
Selectivity Estimation Without the 
Attribute Value Independence Assumption 

Viswanath Poosala 
poosala@research.bell-labs.com 

Bell Laboratories 
600, Mountain Avenue 
Murray Hill, NJ 07974 

Abstract 

The result size of a query that involves multiple 
attributes from the same relation depends on these 
attributes’joinr data distribution, i.e., the frequen- 
cies of all combinations of attribute values. To 
simplify the estimation of that size, most com- 
mercial systems make the artribute value indepen- 
denceassumption and maintain statistics (typically 
histograms) on individual attributes only. In real- 
ity, this assumption is almost always wrong and the 
resulting estimations tend to be highly inaccurate. 
In this paper, we propose two main alternatives to 
effectively approximate (multi-dimensional) joint 
data distributions. (a) Using a multi-dimensional 
histogram, (b) Using the Singular Value Decom- 
position (SVD) technique from linear algebra. An 
extensive set of experiments demonstrates the ad- 
vantages and disadvantages of the two approaches 
and the benefits of both compared to the indepen- 
dence assumption. 

1 Introduction 

There are several components in a database management 
system (DBMS) that require reasonably accurate estimates 
of the result sizes (or selecrivities) of operators. Cost-based 
query optimizers use them to obtain estimates of the costs 
of subsequent operators and eventually of complete query 
execution plans. Also, query profilers use them to pro- 
vide quick feedback to users as a means to detect some 
forms of semantic misconceptions before queries are ac- 
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tually executed. Selectivity estimation typically relies on 
some approximate knowledge of the database contents. 

For a query involving a single attribute of a relation, its 
result size depends on the data distribution of that attribute 
in the database. Proposals to approximate single-attribute 
data distributions include histogram-based techniques [9] 
(the adoption of the uniform distribution assumption [ 181 
being a special case of them), sampling [ 111, and parametric 
techniques [ 191. The main advantages of histograms are that 
they incur almost no run-time overhead, they do not require 
the data to fit a probability distribution or a polynomial and, 
for most real-world databases, there exist histograms that 
produce low-error estimates while occupying reasonably 
small space (in the order of a few hundred bytes in acatalog). 
Hence, they are the most commonly used form of statistics 
in practice (e.g., they are used in DB2, Informix, Ingres, 
Microsoft, Oracle, Sybase), and have been studied quite 
extensively in the literature [4,5,6,9, 13, 14, 161. Our own 
earlier work has resulted in a taxonomy that includes both 
the old and several new classes of histograms, some of the 
latter being far more accurate than the former [la]. 

For a query involving two or more attributes of the same 
relation, its result size depends on the joint data distribu- 
tion of those amibutes;i.e., the frequencies of all com- 
binations of attribute values in the database. Due to the 
multi-dimensional nature of these distributions and the large 
number of such attribute value combinations, direct approx- 
imation of joint distributions can be rather complex and ex- 
pensive. In practice, most commercial DBMSs adopt the 
attribute value independenceassumption [2,18]. Under this 
assumption, the data distributions of individual attributes in 
a relation are independent of each other and the joint data 
distribution can be derived from the individual distributions 
(which are approximated by one-dimensional histograms). 

Unfortunately, real-life data rarely satisfies the attribute 
value independence assumption. For instance, functional 
dependencies represent the exact opposite of the assump- 
tion. Moreover, there are intermediate situations as well. 
For example, it is natural for the salary attribute of 
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the Employee relation to be ‘strongly’ dependent on the 
age attribute (i.e., higher/lower salaries mostly going to 
older/youngerpeople). Making the attribute value indepen- 
dence assumption in these cases may result in very inaccu- 
rate approximations of joint data distributions and therefore 
inaccurate query result size estimations with devastating ef- 
fects on a DBMS’s performance [2]. We are aware of only 
one proposal to replace this assumption, which involved the 
construction of multi-dimensional equi-depth histograms 
[12]. But, in light of the new and far more accurate his- 
togram classes, this proposal seems limited and the heuristic 
technique proposed for the partitioning of two-dimensional 
spaces is often ineffective. 

Motivated by the above problems, we have investigated 
several ways to.approximate joint data distributions in rel- 
atively accurate fashion. This paper contains the results of 
this effort and makes the following contributions: 

1. All histograms in our earlier, one-dimensional, tax- 
onomy [la] are generalized to multiple dimensions. 
The newer classes of histograms that we have intro- 
duced prove to be much more accurate in capturing 
joint data distributions than the traditional equidepth 
histograms. 

2. A novel technique is provided for partitioning a multi- 
dimensional space into a given number of partitions 
while satisfying various mathematical constraints. 
This technique is compared with a technique based on 
Hilbert-numbering and a generalization of the tech- 
nique of Muralikrisbna and Dewitt [12] and shown 
to result in significantly better multi-dimensional his- 
tograms. 

3. The Singular Value Decomposition (SVD) technique 
from linear algebra [lo] is introduced as a mechanism 
to approximate two-dimensional joint data distribu- 
tions by a small number of individual data distribu- 
tions. 

An extensive set of experiments demonstrates the advan- 
tages and disadvantages of various approaches and their 
benefits compared to the independence assumption. 

2 Problem Formulation 

We provide definitions in the context of a set of n real- 
or integer-valued attributes Xi (i = l..n) in a relation 
R. These definitions can be extended to non-numerical 
attributes by first converting values in their domains into 
floating point numbers. 

2.1 Data Distributions 

The value set Vi of attribute Xi is the set of values of Xi 
that are present in R. Let Vi = {vi(k): 1 5 k 5 Di ), 
where Vi(k) < vi(j) when k < j. The spread si(k) of 
vi(k) is defined as si(k) = vi(k + 1) - Vi(k), for 1 2 
i 5 Di. (We take si(Di) = 1.) The frequency fi(k) 

of Vi(k) is the number of tuples in R with Xi = Vi(k). 
The area ai of tki(k) is defined as ai = fi(k) x 
si(k). The data distributiorl of Xi is the set of pairs 7i = 
{ (ui(l)t fi( I)), (tit(2). fi(z))t. . .y (ui(Di)tfi(Di)) I* 

The jointfrequency f(kt . .., k,) of the value combina- 
tion < vr(kr), .., rn(k,) > is the number of tuples in R 
that contain Vi(ki) in attribute Xi, for all i. The joint 
data distribution 7, ,_., ,, of ,Yt. .., X, is the entire set of 
(value combination, joint frequency) pairs. Often we refer 
to the individual data distributions of each of the attributes 
as their marginal distributions. A natural way to repre- 
sent joint data distributions is using multi-dimensional fre- 
quency matrices (tensors). The frequency matrix .TI ,..,” for 
Xi’s is a D1 x . . x D, matrix (tensor) whose [ICI, .., k,] 
entry is equal to f(kt, .., k”). We refer to such matrices 
as n-dimensional marrices in this paper. We can similarly 
define one-dimensional frequency vectors corresponding to 
the marginal distributions of Xi ‘s. 

The joint frequency distributioncan be visualized as a set 
of points in a multidimensional space, with each attribute 
corresponding to an axis. For each combination of attributes 
values that is present in the relation, there is a point in the 
space whose coordinates are equal to the attribute values. 
This is illustrated in Figure 1 for the two-dimensional case’. 
The numbers next to the points denote the joint frequencies 
of the corresponding attribute-value pairs. 
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Figure 1: Multi-dimensional Data Distribution 
Note that thejoint data distributionis multi-dimensional, 

can be very large for a large database relation, and differs for 
each combination of attributes (of which there can be many 
in a database). Due to these complexities, it is impractical 
to store the entire joint data distribution of the relation and 
is considered expensive even to approximate it. In the next 
section, we define an important but rare characteristic of 
certain joint data distributions that makes them simpler to 
approximate. 

2.2 Attribute Value Independence 

Definition 2.1 A set of attributes Xi, 1 5 i 5 R have 

’ Although our formulation and techniques are presented for the gen- 
eral, multi-dimensional case, for simplicity. all our examples are two- 
dimensional. 



mutually independent data distributions if 

V 15 i-j < II, V 15 k,m 5 Di, 15 1,n < Dj. 

f( . . . . k ,..., l,...) f( . . . . m . . . . . I ,...) 
ft...*k, . . . . n ,...) = f( . . . . rn? . . . . n ,... )’ (‘) 

where C and rn appear in the ith argument off and 1 and 
n appea in the jth argument of f. In other words if the 
tuples of a relation are grouped based on their values in 
one of the attributes, the data distribution of the values in 
the other attribute within each group is identical up to a 
constant factor. 

Let T be the number of tuples in relation R, 3i be the 
1 X . . . X Di X .., x 1 frequency vector of Xi and 3i,..,” 
be the joint frequency matrix of all Xi, 1 _< i 5 n. Then, 
Definition 2.1 implies that 

1 
3 - l,..,n = rp-, X3] x . ..x3*.* (2) 

These equations are illustrated in the following example. 
Example 2.1 Let Xt and X2 contain three values each, 
with the following joint and marginal frequency matrices: 

3.2 = ( 95 38 ‘9 ). 

One can easily verify that (1) holds. For instance, 
W, l)/f(2,3) = 30/6 = f(3,l)lf(3,3) = 15/3. 
Likewise, summing up all frequencies in any matrix yields 
T = 152, so (2) holds as well: 

2.3 Query Result Size Estimation 

In this paper, we mostly focus on queries containing predi- 
cates of the form (4 &. .&P,,), where Pi is a selection on at- 
tribute Xi. The result size of such a query can be computed 
from the joint data distributionof the participating attributes 
as the sum of the frequencies of the attribute-value pairs that 
satisfy the query predicate. Any approximation to the joint 
frequency matrix would generate a corresponding approx- 
imation to the query result size as well. One-dimensional 
histograms are very common tools for single-attribute dis- 
tribution approximation and are central to this paper, so they 
are introduced in the following section. 

*he=. x is overloaded to indicate both multiplication of multidimen- 
sional matrices and multiplication of a scalar with such a matrix. 

3 Histograms 

In this section, we define one-dimensional histograms and 
briefly describe a taxonomy presented in our earlier work 
[ 161. Extensions to multi-dimensional histograms are de- 
fined later in the paper. 

A histogram on an attribute X is constructed by using 
a partitiothg rule to partition its data distribution into $ 
(2 I) mutually disjoint subsets called buckers and approx- 
imating the frequencies and values in each bucket in some 
common fashion. In particular, the most effective approach 
for values is the uniform spread assumption [la], under 
which attribute values are assumed to be placed at equal in- 
tervals between the lowest and highest values in the bucket. 
Likewise, the most effective approach for frequencies is the 
uniformfrequency assumption, under which the frequencies 
in a bucket are approximated by their average. 

As examples, consider the well-known equi-width and 
equi-depth histograms. They both group contiguous ranges 
of attribute values into buckets but differ in the partitioning 
rule they employ. In an equi-width histogram, all buckets 
are assigned value ranges of equal length; in an equi-depth 
histogram, all buckets are assigned the same total number 
of tuples. 

We have introduced several new classes of (one- 
dimensional) histograms with significant differences in their 
characteristics and accuracies. Our effort to understand all 
possibilities has generated a taxonomy that allows us to 
systematically deal with both the old and new histogram 
classes [16]. This taxonomy is based on four orthogonal 
characteristics that uniquely identify a histogram class and 
are described below. 

Sort Parameter: This is a parameter whose value for 
each element in the data distributionis derived from the cor- 
responding attribute value and frequencies. All histograms 
require that the sort parameter values in each bucket form a 
contiguous range that has no overlap with any other bucket. 
Attribute value (V), frequency (F), and area (A) are the 
proposed sort parameters. 

Partition Class: This indicates any restrictions on the 
number of elements in buckets. Two important classes are 
serial-which place no restrictions, and end-biased-which 
requires at most one non-singleton bucket. These classes 
differ in their accuracy (highest for serial) ahd storage effi- 
ciency (highest for end-biased). 

Source Parameter: It captures the property of the data 
distribution that is the most critical in an estimation problem 
and is used in conjunction with the next characteristic in 
identifying a unique partitioning. Spread (9, frequency 
(F), and area (A) are the most useful source parameters. 

Partition Constraint: The partition constraint is a 
mathematical constraint on the source parameter that 
uniquely identifies a single histogram: 
Equi-sum: In an equi-sum histogram, the sum of the source 
values in each bucket is approximately the same. 



V-Optimal: Define the variance of a histogram to be the 
weighted sum of the variances of its source parameter in 
each of the buckets, with the weights being the number 
of attribute values grouped in the bucket. The v-oprimaf 
histogram on an attribute is the histogram with the least 
variance among all the histograms using the same number 
of buckets. 
Ma&l@ In a mardiffhistogram, there is a bucket boundary 
between two source parameter values that are adjacent (in 
sort parameter order) if the difference between these values 
is one of the /3 - 1 largest differences. 
Compressed: In a compressed histogram, the h highest 
source values are stored separately in h singleton buckets; 
the rest are partitioned as in an equi-sum histogram. We 
have chosen h to be the number of source values that (a) 
exceed the sum of all source values divided by the number 
of buckets and (b) can be accommodated in a histogram 
with 9 buckets. 

By making different choices for each of these orthogo- 
nal histogram characteristics, one obtains different classes 
of histograms. Following [ 161, we will use p(w) to denote 
a histogram class with partition constraint p, sort param- 
eter s, and source parameter u. Under this notation, for 
example, the equidepth and equiwidth histograms become 
equisum(V,F) and equisum(V,S) histograms, respectively. 

Using the above framework for histograms, we now turn 
to the main theme of this paper, which is approximating 
joint data distributions. 

4 Attribute Value Independence Assumption 
@VI) 

The attribute value independence assumption was intro- 
duced in the context of the System-R optimizer [ 181. Under 
this assumption, all attributes are treated as if independent 
of each other (Definition 2. I), regardless of the actual data 
dependencies. The data distribution of each attribute is 
approximated separately using any of the one-dimensional 
histograms in the taxonomy presented above or any other 
technique@ in this paper). 
Usage: Let the predicate P be of the form (PI&.&P,), 
where Pi is a selection on attribute Xi. Let Hi be the his- 
togram on Xi and T be the relation cardinality. First, the 
estimated result size Si of applying Pi on the relation based 
on Hi is calculated. Then, an estimate for the result size S 
of applying P on the relation can be obtained through 

s1 x . . x s, 
s= $I+, 7 (3) 

which is a straightforward consequence of formula (2). 
Comments: An advantage of this approach is that one can 
use goodquality one-dimensional histograms, which are 
inexpensive to compute, store, and maintain. The main dis- 
advantage is that the assumption is almost always wrong, 
and therefore it results in approximate joint data distribu- 

tions (and consequently query result sizes) that are very far 
from the actual ones. 

Example 4.1 Consider the joint frequency matrix on the 
left: 

( 41 ” Y) ( i;3 fi ‘%) 

It is easy to verify that the marginal distributions of this 
matrix are the same as those in Example 2.1. Hence, their 
joint frequency matrix computed under the attribute value 
independence assumption is the one given in that example 
and repeated above (on the right) for clarity. The differences 
between the two matrices are obvious. 

Next, we consider more accurate techniques that attempt 
to capture dependencies between the attributes. 

5 Multi-Dimensional Histograms (MHIST) 
A multidimensional histogram on a set of attributes is con- 
structed by partitioning the joint data distribution into 0 
mutually disjoint buckets and approximating the frequency 
and value sets in each bucket in a uniform manner as fol- 
lows. 

Vahes: The value domain is approximated by an ex- 
tension of the uniform spread assumption (Section 3). Let 
the snvrlkst and lqat Xi V&KS in bucket B be mini and 
mati respectively. Then, we can visualize the bucket as 
an n-dimensional rectangle with two extreme comers be- 
ing < mini, .., min, > and < maxl, ..,max,, >. Let 
di be the number of distinct values in attribute X; that are 
present in B. Let the L’th approximate value in dimension i 
(obtained by applying the uniform spread assumption along 
that dimension) be denoted by u:(k). The actual data points 
in B are then approximated by all possible combinations 
< qh), .., I&(&) >, where 1 5 ki < dj. 

Frequencies: All histograms make the uniform fre- 
quency assumption and approximate the frequencies in 
a bucket by their average. Thus, for example, if F is 
the sum of all frequencies in B, each approximate value 
< V{(h), .., uk(/zn) > is associated with an approximate 
frequency equal to F/(dl x . . x dn). 

Example 5.1 To illustrate the above approximations, con- 
sider the actual and approximate values and frequencies in 
a bucket shown in Figure 2. The average frequency of the 
bucket is obtained by dividing the sum of the frequencies 
(3 15) by the total number of approximate values inside the 
bucket (4 x 5 = 20). 

Buckets in multi-dimensional histograms need to keep 
the following information: number of tuples and for each 
dimension, the low and high values, as well as the number 
of distinct values in that dimension. 
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Figure 2: Approximations within a multi-dimensional 
bucket 

Next, we identify several classes of multi-dimensional 
histograms based on different partitioning rules. The result- 
ing histograms can be classified using the same parameters 
as in the one-dimensional taxonomy. While the partition 
class, source parameter, and partition constraint extend in 
a straightforward manner to the multi-dimensional case, 
multi-dimensional sort parameters introduce a serious “or- 
dering” problem, which is described below. 

Scalar sort parameters (i.e., F, A, or Vi) are totally or- 
dered, so in those cases a bucket simply corresponds to a 
range of values and groups elements that are contiguous 
in the order of the sort parameter. A multidimensional 
sort parameter, e.g., combination of attribute values (V), is 
more difficult to handle because it requires finding arbitrary 
nonoverlapping regions in n-dimensional space, of which 
there is a very large number. We solve this issue using two 
separate techniques as follows. 

Hilbert Numbering: One-dimensional histograms with 
V as the sort parameter were shown in our earlier work to 
be highly accurate mainly because they group physically 
nearer values into the same bucket and thus achieve a good 
approximation of the value domain. A well-known tech- 
nique in spatial databases for capturing the proximity of 
multi-dimensional values in a linear order is to use a space- 
filling curve, such as the Hilbertcwve [3,7,8]. We propose 
using the Hilbert numbering of attribute value combinations 
as a sort parameter (denoted by H) to order the data and 
thus once again reduce the problem to a single dimension. 

This scheme (called HILBERT) is illustrated in Figure 3, 
which shows a MaxDiff(I4.F) partitioning of Figure 1 into 
six buckets. Note that this technique may generate non- 
rectangular regions, so the corresponding buckets (which 
must be rectangular) may end up overlapping. By the very 
nature of any linear ordering of multi-dimensional data, it is 
often the case that two points that are adjacent to each other 
in the n-dimensional space may be distant in the linear or- 
dering (this problem is much worse for higher dimensions). 
Hence, the resulting histograms may not be able to capture 
proximity in the value domain accurately. 

Rectangular Partitioning: In the second class of tech- 
niques, the n-dimensional space is approximated directly by 
using non-overlapping n-dimensional rectangular regions 
computed via heuristics. 

Figure 3: MaxDiff(H,F) (Hilbert) histograms 

In order to motivate our technique, we lirst describe a 
generalization of the approach proposed in [12] for equi- 
deprh partitioning of a two-dimensional data distribution 
‘T into /3 buckets. Our generalization (called PHASED in 
this paper) which extends their algorithm to other partition 
constraints, source parameters, and to higher dimensions is 
described below (the ai’s are nearly equal integers whose 
product is approximately 3.). 
Step 1: The n-dimensional space is partitioned along one 
of the dimensions, say Xt . into at equi-depth buckets. 
Step i, i = 2..n: In step i, each of the regions l’j found 
in Step i - 1 is partitioned along the attribute Xi into oi 
regions. The resulting partitions in step n constitute the 
final buckets. 

This algorithm has some drawbacks. First, it can gener- 
ate a very limited set of histogram bucketizations and hence 
may miss better quality histograms. Second, since the or- 
der in which the dimensions are to be split is decided only 
once at the beginning and arbitrarily, this technique could 
result in poor partitionings. This is mainly because a good 
one-dimensional split along the marginal data distribution 
may still result in a very poor partitioning of the joint data 
distribution, especially when the joint data distribution is 
large. 

Motivated by these limitations, we proposed a new tech- 
nique (called MHIST) which at every step chooses and par- 
titions the most ‘iztitical” attribute as described below. At 
every step, this algorithm deals with a set P of partial 
joint data distributions that are subsets of the entire joint 
data distribution. Initially, P contains just the entire joint 
data distribution. The following steps are repeated until 
the number of partial distributions in P equals the number 
of buckets available, at which point each of them forms a 
bucket in the histogram. 

Step 1: First, from the set P, we choose the distribution 
7’ that contains an attribute Xi whose marginal distribu- 
tion in 7’ is the mosr in need of partitioning. For the 
V-Optimal histograms, this means a marginal distribution 
that has the maximum variance of source parameter values; 
for the MaxDiff histogram, one with the largest difference 
in source values between adjacent values; and for the Equi- 
Sum, Compressed histograms, one with the largest sum of 
source values. 

490 



Step-2:Next, 7’ is split along Xi into a small number@) of 
buckets. The resulting p new partial joint data distributions 
replace 7’ in set P. 

Clearly, different values of p may result in different his- 
tograms. The impact of p on histogram accuracy is studied 
in the experiments section. We refer to the MHIST tech- 
nique using p-way splits as MHIST-p. 

The two schemes (PHASED with ol = 2. ~2 = 3 and 
MHIST-2) are graphically illustrated in Figure 4, which 
shows a MaxDiff(V,F) partitioning of the space of Figure 1 
into six buckets. The numbers on the dashed lines denote 
the order in which the corresponding splitting took place. 
Note that MHIST-2 avoids grouping highly different fre- 
quencies (which,is the goal of MaxDitf), while due to its 
simplified bucketization scheme, PHASED uses up buck- 
ets for grouping equal frequencies and fails to result in an 
accurate MaxDiff histogram. 

Figure 4: Two-dimensional MaxDiff(V,F) histograms 

By picking a dimension based on its criticality to the 
partition constraint at each step (thus allowing the same di- 
mension to be picked several times, for example), MHIST-2 
often results in a desirable histogram. It is also clear that 
this algorithm can generate far more types of partitionings 
than the older approach. These comments are empirically 
verified in our experiments in Section 7. 
Usage: Let the selection predicate P be of the form 
(Pi&. . .&P,,), where Pi is a selection on attribute Xi. 
Assume that an n-dimensional histogram exists on the set 
of attributes {Xi}. In principle, P is directly applied to each 
histogram bucket and the (partial) result sizes are added to 
yield an estimate for the overall result size. 
Comments: By trying to approximate the joint frequency 
distribution directly, multidimensional histograms have the 
potential of capturing attribute value dependencies with 
high accuracy. In fact, we have shown that under certain 
assumptions, the V-Optimal(F,F) histograms are optimal in 
any dimensionality, thus generalizing our earlier result for 
the one-dimensional case [6]. The main disadvantage of 
multidimensional histograms is that they are often quite 
expensive to construct. Also, for relation with several at- 
tributes, there is an exponential number of joint data dis- 
tributions that one might want to directly approximate, so 
choosing among them is nontrivial. 

6 Singular Value Decomposition (SVD) 
6.1 Mathematical Background 

The transpose of a matrix .\I is denoted by MT. A square 
matrix with OS in all its non-diagonal entries is called a 
diagonal matrix. Let J be an M x N matrix with M 2 
N. A singular value decomposition (SVD) of J is any 
factorization of the form: 

J = I!- D VT, (4) 

where U is an M x N matrix, D is an N x N diagonal 
matrix, and V is an N x N matrix. The entries of U and V 
are all between -1 and 1. Several such factorizations are 
possible. It has been shown that there exist matrices U and 
V such that the diagonal elements of D are non-negative 
and in descending order. Assume that all instances of SVD 
in this paper have such a property. Let di be the ith diagonal 
entry in D. The quantities di are called the singular values 
of J, and the columns of Zr and V are called the left and 
right singular vecrors, respectively. SVD is illustrated in 
the following example. 

ExampIe6.1 Let J = ( ‘“I: ‘y ). Thismatrixhasthe 

following SVD: 

( 
-0.99 0.05 100.61 0 -0.99 -0.10 
-0.05 -0.99 >( 0 6.56 >( 0.10 > -0.99 

For a two-dimensional matrix M, let &M(i) be the hori- 
zontal vector corresponding to the ith row of M and CM(~) 
be the vertical vector corresponding to the ith column of 
M. It follows from (4) that J can be written in terms of 
several one-dimensional vectors [ 171. That is, 

J = edt Ccr(k) l+(k). 
k=l 

(5) 

It follows that any two-dimensional matrix can be com- 
puted from its singular vectors and singular values. This 
observation motivates our usage of SVD in approximating 
joint data distributions, as described next. 

6.2 Technique 

Consider a joint data distribution7 on two attributes Xt and 
X2, with value-set sizes of DI , D2 (01 1 D2), respectively. 
Let J be the corresponding joint frequency matrix. Then, 
I is approximated based on the following steps: 

1. 

2. 

Compute the SVD of (a sample of) J = U D VT 
using well-known algorithms [ 171 for this purpose. 

For some small number C <= N, store accurately the 
k highest singular values. 
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3. Construct one-dimensional histograms on the 2k row 
and column vectors corresponding to these terms. In 
principle, a different histogram from the taxonomy can 
be used for each vector, but in practice, it makes sense 
to use the same one for all of them. 

The histograms constructed in step 3 can be plugged into 
formula (5) in place of the row and column vectors to obtain 
an approximation of J and consequently of the desired joint 
data distribution. 

Elaborating briefly on step 2 above, it is clear that for 
high-cardinality attributes (high N), the matrix size will 
also be very high, making the approximation of all singular 
vectors a rather impractical solution. It turns out that when 
the attributes are highly dependent or nearly independent, 
the distribution of di values tends to be highly skewed (a 
few high and mostly very small values) [lo]. As a result, 
by storing histograms for only the first k terms of the SVD. 
one can get a reasonably good approximation of the joint 
frequency matrix. We refer to a specific instance of SVD- 
based approximation using k terms as the SVD-k technique. 
Results from experiments showing the sufficiency of a small 
h, e.g., k=5, are presented in Section 7. 
Usage: It can be easily shown that, one can use (5) to ex- 
press the selectivity of a predicate P l&P2 as the sum of k 
terms: the i’th term is d;ciri, where ci and ri are the selec- 
tivities of 9 and 9 computed from histograms on Cu(i) 
and Rv(i) respectively, and di is the i’th singular value. 
Comments: This technique requires only one-dimensional 
histograms, which are quite inexpensive to compute and 
store. Unlike the attribute independence assumption, this 
technique makes a serious effort to accurately capture data 
dependencies, so its estimates should be more accurate. Its 
main disadvantage is that it can not be extended to higher di- 
mensions (> 2) [I]. Like the multi-dimensional histograms 
case, systems employing SVD also require advance knowl- 
edge of important combinations of attributes. 

7 Experimental Evaluation 
In order to study the accuracy of various techniques in 
estimating the result sizes of multi-attribute predicates, we 
conducted several experiments over a testbed containing 
synthetic data and queries. Due to space limitations we our 
experiments on real-life and TPC-D data appear elsewhere 
r151. 

7.1 Experiment Testbed 

Techniques: The following techniques were studied: AVI 
(Section 4). HILBERT, PHASED, MHIST-p with p=l.. 10 
(Section 5), and SVD-k with k = 1 ..lO (Section 6). The 
histograms required in these techniques were taken from 
the taxonomy. AVI and SVD-lc require multiple one- 
dimensional histograms to be built, which can in general 
&long to different classes. For our experiments we assume 

that all histograms are taken from any single class in the 
taxonomy. 

The sample size (s) for the histogram construction was 
2000. 10000, or equal to the number of tuples (7’) in the 
relation. Each technique was given the same storage space 
B, which ranged from 400 to 4000 bytes. All histograms in 
a given technique divide this space equally amongst them. 
The relative performance of various techniques was fairly 
constant over different values of sample size and storage 
space. Hence, we present the detailed results for the default 
values (s = 2000. B = 800), chosen because they are small 
enough to be practical and also lead to reasonably accurate 
estimates for the good-quality techniques. 
Data Distributions: Several synthetic joint data distribu- 
tions were generated by choosing different value domains 
and frequencies, as described below. The number of relation 
tuples was fixed at IM (million) for the two-dimensional 
data and 51M for higher dimensions. The number of at- 
tribute values (D) in all n attributes was identical and varied 
from 50 to 200, and was chosen such that the total number 
of combinations does not exceed the number of tuples. 

Frequency Sets: Several different types of dependencies 
were modeled using the joint frequency matrices. Since the 
observations remained the same in each case, we present 
a single broad class of joint frequency matrices in this pa- 
per. The motivation behind this distribution (called 2” 
for n-dimensions) comes from the fact that when the at- 
tributes have dependencies between them. there will often 
be a few combinations of attribute values that occur much 
more frequently in the relation than others. We model this 
phenomenon by populating the joint frequency matrix from 
a Zipf distribution [20], and varying the level of depen- 
dency by means of the t parameter of the Zipf distribution. 
For higher values of the 2 parameter, there are a few very 
high frequencies implying strong dependence between the 
attributes. For small values of t (close to 0). all frequen- 
cies tend to be similar, implying that all attribute-value 
combinations are equally likely to appear in the relation 
(independence). 

Value Sets: All attribute values were nonnegative inte- 
gers, and spreads were generated according to several dis- 
tributions given in [ 161. In this paper we present the results 
for cuspmin distribution which consists of Do/2 increasing 
spreads followed by D/2 decreasing spreads. 

The following notation is used to represent various 
joint data distributions arising out of these combinations: 
ualue_seto...ualue_set, .Z”( D, z). 
Queries and Error Formulas: All techniques were evalu- 
atedforrangepredicatesof the form (XI 5 ot)&..&(X, 5 
a,), where ai is a constant in ‘Di, the domain of Xi. The 
query set contains queries over all Possible values in the 
joint value domain. For each query, we find two forms of 
error: error as a percentage of the result size (Es) and er- 
ror as a percentage of the input relation size (ET). When 
considering a set of queries together, we compute the av- 
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erages of the above errors over the query set (Es and ET, 
respectively). Since both error measures led to identical 
conclusions about the relative performance of the studied 
techniques, we only present results for the Es error. 

We first present the results of experiments on two- 
dimensional queries for all the techniques and then present 
the results for higher dimensions. 

7.2 Effectiveness of Histograms 

The relative performance of various histograms was fairly 
constant over a wide range of data and query sets. Hence, 
we present results from the cusp~min.cusp~min.Z2(50, I) 
data distribution. Table 5 contains the errors (as a per- 
centage of the result size) of the techniques using various 
histograms. The horizontal line separates the consistently 
good-quality histograms from the poor quality histograms. 
There are two main conclusions to be drawn from this ta- 
ble. First, the most accurate histograms in each technique 
belong to the MaxDiff(V,A) or V-Optimal(V,A) classes3. 
This is because of the effectiveness of the three param- 
eters: A (area) in capturing the skew in value and fre- 
quency domains, MaxDiff and V-Optimal in grouping only 
similar spreads/frequencies, and V in capturing the value 
domain. Since the MaxDiff(V,A) histograms are less ex- 
pensive than the V-0ptimahV.A) histograms [16], all the 
techniques in the remaining experiments use the MaxD- 
iff(V,A) histograms. Second, for most histograms, AVI 
performs the poorest while the other techniques perform 
significantly better. This observation is corroborated by the 
remaining experiments in this paper. 

7.3 Effect of Dependencies 

In this section, we study the effectiveness of the studied 
techniques in handling data dependencies, the main concern 
of this paper. Dependence is increased by increasing the r 
parameter of the Z* distribution. 

Figures 7 and 8 depict the effects of k (number of SVD 
terms retained) and p (number of partitions in a split) param- 
eters on the SVD-k and MHIST-p techniques, respectively, 
with dependency (:) on the x-axis and error (Es) on the 
y-axis. Finally, Figure 9 compares the accuracy of the best 
SVD and MHIST techniques thus identified, with the other 
techniques. The following conclusions can be drawn from 
these figures. 

SVD-k (Figure 7): Among the SVD-k algorithms, SVD-5 
has the best performance. For k = 10, although several 
terms are captured, the storage space allocated for each of 
them is smaller and the accuracy of approximating the most 
important terms in the distribution is low. 
MOIST-p (Figure 8): Among the MHIST-p algorithms, 
MHIST-2 has the best performance. The reason stems from 

‘The order of performance is in fact almost identical to our earlier 
results for single-attribute queries [ 161. 

local-vs-global considerations. For the MaxDiff constraint, 
a high value of p results in partitioning the attribute with 
the largest difference between any neighboring source val- 
ues at several points. While one of these partitions falls 
exactly at the largest difference, the remaining ones may be 
at points that exhibit much smaller differences than those 
found in other attributes, leaving fewer buckets to handle 
those. Clearly, this problem does not arise for p = 2 and is 
small for p = 3. 

Based on these observations, we have chosen MHIST-2 
and SVD-5 as the best representatives of the MHIST, SVD 
techniques and present experimental results only for them 
in the rest of the paper. 
All techniques (Figure 9): It is clear that despite using 
high-quality one-dimensional histograms, the AM tech- 
nique results in very high errors. Among other techniques, 
PHASED and SVD-5 have nearly similar performances 
while MHIST-2 and HILBERT are noticeably better. Over- 
all, MHIST-2 performs the best. Further analysis of each 
case showed the following: first, the quality of partitions ob- 
tained by MHIST-2 was significantly better than PHASED, 
and second, HILBERT incurs errors because of overlapping 
grouping of values and the unavoidable loss of proximity in 
linear ordering. 

Interestingly, all techniques are more effective at han- 
dling low and high dependencies than intermediate levels 
(2 = 2). For high values of skew, there are few frequen- 
cies that are very high and, therefore, captured accurately 
by the MaxDiff(V,A) histograms, while the rest of tk fre- 
quencies are very low and grouping them into the remaining 
buckets causes small errors. For low values of skew, since 
frequencies are all nearly the same, any grouping of them 
is unlikely to result in high errors. For t around 2, there 
are several frequencies in the Zipf distribution that are dis- 
similar and significantly high, and hence cause high errors 
when grouped with each other. 

7.4 Sensitivity Analysis 

In this section we study the effect of storage space (B) al- 
located on the relative performance of various techniques. 
Figure 10 depicts the performance curves for these tech- 
niques on the cuspmin.cuspmin.2’(2,2) data distribution. 
The errors (Es) are shown on the y-axis and the space (B) 
on the x-axis. 

It is clear from this figure that, all technique, except 
AVI, benefit significantly from increases in space. The 
effect of B on AVI is small because, the one-dimensional 
histograms AVI capture the marginal distributions nearly 
100% accurately even for small amounts of space and any 
further increase in space does not affect their accuracy. 
Since the other techniques capture the joint data distribution 
more accurately as B increases, their errors decrease. At 
very large amounts of space all these techniques will have 
nearly 0 errors (most probably they will never become 0 
because they are computed from a sample). The SVD 
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Histogram 

Uniformity (System-R) 
Equiwidth 
Equidepth 
Compressed(V,F) 
Max&T(V.F) 
V-Optimal-Serial(V,F) 
Compressed(V.A) 
MaxDiff(V,A) 
V-OptimaLSerial 

% Error (Es) 
AVI 1 SVD-5 ; PHASED 1 HILBERT 1 MHIST-2 

89.3 1 87.2 ; 89.3 ) 89.3 1 89.3 

Figure 5: Effect of histc Dgrams on the accuracy of various techniques 

54.2 1 52.8 57.5 52.8 
44.4 t 40.6 47.5 40.6 

26.4 1 22.3 24.7 17.9 
24.8 1 21.9 22.1 14.9 
23.7 21.1 22.8 13.2 
21.7 

/ 
) 17.3 14.8 9.7 

17.4 ( 17.2 12.1 6.6 
16.5 i 16.2 12.0 6.4 

-SW-3 
---.---.SVD-10 
---c-s- S”,,-5 

Figure 7: Effect of k on SVD-b Figure 8: Effect of p on MHIST-p 

errors do not fall as low even for B = 4000 because SVD 
approximates only few of the terms in the SVD expansion. 
Over all, in an intermediate range of B, the techniques 
still retain their relative order of accuracy while converging 
towards each other. 

7.5 Effect of dimensional@ (n) on accuracy 

In this section, we study the performance of various tech- 
niques for higher-dimensional queries (n 2 2). Figure 11 
contains the storage space on the x-axis and errors (Es) 
on the y-axis for the MHIST-2 technique for various di- 
mensions. Figure 12 contains the errors for n = 3 for 
the MHIST-2, AVI and PHASED techniques. Note that, 
as n increases, the errors due to MOIST-2 increase, but 
by increasing storage space these errors can be effectively 
reduced. The increase in errors is sharper between 2 and 
3 than 3 and 4 because, at higher dimensionalities, even 
with 5M tuples, the skew in the data distribution is limited 
due to the large number of attribute value combinations. 
Space has a similar effect on PHASED, but as in the earlier 
experiments, PHASED performs worse than MHIST-2. In- 
terestingly, space does not seem to have any effect on AVI 
errors. This is because, the one-dimensional histograms in 
AVI were 100% accurate in capturing the value domains 
even at small storage spaces. Hence, the errors are all due 
to the complete lack of dependency information in AVI for 
any amount of space. The main conclusion is that one can 
use MHIST-2 histograms for higher dimensions simply by 
allocating more space. 

r-r 
Time Taken (msec) 

Technique Average 1 Maximum 

AVI 287 1 319 1 

Figure 6: Construction costs 

0 I 2 3 * 
ckpmdaa (I panmeter) 

Figure 9: Effect of Dependence on all 
techniques 

7.6 Comparison of Co&r&ion Costs 

Table 6 illustrates the difference in the construction costs 
of various techniques. It contains actual timings (in mil- 
liseconds) collected from running the corresponding algo- 
rithms on a SUN-SPARCIO, for various techniques using 
800 bytes of space. The times listed are averages over 
five runs of the computation program on a lightly loaded 
machine and do not include the time taken to compute the 
sample. A sample of 2000 tuples was used as the input. 
AVI incurs the least time because it only needs to compute 
two one-dimensional histograms. SVD-5 incurs the high- 
est time because of the cost of SVD expansion (mainly) 
and computing 10 histograms. HILBERT, PHASED, and 
MHIST-2 are more expensive than AVI because of various 
intermediate computations (Hilbert numbers for HILBERT 
and several one-dimensional partitionings for PHASED, 
MHIST-2). 

In conclusion, compared to the cost of collecting the 
sample from the large relation (required for all techniques) 
which could be in the order of seconds, these costs (which 
are all less than 1 second) are almost negligible and do not 
affect the practicality of any of these techniques. 

8 Conclusions 

In this paper, we have proposed several techniques based 
on multi-dimensional histograms and SVD as alternatives 
to the attribute value independence assumption. We have 



Figure 10: Effect of space for n = 2 
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Figure 11: Effect of space and dimension 
on MHIST-2 

conducted an extensive set of experiments to study the per- 
formance of various techniques and arrived at the following 
conclusions: 

l The multi-dimensional MaxDiff(V,A) histograms 
computed using the MHIST algorithm are the most 
accurate among all techniques (including earlier ap- 
proaches for multi-dimensional histograms). 

l SVD- and HILBERT curve-based techniques are less 
accurate than the multi-dimensional histogams com- 
puted using MHIST-2. A positive characteristic of 
these two techniques is that they use one-dimensional 
histograms, which are already implemented in nearly 
all commercial systems. 

l Traditional techniques making the attribute value in- 
dependence assumption (as in nearly all commercial 
systems) incur very high errors in selectivity estima- 
tion for predicates on multiple attributes. 

Overall, we believe that the attribute value indepen- 
dence assumption can be successfully abandoned in real- 
life systems and be replaced by multi-dimensional his- 
tograms computed using the MHIST technique. Based 
on the performance-cost trade-offs and the applicability of 
MHIST for arbitrary dimensions, we believe that it is the 
most appropriate technique for this purpose. 
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