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Abstract 

We explore how to organize a text database hi- 
erarchically to aid better searching and browsing. 
We propose to exploit the natural hierarchy of 
topics, or taxonomy, that many corpora, such as 
intemet directories, digital libraries, and patent 
databases enjoy. In our system, the user navi- 
gates through the query response not as a flat 
unstructured list, but embedded in the familiar 
taxonomy, and annotated with document signa- 
tures computed dynamicallywith respect to where 
the user is located at any time. We show how to 
update such databases with new documents with 
high speed and accuracy. We use techniques from 
statistical pattern recognition to efficiently sepa- 
rate the feature words or discriminants from the 
noise words at each node of the taxonomy. Using 
these, we build a multi-level classifier. At each 
node, this classifier can ignore the large number 
of noise words in a document. Thus the classifier 
has a small model size and is very fast. However, 
owing to the use of context-sensitive features, it 
classifier is very accurate. We report on experi- 
ences with the Reuters newswire benchmark, the 
US Patent database, and web document samples 
from Yahoo!. 

1 Introduction 

The amount of on-line data in the form of free-format 
text is growing extremely rapidly. As text reposito- 
ries grow in number and size and global connectiv- 
ity improves, there is a pressing need to support ef- 
ficient and effective information retrieval (IR), search 
and filtering. A manifestation of this need is the re- 
cent proliferation of over one hundred commercial text 
search engines that crawl and index the web, and sev- 
eral subscription-based information multicast mecha- 
nisms. Nevertheless, there is little structure on the 
overwhelming information content of the web. 
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It is common to manage complexity by using 
hierarchy I, and text is no exception. Many internet 
directories, such as Yahoo!‘, are organized as hierar- 
chies. IBM’s patent database3 is organized by the US 
Patent Office’s class codes, which form a hierarchy. 
Digital libraries that mimic hardcopy libraries support 
some form of subject indexing such as the Library of 
Congress Catalogue, which is again hierarchical. 

We will explore the opportunities and challenges 
that are posed by such topic hierarchies, also called 
tazonomies. As we shall show, taxonomies provide a 
means for designing vastly enhanced searching, brows- 
ing and filtering systems. They can be used to relieve 
the user from the burden of sifting specific information 
from the large and low-quality response of most pop- 
ular search engines [5, 261. Querying with respect to 
a taxonomy is more reliable than depending on pres- 
ence or absence of specific keywords. By the same 
token, multicast systems such as PointCast are likely 
to achieve higher quality by registering a user profile in 
terms of classes in a taxonomy rather than keywords. 

The challenge is to build a system that enables 
search and navigation in taxonomies. Several require- 
ments must be met. First, apart from keywords, docu- 
ments loaded into such databases must be indexed on 
topic paths in the taxonomy, for which a reliable au- 
tomatic hierarchical classifier is needed. As one goes 
deep into a taxonomy, shared jargon makes automatic 
topic separation difficult. Documents on stock prices 
and on impressionist art look very different to us, but 
may be carelessly filed as “human affairs” by a Mar- 
tian. Second, the taxonomy should be used also to 
present to the user a series of progressively refined 
views of document collections in response to queries. 
Third, the system must be fast, especially since it 
will often be used in conjunction with a crawler or 
newswire service. Fourth, the system must efficiently 
update its knowledge when it makes mistakes and a 
human intervenes. 

We describe such a f,axonomy and Eath enhanced 
retrieval system called TAPER. For every node in the 
taxonomy, it separates feature and noise terms by com- 

1 A hierarchy could be any directed acyclic graph, but in this 
paper we only deal with trees. 

2http:lfWWW.pahOO.COlS 

shttp://patent.nomplex.ibm.com 
4http://wm.pointcast.com 
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puting the best discriminants for that node. When 
classifying new documents, only the feature terms are 
used. Good features are few in number, so the class 
models are small and the classification is speedy. In 
contrast to existing classifiers that deal with a flat 
set of classes, the feature set changes by context as 
the document proceeds down the taxonomy. This fil- 
ters out common jargon at each step and boosts ac- 
curacy dramatically. Addition and deletion of docu- 
ments is easily handled and discriminants recomputed 
efficiently. The text models built at each node also 
yield a means to summarize a number of documents 
using a few descriptive keywords, which we call their 
signature (this is unrelated to the features). We re- 
port on our experience with TAPER using the Reuters 
newswire benchmark5, the US patent database, and 
samples of web documents from Yahoo!. Depending on 
the corpus, we can classify 66-87% of the documents 
correctly, which is comparable to or better than the 
best known numbers. We can process raw text at over 
seven megabytes a minute on a 133 MHz RS6000/43P 
with 128MB memory. 

Organization of the paper. In Section 2 we 
demonstrate that using a taxonomy, concept paths, 
and signatures can greatly improve the search experi- 
ence. Next, in Section 3 we study the problems that 
must be solved to provide the above functionality. The 
problems are feature selection, hierarchical classifica- 
tion, and document signature extraction. These are 
explored in detail in Sections 3.4, 3.3, and 3.5 respec- 
tively. The proof of quality of signatures is necessarily 
anecdotal at this point; some examples can be found in 
Section 2. More rigorous evaluation of feature selection 
and classification is presented in Section 4. Related 
work is reviewed in Section 5 and concluding remarks 
made in Section 6. 

2 Capabilities 

Most queries posted to search engines are very short. 
Such queries routinely suffer from the abundance prob- 
lem: there are many aspects to, and even different in- 
terpretations of the keywords typed. Most of these 
are unlikely to be useful. Consider the wildlife re- 
searcher asking AltaVista’ the query jaguar speed 
[5]. A bewildering variety of responses emerge, span- 
ning the car, the Atari video game, the football team, 
and a LAN server, in no particular order. The first 
page about the animal is ranked 183, and is a fable. 
Thwarted, we try jaguar speed -car -auto. The 
top response goes as follows: “If you own a classic 
Jaguar, you are no doubt aware how difficult it can be 
to find certain replacement parts. This is particularly 

true of gearbox parts.” The words car and auto do 
not occur on this page. There is no cat in sight for 
the first 50 pages. We try LiveTopics’, but at the time 
of writing, all the clusters are about cars or football. 
We try again: jaguar speed +cat. The top two hits 
are about the clans Nova Cat and Smoke Jaguar; then 
there is LMG Enterprises, fine automobiles. All these 
pages include the term cat frequently. The 25th page 
is the first with information about jaguars, but not ex- 
actly what we need. Instead, we can go to Yahoo!, drill 
down into Science:Biology, and query jaguar. This 
takes us to Science:Biology:AnimalBehavior, but we 
could not find a suitable page about jaguars there. 

2.1 Querying in a taxonomy 

Suppose we could somehow unite the coverage of Al- 

taVista with the careful, manually designed topic struc- 
ture of Yahoo!. The query jaguar speed would then 
elicit not a list of documents, but a list of topic paths: 

Businessand-Economy:Companies:Automotive 
Recreation: 

Automotive 
Games:Video-Games 
Sports:Football 

Science:Biology:AnimalBehavior 

The user can now restrict queries by concept, not by 
keyword. Using samples, it is possible to show the 
above response even as the user types the query, be- 
fore actually issuing a search. At this point, the user 
can restrict the search to only a few topic paths. The 
artificial limit to the length of the response list from 
search engines, together with cars and video games, 
will not crowd out the cat. As we have shown above, 
enforcing or forbidding additional keywords cannot al- 
ways be as effective. If new documents can be binned 
into these topic paths in real-time, this ability may be 
very useful for multicast channels as well. User profiles 
will be topic paths rather than keywords. 

2.2 Context-sensitive signatures 

AltaVista’s exhaustive keyword index is perhaps more 
of a problem than a solution. A single occurrence of 
a term in a document, no matter how useless an in- 
dicator of the contents, is indexed. The IR literature 
has advanced further; there exist prototypes that ex- 
tract signature terms which are then used for index- 
ing. These signatures can also be used as summaries or 
thumbnails; their descriptive power can often compare 
favorably with that of arbitrary sentences as extracted 
by popular search engines. They are also effective for 
describing a document cluster [l] 

We claim that the common notion of a document 
abstract or signature as a function of the document 

'http://mm.altavista.digital.com/av/lt/help.html 
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alone is of limited utility. In the case of a taxon- 
omy, we argue that a useful signature is a function 
of both the document and the reference node; the 
signature includes terms that are “surprising” given 
the path from the root to the reference node. In 

the above example, CUT and auto may be good sig- 
nature terms at the top level or even at the Recreation 
level, but not when the user has drilled down to Recre- 
ation:Automotive. Here is another illustration from a 
document’ in Health:Nursing that goes like this: 

Beware of the too-good-to-be-true baby that is sleeping 
and sleeping and doesn’t want to nurse. Especially monitor 
the number of wet diapers, as seriously jaundiced babies 
are lethargic. 

The first level classification is Health. We can compute 
the top signature terms with respect to Health as: 

Jaundice, dampen, dehydration, lethargic, hydrate, 
forcibly, caregiver, laxative, disposable. 

This tells us the document is about treating jaundice. 
The second level classification is Health:Nursing. Shift- 
ing our reference class, we compute the new signature 
to be: 

Baby, water, breast-feed, monitor, new-born, hormone. 

Now we know the document is about nursing babies; 
this information comes from both the path and the 
signatures. Later we shall propose some means of 
computing context-sensitive signatures. Thus, signifi- 
cant improvement in search quality may be possible by 
maintaining functionally separate indices at each tax- 
onomy node, using only a few signature terms from 
each document. 

Another application of context-sensitive signatures 
is finding term associations. Using phrases for search 
and classification can potentially boost accuracy. The 
usual way to find phrases is to test a set of terms for 
occurrence rate far above that predicted by assuming 
independence between terms. Unfortunately, associa- 
tions that are strong for a section of the corpus may 
not be strong globally and go unnoticed. E.g., preci- 
sion may be visibly associated with recall in a set of 
documents on IR, but not in a collection also including 
documents on machine tools. Computing signatures at 
each node exposes all such associations. 

2.3 Context-sensitive feature selection 

Separating feature terms from noise terms is central 
to all of the capabilities we have talked about. In the 
above examples, car and auto should be “stopwords” 
within Recreation:Automotive and hence be pruned 
from the signatures. Feature and noise terms must 
be determined at each node in the taxonomy. 

It is tricky to hand-craft the stopwords out of do- 
main knowledge of the language; can is frequently in- 
cluded in stopword lists, but what about a corpus on 

waste management? The contents of a stopword list 
should be highly dependent on the corpus. This issue 
looms large in searching using categories and clusters. 
In hierarchical categories, the importance of a search 
term depends on the position in the hierarchy [26]. 

We will later design an efficient algorithm to find, 
for each node in the taxonomy, the terms that are best 
suited for classifying documents to the next level of the 
taxonomy. Conversely, we detect the noise words that 
are of little help to distinguish the documents. We 
reuse the term “feature-selection” from pattern recog- 
nition to describe this operation. 

Feature selection enables fine-grained classification 
on a taxonomy. For diverse top-level topics, a single- 
step classifier suffices. But as a document is routed 
deep into a taxonomy, shared jargon makes sophis- 
ticated feature selection a necessity. Together with 
feature selection, we have to pick models for each 
class and a classifier. Many options have been eval- 
uated [31]. In spite of its simplicity, naive Bayesian 
classifiers are often almost as accurate as more sophis- 
ticated classifiers [18]. For a fixed number of features, 
naive Bayes is faster than more complex classifiers. 
However, to approach the latter in accuracy, naive 
Bayes typically needs many more features. 

Finding feature terms for each node mitigates this 
problem. We shall see later that fewer than 5-1076 
of the terms in the lexicon suffice to discriminate be- 
tween documents at any node in the taxonomy. This 
can greatly speed up classification. Fast multi-level 
classification is not only a database population issue. 
With increasing connectivity, it will be inevitable that 
some searches will go out to remote sites and retrieve 
results that are too large for direct viewing. There 
are already several “meta-search” tools that forward 
queries to a number of search engines and combine 
the results; we have seen how a hierarchical view is 
much better. 

3 Techniques 

In this section we will present in detail the techniques 
that make possible the capabilities mentioned before. 

3.1 Document model 

There have been many proposals for statistical models 
of text generation. One of the earliest indicators of the 
power of simple statistical tests on term frequencies 
is Zipf’s law [38]. The models most frequently used 
in the IR community are Poisson and Poisson mix- 
tures [28, 331. (If X is distributed Poisson with rate 
p, denoted X N ‘P(p), then Pr[X = z] = e-/^@/z! 
and if Y is distributed Bernoulli with n trials and 
mean np, denoted Y - a(n,p), then Pr[Y = y] = 

(;)p”cl - PY”. As n + 00 and p + 0, the distribu- 
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tions f?(n,p) and P(np) converge to each other.) We 
will assume a Bernoulli model of document generation 
for the rest of the paper. In this model, a document d 
is generated by first picking a class. Each class c has 
an associated multi-faced coin; each face represents a 
term t and has some success probability f(c,t). Then 
a document length n(d) is arbitrarily fixed and each 
term is generated by flipping the coin. We set up some 
notation. 

n(d,t) = 

n(d) = 

c(d,t) = 

n(c,t) = 

n(c) = 

f(c,t) = 

number of occurrences oft in d 

number of terms in d 
n(d,t) 
44 ’ the occurrence rate oft in d 

C&c n(d, t> 

ct n(cv t) 
occurrence rate oft in c (details later). 

For the moment we can assume f(c, t) = n(c, t)/n(c); 
we will modify this definition later. Assuming the 
Bernoulli model, if document d is from class c, then 
the face probabilities are Pr[t]c] = f(c, t). Thus, 

W44 = (rn$~,j) II, f(c, Vcdlt), (1) 

where (r$l,l) = & is the multinomial 
coefficient. 

We appreciate that the independence assumptions 
are far from the truth. First, given a term has oc- 
curred once in a document it is more likely to occur 
again compared to a term about which we have no in- 
formation. Second, the term frequency distributions 
are correlated. Indeed, no simple model appears ca- 
pable of capturing the full meaning of text, hence our 
approach is a pragmatic one: to pick a model appro- 
priate for the task at hand. 

3.2 Rare events and laws of succession 

The average English speaker uses about 20,000 of the 
l,OOO,OOO or more terms in an English dictionary [27]. 
In that sense, many terms that occur in documents 
are “rare events.” This means that with reasonably 
small sample sets, we will see zero occurrences of many, 
many terms, and will still be required to estimate a 
non-zero value of f(c, t). The maximum likelihood es- 
timate, f(c, t) = n(c, t)/n(c), is problematic: a class 
with f(c, t) = 0 will reject any document containing t. 

Finding such estimates, also called laws of suc- 
cession, has been pursued in classical statistics for 
centuries. Laplace showed that given the results 
of n tosses of a k-sided coin, i.e., the number of 
times each face occurred, ni, . . . , nk, the correct 
Bayesian estimate for the probability of face i, de- 
noted PrL(i]{ni},n), is not ni/n, but s [20]. 

This is the result of assuming that all possible as- 
sociated k-component vectors of face probabilities 
(Pl,... ,pk) are a priori equally likely. This is called 
the uniform prior assumption. The above value of 
PrL(i]{n;}, n) is obtained by using Bayes rule and eval- 

uating &J o J” B Pr[n;]B]dB. Alt ernative priors have 
been suggested and justified. We experimented with 
many of these, and found that Laplace’s law wins by a 
few percent better classification accuracy all the time. 
For lack of space, we refer the reader to Ristad’s pa- 
per for details [27]. With these adjustment, (and re- 
turning to our earlier notation) f(c, t) is estimated as 
(l+n(c, t))/(n(c)+L(c)), where L(c) is the size of the 
lexicon of class c. 

3.3 Hierarchical classification 

A classifier inputs a document and outputs a class. 
If the class is not the one from which the document 
was generated, we say the classifier misclassijied that 
document. Typically, a classifier is tmined by giving it 
example documents with class labels attached. 

Our system has a classifier at each internal node in 
the taxonomy, with diverse feature sets. Given a new 
document d, the goal is to find a leaf node c such that 
the posterior Pr[c]dl is maximized among all leaves. 
The intuition behind doing this in levels rather than 
play off all the leaves is as follows. To give directions 
to a star in a distant galaxy, one can directly pro- 
vide angular measures and a radial distance to that 
star. If these are noisy, one can end up far from the 
destination! If, on the other hand, one first somehow 
reaches the approximate center of the galaxy to which 
the star belongs (for which coarser navigation suffices) 
then the galaxy gets spread out around the traveler, 
and spotting the target star becomes easier. 

The benefit may be lost if an error is made early 
in the process [18]. Thus a greedy search for the best 
leaf may be risky. Let the path to a leaf c from the 
root be cl, ~2,. . . , ck = c. Since the root subsumes 
all classes, Pr[cr]d = 1 for all d. Furthermore, we 
can write Pr[ci]d = Pr[ci-r]dl Pr[ci]c;-i,d], for i = 
2,. , k. Taking logs, logPr[ci]dl = logPr[ci-r]dl + 
logPr[ci]ci-i,d]. Supp ose in the taxonomy we mark 
edge (ci-r,ci) with the edge cost -logPr[ci]ci-i,d]. 
We are then seeking the least-cost path from the root 
cl to some leaf. 

Computing the one-step conditional probability 
Pr[ci ]ci- 1, d] is straight-forward. For notational con- 
venience, name ci-r as TO and its children {~j}. Then 
the probability that the document d belongs to the 
child node pi given that it belongs to the parent node 
TO is given by: Pr[Ti]re, d] = Pr[Ti]dl/Pr[re]dl where 
Pr[re]d = cj Pr[Tjld (where cj is over all the sib- 
lings of T;. Note that Pr[Ti]d] = Pr[d, TJ/ cj Pr[d, rj] 
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by Bayes rule. If we use the Bernoulli model as before, 

P~[4~jl = ({njg-& ) n, f(rj, t)“(dot). Care is needed 
here with finite-precision numbers, because the proba- 
bilities are very small (often less than 10-5000) and the 
scaling needed to condition the probability prevents us 
from maintaining the numbers always in log-form. 

3.4 Feature and noise terms 

The above application of Bayes rule depended on a 
document model; this was embedded in the f(c, t) pa- 
rameters (and the independence assumption). We esti- 
mate these parameters during the training phase using 
sample documents, When building a model for each 
class c from a training set, we must decide if a term 
t appears only incidentally, or sufficiently consistently 
to suspect a causal connection; t is accordingly a noise 
term (also called a stopword) or a feature term. Given 
a new document, we should focus our attention only 
on the features for classifying it. 

How can we pick the features from a hundred thou- 
sand terms in the lexicon? We are constrained both 
ways: we cannot miss the highly discriminating terms, 
and we cannot include everything, because the fre- 
quencies of some terms are noisy and unindicative of 
content. This is called the feature-selection problem in 
the statistical pattern recognition literature. Roughly 
speaking, we are in search of a set of terms that mini- 
mizes the probability that a document is misclassified, 
with the understanding that only terms in the inter- 
section of the document and the feature set are used 
by the classifier. 

It is not possible to search for the best feature set, 
because we don’t know what the best possible clas- 
sifier does, and because there are too many terms in 
the lexicon. So in practice we are interested in doing 
this for our fixed classifier. We want a heuristic that 
is essentially linear in the original number of terms, 
and makes preferably only one pass over the training 
corpus. We therefore restrict ourselves to the follow- 
ing approach: first we assign a merit measure to each 
term, then pick a prefix of terms with highest merit. 
This raises two questions: what measure, and what 
prefix? In answer to the first of these we use an index 
based Fisher’s linear discriminant. 

3.4.1 Fisher’s discriminant 

Suppose we are given two sets of points in n- 
dimensional Euclidean space, interpreted as two 
classes. Fisher’s method finds a direction on which 
to project all the points so as to maximize (in the re- 
sulting one-dimensional space) the relative class sep- 
aration as measured by the ratio of inter-class to 
intra-class variance. More specifically, let X and Y 
be the point sets, and PX, py be the respective cen- 

troids, i.e., PX = (XX z)/lXl and PY = (Cy y)/lYI. 
Further, let the respective n x n covariance matri- 

ces be ‘XX = (l/lXl)Cx(~ - PX)(Z - ~x)~ and 
cy = WIYI) Cyb - PY)(Y - PY)T. 

Fisher’s discriminant method seeks to find a vec- 
tor rr such that the ratio of the projected difference 
in means (c?‘(~x - ~y)( to the average variance, 
$(rT(CX + CY) OL = aTCar is maximized. It can be 
shown that ty: = C-r(px -py) achieves the extremum 
when C-l exists. Also, when X and Y are drawn from 
multivariate Gaussian distributions with CX = Cy, 
this is the optimal discriminator in that thresholding 
on aTq for a test point q is the.minimum error classi- 
fier [37]. 

Computing a involves a generalized eigenvalue 
problem involving the covariance matrices. In applica- 
tions like signal processing where Fisher’s discriminant 
is used, n is typically a few hundred at most; in the 
text domain, n is typically 50,000 to 100,000; and the 
covariance matrices may not be suitably sparse for ef- 
ficient computation. Moreover, it is hard to interpret 
a discriminant that is a linear sum of term frequen- 
cies, possibly with negative coefficients! Our approach 
will be to take the directions a as given, namely, a 
coordinate axes for each term. We assign each term a 
figure of merit, which we call its Fisher &fez, based 

on the variance figures above, which is -w in 
the two-class case. For each term t, a = et is a unit 
vector in the direction oft. 

In general, given a set of two or more classes {c), 
with JcJ documents in class c, we compute the ratio 
of the so-called between-class to within-class scatter. 
Switching back to our term frequency notations, we 
express this as: 

Fisher(t) = 

where AC,4 = j$ C&c 4&G. (3) 

The information theory literature provides some 
other notions of good discriminants. One of the best 
known is mutual information [S]. Closer inspection 
shows that its computation is more complicated and 
not as easily amenable to the optimizations described 
next. 

3.4.2 Selecting a cut-off 

Let F be the list of terms in our lexicon sorted by de- 
creasing Fisher index. Our heuristic is to pick from F a 
prefix Fk of the k most discriminating terms. Fk must 
include most features and exclude most noise terms. 
A short Fk enables fast classification and holding a 
larger taxonomy in memory. Too large an Fk will fit 
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the training data very well, but will result in degraded 
accuracy for test data, due to overjitting. There are 
various techniques for pruning feature sets. We use 
validation, some others approaches are to use mini- 
mum description length principle, resampling or cross 
validation. We randomly partition the pre-classified 
samples into T, the training set and V, the validation 
set. We compute the Fisher index of each term based 
on 7, and then classify V using various prefixes 4. 
Let Nk be the number of misclassified documents us- 
ing Pk ; then we seek k for which hrk is minimized. 

For classification we choose the class c that maxi- 
mizes the following a ~rio~i class probability based on 
the Bernoulli model introduced in Section 3.1: 

+) &d”F, f(C) tFdtt) 
Pr[cldl Fkl = cc, r(c’) ntEdnFk f(Cl, t)+W ’ (4) 

where x is the prior distribution on the classes. This 
is a special case of the “naive” Bayes rule9 Because 
we obtain a steep reduction in retained features it is 
possible to hold in memory the f(c,t) tables needed 
for classification, even for a very large taxonomy such 
as our Yahoo! sample with over 370 nodes. 

3.4.3 Pseudocode 

Although the computation of Fisher indices (2) ap- 
pears simple, care is needed for memory management 
when the corpus has hundreds of nodes in the taxon- 
omy and a large lexicon. For each term t and class 
c, we need to maintain a map H to CdEe s(d, t) and 
CdEc z(d, t)2. With 100,000 terms and 300 classes, we 
must exploit sparseness; so we hash on t and point to 
a sparse vector indexed by c. In spite of sparseness, 
H ranges into hundreds of megabytes, and therefore 
updates must be staged out, which we do in the usual 
way: 

Initialize in-memory hash table HM and disk table Ho 
Loop over documents in the corpus: 

If HM is larger than available memory 
Make a sequential pass over HD : 

Update HD(~) with values in HM(~) 
Clear HM 

Update HM with the next document 
Sort HD by Fisher index value to obtain F, the feature list. 

Note how the additive nature of the statistics we 
maintain makes this simple. This also makes it easy to 
insert, delete, and move documents dynamically from 
the collection. 

Another essential aspect of the implementation is 
that it computes the best cut-off in only one pass over 
the document samples. Fix a test document d E V and 
consider what happens as we grow the prefix k. Typ- 
ically, d will be misclassifier upto some prefix because 
there aren’t enough discriminating terms in the pre- 
fix, and then at some point to get correctly classified. 

’ “Naive” in that we again neglect dependences between term 
frequencies. 

For some documents, at a larger prefix, a noise term 
gets into the feature set and misclassifies the document 
again. Let this O-l function 
Nk(d); then we seek to find 

1 iff d is misclassified) be 
for all k. We will 

hold Nk in memory, and e pass through V. 

Initialize Nk = 0 for k = 0, 1, . 
Compute f(c,t), ~(c, t), and feature list F as before 
For each document d E V 

Let c’ c” be children of c 
Compute Pr[c’Jc, d, Fo] = 7~(c’)/cF x(c”) for all c’ 
Fork=1.2,... 

Find .Pr[c’(c, d, Fk] using Pr[c’(c, d, Fk-11 and (4) 
Suppose the true class for d is child c* of c. 
If Pr[c. ]c, d, Fk] < max,t Pr[c’]c, d, Fk] 

Nk +- Nk + 1 

Note that to be exact, we have to compute Nk(d) 
for all k, not only for those k for which tk E d, since 
given Pk, j(c, t) depends on n(c, t) and xt,sFk n(c, t’). 

3.5 Extracting document signatures 

Up to a point, the user can sift a query response 
based only on the topic paths. However, even the leaf 
classes are necessarily coarser than individual docu- 
ments; support is therefore needed to browse quickly 
through many documents without looking into the 
documents in detail. Most search engines attach a few 
lines from each document. Often these are the title 
and first few lines; or they are sentences with the most 
search terms. For many documents, better keyword 
extraction is needed. Moreover, as we have argued, 
these signatures should be extracted relative to a node 
in the taxonomy. 

Given this reference node c, one approach is to 
concatenate the training documents associated with 
c into a super document d, and then rank terms t E d 
in decreasing order of the number of standard devia- 
tions that z(d, t) is away from f(c, t). Here our ear- 
lier simplistic document model gets into trouble: as 
mentioned on page 4, a term that has occurred once 
in a document is more likely to occur again. Since 
the Bernoulli model does not take this into account, 
frequent terms often remain surprising all along the 
taxonomy path. 

Matters are improved by moving to another simple 
model. First suppose we have a single test document 
d, and consider t E d. If the observed fraction of train- 
ing documents in class c containing term t is @(c, t), 
we simply sort all t E d by increasing e(c, t) and re- 
port the top few. If there are ! > 1 test documents in 
c, we find the fraction b(t) that contains t, and sort - 
the t’s in increasing order of wj. Both in 
fact correspond to P-values computed using the nor- 
mal approximation to the binomial distribution. 
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Patent: Communication: 329 Modulator 
332 Demodulator 
343 Antenna 
379 Telephony 

Electricity: 307 TYansmission 
318 Motive 
323 Regulator 
219 Heating 

Electronics: 330 Amplifier 
331 Oscillator 
338 Resistor 
361 System 

Figure 1: The portion of the US Patent database taxonomy that 
we used for our experiments, with numeric class codes. 

4 Performance evaluation 

In this section we study the performance of our system. 
There are three aspects to performance: first, to what 
extent this paradigm assists in text search and brows- 
ing; second, how accurate our techniques for feature 
selection and hierarchical classification are; and third, 
how efficient or scalable our system is. The first item 
is at this point a matter of qualitative judgement, as 
is the evaluation of the signature-finding techniques. 
The quality of feature selection and classification can 
be measured precisely, and we present these results 
here. As regards efficiency, we restrict our discussion 
to quoting our running times on a specific platform, 
and show that they scale favorably with corpus size. 

4.1 Datasets and measures 

We used three data sources: the Reuters benchmark 
used widely in the IR community, the US Patent 
database, hereafter referred to as USPatent, and Ya- 
hoo!. For evaluation, the simple scenario is a m-class 
problem where each document belongs to exactly one 
class. We can draw up a m x m contingency table, 
entry (i, j) showing how many test documents of class 
i were judged to be of class j. This is called the confu- 
sion matrix. One important number to compute from 
a confusion matrix is the sum of diagonal entries di- 
vided by the sum of all elements: this gives the fraction 
of documents correctly classified. If each document has 
exactly one class, this number is the same as microav- 
eraged recall and precision as defined by Lewis [21]. 
Matters are complicated by documents having multi- 
ple classes. Due to space constraint we omit our ex- 
periments with this setting. See Lewis for more details 
on evaluating classifiers [21]. 

4.2 Evaluation of feature selection 

Although Reuters has provided a taxonomy for its ar- 
ticles, the data available does not include taxonomy 
codes in the class header. For the rest of this section 
we will work with other corpora where such informa- 
tion is explicitly provided. 

The sample of USPatent that we used has three 
nodes in the first level, Communication, Electricity and 

Electronics. Each has four children in the second level. 
Figure 1 shows the taxonomy we used. The overlap 
in vocabulary between some of the nodes, e.g., mod- 
ulator, demodulator, amplifier, oscillator; and motive, 
heating, resistor make the classification task appear 
more challenging than Reuters, which deals with a 
more diverse set of topics. 

Figure 2 shows the results of validation experiments 
over the patent database. 500 training patents and 
300 validation patents were picked at random from 
each of the 12 leaves in Figure 1. The Fisher in- 
dex ordering gives rapid reduction in classification er- 
ror within just a few hundred feature terms, out of 
the roughly 30,000 terms in our lexicon. For some 
classes the error goes up slightly (not visible in the 
range shown) after a minimum due to overfitting. The 
smallest minima and corresponding errors are roughly 
at 160 terms, 25.1% for Patent; 200 terms, 11.7% for 
Communication; 890 terms, 17.8% for Electricity; and 
9130 terms, 16.6% for Electronics. The minima are not 
very sharp, but the diversity of the feature set sizes still 
questions the common practice of picking a fixed num- 
ber of most frequent terms in each class as features. 
We list the best features in the patent taxonomy be- 
low; notice how the sets change down the levels. 
Patent: Signal, modulate, motor, receive, antenna, telephone, 

transmit, frequency, modulation, modulator, demodula 
tor, current, voltage, data, carrier, power, amplifier, phase, 
call, amplitude. 

Patent:Communication: Antenna, telephone, modulator, de- 
modulator, signal, modulate, output, call, modulation, 
input, demodulated, frequency, phase, communication, 
radar, demodulating, space, detector, line, demodulation, 
transmit, circuit. 

Patent:Electricity: Motor, heat, voltage, transistor, output, cir- 
cuit, connect, input, weld, extend, surface, current, posi- 
tion, gate, speed, control, terminal, drive, regulator, signal, 
rotor. 

Patent:Electronics: Amplifier, oscillator, input, output, fre- 
quency, transistor, signal, laser, emitter, couple, amplify, 
gain, resistance, connect, extend, form, contact, differen- 
tial, material, resistor. 

4.3 The Reuters benchmark 

The Reuters benchmark has about 7,700 training doc- 
uments and 3,500 testing documents from about 135 
classes. Each document is about 200 terms long on av- 
erage. We experimented with Reuters to ensure that 
our basic classifier is of acceptable quality. Less than 
a tenth of the articles are assigned multiple classes. In 
fact, in some cases, some class labels were refinements 
of others, e.g., grain and wheat, and it would be incor- 
rect to regard them as classes at the same level since 
some classes imply others. For simplicity, we just re- 
moved all but the first class label from each article. 
Alternatively, for m classes, one can build m two-way 
classifiers; the c-th classifier discriminating between c 
and F. 

452 



01 I 
0 1w zoo Femr% um 500 640 

size 
IOOL 

‘ElecMd*l’ t 

m- 

80,; 

0 
0 loo 200 FeahJ% 400 500 600 

alze 

400 ! 
mslze 

Comm 

Electricity 

I SW 
Electronics 

Figure 2: Evaluation of feature selection. 

Fraction 1 .Ol 1 .05 1 10 1 .20 1 1.0 

Accuracy 1 .45 1 .66 1 .69 ) .62 1 .66 

Table 1: Verification that the training set is adequate. The first 
row gives the fraction of the training set sampled for training. 
The second row gives micro-averaged recall. 

We only considered classes with at least 20 training 
documents. Only 30 classes were large enough, giv- 
ing a 30 x 30 confusion matrix. The best accuracy was 
achieved using about 8000 features. The best microav- 
eraged recall/precision is 0.87, which compares favor- 
ably with previous experiments [2], although those 
studies used the (c, C) style classifiers. The numbers 
are not therefore directly comparable, although since 
very few documents had multiple topics, we expect 
similar results had the earlier experiments used only 
the single-topic documents. 

For this benchmark there is no benefit from hierar- 
chy. To test the effect of our feature selection, we 
compared it with an implementation that performs 
singular value decomposition (SVD) on the original 
term-document matrix, projects documents down to a 
lower dimensional space, and uses a Bayesian classifier 
in that space assuming the Gaussian distribution [32]. 
Our classifier was more accurate by lo-15%, in spite 
of its simplicity. Our explanation is that the SVD, in 
ignoring the class labels, finds projections along direc- 
tions of large variance, which may not coincide with 
directions of best separation between documents with 
different classes. 

4.4 Evaluation of hierarchical classification 

In this section we focus on the hierarchical USPatent 

dataset. First we ensure that the training set is ade- 
quate. To do this, we train using different sized ran- 
dom samples from the training set and verify that the 
test performance converges. This is shown in Table 1. 
Next we compare the hierarchical classifier with a stan- 
dard vector-space [29] based classifier. Each document 
is a vector in term space; each class is the sum or cen- 
troid of its document vectors. The similarity between 
two vectors is their cosine. Weighting the terms usu- 
ally results in better relevance ranking. There are over 
287 variants of term weighting schemes with tuned 
magic constants reported [29]. We pick one version 
recommended by Sparck-Jones [13, 161. 

7hx(d) = maxthd 44 t> 
m = number of classes 

nt = C,sign(n(c,t)) 

+J) = (1+ SIP + k :I 
4 -B 

Score(c, d) = ,z?, ,z, 
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Clssa nsme 929 992 343 37’9 SO? 318 323 219 330 331 338 361 Classifier Prefix Parametera Recall Time/dot 

329Demodulstor 61 9 2 1 0 6 5 2 12 11 0 2 Flat 260 2661 0.60 16ms 
332Modulator 21 27 3 2 3 7 6 4 10 12 2 2 Taxonomy 960,200,400,800 2649 0.63 5lT-M 

3434ntennsl 10 6 47 3 4 2 6 1 1 4 14 3 
379-Telephony 9 1 166 1 6 2 5 3 1 6 3 Table 4: The benefits of hierarchy. The prefix field in the second 
307-Trsnsmisaion 1 1 1 1 57 2 8 6 0 1 19 4 row correspond to the four internal nodes in the USPatent tree. 
318NIativo 6 4 1 1 1 41 7 13 14 4 2 3 
323Regulator 8 3 1 3 7 4 69 7 2 1 2 6 

219Hesting 2 1 0 0 0 18 9 49 12 1 2 6 5 Related work 
SSOAmplifier 6 6 1 0 1 17 1 8 63 3 4 1 

SSl~Oscillator 10 2 3 0 6 9 4 7 10 33 13 4 survey areas 
SS.SResistor 0 0 0 0 3 0 3 2 0 0 87 4 

We the following overlapping of related 
3613yatem 2 1 1 1 9 8 8 9 1 1 30 29 research: IR systems and text databases, data mining, 

Table 2: Confusion matrix for the weighted cosine one-level clas- statistical pattern recognition, and machine learning. 
sifier. Each rovv sumb to 100, modulo rounding. The diagonal 
elements add up to only 0.48 of the total number of the docu- 

IR systems and text databases. The most mature 

ments. This is the micro-averaged recall. ideas in IR, which are also those successfully integrated 

Class name 329 332 343 379 307 318 323 219 330 331 338 361 
into commercial text search systems such as Veritylo, 

329Demodulstor 80 6 0 0 0 2 0 3 b 4 0 0 ConText’l and AltaVista, involve processing at a rela- 
332hilodulstor 16 66 1 0 1 2 1 3 9 11 0 0 
343-Antennsa 6 6 63 1 1 0 2 0 0 2 15 6 

tively syntactic level; stopword filtering, tokeniz- e.g., 
379-Telephony 4 2 182 0 1 0 2 1 1 1 4 ing, stemming, building inverted indices, computing 
SOf-Transmission 0 0 0 0 66 2 3 3 0 2 26 8 
318Xotive 

heuristic term weights, and computing similarity mea- 
6 4 0 2 3 48 6 16 8 6 1 2 

323Regulator 3 1 1 2 3 2 81 6 0 0 1 1 sures between documents and queries in the vector- 
219Heating 1 1 0 0 0 10 4 72 7 0 3 1 _ 
SSO-Amplifier 

space model [33, 30, 111. Singular value decomposi- 
3 9 0 0 0 10 0 11 67 8 0 1 

331~Oacillator 16 8 0 0 0 4 0 7 a 47 6 4 tion on the term-document matrix has been found to 
338Reristor 0 0 0 0 1 0 2 0 1 0 92 4 cluster semantically related documents together even 
3613ystem 1 0 0 0 2 6 6 10 1 1 12 61 if they do not share keywords [8, 241. 

Table 3: Confusion matrix for our multi-level classifier, show- 
ing much larger diagonal elements, i.e, more frequently correct 

We deviate from these systems in the paradigm of 

classification. The micro-averaged recall is 0.66. interactive exploration and dynamic reorganization of 

We see a substantial gain in accuracy over the stan- 
query response based on user context. A closely re- 

dard weighted-cosine classifier. We did further exper- 
lated work with respect to the user interface is Scatter- 

iments to see how much of the gains was from fea- 
Gather [7], which alternates between the system pre- 

ture selection as against the hierarchy. To do this, we 
senting a document cluster and a user selecting a sub- 

can fix the feature selection and classification modules, 
set from them. Topic paths in the taxonomy have some 

and only change the taxonomy: one will be the taxon- 
advantages: they can be precomputed and queried 

omy in Figure 1, the other will have the root and the 
upon, and the path annotations (as in Yahoo!) are 

12 leaves. We have to be very careful to make this a 
often more informative than Uuster digests” gener- 

fair competition, making sure that the class models are 
ated automatically. 

represented with the same complexity (number of pa- Data mining, machine learning, and pattern 

rameters) in the two settings. In counting the number recognition. More recent work on text includes sta- 

of parameters we must also account for the sparsity tistical modeling of documents, clustering and classifi- 

of the term frequency tables; we have no direct con- cation, thesaurus generation by term associations, and 

trol on this. By trial and error, we came up with the query expansion [31, 10, 341. The supervised classifi- 

comparative evaluation shown in Table 4. cation problem has been addressed in statistical deci- 

In this dataset, the accuracy benefit from hierarchy sion theory (both classical [35] and Bayesian[3]), sta- 

is modest compared to the benefit from feature selec- tistical pattern recognition [9, 121 and machine learn- 

tion. However, note that the flat classifier has a steep ing [36, 23, 191. Classifier can be parametric or non- 

performance penalty because it has to compare too 
parametric. Two well-known classes of non-parametric 

many classifiers all at once. How to allocate a fixed 
classifiers are decision trees, such as CART [4] and 

number of parameters among the taxonomy nodes is 
C4.5 [25], and neural networks [14, 22, 151. For such 

an interesting issue. 
classifiers, feature sets larger than 100 are considered 

Summarizing, we showed that our feature selection 
extremely large. Document classification may require 

is effective, and that our classifier is significantly more 
more than 50,000. 

accurate than cosine-based ones and comparable to Impressive accuracy has been obtained using deci- 

the best known for flat sets of classes. Hierarchy en- sion rules induction on the Reuters dataset [2]. They 

hances accuracy in modest amounts, but greatly in- 10http://van.verity.com 
creases speed. “http://www.oracle.com/products/oracla7/ 

oracle7.3/html/context~a.ht.m1 
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learn boolean formulas involving the presence or ab- 
sence of terms in documents, after pruning a static 
stopword set and picking the most frequent terms from 
each class as features. The learning algorithm does cut 
down this set further, but needs computation to do so. 
More advanced heuristics have been proposed [17]. For 
virtually all of these approaches, the complexity in the 
number of features is supralinear (e.g., quadratic in 
the number of starting features and exponential in the 
degree of dependence between features), which makes 
their use difficult for large numbers of features and 
gigabyte-sized corpora. As a result, these advanced 
methods have been typically restricted to under a 
thousand features and documents [18]; however, that 
work does add evidence that exploiting taxonomies is 
a valuable strategy. 

6 Conclusion 

We have demonstrated that hierarchical views of text 
databases can improve search and navigation in many 
ways, and presented some of the tools needed to main- 
tain and navigate in such a database. A combination 
of hierarchy, feature selection, and context-sensitive 
document signatures greatly enhanced the searching 
experience. In future we plan to experiment more ex- 
tensively with larger taxonomies and larger corpora 
for better confidence in the statistical procedures. It 
is also of interest to develop classifiers that maximize 
accuracy given bounded space, i.e., model size, and 
bounded time. Table 4 suggests the interesting prob- 
lem of allocating the total space among nodes of a 
hierarchy for best overall accuracy. Finding means 
to measure the effectiveness of the signature finding 
schemes also appears worthwhile. 
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