must be large enough so
that all necessary 10s can be performed. Since T is fixed and
cannot vary depending on the number of concurrent requests
in the system at a particular moment, we must make T large
enough to accommodate NL,mit seeks and transfer NL,mrt
segments. Furthermore, in computing these seek times, we
have to assume a worst case situation, so that no matter where
the segments are located on disk, we will have enough time
to read them.

The total seek overhead for NLtmit requests is
CfV_Llimtt r(cyli)v h w ere y gives the seek delay for the P

divisor of the display rates as the unit display rate, and to treat each display
rate as a multiple of the unit one. For example, if the display rates are 6 and
4 Ivfbps, we can treat a 6 Mbps request logically as 3 requests of 2 Mbps
each, and we can treat a 4 Mbps request as 2 of 2 Mbps. Thus, all our base
requests am of the same rate.

497

request. Since y is a concave function [9, 14, 161, the
largest value of the total seek overhead for Sweep oc-
curs when the segments are equally spaced on the disk, or
Cyli = CYL/NL,,,,~. Thus, the worst case seek (and rota-
tional) time is:

TSeek = N~tmit X r(CYL/NLirnit). (2)

The total transfer time for NLzmtt requests, each of size s, at
a transfer rate TR, is

T Transfer = NLimit X SITR. (3)

As we stated above, the period T must be larger or
equal than the worst case seek and transfer times, i.e.,
T 2 Tseek + Tivansfev For optimal performance, how-
ever, we take the smallest feasible T value, since otherwise
we would be wasting both disk bandwidth and memory re-
sources. That is,

T=N~imit X (y(CYL/Nti,it)+S/TR). (4)

The third equation that must be satisfied by scheme Sweep
is obtained from our physical memory limit. Although in a
period we only read s bytes for each stream, it turns out we
need a buffer of twice that size for each stream to cope with
the variability in read times. To see this, consider a particular
stream in progress, where we call the next three disk arm
sweeps A, B, and c. Assume that the segments needed by
our stream are a, b, and C. It so happens that because of its
location on disk segment a is read at the beginning of sweep
A, while b is read at the end of B, 2 x T time units after a is
read. At the point when a is read we need to have in memory
2 x s data, to sustain the stream for 2 x T time.

When segment b is read, we will only have s bytes in
memory, which is only enough to sustain us for T seconds.
Fortunately, because b was at the end of its sweep, the next
segment c can be at most T seconds away, so we are safe.
Actually, c could happen to be the very first segment read
in sweep c, in which case we would again fill up the buffer
with roughly 2 x s data (minus whatever data was played
back in the time it takes to do both reads).

Intuitively, what happens is that half of the 2 x s buffer is
being used as a cushion to handle variability of reads within
a sweep. Before we actually start playing a stream we must
ensure that this cushion is filled up. In our example, if this
stream were just starting up, we could not start playback
when a was read. We would have to wait until the end of
sweep A (the sweep where first segment a was read) before
playback started. Then, no matter when b and c and the
rest of the segments were read within their period, we could
sustain the DR playback rate. (This startup delay will be
important when we analyze initial latencies in Section 6.3.)

Adding a cushion buffer for each request doubles the
memory required. So, to support NLtmit requests, we must
have MWZ~ va,l 2 2 x NL,~,~ x s. For optimal performance,
however, we should use all available memory. (By using
all available memory we make segments larger. This lets
US increase T (Eq. l), which then lets US increase NLimit in
Equation 4, since TR > DR.) Thus, we have that for optimal
feasible performance,

Mem~vatl = 2 X NLimit X S. (5)

In summary, scheme Sweep has three tunable parame-
ters, and we have derived three equations they must satisfy
(Equations 1, 4, 5) for optimal performance. From these
equations we GUI SOhe for T, S, ad NLimits

2.2 Minimizing Memory

We can derive a closed form for the minimum memory re-
quirement as follows. We assume that NLimit is given and
that ~em~“~,, is unknown, and we solve for it. Substituting
T = S/DR (Eq. 1) into Equation 4, we can solve for s, the
segment size needed to support the NLtmtt requests:

s= NLtmit X $CYLINLsmit) x TR X DR
TR-(DRX NLimit) ' (6)

(WeasSumethatTR-(DRxNLtmlt) > 0,dSenOSegrYEntSiZe

is sufficient. Some literature refers to this as disk bandwidth
constraint.) Multiplying this value by 2 x NLimit (Eq. 5), we
obtain the minimum amount of memory,

kfemMtn =
2 X N'ji,,,it X y(CYL/NLi,it)X TRX DR

TR - (DR X NLsmit) (7)

It is important to note in Equation 7 that MemM,,, does not
grow linearly with the desired NLimit. First, the numerator
grows quadratically with NLimite Second, as NLim,t grows
the denominator of Equation 7 approaches zero, causing
MemM,,, to grow without bound. As the denominator gets
close to zero, we are driving the system to its physical limits:
NLtmit Streams at a DR rate rfX@Z NLimit x DR bytes per
second, and the disk can only read at most TR per second.
When NLtmit x DR approaches TR, the system needs a huge
amount of memory to support an additional request. As we
will discuss in Section 6.4, even if the system can support
NLimit concurrent S~RZUM, doing SO is not cost effective.

In addition to deriving the minimum memory require-
ment, we can also derive the maximum system throughout
for a given amount of memory (MCf?LAvai*)* Please see [4]
for details.

3 Reducing Req+red Memory

In scheme Sweep each request is allocated a fixed private
buffer of size 2 x s. One way to reduce the memory require-
ments is to have requests share their buffer space [lo, 161.
That is, we create a shared memory pool, and as the space
used by one request frees up, it can be used to hold data
from other requests. Various papers have estimated that
sharing can cut the memory requirements by “roughly half.”
However, these estimates are obtained with very strong as-
sumptions, in particular that all seek times must be zero. In
this section we revisit how exactly memory sharing works
(without strong assumptions), and in doing so prove under
what conditions maximal sharing can be obtained, and what
the savings actually are.

Figure 1 depicts the amount of memory used by a request
in a period T. An IO starts shortly before the data staged
into memory in the previous period is used up. The data

498

PI /TR-DR -R

iii \
T ime T

Figure 1: Memory Required in A Period

1 S=DR*T

T 2T 3T... Time

Figure 2: Memory Requirement Function

accumulates in memory at the rate of TR - DR until the IO
completes.

For our analysis we make two simplifying assumptions.
First, we assume that memory can be freed in a continuous
fashion, In other words, Figure 1 shows the actual memory
used by a request. In practice, of course, memory is released
in pages, so Figure 1 would have a sequence of small de-
creasing steps, each one page in size. This implies that our
estimates for memory use may be up to one memory page off
for each request. Thus, our continuous release assumption
is an optimistic one for buffer sharing schemes. However, if
as expected the page size is small compared to the segment
size, the difference will be negligible.

Our second assumption is to approximate the memory
use function by a right triangle. Our assumption causes us
to overestimate memory use: we will assume that the peak
in Figure 1 is s (at time 0 in the figure), while in reality it
is s x (I - DRITR). This is a pessimistic assumption, but
since typically the data transfer rate TR is much larger than
the display rate DR, the difference is very small.

Notice that the small differences caused by our two as-
sumptions tend to cancel out each other. In particular, if
the page size is s x DRITR, the effects will cancel. If the
page size is less than this value, as is probably the case, then
overall our results will be slightly pessimistic for memory
sharing.2

3.1 Optimal Delays

Before discussing memory sharing under Sweep, it is in-
structive to analyze an ideal case where 10s for a given
stream occur in a regular fashion, as shown in Figure 2. In

‘When an IO is initiated, the physical memory pages for the data it
reads may not be contiguous due to the way buffers are shared. There are
several ways to handle these 10s. One idea is to map the physical pages
to a contiguous virtual address, and then initiate the transfer to the virtual
space (if the disk supports this). Another idea is to break up the segment IO
into multiple IOs, each the size of a physical page. The transfers are then
chained together and handed to an IO processor or intelligent DMA unit
that executes the entire sequence of transfers with the same performance as
a larger IO. Other ideas am discussed in [lo].

this scenario the data for a request is fully played back just
as the next IO completes, so there is not need for cushion
buffers.

Let us denote the periodic function in Figure 2 as p, (t - T,) ,
where t represents time and T, is the displacement from the
beginning of the period (e.g., the example shown in Figure 2
has a displacement of 0). The memory use function p(t)
for NLtmit COnCUrrent reqUeStS iS a SUperpOSitiOn of NLimlt

such periodic functions, or p(t) = C2;mit ri(l- 7,). Notice
that each function pi (t - Ti) has a different displacement. TO
minimize the memory requirement of a system, one has to
minimize the largest value of p(t). The only parameters that
can be adjusted in p(t) are the T,‘s. The following results tell
us what these displacements should be for optimal memory
sharing among requests.

Theorem 1: We are given a multimedia storage system that
supports NLimit continuous streams with equal display rate
DR 3. Minimizing memory usage requires the IO start times
to be spaced equally in T.

Corollary 1: The minimum memory space required to
suPPort NLmt streams with equal display rate DR is
Sx(N d. (Keep in mind that this does not include
cushioi buffer requirements.)

We provide in [2,4] the proofs of Theorem 1 and Corol-
lary. These results suggest that even if one cannot perfectly
separate in time the IO sequences, it is desirable to space out
requests as much as possible. This is precisely what we do
in order to optimize the memory use of Sweep.

3.2 Scheme Sweep*

We refer to scheme Sweep with memory sharing as Sweep*.
With a sweeping scheme we cannot control when 10s occur
within a period, since they are done in the order found as
the head sweeps the disk. In the worst case, all the 10s
in a period will be bunched together (if all the segments
needed in a period happen to be nearby on the disk.) This
means that the memory peaks are summed, leading to poor
memory sharing. However, the 10s need to be separated
by at least the time it takes to read a segment, so the peaks
are not fully added. In addition, the last IO of a period
can be delayed and separated from a cluster of 10s further
improving memory sharing. Finally, it is also possible to
share the cushion buffers used by each stream to account
for IO variability, leading to even better memory utilization.
All these effects are carefully analyzed in [4], where we also
show the following result. Incidentally, note that various
papers had earlier “guessed” how much memory a scheme
like Sweep* uses, but these estimates were not accurate.

Theorem 2: The minimum memory space required to sup-
POlT NLimit StWill’lS under scheme sweep* is (NLtmit - 1) x
S+NLzmrt xDRx(T-w). Ifwereplacetheright
hand side of Equation 5 by tl% expression, we can derive the
formula for the minimum memory requirement of Sweep*.

3For the theorem that deals with streams with different display rates
please see [2].

499

Figure 3: Service Slots of Fixed-Stretch*

4 Scheme Fixed-Stretch*

In order to reduce the variability between the 10s of a re-
quest, in this section we consider a scheme where 10s are
performed in a fixed order from period to period. We call
this scheme Fixed-Stretch* because in addition the 10s are
spaced out as described next. For completeness, a version
of this scheme that does not use memory sharing, Fixed-
Stretch, is discussed at the end of this section.

To eliminate the need for cushion buffers entirely and
maximize memory sharing (Theorem l), we must separate
the 10s of a request by a constant time T. However, since
the data on disk for the requests are not necessarily separated
by equal distance, we must add time delays between 10s to
space them equally in time.

For instance, if the seek distances in a disk sweep are C& ,
cylz,..., and cyfNLimit cylinders, and cy[i is the maximum of
these, then we must separate each IO by at least the time it
takes to seek to and transfer this maximum ;th request. One
can choose a different separator for each period, depending
on the maximum seek distance for the requests of that pe-
riod. However, as we have argued earlier, there is no benefit
allowing T to vary from cycle to cycle. To have a constant
T and simplify the algorithms, scheme Fixed-Stretch* uses
the worst possible seek distance (CY L) and rotational delay,
together with a segment transfer time, as the universal IO
separator, A, between any two 10s. The length of a period,
T, will be NLtmit times A.

Figure 3 shows an example with three requests that thusly
separated. The time on the horizontal axis is divided into
service cycles each lasting T units. Each service cycle T (the
shaded area) is equally divided into three service slots, each
lasting A units (delimited by two up-arrows). The vertical
axis in Figure 3 represents the amount of memory utilized
by an individual stream.

Fixed-Stretch* executes in the following steps:

1. At the start of a service slot (indicated by the up-arrow
in Figure 3), set the end of slot timer to expire in A.
2. If there is no request to be serviced in the service slot,
skip to Step 6.
3. Allocate s amount of memory for the request serviced
in this time slot.’

4When an IO is initiated, the physical memory pages for the data it
reads may not be contiguous due to the way buffers are shared. There are

4. Set the IO timer to expire in -,(cY L), the worst possible
seek overhead, and start the disk IO. Since the actual seek
overhead cannot exceed Y(CY L), when the10 timer expires
the data transfer must have begun.
5. When the IO timer expires, the playback starts consum-
ing the data in the buffer (indicated by the “playback point”
pointers in Figure 3), and the memory pages are released
as the data is consumed.
6. When the end ofslot timer expires, the data transfer (if
issued in Step 4) must have completed.5 Go to Step 1 to
start the next service slot.
As its name suggests, the basic Fixed-Stretch* scheme

has two distinguishing features:

. Fixed-order scheduling: A request is scheduled in a fixed
service slot from cycle to cycle after it is admitted into the
server. For instance, if a request is serviced in the Ph slot
when it lirst arrives, it will be serviced in the same kth slot
in its entire playback duration, regardless if other requests
depart or join the system.

. Stretched out 10s: The allocated service slot assumes the
worst possibledisk latency y(CY L) so that the disk arm can
move freely to any disk cylinder to service any request.
This property ensures that the fixed-order scheduling is
feasible no matter where the data segments are located on
the disk. As we discuss in Section 6.3, allowing the disk
arm to move freely to service any request also leads to a
very small initial latency, much better than that of the seek
reduction schemes.

Scheme Fixed-Stretch* actually saves memory in two
ways. First, because 10s in a period are spaced out, mem-
ory sharing is at its best. Second, because there is almost
no time variability between the 10s of a given request, we
need tiny cushion buffers (discussed shortly). Fixed-Stretch*
does require larger segments (T is artificially enlarged, and
s = DR x T), but in our analysis we will see that over-
all Fixed-Stretch* does save substantial amounts of mem-
ory and actually leads to improved throughput over scheme
Sweep! This result is surprising since Fixed-Stretch* is un-
derutilizing bandwidth by slowing down the disk, doing just
the opposite of what previous scheduling schemes do.

4.1 Analysis

In scheme Fixed-Stretch*, a period T is composed of three
elements: seek overhead, padding, and transfer time for
the maximum possible NLimit requests. The transfer time,

- NLimrt XS/TR,~S thesameasforschemeSweep.
%rG&vidiscussedd, each individual seek plus padding de-
lay must be as large as the worst case seek of CY L cylinders.

several ways to handle these 10s. One idea is to map the physical pages
to a contiguous virtual address, and then initiate the transfer to the virtual
space (if the disk supports this). Another idea is to break up the segment IO
into multiple IOs, each the size of a physical page. The transfers are then
chained together and handed to an IO processor or intelligent DMA unit
that executes the entire sequence of transfers with the same performance as
a larger IO. Other ideas are discussed in [lo].

5The accuracy of the timers used by Fixed-Stretch* can be tuned peri-
odically by cross-checking the amount of data in the stream buffers.

500

The total seek overhead and delay for NLtmit requests is
NL ,m,t timesthisvalue,soTsesk+TDalay = NL;,;~xY(cYL).
Thus T can be written as

which replaces Equation 4 we had obtained earlier for
scheme Sweep.

According to Corollary l,schemeFixed-Stretch* requires
Sx(NLi,it+l) memory. In addition, since the release of the
memo& allocated by each request at the beginning of a ser-
vice slot does not start until at the playback point of the slot
(see Figure 3 and execution step 5), each request needs to
retain the data for extra ~(CY L) time. This delay of data
consumption (and hence memory deallocation) requires that
each request has an additional 7 (cY L) x D R amount of buffer
space. (This extra space requirement is very small: for the
parameters values of Section 6, the extra buffer requirement
is about 0.5% of the segment size.) The required mem-
ory must be smaller than or equal to the available memory
MemAvaiI- For optimal performance, we try to give each
request as much memory as possible to maximize NLtmit.
Thus, we have the memory resource constraint

MW7Z lf3 x (NLtmit + 1)
Avatl =

2 +(NLtmitXY(CYL)XDR)v (9)

which replaces our old equation 5.

In summary, scheme Fixed-Stretch* also has three tun-
able parameters: T, S, and NLtmit; and we have derived
three equations they must satisfy (Equations 1,8,9) for op-
timal performance. From these equations we can solve for
T, S, and N~mrt. Following the same derivation steps in
Section 2.2, we get the minimum memory requirement as
follows:

MemM,,, = S x (N~rmtt + 1)

2 (10)

Please see 141 for the detailed derivations. If memory is
not shard among the requests, we simply replace Equation 9
with

M emAvatl = S X NLimrt + (N~tmit X r(CYL) X DR).

We call this scheme Fixed-Stretch (without the *), and the
steps to derive MemMi,, are the same.

5 Group Sweeping Scheme* (GSS*)

So far we have presented two extreme schemes: Sweep*
minimizes seek overhead with high memory requirement,
and Fixed-Stretch* maximizes memory sharing and mini-
mizes cushion buffer requirement with the worst seek over-
head. In this section we consider a hybrid scheme that lies
between Sweep* and Fixed-Stretch*.

The Group Sweeping Scheme (GSS) proposed in [18]
divides NLimit streams into G groups, with N~,,,,,,/G streams
serviced in each group by a disk sweep. (For simplicity,
we assume that NLimit is divisible by G.) The groups are
serviced in a round-robin fashion. A request is assigned to a
single group from the start to the end of its playback.

In the published descriptions of GSS it is not clear to us
how memory sharing is handled nor how much time tran-
spires between reading the last request in a group and reading
the lirst one of the next group. Here we clarify these issues,
and improve GSS with the techniques we developed for
Fixed-Stretch*. We call the resulting scheme GSS *, to dif-
ferentiate it from other possible interpretations of the scheme
in [18].

In GSS* we assume that a period T is divided into G
epochs, each of duration T/G exactly. During an epoch i, we
perform a single disk sweep, reading NLi,s,/G segments.
(Epochs are long enough so that this can always be accom-
plished.) After an epoch starts, we start performing the 6rst
(N~,~~~/G) - 110s as we sweep thedisk. Before we perform
the last of the 10s for this epoch, however, we wait until the
epoch is about to finish, and then we perform the last IO,
just as the epoch finishes.

Scheme GSS* is like Fixed-Stretch*, in that it introduces
artificial delays to spaceout 10s. In fact,if G = NL,mitr GSS*
is identical to Fixed-Stretch*: each GSS* epoch corresponds
to one of the 10s of Fixed-Stretch*. If G = 1, GSS* is like
Sweep*. Hence, GSS* is a parameterized hybrid between
Fixed-Stretch* and Sweep*.

5.1 Analysis

The worst total seek overhead for an epoch occurs when its
segments are equally spaced on the disk (see Section 2.1).
Since each epoch under GSS* services NL,%,~/G requests,
the worst case seek distance cyl, is CYL x G/NLimtta Thus,
the worst case seek (and rotational) time is: Tseek = NLtmrt x

r(CY L x G/NL,,it). Following the same steps in Section 2.2,
we obtain the segment size:

s= N~rm,t x Y(CYL x G/N~,rn,t) x 7-13~ DR

TR - (DR x NLtmtt) (11)

The following theorem gives the memory requirements
for GSS*, taking into account sharing of all memory (in-
cluding any cushions needed to cope with IO variability).

Theorem 3: The minimum space required to support NLImrt
streams under scheme GSS* is

((NLimztIG) X s X (G + l)/2) - s

+N~rm,t x DR x (T/G - (NL,,,JG - 2)S/TR).

Please refer to [4] for the proof.
(12)

6 Evaluation

To evaluate and compare the performance about various
schemes discussed in this paper, we use the Seagate Bar-
racuda 4LP disk [l]; its parameters are listed in Table 4.
We also assume a display rate DR of 1.5 Mbps, which is
sufficient to sustain typical video playback. For the seek
overhead we follow closely the model developed in [9, 141
that is proven to be asymptotically close to the real disks. The
seek overhead function is a concave function as following:

y(d) = al+@1 x J;i)+ 8.33 if d < 400

501

Parameter Name] Value
Disk Capacity 2.25 GBytes

Number of cylinders, CYL
Min. Transfer Rate TR

Max. Rotational Latency Time
Min. Seek Time
Max. Seek Time

CXl
Pl
a2
02

Figure 4: Seagate Barracuda 4

300

0

5,288
75 Mbps
8.33 milliseconds
0.9 milliseconds
17.0 milliseconds
0.6 milliseconds
0.3 milliseconds
5.75 milliseconds
0.0021 milliseconds

.P Disk Parameters

30 32 3-l 36 30 40 42 44 46 40 30 35 40 45 50
Thmughput Throughput

(a) Memory Requirement (b) Ratio

Figure 5: Memory Requirement

-y(d)= a2+(p2 x d)+8.33 ifd 2 400

Note that the seek time is proportional to the square root
of the seek distance when the distance is small, and is linear
to the seek distance when the distance is large.

In each seek overhead we have included a full disk ro-
tational delay of 8.33 ms. The rotational delay depends on
a number of factors, but we believe that one rotation is a
representative value. One could argue that rotational delay
could be eliminated entirely if a segment is an exact multiple
of the track size. (In that case we could start reading at any
position of the disk.) However, the optimal segment size de-
pends on the scenario under consideration, so it is unlikely
it will divide exactly into tracks. If we assume that the first
track containing part of a segment is not full, then in the
worst case we need a full rotation to read that lirst portion,
even with an on-disk cache. If we assume that the last track
could also be partially empty, then we could need a second
rotational delay, and our 8.33ms value may be conservative!
Note incidentally that we use a full rotational delay (not
average) since we are estimating a worst case scenario.

6.1 Memory Requirements

We set a desired throughput, and study how much mem-
ory each scheme needs to support it. Figure 5 shows the
minimum amount of memory required, MemMinr to support
a given number of requests (NLimit). Figure 5(a) shows only

the no-memory-sharing schemes, while the (b) part shows
for all schemes the ratio of its memory requirement to that
of Sweep. For GSS and GSS* we use an optimal G value.

With no memory sharing, scheme GSS requires about
75% of the memory of the other schemes, so it is clearly su-
perior. With memory sharing, GSS* is still the best, but the
gap with Fixed-Stretch* is reduced. Interestingly, Sweep*
performs quite poorly even compared to Fixed-Stretch*, un-
less we require a very high throughput. As we argue next,
we probably do not wish to operate at a very high throughput
level, so Sweep* does not seem attractive. Thus, Sweep*,
in its attempt to optimize disk movement, uses memory less
effectively, and ends up being not desirable.

As expected, Figure 5(a) shows that as NLimct increases,
the required memory grows rapidly. For example, say we
are running scheme Sweep without sharing memory with
160 MB, supporting up to 47 concurrent streams. If we wish
to add memory to bump our limit to 48 concurrent requests,
we need to add about 100 MB of memory! Even an efficient
scheme like GSS* would require a huge amount of memory
to increase throughput by one.

For all schemes, the marginal memory requirement starts
dramatically increasing around NLimit = 3s to 40. From
NLimit = 38 to the maximum achievable throughput 49, the
memory requirement grows almost 20 fold. This suggests
that although it is theoretically possible to use memory to
reduce seek overhead and improve throughput, it may be
economically unwise. We examine the cost issues in greater
detail in Section 6.4.

6.2 Throughput

Instead of showing the minimum memory requirement, we
can also show the maximum throughput the server can sup-
port given an amount of memory. The throughput is the max-
imum NLimlt the system can achieve given a memory config-
uration MemAuatl. Figure 6 presents the throughput of our
schemes for various memory sizes. Again, the (a) part of the
figure shows only the no-memory-sharing schemes, while
the (b) part shows for all schemes the ratio of its throughput
to that of Sweep. For GSS and GSS l we again use an optimal
G value. With no memory sharing, the throughput of Sweep
andFixed are almost identical. This is because Sweep’s ben-
efit from the reduced seek overhead is canceled out by its
large cushion buffer requirement. As expected, GSS is able
to achieve better throughput by balancing the seek time and
cushion buffer requirements. However, Figure 6(a) shows
that the gap between the best and worst schemes is not very
significant: two to three streams at best under most memory
configurations.

Figure 6(b) shows the throughput improvement that each
scheme offers over the basic Sweep with no memory sharing.
The ratios shown are the performance of each scheme divided
by the Sweep throughput. Thus, Sweep has a constant ratio
of 1. A ratio greater than 1 means that the scheme performs
better than Sweep.

In the figure we can easily see that as memory increases,

502

60

55

50

45

40

35

30

1 25

1.2

1.15 ,,

1.05

1

20 - 0.9 -
2025303540455055606570 2U 30 40 50 60 70
Memory Configurations (MBytes) Memory Configurations (Mytes)

(a) Memory Not Shared (b) Throughput Ratio

Figure 6: Throughput Comparison
the throughput of all schemes converges. It is also clear that
for limited memory, memory sharing pays off in terms of
improved throughput. However, even with limited memory,
the differences among the memory sharing schemes are not
very significant. That is, as long as memory is shared effi-
ciently, disk scheduling policies do not have a great impact
on throughput. Earlier studies had predicted greater differ-
ences, partly because memory sharing had not been carefully
analyzed or considered.

6.3 Initial Latency

In this section we briefly consider a third important perfor-
mance metric for multimedia storage systems. We define
initial latency to be the time between the arrival of a single
new request (when the system is unsaturated) and the time
when its lirst data segment becomes available in the server’s
memory. (For more discussion about why reducing initial
latency is important, please consult references [3,5] .)

For scheme Sweep (and Sweep*), the worst initial latency
happens when a request arrives just after the disk head has
passed over the first segment of the media The request must
wait for a cycle (T) until its first segment can be retrieved. As
discussed in Section 2.1, playback cannot start right away,
since this first segment just fills up the playback cushion.
Actual playback can start at the end of the first cycle, which
in the worst case can be another T seconds away. The worst
initial latency is therefore ~~~~~~~~ = 2 x T. Since T = DR x s
and we have shown that s cm grow withoutbound as NLim,t
increases, ~~~~~~~~ can also grow without bound.

In reference [3] we propose a resource management
scheme, named Bubble@, that builds upon Fixed-Stretch*
to minimize the initial latency for servicing a newly arrived
request. BubbleUp always makes the available disk band-
width and memory resource ready for servicing a new re-
quest. This is achieved by using idle slots to execute “early”
requests that are scheduled in the very near future. This cre-
ates some free time in the near future to handle new requests.
If no new requests arrive, then those idle slots can also be
used to service future scheduled requests. The worst latency
to service a newly arrived is 2 x Y(CY L) + SITR, independent
Of NLimst- The evaluation in [3] shows that when the media
server is heavily loaded (NLimit = KZ), BubbleUp that builds

300
Fixed Cost ----- t

250 -
Memory Cost - i

-rota, cost --o.--. 7

20 25 30 35 40 45
Throughput

Figure 7: Per Stream Cost by Throughput

upon Fixed-Stretch* has a worst case initial latency of only
a quarter of a second, while Sweep* suffers from more than
eight seconds of delay. The GSS* scheme has even worse
delay since its segment size is larger than that of Sweep*.
Thus, for interactive applications that require fast response
time, the results in Sections 6.1 and 6.2 together with the
results in [3] show that a Fixed-Stretch* based scheme may
be the choice.

6.4 Minimize Per Stream Cost

One important measure for a multimedia system storage
system is the per stream cost. This is composed of the
hardware cost, including CPU, buses, disks, and memory.
Assuming common retail prices, a low-end computer with
a two-gigabyte disk drive is about $3,500, and the memory
cost is $20 per MByte (including other associated cost such
as memory board). We refer to the non-memory cost as the
fixed cost. The fixed cost is amortized by NLimit: The larger
N~,,,,,~ is, the lower the per stream fixed cost. On the other
hand, the per stream memory cost grows rapidly with NLimrt
as illustrated in Figure 5. Figure 7 plots the per stream fixed,
memory, and total cost for scheme Sweep, as a function of
N~trntt.

Since we are using the same fixed cost in all cases, we
see that the per-stream fixed cost decreases as the number
of streams grows. However, as the number of supported
streams grows, we need to purchase additional memory,
so the per-stream memory cost grows. Notice that when
NLimzt = 40, the per-stream total cost is at its lowest for
scheme Sweep. If we try to increase throughput beyond
that, our costs will start increasing. If we continue to push
performance past say 45 concurrent streams, we must pay a
high premium.

Of course, the actual numbers we give here are just ex-
amples for our current scenario. If we use a different cost
factor, then the values will be different. However, the shape
of the curves and the overall conclusions will be similar.
Although we do not show cost results for our other schemes,
they display the same pattern.

In closing this section we make two important points.
First, our cost analysis considered a single disk. Clearly, if
we are considering how much money to spend to increase
throughput, we should also consider buying more disks, as
this may be a better investment than buying more memory.
However, as we argue in Section 7 a multi-disk system can
be analyzed as a collection of single disk systems. Thus,
for each disk we purchase we need to consider how much

503

"0 2 4 Fa.311 12 14 16 0 2 4 6CSo;l 12 14 16

(a) Memo;,, vs P (b) NLtmtt vs p

Figure 8: Disk Partition

memory to purchase to support that one disk. This means
that a single disk graph like Figure 7 can still be useful in
making our decision.

Second, the results of this section are for a specific hard-
ware scenario. However, we believe that our general con-
clusions hold even under different disk parameters. Refer-
ence [4] presents results that support this claim, but due to
space limitations they cannot be given here.

7 Data Placement Policies

We have studied disk scheduling and memory policies and
their impact on throughput, startup latency, and cost. To
complete our study, this section discusses some data place-
ment policies. We evaluate the impact of a placement policy,
called disk partitions,on memory use and startup latency. We
also discuss the layout of data across multiple disks.

7.1 Disk Partitions

Reference [8] proposes a partition scheme that divides a disk
into P concentric regions. The idea is that in each period T
the disk arm services only one region. Dividing the disk into
P regions reduces the worst seek distance by a factor of P.

For scheme Sweep*, the worst seek distance can be re-
duced from CYL/NL,,,~ to NLy’,y,txp. For scheme Fixed-
Stretch*, the worst seek distance is bound by 9 rather
than CY L. Seek times are also reduced by P for GSS *. The
rest of the analysis for schemes Sweep*, Fixed-Stretch*, and
GSS* is identical to what we already have, except that the
reduced seek times are used. Notice that since the worst seek
distance for scheme Sweep* is much shorter to start with,
we expect the partition scheme to benefit Fixed-Stretch* (and
GSS* with large G) more than it does Sweep*.

To illustrate the effect of partitions, we return to the case
study of Section 6. Figure 8(a) shows the amount of memory
required for up to 16 partitions at NLtmlt = 45 for schemes
Sweep*, Fixed-Stretch*, and GSS*. Disk partitioning does
save memory under each scheme. For instance, at P = 2,
the memory savings are 22% for scheme Fixed-Stretch*, and
about 7% for both GSS* and Sweep*. As expected, Fixed-

Stretch* benefits more dramatically from partitions since it
depends directly on the maximum seek distance. Notice that
the gains for all schemes flatten out when P > 6.

Figure 8(b) plots the throughput achievable with 32
MBytes of available memory and up to 16 partitions. In
terms of throughput, using 5 or more partitions makes Fixed-
Stretch* perform the same as GSS*. Again, Fixed-Stretch*
benefits more from partitions than GSS* because it is more
sensitive to the maximum seek overhead. For all schemes,
however, disk partitions do not help too much in improv-
ing throughput. This is because even though disk partitions
help save memory, the memory required to support addi-
tional requests is huge at the tail of the memory requirement
curve (see Figure 5(a)). Note that since initial latency grows
with P [5], a disk partition scheme may not be suitable for
interactive applications.

7.2 Multiple Disks

There are two common ways to allocate data when multiple
disks are available in a system. With the first, which we
call independent disks, a segment of a presentation is always
stored within a single disk. (Although different segments
of a presentation can be stored on multiple disks for the
purpose of balancing workload.) Thus, when a segment of
a presentation is retrieved, only one disk is involved in the
transfer. If we playback presentations from different disks,
their 10s can take place concurrently.

The second way to use disks, called striped disks [71,
treats a group of disks as one storage unit, with each segment
broken into several subsegments, each stored on a separate
disk. The time to transfer one segment into memory is
reduced since the subsegments can be fetched in parallel.
With striping, a group of disks services one request at a
time.

Several factors must be considered in choosing between
independent and striped disks. For example, if we have a
display rate that cannot be supported by a single disk, then
striping is a must. Also, independent disks may not work
well if we cannot balance the load across them well, e.g.,
because presentations in one disk are much more popular
than others. (The study of [12] proposes a coarse-grained
striping technique that stores data on muhiple disks but oper-
ates disks independently to balance workload and conserve
memory.) However, from the point of view of memory uti-
lization, which is the focus of our paper, independent disks
are much superior under normal circumstances. The follow-
ing theorem shows that with M disks striping requires M
times as much memory as independent disks for equivalent
throughput.
Theorem 4: Say we are given M disks with equal transfer
rate TR and we wish to support NLimit requests. Assuming
that we can balance the load with independent disks, striping
requires M times as much memory as independent disks do.
Please refer to [4] for the proof.

Notice that this result is independent of the scheduling
scheme used. It shows that at least as far a memory is used,

504

60

20 30 40 50 60 70 60 90 100

. 5i 120

s

z 100 -

5
P 60 .

B
60 .

40 -

0
111

121
(a) 2 Disks (b) 4 Disks

Figure 9: Per Stream Cost With Multiple Disks

striping is not desirable.

131

To illustrate the impact of multiple disks, in our next 141

experiment we compare the per stream costs for independent
and striped disks when we have M = 2 and M = 4 disks. We
only show the per stream costs for Fixed-Stretch, but all
schemes display the similar pattern. We use the same cost
figures as before except we add $500 for each additional disk.
Figure 9(a) shows the case with two disks, while Figure 9(b)
shows the four disk scenario. The minimum per stream cost
for disk striping over two disks is 15% (76 versus 65) higher
than for independent disks. The minimum per stream cost
for striping over four disks is 44% (65 versus 45) higher than
with independent disks. This confirms the higher memory
costs of disk striping as shown in Theorem 4.

For the analysis of a multi-disk system with no striping,
we need to partition the available memory among the disks,
and assume there is no sharing between the partitions. This
is because we are analyzing for the worst case, and this
occurs when the memory consumption peaks for each disk
overlap exactly. This means we can decouple of our analysis:
first we can evaluate how many requests a single disk can
support at minimal cost (using an evaluation like the one
in Section 6.4), and then we can determine how many total
disks we need to support the required throughput.

8 Conclusion

In this paper we have shown that disk latency reduction
is secondary to optimizing memory use in video delivery
schemes. Stretching out 10s with “artificial” delays for the
disk surprisingly leads to much more effective memory use,
and subsequently better throughput. This is because stretch-
ing out 10s minimizes the cushion buffer requirement and
maximizes memory sharing among streams. In an analogous
way, stop lights at freeway entrance ramps can slow down
input traffic, and lead to better throughput. Of course, the
reason why traffic lights work in a freeway is different from
why a scheme like Stretch works, but intuitively the result is
the same: pacing inputs can improve throughput.

We also briefly pointed out that allowing the disk arm to
move freely to service any request can reduce initial latency
drastically, an important performance requirement of inter-

active applications. As a part of our evaluation, we have
noted that achieving high throughput often comes at a huge
cost in memory. Most research in the area has tended to
ignore this, focusing on how to reduce seek overheads. In-
stead, we have proposed to limit throughput to less than what
is feasible in order to make the system more cost effective.

References

PI

[61

VI

PI

PI

DOI

1111

WI

1131

iI41

1151

1161

1171

[181

Seagate barracuda 41p family product specification. URL:
http:llwww.seagate.com, 1996.
E. Chang and Y.-Y. Chen. Minimizing memory requirements
in a multimedia storage system. Stanford Technical Report
SIDL-WP-1996-0045 URL: http:llwww-diglib.stanford.edu.
E. Chang and H. Garcia-Molina. Bubbleup - low latency
fast-scan for media servers. StanfordTechnicalReport SIDL-
WP-1997-0064 URL: http:llwww-diglib.stanford.edu.
E. Chang and H. Garcia-Molina. Effective memory use in a
media server (extended version). Stanford Technical Report
SIDL-WP-1996-0050 URL: http:llwww-diglib.stanford.edu.
E. Chang and H. Garcia-Molina. Reducing initial latency in
multimedia storage systems. IEEE Multimedia, Fall 97.
T. Chua, J. Li, B. Ooi, and K.-L. Tan. Disk striping strategies
for large video-on-demand servers. ACM Multimedia, pages
297-306, November 1996.
H. Garcia-Molina and K. Salem. Disk striping. ICDE, pages
336-342, Feburary 1986.
S. Ghandeharizadeh, S. Kim, and C. Shahabi. On contigur-
ing a single disk continuous media server. Sigmetrics Perfor-
mance Evaluation, 23(1):3746, May 1995.
D. Kotz, S. B. Toh, and S. Radhakrishnan. A detailed simu-
lation model of the hp 97560 disk drive. Dartmouth College
Technical Report PCS-TR94-220,1994.
D. Makaroff and R. Ng. Schemes for implememting buffer
sharing in continuous-media systems. Information Systems,
20(6):445464,1995.
B. Ozden, A. B&is, R. Rastogi, and A. Silberschatz. A low-
cost storage server for movie on demand databases. Proc.
VLDB, September 1994.
B. Ozden, R. Rastogi, and A. Silberschatz. A framework
for the storage and retrieval of continuous media data. Proc.
IEEE Multimedia, pages 2-13, May 1995.
A. Reddy and J. Wyllie. I/o issues in a multimedia system.
Computer, 2:69-74, March 1994.
C. Ruemmler and J. Wilkes. An intro to disk drive modeling.
Computer, 2: 17-28, March 1994.
R. Steinmetz. Multimedia file systems survey: approaches
for continuous media disk scheduling. Computer Contmuni-
cations, pages 133-44, March 1995.
F. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming raid-a
disk array management system for video tiles. First ACM
Conference on Multimedia, August 1993.
H. M. Vin. and P. V. Rangan. Designing a multi-user hdtv
storage server. IEEE Journal on Selected Areas in Commu-
nication, 1 l(l), January 1993.
P. Yu, M.-S. Chen, and D. Kandlur. Grouped sweeping
scheduling for DASD-based multimedia storage manage-
men. Multimedia Systems, 1(1):99-109, January 1993.

505

