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Abstract

We explore how to organize a text database hi-
erarchically to aid better searching and browsing.
We propose to exploit the natural hierarchy of
topics, or tazonomy, that many corpora, such as
internet directories, digital libraries, and patent
databases enjoy. In our system, the user navi-
gates through the query response not as a flat
unstructured list, but embedded in the familiar
taxonomy, and annotated with document signa-
tures computed dynamically with respect to where
the user is located at any time. We show how to
update such databases with new documents with
high speed and accuracy. We use techniques from
statistical pattern recognition to efficiently sepa-
rate the feature words or discriminants from the
noise words at each node of the taxonomy. Using
these, we build a multi-level classifier. At each
node, this classifier can ignore the large number
of noise words in a document. Thus the classifier
has a small model size and is very fast. However,
owing to the use of context-sensitive features, it
classifier is very accurate. We report on experi-
ences with the Reuters newswire benchmark, the
US Patent database, and web document samples
from Yahoo!.

1 Introduction

The amount of on-line data in the form of free-format
text is growing extremely rapidly. As text reposito-
ries grow in number and size and global connectiv-
ity improves, there is a pressing need to support ef-
ficient and effective information retrieval (IR), search
and filtering. A manifestation of this need is the re-
cent proliferation of over one hundred commercial text
search engines that crawl and index the web, and sev-
eral subscription-based information multicast mecha-
nisms. Nevertheless, there is little structure on the
overwhelming information content of the web.
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It is common to manage complexity by using
hierarchy®, and text is no exception. Many internet
directories, such as Yahoo!?, are organized as hierar-
chies. IBM’s patent database® is organized by the US
Patent Office’s class codes, which form a hierarchy.
Digital libraries that mimic hardcopy libraries support
some form of subject indexing such as the Library of
Congress Catalogue, which is again hierarchical.

We will explore the opportunities and challenges
that are posed by such topic hierarchies, also called
tazonomies. As we shall show, taxonomies provide a
means for designing vastly enhanced searching, brows-
ing and filtering systems. They can be used to relieve
the user from the burden of sifting specific information
from the large and low-quality response of most pop-
ular search engines [5, 26). Querying with respect to
a taxonomy is more reliable than depending on pres-
ence or absence of specific keywords. By the same
token, multicast systems such as PointCast* are likely
to achieve higher quality by registering a user profile in
terms of classes in a taxonomy rather than keywords.

The challenge is to build a system that enables
search and navigation in taxonomies. Several require-
ments must be met. First, apart from keywords, docu-
ments loaded into such databases must be indexed on
topic paths in the taxonomy, for which a reliable au-
tomatic hierarchical classifier is needed. As one goes
deep 1nto a taxonomy, shared jargon makes automatic
topic separation difficult. Documents on stock prices
and on impressionist art look very different to us, but
may be carelessly filed as “human affairs” by a Mar-
tian. Second, the taxonomy should be used also to
present to the user a series of progressively refined
views of document collections in response to queries.
Third, the system must be fast, especially since it
will often be used in conjunction with a crawler or
newswire service. Fourth, the system must efficiently
update its knowledge when it makes mistakes and a
human intervenes.

We describe such a taxonomy and path enhanced
retrieval system called TAPER. For every node in the
taxonomy, it separates feature and noise terms by com-

! A hierarchy could be any directed acyclic graph, but in this
paper we only deal with trees.

2http://wew.yahoo.com

3http://patent .womplex.ibm.com

4http://www.pointcast.com
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classifying new documents, only the feature terms are
used. Good features are few in number, so the class
models are small and the classification is speedy. In
contrast to existing classifiers that deal with a flat
set of classes, the feature set changes by context as
the document proceeds down the taxonomy. This fil-
ters out common jargon at each step and boosts ac-
curacy dramatically. Addition and deletion of docu-
ments is easily handled and discriminants recomputed
efficiently. The text models built at each node also
yield a means to summarize a number of documents

neing faw decerintive ravwaorde which wea call thair
USIIg & IEW GEsCripiive KeywOoIrdas, willll weé Caii tielr

signature (this is unrelated to the features). We re-
port on our experience with TAPER using the Reuters
newswire benchmark®, the US patent database, and
samples of web documents from Yahoo!. Depending on
the corpus, we can classify 66-87% of the documents
correctly, which is comparable to or better than the
best known numbers. We can process raw text at over
seven megabytes a minute on a 133 MHz RS6000/43P
with 128 MB memory.

Organization of the paper. In Section 2 we
demonstrate that using a taxonomy, concept paths,
and signatures can greatly improve the search experi-
ence. Next, in Section 3 we study the problems that
must be solved to provide the above functionality. The
problems are feature selection, hierarchical classifica-
tion, and document signature extraction. These are
explored in detail in Sections 3.4, 3.3, and 3.5 respec-
tively. The proof of quality of signatures is necessarily
anecdotal at this point; some examples can be found in
Section 2. More rigorous evaluation of feature selection
and classification is presented in Section 4. Related
work is reviewed in Section 5 and concluding remarks
made in Section 6.

2 Capabilities

Most queries posted to search engines are very short.
Such queries routinely suffer from the abundance prob-
lem: there are many aspects to, and even different in-
terpretations of the keywords typed. Most of these
are unlikely to be useful. Consider the wildlife re-
searcher asking AltaVista® the query jaguar speed
[6]. A bewildering variety of responses emerge, span-
ning the car, the Atari video game, the football team,
and a LAN server, in no particular order. The first
page about the animal is ranked 183, and is a fable.
Thwarted, we try jaguar speed -car -auto. The
top response goes as follows: “If you own a classic
Jaguar, you are no doubt aware how difficult it can be
to find certain replacement parts. This is particularly

Shttp://www.research.att.com/ " lewis/
Shttp://www.altavista.digital.com
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true of gearbox parts.” The words car and auto do
not occur on this page. There is no cat in sight for
the first 50 pages. We try LiveTopics”, but at the time
of writing, all the clusters are about cars or football.
We try again: jaguar speed +cat. The top two hits
are about the clans Nova Cat and Smoke Jaguar then
there is LMG Enterprises, fine automobiles. All these
pages include the term cat frequently. The 25th page
1s the first with information about jaguars, but not ex-
actly what we need. Instead, we can go to Yahoo!, drill
down into Science:Biology, and query jaguar. This
takes us to Science:Biology:Animal Behavior, but we

canld nat ind o a1 agiiang +tha

itakla naga ar
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2.1 Querying in a taxonomy

Suppose we could somehow unite the coverage of Al-
taVista with the careful, manually designed topic struc-
ture of Yahoo!. The query jaguar speed would then
elicit not a list of documents, but a list of topic paths:
Business_and_Economy:Companies:Automotive
Recreation:
Automotive
Games:Video_Games
Sports:Football
Science:Biology:Animal Behavior
The user can now restrict queries by concept, not by
keyword. Using samples, it is possible to show the
above response even as the user types the query, be-
fore actually issuing a search. At this point, the user
can restrict the search to only a few topic paths. The
artificial limit to the length of the response list from
search engines, together with cars and video games,
will not crowd out the cat. As we have shown above,
enforcing or forbidding additional keywords cannot al-
ways be as effective. If new documents can be binned
into these topic paths in real-time, this ability may be
very useful for multicast channels as well. User profiles
will be topic paths rather than keywords.

2.2 Context-sensitive signatures

AltaVista’s exhaustive keyword index is perhaps more
of a problem than a solution. A single occurrence of
a term in a document, no matter how useless an in-
dicator of the contents, is indexed. The IR literature
has advanced further; there exist prototypes that ex-
tract signature terms which are then used for index-
ing. These signatures can also be used as summaries or
thumbnails; their descriptive power can often compare
favorably with that of arbitrary sentences as extracted
by popular search engines. They are also effective for
describing a document cluster [1].

We claim that the common notion of a document
abstract or signature as a function of the document

"http://www.altavista.digital.com/av/1t/help.html



alone is of limited utility. In the case of a taxon-
omy, we argue that a useful signature is a function
of both the document and the reference node; the
signature includes terms that are “surprising” given
the path from the root to the reference node. In
the above example, car and auto may be good sig-
nature terms at the top level or even at the Recreation
level, but not when the user has drilled down to Recre-
ation:Automotive. Here is another illustration from a
document® in Health:Nursing that goes like this:
Beware of the too-good-to-be-true baby that is sleeping

and sleeping and doesn’t want to nhurse. Especially monitor
the number of wet diapers, as seriously jaundiced babies

are lelldlle
The first level classification is Health. We can compute
the top signature terms with respect to Health as:

Jaundice, dampen, dehydration, lethargic, hydrate,

forcibly, caregiver, laxative, disposable.

This tells us the document is about treating jaundice.
The second level classification is Health:Nursing. Shift-
ing our reference class, we compute the new signature
to be:

Baby, water, breast-feed, monitor, new-born, hormone.
Now we know the document is about nursing babies;
this information comes from both the path and the
signatures. Later we shall propose some means of
computing context-sensitive signatures. Thus, signifi-
cant improvement in search quality may be possible by
maintaining functionally separate indices at each tax-
onomy node, using only a few signature terms from
each document.

Another application of context-sensitive signatures
is finding term associations. Using phrases for search
and classification can potentially boost accuracy. The
usual way to find phrases is to test a set of terms for
occurrence rate far above that predicted by assuming
independence between terms. Unfortunately, associa-
tions that are strong for a section of the corpus may
not be strong globally and go unnoticed. E.g., prect-
sion may be visibly associated with recall in a set of
documents on IR, but not in a collection also including
documents on machine tools. Computing signatures at
each node exposes all such associations.

2.3 Context-sensitive feature selection

Separating feature terms from noise terms is central
to all of the capabilities we have talked about. In the
above examples, car and auto should be “stopwords”
within Recreation:Automotive and hence be pruned
from the signatures. Feature and noise terms must
be determined at each node in the taxonomy.

It is tricky to hand-craft the stopwords out of do-
main knowledge of the language; can is frequently in-
cluded in stopword lists, but what about a corpus on

Shttp://www2.best.com/ “goodnews/practice/faq.htm
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waste management? The contents of a stopword list
should be highly dependent on the corpus. This issue
looms large in searching using categories and clusters.
In hierarchical categories, the importance of a search
term depends on the position in the hierarchy {26].

We will later design an efficient algorithm to find,
for each node in the taxonomy, the terms that are best
suited for classifying documents to the next level of the
taxonomy. Conversely, we detect the noise words that
are of little help to distinguish the documents. We
reuse the term “feature-selection” from pattern recog-
nition to describe this operation.

Taatiire salection enahlas Ane_oraina A clacaification
reature seieCilon enanies uuc-sxauxcu Ci1a35811iCavioil

on a taxonomy. For diverse top-level topics, a single-
step classifier suffices. But as a document is routed
deep into a taxonomy, shared jargon makes sophis-
ticated feature selection a necessity. Together with
feature selection, we have to pick models for each
class and a classifier. Many options have been eval-
uated [31]. In spite of its simplicity, naive Bayesian
classifiers are often almost as accurate as more sophis-
ticated classifiers [18]. For a fixed number of features,
naive Bayes is faster than more complex classifiers.
However, to approach the latter in accuracy, naive
Bayes typically needs many more features.

Finding feature terms for each node mitigates this
problem. We shall see later that fewer than 5-10%
of the terms in the lexicon suffice to discriminate be-
tween documents at any node in the taxonomy. This
can greatly speed up classification. Fast multi-level
classification is not only a database population issue.
With increasing connectivity, it will be inevitable that
some searches will go out to remote sites and retrieve
results that are too large for direct viewing. There
are already several “meta-search” tools that forward
queries to a number of search engines and combine
the results; we have seen how a hierarchical view is
much better.

3 Techniques

In this section we will present in detail the techniques
that make possible the capabilities mentioned before.

3.1 Document model

There have been many proposals for statistical models
of text generation. One of the earliest indicators of the
power of simple statistical tests on term frequencies
is Zipf’s law [38]. The models most frequently used
in the IR community are Poisson and Poisson mix-
tures [28, 33]. (If X is distributed Poisson with rate
u, denoted X ~ P(p), then Pr[X = z] = e #pu*/x!
and if Y is distributed Bernoulli with n trials and
mean np, denoted Y ~ B(n,p), then PrlY = y] =
('y‘)py(l ~p)"" Y. As n — o0 and p — 0, the distribu-



tions B(n,p) and P(np) converge to each other.) We
will assume a Bernoulli model of document generation
for the rest of the paper. In this model, a document d
1s generated by first picking a class. Each class ¢ has
an associated multi-faced coin; each face represents a
term ¢ and has some success probability f(c,t). Then
a document length n(d) is arbitrarily fixed and each
term is generated by flipping the coin. We set up some
notation.

n(d,t) = number of occurrences of ¢ in d
n(d) = number of terms in d
n(d,
z(d,t) = —n(ﬁl,
n(e,t) = ZdEc n(d,t)
n(e) = 3, n(e,t)

f(e,t) = occurrence rate of ¢ in ¢ (details later).

the occurrence rate of £ in d

For the moment we can assume f(c,t) = n(ec,t)/n(c);
we will modify this definition later. Assuming the
Bernoulli model, if document d is from class ¢, then
the face probabilities are Pr[t|c] = f(c,t). Thus,

Prldl = (grony) [T fle, (9, (1)
where.({n'zg‘?z)}) = aﬁ%{g:—tgr is the multinomial
coefficient.

We appreciate that the independence assumptions
are far from the truth. First, given a term has oc-
curred once in a document it is more likely to occur
again compared to a term about which we have no in-
formation. Second, the term frequency distributions
are correlated. Indeed, no simple model appears ca-
pable of capturing the full meaning of text, hence our
approach is a pragmatic one: to pick a model appro-
priate for the task at hand.

3.2 Rare events and laws of succession

The average English speaker uses about 20,000 of the
1,000,000 or more terms in an English dictionary [27].
In that sense, many terms that occur in documents
are “rare events.” This means that with reasonably
small sample sets, we will see zero occurrences of many,
many terms, and will still be required to estimate a
non-zero value of f(c,t). The maximum likelihood es-
timate, f(c,t) = n(c,t)/n(c), is problematic: a class
with f(c,t) = 0 will reject any document containing ¢.

Finding such estimates, also called laws of suc-
cession, has been pursued in classical statistics for
centuries. Laplace showed that given the results
of n tosses of a k-sided coin, i.e., the number of
times each face occurred, ni,...,ng, the correct
Bayesian estimate for the probability of face i, de-
noted Pry(i|{n;},n), is not n;/n, but ’;—L}: [20].

449

This is the result of assuming that all possible as-
sociated k-component vectors of face probabilities
(p1,...,px) are a priori equally likely. This is called
the uniform prior assumption. The above value of
Pry(i]{n:}, n) is obtained by using Bayes rule and eval-
uating ﬁ fol 6 Pr[n;|6]dd. Alternative priors have
been suggested and justified. We experimented with
many of these, and found that Laplace’s law wins by a
few percent better classification accuracy all the time.
For lack of space, we refer the reader to Ristad’s pa-
per for details [27]. With these adjustment, (and re-
turning to our earlier notation) f(c,t) is estimated as
(14+mn(c,t))/(n(c)+ L(c)), where L(c) is the size of the
lexicon of class c.

3.3 Hierarchical classification

A classifier inputs a document and outputs a class.
If the class is not the one from which the document
was generated, we say the classifier misclassified that
document. Typically, a classifier is trained by giving it
example documents with class labels attached.

Our system has a classifier at each internal node in
the taxonomy, with diverse feature sets. Given a new
document d, the goal is to find a leaf node ¢ such that
the posterior Pr[c|d] is maximized among all leaves.
The intuition behind doing this in levels rather than
play off all the leaves is as follows. To give directions
to a star in a distant galaxy, one can directly pro-
vide angular measures and a radial distance to that
star. If these are noisy, one can end up far from the
destination! If, on the other hand, one first somehow
reaches the approximate center of the galaxy to which
the star belongs (for which coarser navigation suffices)
then the galaxy gets spread out around the traveler,
and spotting the target star becomes easier.

The benefit may be lost if an error is made early
in the process [18]. Thus a greedy search for the best
leaf may be risky. Let the path to a leaf ¢ from the
root be c1,¢2,...,ck = c. Since the root subsumes
all classes, Prfci|d] = 1 for all d. Furthermore, we
can write Prle;|d] = Pr[e;—1|d] Pr[ei|ci—1,d], for ¢ =
2,..., k. Taking logs, logPr[c;|d] = logPrle;_:|d] +
log Pr[ci|ci-1,d]. Suppose in the taxonomy we mark
edge (ci—1,c;) with the edge cost —logPr[c;|c;_1,d].
We are then seeking the least-cost path from the root
c1 to some leaf.

Computing the one-step conditional probability
Pr[e;|ci-1,d] is straight-forward. For notational con-
venience, name c;_; as o and its children {r;}. Then
the probability that the document d belongs to the
child node r; given that it belongs to the parent node
ro is given by: Pr[r;|ro,d] = Pr[r;|d]/ Prro|d] where
Pr[ro|d] = 37, Pr[r;|d] (where . is over all the sib-
lings of r;. Note that Pr[r;|d] = Pr[d, ]/} ; Pr[d, rj]



by Bayes rule. Ifdwe use the Bernoulli model as before,
Prld|r;] = ({nrz(d,Z)}) [, £(r;,t)*(48). Care is needed
here with finite-precision numbers, because the proba-
bilities are very small (often less than 1073%%%) and the
scaling needed to condition the probability prevents us

from maintaining the numbers always in log-form.

3.4 Feature and noise terms

The above application of Bayes rule depended on a
document model; this was embedded in the f(c,?) pa-
rameters (and the independence assumption). We esti-
mate these parameters during the training phase using
sample documents. When building a model for each
class ¢ from a training set, we must decide if a term
t appears only incidentally, or sufficiently consistently
to suspect a causal connection; ¢ is accordingly a noise
term (also called a stopword) or a feature term. Given
a new document, we should focus our attention only
on the features for classifying it.

How can we pick the features from a hundred thou-
sand terms in the lexicon? We are constrained both
ways: we cannot miss the highly discriminating terms,
and we cannot include everything, because the fre-
quencies of some terms are noisy and unindicative of
content. This is called the feature-selection problem in
the statistical pattern recognition literature. Roughly
speaking, we are in search of a set of terms that mini-
mizes the probability that a document is misclassified,
with the understanding that only terms in the inter-
section of the document and the feature set are used
by the classifier.

It is not possible to search for the best feature set,
because we don’t know what the best possible clas-
sifier does, and because there are too many terms in
the lexicon. So in practice we are interested in doing
this for our fixed classifier. We want a heuristic that
is essentially linear in the original number of terms,
and makes preferably only one pass over the training
corpus. We therefore restrict ourselves to the follow-
ing approach: first we assign a merit measure to each
term, then pick a prefix of terms with highest merit.
This raises two questions: what measure, and what
prefix? In answer to the first of these we use an index
based Fisher’s linear discriminant.

3.4.1 Fisher’s discriminant

Suppose we are given two sets of points in n-
dimensional Euclidean space, interpreted as two
classes. Fisher’s method finds a direction on which
to project all the points so as to maximize (in the re-
sulting one-dimensional space) the relative class sep-
aration as measured by the ratio of inter-class to
intra-class variance. More specifically, let X and Y
be the point sets, and px, uy be the respective cen-
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troids, ie., ux = (3, x 2)/1X| and py = (T4 v)/IY|
Further, let the respective n x n covariance matri-
ces be Nx = (1/|X|) T x(z - px)(z — px)T and
Ty = (YY) Ly (y - pr)(y - pr)*.

Fisher's discriminant method seeks to find a vec-
tor a such that the ratio of the projected difference
in means |aT(ux — py)| to the average variance,
307(Zx + Ty)a = aTTa is maximized. It can be
shown that o = &7 1(ux — uy) achieves the extremum
when X! exists. Also, when X and Y are drawn from
multivariate Gaussian distributions with Lx = Xy,
this is the optimal discriminator in that thresholding
on a”q for a test point ¢ is the minimum error classi-
fier [37].

Computing o involves a generalized eigenvalue
problem involving the covariance matrices. In applica-
tions like signal processing where Fisher’s discriminant
is used, = is typically a few hundred at most; in the
text domain, n is typically 50,000 to 100,000; and the
covariance matrices may not be suitably sparse for ef-
ficient computation. Moreover, it is hard to interpret
a discriminant that is a linear sum of term frequen-
cies, possibly with negative coefficients! Our approach
will be to take the directions a as given, namely, a
coordinate axes for each term. We assign each term a
figure of merit, which we call its Fisher indez, based
on the variance figures above, which is ﬂfé‘g:—y)—' in
the two-class case. For each term ¢, a = e; is a unit
vector in the direction of ¢.

In general, given a set of two or more classes {c},
with |¢| documents in class ¢, we compute the ratio
of the so-called between-class to within-class scatter.
Switching back to our term frequency notations, we
express this as:

S s (e 1) = plen )
Fisher(t) = —oi2 e A (2)

. iy (=00 - uet)
“(c»t) = [%(Ede::w(drt)' (3)

The information theory literature provides some
other notions of good discriminants. One of the best
known is mutual information [6]. Closer inspection
shows that its computation is more complicated and
not as easily amenable to the optimizations described
next.

where

3.4.2 Selecting a cut-off

Let F be the list of terms in our lexicon sorted by de-
creasing Fisher index. Our heuristic is to pick from F a
prefix Fj of the & most discriminating terms. Fj must
include most features and exclude most noise terms.
A short Fj enables fast classification and holding a
larger taxonomy in memory. Too large an Fj will fit



the training data very well, but will result in degraded
accuracy for test data, due to overfitting. There are
various techniques for pruning feature sets. We use
validation, some others approaches are to use mini-
mum description length principle, resampling or cross
validation. We randomly partition the pre-classified
samples into 7, the training set and V, the validation
set. We compute the Fisher index of each term based
on 7T, and then classify V using various prefixes Fj.
Let Ni be the number of misclassified documents us-
ing Fj; then we seek k for which Nj is minimized.

For classification we choose the class ¢ that maxi-
mizes the following a prior: class probability based on
the Bernoulli model introduced in Section 3.1:

7(e) [Tecanr, £(c, t)(®9)
o () Neeans, F(e, tyn(de)’

where 7 is the prior distribution on the classes. This
is a special case of the “naive” Bayes rule® Because
we obtain a steep reduction in retained features it is
possible to hold in memory the f(c,t) tables needed
for classification, even for a very large taxonomy such
as our Yahoo! sample with over 370 nodes.

Pric|d, Fi] = 4)

3.4.3 Pseudocode

Although the computation of Fisher indices (2) ap-
pears siumple, care 1s needed for memory management
when the corpus has hundreds of nodes in the taxon-
omy and a large lexicon. For each term ¢ and class
¢, we need to maintain a map H to EdEC z(d,t) and
Y ace ©(d, t)2. With 100,000 terms and 300 classes, we
must exploit sparseness; so we hash on ¢t and point to
a sparse vector indexed by c¢. In spite of sparseness,
H ranges into hundreds of megabytes, and therefore
updates must be staged out, which we do in the usual
way:

Initialize in-memory hash table Hps and disk table Hp
Loop over documents in the corpus:
If Hpy is larger than available memory
Make a sequential pass over Hp:
Update Hp (t) with values in Has(t)
Clear Hpr
Update Hps with the next document
Sort Hp by Fisher index value to obtain F, the feature list.

Note how the additive nature of the statistics we
maintain makes this simple. This also makes it easy to
nsert, delete, and move documents dynamically from

the collection.

Another essential aspect of the implementation is
that it computes the best cut-off in only one pass over
the document samples. Fix a test document d € V and
consider what happens as we grow the prefix k. Typ-
ically, d will be misclassifier upto some prefix because
there aren’t enough discriminating terms in the pre-
fix, and then at some point to get correctly classified.

9 “Naive” in that we again neglect dependences between term
frequencies.
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For some documents, at a larger prefix, a noise term
gets into the feature set and misclassifies the document
again. Let this 0-1 function (1 iff d is misclassified) be
N (d); then we seek to find ), Ni (dg for all k. We will
hold N; in memory, and make a single pass through V.

Initialize Ny = 0 for k = 0,1,...
Compute f(c,t), u(c,t), and feature list F' as before
For each documentd € V
Let ¢/, ¢’ be children of ¢
Compute Pr[c|c, d, Fp] = w(c')/ Z: w(c") for all ¢/
Fork=1,2,...
Find Pr[c'[c, d, F%] using Pr{c’|c,d, Fi_;] and (4)
Suppose the true class for d is child cy of ¢.
If Pricalc, d, Fy] < maxy Pric'|c,d, Fy]
Ni «+- N +1

Note that to be exact, we have to compute Ni(d)
for all k, not only for those k for which t; € d, since
given Fy, f(c,t) depends on n(c,t) and 3,/ n(c,t').

3.5 Extracting document signatures

Up to a point, the user can sift a query response
based only on the topic paths. However, even the leaf
classes are necessarily coarser than individual docu-
ments; support is therefore needed to browse quickly
through many documents without looking into the
documents in detail. Most search engines attach a few
lines from each document. Often these are the title
and first few lines; or they are sentences with the most
search terms. For many documents, better keyword
extraction is needed. Moreover, as we have argued,
these signatures should be extracted relative to a node
in the taxonomy.

Given this reference node ¢, one approach is to
concatenate the training documents associated with
¢ into a super document d, and then rank terms ¢ € d
in decreasing order of the number of standard devia-
tions that z(d,t) is away from f(c,t). Here our ear-
lier simplistic document model gets into trouble: as
mentioned on page 4, a term that has occurred once
in a document is more likely to occur again. Since
the Bernoulll model does not take this into account,
frequent terms often remain surprising all along the
taxonomy path.

Matters are improved by moving to another simple
model. First suppose we have a single test document
d, and consider t € d. If the observed fraction of train-
ing documents in class ¢ containing term ¢ is 6(c,t),
we simply sort all ¢ € d by increasing 6(c,?) and re-
port the top few. If there are £ > 1 test documents in
¢, we find the fraction ¢(t) that contains ¢, and sort

s e s . 8(c,t)— (VL .
the ¢’s in increasing order of OO Both in

fact correspond to P-values computed using the nor-
mal approximation to the binomial distribution.
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Patent: Communication:
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Figure 1: The portion of the US Patent database taxonomy that
we used for our experiments, with numeric class codes.

4 Performance evaluation

In this section we study the performance of our system.
There are three aspects to performance: first, to what
extent this paradigm assists in text search and brows-
ing; second, how accurate our techniques for feature
selection and hierarchical classification are; and third,
how efficient or scalable our system is. The first item
1s at this point a matter of qualitative judgement, as
is the evaluation of the signature-finding techniques.
The quality of feature selection and classification can
be measured precisely, and we present these results
here. As regards efficiency, we restrict our discussion
to quoting our running times on a specific platform,
and show that they scale favorably with corpus size.

4.1 Datasets and measures

We used three data sources: the Reuters benchmark
used widely in the IR community, the US Patent
database, hereafter referred to as USPatent, and Ya-
hoo!. For evaluation, the simple scenario is a m-class
problem where each document belongs to exactly one
class. We can draw up a m X m contingency table,
entry (%, j) showing how many test documents of class
1 were judged to be of class j. This is called the confu-
sion matriz. One important number to compute from
a confusion matrix is the sum of diagonal entries di-
vided by the sum of all elements: this gives the fraction
of documents correctly classified. If each document has
exactly one class, this number is the same as microav-
eraged recall and precision as defined by Lewis [21].
Matters are complicated by documents having multi-
ple classes. Due to space constraint we omit our ex-
periments with this setting. See Lewis for more details
on evaluating classifiers [21].

4.2 Evaluation of feature selection

Although Reuters has provided a taxonomy for its ar-
ticles, the data available does not include taxonomy
codes in the class header. For the rest of this section
we will work with other corpora where such informa-
tion is explicitly provided.

The sample of USPatent that we used has three
nodes in the first level, Communication, Electricity and
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Electronics. Each has four children in the second level.
Figure 1 shows the taxonomy we used. The overlap
in vocabulary between some of the nodes, e.g., mod-
ulator, demodulator, amplifier, oscillator; and motive,
heating, resistor make the classification task appear
more challenging than Reuters, which deals with a
more diverse set of topics.

Figure 2 shows the results of validation experiments
over the patent database. 500 training patents and
300 validation patents were picked at random from
each of the 12 leaves in Figure 1. The Fisher in-
dex ordering gives rapid reduction in classification er-
ror within just a few hundred feature terms, out of
the roughly 30,000 terms in our lexicon. For some

glichtly (nat vigihle +h
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goes up
range shown) after a minimum due to overfitting. The
smallest minima and corresponding errors are roughly
at 160 terms, 25.1% for Patent; 200 terms, 11.7% for
Communication; 890 terms, 17.8% for Electricity; and
9130 terms, 16.6% for Electronics. The minima are not
very sharp, but the diversity of the feature set sizes still
questions the common practice of picking a fixed num-
ber of most frequent terms in each class as features.
We list the best features in the patent taxonomy be-
low; notice how the sets change down the levels.

Patent: Signal, modulate, motor, receive, antenna, telephone,
transmit, frequency, modulation, modulator, demodula-
tor, current, voltage, data, carrier, power, amplifier, phase,
call, amplitude. :

Patent:Communication: Antenna, telephone, modulator, de-
modulator, signal, modulate, output, call, modulation,
input, demodulated, frequency, phase, communication,
radar, demodulating, space, detector, line, demodulation,
transmit, circuit.

Patent:Electricity: Motor, heat, voltage, transistor, output, cir-
cuit, connect, input, weld, extend, surface, current, posi-
tion, gate, speed, control, terminal, drive, regulator, signal,
rotor.

Patent:Efectronics: Amplifier, oscillator, input, output, fre-
quency, transistor, signal, laser, emitter, couple, amplify,
gain, resistance, connect, extend, form, contact, differen-
tial, material, resistor.

4.3 The Reuters benchmark

The Reuters benchmark has about 7,700 training doc-
uments and 3,500 testing documents from about 135
classes. Each document is about 200 terms long on av-
erage. We experimented with Reuters to ensure that
our basic classifier is of acceptable quality. Less than
a tenth of the articles are assigned multiple classes. In
fact, in some cases, some class labels were refinements
of others, e.g., grain and wheat, and it would be incor-
rect to regard them as classes at the same level since
some classes imply others. For simplicity, we just re-
moved all but the first class label from each article.
Alternatively, for m classes, one can build m two-way
classifiers; the c-th classifier discriminating between ¢
and 2.
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Figure 2: Evaluation of feature selection.
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Fraction .01 .08 .10 .20 1.0
Accuracy .43 .66 .59 .62 .66

Table 1: Verification that the training set is adequate. The first
row gives the fraction of the training set sampled for training.
The second row gives micro-averaged recall.

We only considered classes with at least 20 training
documents. Only 30 classes were large enough, giv-
ing a 30 x 30 confusion matrix. The best accuracy was
achieved using about 8000 features. The best microav-
eraged recall/precision is 0.87, which compares favor-
ably with previous experiments [2], although those
studies used the (c,¢) style classifiers. The numbers
are not therefore directly comparable, although since
very few documents had multiple topics, we expect
similar results had the earlier experiments used only
the single-topic documents.

For this benchmark there is no benefit from hierar-
chy. To test the effect of our feature selection, we
compared it with an implementation that performs
singular value decomposition (SVD) on the original
term-document matrix, projects documents down to a
lower dimensional space, and uses a Bayesian classifier
in that space assuming the Gaussian distribution [32].
Our classifier was more accurate by 10-15%, in spite
of its simplicity. Our explanation is that the SVD, in
ignoring the class labels, finds projections along direc-
tions of large variance, which may not coincide with
directions of best separation between documents with
different classes.

4.4 Evaluation of hierarchical classification

In this section we focus on the hierarchical USPatent
dataset. First we ensure that the training set is ade-
quate. To do this, we train using different sized ran-
dom samples from the training set and verify that the
test performance converges. This is shown in Table 1.
Next we compare the hierarchical classifier with a stan-
dard vector-space [29] based classifier. Each document
is a vector in term space; each class is the sum or cen-
troid of its document vectors. The similarity between
two vectors is their cosine. Weighting the terms usu-
ally results in better relevance ranking. There are over
287 variants of term weighting schemes with tuned
magic constants reported [29]. We pick one version
recommended by Sparck-Jones [13, 16].

Nmax(d) = maxieqn(d, t)
number of classes

3. sign(n(c, t))
w(e,t) = (1+ 24U (1+1g 2)

£d'wc

m

il

e

Score(c, d) = W



Class name 329 332 848 379)307 318 323 219)330 331 338 361
329.Demodulator| Bl 9 2 1 0 6 b 2|12 11 o 2
332 _Modulator 21 27 3 2 8 7 6 4| 10 12 2 2
343 _Antennas 10 6 47 8 4 2 6 1 1 4 14 8
879 _Telephony 9 1 1 65 1 ] 2 5 3 1 3 3
307_.Transmission 1 1 1 1] 87 2 8 5 0 1 19 4
318 Motive ] 4 1 1 1 41 7 131 14 4 2 3
323 Regulator 8 3 1 3 7 4 b9 7 2 1 2 3
219 Heating 2 1 0 Q 0 18 9 49| 12 1 2 ]
830 _Amplifier [ 13 1 0 1 17 1 8] B3 8 4 1
831 .Oscillator 10 2 8 a [] 9 4 7| 16 88 18 4
388 Resistor 0 0 0 0 3 0 3 2 0 0 87 4
361 _System 2 1 1 1 9 8 8 9 1 1 80 29

Table 2: Confusion matrix for the weighted cosine one-level cias-
sifier. Each row sums to 100, modulo rounding. The diagonal
elements add up to only 0.48 of the total number of the docu-

ments. This is the mlcro—averaged recall.

Class name 320 832 843 3701307 818 $28 219|330 331 338 361
329 Demodulator| 80 5 [¢] a [ 2 o 3 5 4 0 Q
332_Modulator 16 bB% 1 0 1 2 1 3 9 11 0 0
343.Antennas H 5 &3 i 1 0 2 [ [+ 2 15 s
379 _Telephony 4 2 1 82 0 1 0 2 1 1 1 4
307_Transmission 0 0 0 0] 68 2 3 3 0 2 26 8
318 _Motive 8 4 v} 2 3 48 5 16 8 8 1 2
328 Regulator 3 1 1 2 3 2 81 6 o 0 1 1
219 Heating 1 1 0 0 0 10 4 72| 7 0 8 1
330.Amplifier 3 9 o] 0 0 10 0 11] 57 8 0 1
381 _Oscillator 15 8 0 [¢] 0 4 0 7 8 47 6 4
338 Resistor 0 0 0 0 1 0 2 0 1 0 92 4
361 _System 1 0 0 0 2 6 6 10 1 1 12 61

Table 3: Confusion matrix for our multi-level classifier, show-
ing much larger diagonal elements, i.e, more frequently correct
classification. The micro-averaged recall is 0.66.

We see a substantial gain in accuracy over the stan-
dard weighted-cosine classifier. We did further exper-
iments to see how much of the gains was from fea-
ture selection as against the hierarchy. To do this, we
can fix the feature selection and classification modules,
and only change the taxonomy: one will be the taxon-
omy in Figure 1, the other will have the root and the
12 leaves. We have to be very careful to make this a

fair competition, making sure that the class models are

reprpepnfprl with the same comnplexity (number of pa-
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rameters) in the two settings. In countmg the number

AF naramatears we mugt alea acconnt for the gnaraity
OI parameters we must aisc account ior i€ sparsity

of the term frequency tables; we have no direct con-
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comparative evaluation shown in Table 4.

o+

In this dataset, the accuracy benefit from hierarchy
is modest compared to the benefit from feature selec-
tion. However, note that the flat classifier has a steep
performance penalty because it has to compare too
many classifiers all at once. How to allocate a fixed
number of parameters among the taxonomy nodes is
an interesting issue.

Summarizing, we showed that our feature selection
is effective, and that our classifier is significantly more
accurate than cosine-based ones and comparable to
the best known for flat sets of classes. Hierarchy en-
hances accuracy in modest amounts, but greatly in-
creases speed.

Classifier Prefix Parameters | Recall Time/doc
Flat 250 2651 0.60 18 ms
Moo o | aEs won g6 8o P P & e
Taxonomy $50,200,400,800 2645 0.83 S ms
Table 4: The benefits of hierarchy. The p eﬁx field in the second
I PR N JU ‘L_._,;._|¥AJ S TR Ted » PN
ITOW COrrespora 1o viic 10ur invernal noa ln ne Ubrd[enl Erce

5 Related work
We survey the following overlapping areas of related

research: IR systems and text databases, data mining,
statistical pattern recognition, and machine learning.

IR systems and text databases. The most mature
ideas in IR, which are also those successfully integrated
into commercial text search systems such as Verity'®
ConText!! and AltaVista, involve processing at a rela-
tively syntactic level; e.g., stopword filtering, tokeniz-
ing, stemming, building inverted indices, computing
heuristic term weights, and computing similarity mea-
sures between documents and queries in the vector-
space model {33, 30, 11]. Singular value decomposi-
tion on the term-document matrix has been found to
cluster semantically related documents together even
if they do not share keywords (8, 24].

We deviate from these systems in the paradigm of
interactive exploration and dynamic reorganization of

A closelv re-

ClO=Cly

{‘Il‘lﬁTV rpqnnnep bAQP{" on user (‘nanYf

lated work with respect to the user interface is Scatter-
Gather [7]) which alternates

between the svetem pre-
between the system pr

selecting a sub-

rhave some
114y C SULLIT

senting a document cluster and a user

set from them. Topic paths in t

tavAaname
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advantages: they can be precomput ed and queried

..... avd tha 4l mmmmbadiaro foe i Valonl Aca
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often more informative than “cluster digests” gener-
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Data mining, machine learning, and pattern
recognition. More recent work on text includes sta-
tistical modeling of documents, clustering and classifi-
cation, thesaurus generation by term associations, and
query expansion {31, 10, 34]. The supervised classifi-
cation problem has been addressed in statistical deci-
sion theory (both classical [35] and Bayesian[3]), sta-
tistical pattern recognition [9, 12] and machine learn-
ing {36, 23, 19]. Classifier can be parametric or non-
parametric. Two well-known classes of non-parametric

classifiers a.re decision trees, such as CART (4] and

C4.5 [25], an ural networks [14, 22, 15] For such

classifiers, feata. re sets larger than 100 are considered

extremely large. Document classification may require
mare than R0 NN
ALAVLNY, viiduis UV,VVV.

Impressive accuracy has been obtamed using deci-
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s10I ruies 1na tion on the Reuters dataset &), A0CY

Onttp://www.verity.com
U nttp://www.oracle.com/products/oracle?/
oracle7.3/html/context ga.html



learn boolean formulas involving the presence or ab-
sence of terms in documents, after pruning a static
stopword set and picking the most frequent terms from
each class as features. The learning algorithm does cut
down this set further, but needs computation to do so.
More advanced heuristics have been proposed [17]. For
virtually all of these approaches, the complexity in the
number of features is supralinear (e.g., quadratic in
the number of starting features and exponential in the
degree of dependence between features), which makes
their use difficult for large numbers of features and
gigabyte-sized corpora. As a result, these advanced
methods have been typically restricted to under a
thousand features and documents [18]; however, that
work does add evidence that exploiting taxonomies is
a valuable strategy.

6 Conclusion

We have demonstrated that hierarchical views of text
databases can improve search and navigation in many
ways, and presented some of the tools needed to main-
tain and navigate in such a database. A combination
of hierarchy, feature selection, and context-sensitive
document signatures greatly enhanced the searching
experience. In future we plan to experiment more ex-
tensively with larger taxonomies and larger corpora
for better confidence in the statistical procedures. It
is also of interest to develop classifiers that maximize
accuracy given bounded space, i.e., model size, and
bounded time. Table 4 suggests the interesting prob-
lem of allocating the total space among nodes of a
hierarchy for best overall accuracy. Finding means
to measure the effectiveness of the signature finding
schemes also appears worthwhile.
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