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Abstract 

A new access method, called M-tree, is pro- 
posed to organize and search large data sets 
from a generic “metric space”, i.e. where ob- 
ject proximity is only defined by a distance 
function satisfying the positivity, symmetry, 
and triangle inequality postulates. We detail 
algorithms for insertion of objects and split 
management, which keep the M-tree always 
balanced - several heuristic split alternatives 
are considered and experimentally evaluated. 
Algorithms for similarity (range and k-nearest 
neighbors) queries are also described. Re- 
sults from extensive experimentation with a 
prototype system are reported, considering as 
the performance criteria the number of page 
I/O’s and the number of distance computa- 
tions. The results demonstrate that the M- 
tree indeed extends the domain of applica- 
bility beyond the traditional vector spaces, 
performs reasonably well in high-dimensional 
data spaces, and scales well in case of growing 
files. 

1 Introduction 

Recently, the need to manage various types of data 
stored in large computer repositories has drastically 
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increased and resulted in the development of multi- 
media database systems aiming at a uniform manage- 
ment of voice, video, image, text, and numerical data. 
Among the many research challenges which the multi- 
media technology entails - including data placement, 
presentation, synchronization, etc. - content-based re- 
trieval plays a dominant role. In order to satisfy the 
information needs of users, it is of vital importance to 
effectively and efficiently support the retrieval process 
devised to determine which portions of the database 
are relevant to users’ requests. 

In particular, there is an urgent need of index- 
ing techniques able to support execution of similarity 
queries. Since multimedia applications typically re- 
quire complex distance functions to quantify similari- 
ties of multi-dimensional features, such as shape, tex- 
ture, color [FEF+94], image patterns [VM95], sound 
[WBKW96], text, fuzzy values, set values [HNP95], se- 
quence data [AFS93, FRM94], etc., multi-dimensional 
(spatial) access methods (SAMs), such as R-tree 
[Gut841 and its variants [SRF87, BKSSSO], have been 
considered to index such data. However, the applica- 
bility of SAMs is limited by the following assumptions 
which such structures rely on: 

1. 

2. 

objects are, for indexing purposes, to be repre- 
sented by means of feature values in a multi- 
dimensional vector space; 

the (dis)similarity of any two objects has to be 
based on a distance function which does not in- 
troduce any correlation (or “cross-talk”) between 
feature values [FEF+94]. More precisely, an L, 
metric, such as the Euclidean distance, has to be 
used. 

Furthermore, from a performance point of view, SAMs 
assume that comparison of keys (feature values) is a 
trivial operation with respect to the cost of accessing a 
disk page, which is not always the case in multimedia 
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applications. Consequently, no attempt in the design 
of these structures has been done to reduce the number 
of distance computations. 

A more general approach to the “similarity index- 
ing” problem has gained some popularity in recent 
years, leading to the development of so-called metric 
trees (see [UhlSl]). M e t ric trees only consider relative 
distances of objects (rather than their absolute posi- 
tions in a multi-dimensional space) to organize and 
partition the search space, and just require that the 
function used to measure the distance (dissimilarity) 
between objects is a metric (see Section 2), so that the 
triangle inequality property applies and can be used to 
prune the search space. 

Although the effectiveness of metric trees has been 
clearly demonstrated [Chi94, Bri95, B097], current de- 
signs suffer from being intrinsically static, which limits 
their applicability in dynamic database environments. 
Contrary to SAMs, known metric trees have only tried 
to reduce the number of distance computations re- 
quired to answer a query, paying no attention to I/O 
costs. 

In this article, we introduce a paged metric tree, 
called M-tree, which has been explicitly designed to 
be integrated with other access methods in database 
systems. We demonstrate such possibility by imple- 
menting M-tree in the GiST (Generalized Search Tree) 
[HNP95] framework, which allows specific access meth- 
ods to be added to an extensible database system. 

The M-tree is a balanced tree, able to deal with 
dynamic data files, and as such it does not require 
periodical reorganizations. M-tree can index objects 
using features compared by distance functions which 
either do not fit into a vector space or do not use an L, 
metric, thus considerably extends the cases for which 
efficient query processing is possible. Since the design 
of M-tree is inspired by both principles of metric trees 
and database access methods, performance optimiza- 
tion concerns both CPU (distance computations) and 
I/O costs. 

After providing some preliminary background in 
Section 2, Section 3 introduces the basic M-tree prin- 
ciples and algorithms. In Section 4, we discuss the 
available alternatives for implementing the split strat- 
egy used to manage node overflows. Section 5 presents 
experimental results. Section 6 concludes and suggests 
topics for future research activity. 

2 Preliminaries 

Indexing a metric space means to provide an efficient 
support for answering similarity queries, i.e. queries 
whose purpose is to retrieve DB objects which are 
“similar” to a reference (query) object, and where the 
(dis)similarity between objects is measured by a spe- 

cific metric distance function d. 
Formally, a metric space is a pair, M = (D,d), 

where V is a domain of feature values - the indexing 
keys - and d is a total (distance) function with the 
following properties:l 

1. d(O,, 0,) = d(C),, 0,) (symmetry) 

2. d(O,, 0,) > 0 (0, # 0,) and d(O,, 0,) = 0 
(non negativity) 

3. d(O,, 0,) 5 4% 0,) + d(Oz,O,) 
(triangle inequality) 

In principle, there are two basic types of similarity 
queries: the range query and the k nearest neighbors 
query. 

Definition 2.1 (Range) 
Given a query object Q E 2) and a maximum search 

distance r(Q), the range query range(Q, r(Q)) selects 
all indexed objects Oj such that d(Oj, Q) 5 r(Q). q 

Definition 2.2 (k nearest neighbors (LNN)) 
Given a query object Q E 2) and an integer k 2 1, 

the k-NN query NN(&, k) selects the k indexed objects 
which have the shortest distance from Q. 0 

There have already been some attempts to tackle the 
difficult metric space indexing problem. The FastMap 
algorithm [FL951 transforms a matrix of pairwise dis- 
tances into a set of low-dimensional points, which can 
then be indexed by a SAM. However, FastMap as- 
sumes a static data set and introduces approximation 
errors in the mapping process. The Vantage Point 
(VP) tree [Chi94] partitions a data set according to 
distances the objects have with respect to a reference 
(vantage) point. The median value of such distances 
is used as a separator to partition objects into two 
balanced subsets, to which the same procedure can re- 
cursively be applied. The MVP-tree [B097] extends 
this idea by using multiple vantage points, and exploits 
pre-computed distances to reduce the number of dis- 
tance computations at query time. The GNAT de- 
sign [Bri95] applies a different - so-called generalized 
hyperplane [Uhlgl] - partitioning style. In the basic 
case, two reference objects are chosen and each of the 
remaining objects is assigned to the closest reference 
object. So obtained subsets can recursively be split 
again, when necessary. 

Since all of the above organizations build trees by 
means of a top-down recursive process, these trees are 
not guaranteed to remain balanced in case of inser- 
tions and deletions, and require costly reorganizations 
to prevent performance degradation. 

‘In order to simplify the presentation, we sometimes refer to 
0, as an object, rather than as the feature value of the object 
itself. 
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3 The M-tree 

The research challenge which has led to the design of 
M-tree was to combine advantages of balanced and 
dynamic SAMs, with the capabilities of static metric 
trees to index objects using features and distance func- 
tions which do not fit into a vector space and are only 
constrained by the metric postulates. 

The M-tree partitions objects on the basis of their 
relative distances, as measured by a specific distance 
function d, and stores these objects into fixed-size 
nodes,2 which correspond to constrained regions of the 
metric space. The M-tree is fully parametric on the 
distance function d, so the function implementation is 
a black-box for the M-tree. The theoretical and appli- 
cation background of M-tree is thoroughly described 
in [ZCRSG]. In this article, we mainly concentrate on 
implementation issues in order to establish some basis 
for performance evaluation and comparison, 

3.1 The Structure of M-tree Nodes 

Leaf nodes of any M-tree store all indexed (database) 
objects, represented by their keys or features, whereas 
internal nodes store the so-called routing objects. A 
routing object is a database object to which a routing 
role is assigned by a specific promotion algorithm (see 
Section 4). 

For each routing object 0, there is an associated 
pointer, denoted ptr(T(O,)), which references the root 
of a sub-tree, T(O,), called the cowering tree of 0,. 
All objects in the covering tree of 0, are within the 
distance r(0,) from O,., r(O,.) > 0, which is called the 
covering radius of 0, and forms a part of the 0, entry 
in a particular M-tree node. Finally, a routing object 
0, is associated with a distance to P(O,), its parent 
object, that is the routing object which references the 
node where the 0, entry is stored. Obviously, this 
distance is not defined for entries in the root of the 
M-tree. The general information for a routing object 
entry is summarized in the following table. 

(feature value of the) routing object 

~~ 

An entry for a database object Oj in a leaf is quite sim- 
ilar to that of a routing object, but no covering radius 
is needed, and the pointer field stores the actual ob- 

ject identifier (oid), which is used to provide access to 
the whole object possibly resident on a separate data 

2Nothing would prevent using variable-size nodes, as it is 
done in the X-tree [BKK96]. For simplicity, however, we do not 
consider this possibility here. 

file.3 In summary, entries in leaf nodes are structured 
as follows. 

Oj (feature value of the) DB object 
oid(Oj) object identifier 
d(Oj, P(Oj)) distance of Oj from its parent 

3.2 Processing Similarity Queries 

Before presenting specific algorithms for building the 
M-tree, we show how the information stored in nodes 
is used for processing similarity queries. Although per- 
formance of search algorithms is largely influenced by 
the actual construction of the M-tree , the correctness 
and the logic of search are independent of such aspects. 

In both the algorithms we present, the objective is 
to reduce, besides the number of accessed nodes, also 
the number of distance computations needed to exe- 
cute queries. This is particularly relevant when the 
search turns out to be CPU- rather than I/O-bound, 
which might be the case for computationally intensive 
distance functions. For this purpose, all the informa- 
tion concerning (pre-computed) distances stored in the 
M-tree nodes, i.e. d(O;, P(Oi)) and r(Oi), is used to 
effectively apply the triangle inequality. 

3.2.1 Range Queries 

The query range(&, r(Q)) selects all the DB objects 
such that d(Oj,Q) < r(Q). Algorithm RS starts from 
the root node and recursively traverses all the paths 
which cannot be excluded from leading to objects sat- 
isfying the above inequality. 

RS(N:node, Q:query-object, r(Q):search~adius) 
{ let 0, be the parent object of node N; 

if N is not a leaf 
then { V 0, in N do: 

if Id(O,, Q) - d(O,, 0,) ( 5 r(Q) + r(0,) 
then { Compute d(O,, Q); 

if 4% 9) I r(Q) + r(Or) 
then RS(*ptr(T(O,)),Q,r(Q)); }} 

else { V 0, in N do: 
if Id(O,,Q)-d(O,,Or)l<r(Q) 
then { Compute d(0, , Q) ; 

if d(O,, Q) I r(Q) 
then add oid(Oj) to the result ; }}} 

Since, when accessing node N, the distance between 
Q and O,, the parent object of N, has already been 
computed, it is possible to prune a sub-tree without 
computing any new distance at all. The condition ap- 
plied for pruning is as follows. 

Lemma 3.1 If d(Op,Q) > r(Q) + r(O,.), then, for 
each object Oj in T(O,), it is d(Oj,Q) > r(Q). Thus, 
T(0,) can be safely pruned from the search. 

30f course, the M-tree can also be used as a primary data 
organization, where the whole objects are stored in the leaves of 
the tree. 
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a) b) 

Figure 1: Lemma 3.2 applied to avoid distance com- 
putations 

In fact, since d(Oj, Q) 2 d(O,, Q)-d(Oj, 0,) (triangle 
inequality) and d(Oj,Or) < r(0,) (def. of covering 
radius), it is d(Oj,Q) 2 d(O,,&) - r(0,). Since, by 
hypothesis, it is d(Or,Q) - r(0,) > r(Q), the result 
follows. 

In order to apply Lemma 3.1, the d(O,, Q) distance 
has to be computed. This can be avoided by taking 
advantage of the following result. 

Lemma 3.2 IfId(O,,Q)-d(Or,O,)l>r(Q)+r(O~), 
then d(O,, Q) > r(Q) + r(O,). 

This is a direct consequence of the triangle inequality, 
which guarantees that both d(Or, Q) 2 d(O,, Q) - 
d(O,,O,) (Figure 1 a) and d(O,, Q) 2 d(Or,O,) - 
d(O,, Q) (Figure 1 b) hold. The same optimization 
principle is applied to leaf nodes as well. Experimen- 
tal results (see Section 5) show that this technique 
can save up to 40% distance computations. The only 
case where distances are necessary to compute is when 
dealing with the root node, for which 0, is undefined. 

3.2.2 Nearest Neighbor Queries 

The k-NNSearch algorithm retrieves the k nearest 
neighbors of a query object Q - it is assumed that 
at least k objects are indexed by the M-tree. We 
use a branch-and-bound technique, quite similar to 
the one designed for R-trees [RKV95], which utilizes 
two global structures: a priority queue, PR, and a k- 
elements array, NN, which, at the end of execution, 
contains the result. 

PR is a queue of pointers to active sub-trees, i.e. sub 
trees where qualifying objects can be found. With the 
pointer to (the root of) sub-tree T(O,), a lower bound, 
d,i”(T(O,)), on the distance of any object in T(0,) 
from Q is also kept. The lower bound is 

dmin(T(Or)) = max{d(O,, Q) - r(G), 0) 

since no object in T(0,) can have a distance from Q 
less than d(O,, Q) - r(0,). These bounds are used by 
the ChooseNode function to extract from PR the next 
node to be examined. 

Since the pruning criterion of k-NNSearch is dy- 
namic - the search radius is the distance between Q 

and its current k-th nearest neighbor - the order in 
which nodes are visited can affect performance. The 
heuristic criterion implemented by the ChooseNode 
function is to select the node for which the d,,,i,, lower 
bound is minimum. According to our experimental 
observations, other criteria do not lead to better per- 
formance. 

ChooseNode(PR:priority-queue) : node 
{ let Lin(T(O~)) = min{Lin(T(Or))}. 

considering all the entries in PR; 
Remove entry Cptr(T(0:)) ,d,i,(T(Oz))l from PR; 
return *ptr(T(O:)); } 

At the end of execution, the i-th entry of the NN 
array will have value NNCil = Loid ,d(Oj, Q)l, 
with Oj being the i-th nearest neighbor of Q. The 
distance value in the i-th entry is denoted as d;, so 
that dk is the largest distance value in NN. Clearly, dk 
plays the role of a dynamic search radius, since any 
sub-tree for which dmin(T(Or)) > dk can be safely 
pruned. 

Entries of the NR array are initially set to 
NNCil = C-,001 (i= l,..., k), i.e. oid’s are undefined 
and di = 00. As the search starts and (internal) nodes 
are accessed, the idea is to compute, for each sub-tree 
T(O,), an upper bound, d,,,(T(O,)), on the distance 
of any object in T(0,) from Q. The upper bound is 
set to 

dmoz(T(Or)) = d(O,, Q) + r(O,) 

Consider the simplest case k = 1, two sub-trees, 
f(jA$Land T(O,,), and amme that d,,,(T(O,,)) = 

min(T(Ora)) = 7. Since d,,,(T(Op,)) guaran- 
tees that an object whose distance from Q is at most 
5 exists in T(O,,), T(O,,) can be pruned from the 
search. The d,,, bounds are inserted in appropriate 
positions in the NN array, just leaving the oid field un- 
defined. The k-NNSearch algorithm is given below. 

k-NNSearch(T:rootnode,Q:query-object,k:integer) 
{ PR = CT,-]; 

for i = 1 to k do: NN[i] = [-,001; 
while PR #a do: 
{ Nextlode = ChooseNode( 

k-NNHodeSearch(NextHode,Q, k); }} 

The $-NNNodeSearch method implements most of 
the search logic. On an internal node, it first deter- 
mines active sub-trees and inserts them into the PR 
queue. Then, if needed, it calls the RN-Update function 
(not specified here) t o p f er orm an ordered insertion in 
the RN array and receives back a (possibly new) value 
of dk. This is then used to remove from PR all sub-trees 
for which the dmin lower bound exceeds dk. Similar ac- 
tions are performed in leaf nodes. In both cases, the 
optimization to reduce the number of distance compu- 
tations by means of the pre-computed distances from 
the parent object, is also applied. 
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k-NNHodeSearch(N:node,Q:query-object ,k: integer) 
{ let 0, be the parent object of node N; 

if N is not a leaf then 
{ V 0, in N do: 

if Id(O,,Q) -d(O,,O,)) 5 dk +r(O,) then 
{ Compute d(O,,Q); 

if dmi,(T(Or)) 5 dk then 
{ add Cptr(T(O,)),d,i,(T(O,))l to PR; 

if dmaz(T(Or)) < dk then 

{ dk = NN-Update(C-,d,,,(T(O,))l) ; 
Remove from PR all entries 

for which dmin(T(Or)) > dk; }}}} 
else /* N is a leaf */ 
{ VO, inNdo: 

if (d(O,, Q) - d(O,, 0,) 1 < dk then 
{Compute d(O,, Q); 
if d(O,, Q) 5 dk then 
{ dk = NNJJpdate([oid(O,),d(Oj,Q)l) ; 

Remove from PR all entries 
for which dmin(T(Or)) > dk; }}}} 

3.3 Building the M-tree 

Algorithms for building the M-tree specify how objects 
are inserted and deleted, and how node overflows and 
underflows are managed.. Due to space limitations, 
deletion of objects is not described in this article. 

The Insert algorithm recursively descends the M- 
tree to locate the most suitable leaf node for accommo- 
dating a new object, 0,, possibly triggering a split if 
the leaf is full. The basic rationale used to determine 
the “most suitable” leaf node is to descend, at each 
level of the tree, along a sub-tree, T(O,), for which 
no enlargement of the covering radius is needed, i.e. 
d(O,,O,) 5 r(0,). If multiple sub-trees with this 
property exist, the one for which object 0, is clos- 
est to 0, is chosen. This heuristics tries to obtain 
well-clustered sub-trees, which haa a beneficial effect 
on performance. 

If no routing object for which d(O,,O,) 5 ~(0,) 
exists, the choice is to minimize the increase of the 
covering radius, d(O,, 0,) - r(0,). This is tightly re- 
lated to the heuristic criterion that suggests to mini- 
mize the overall “volume” covered by routing objects 
in the current node. 
Insert (N :node, entry (0,) :H-tree-entry) 
{ let, N’ be the set of entries in node N; 

if N is not a leaf then 
{ let AC;, = entries such that d(O,,O,) 5 r(0,); 

if AL # 0 
then let entry E n/,, :d(O:, 0,) is minimum; 
else { let entry(O,‘) E N: 

d(Or , 0,) - ~(0:) is minimum; 
let r(O:) = d(O:,O,); } 

Insert (*ptr (T(O:)) , entry (0,) ) ; } 
else /* N is a leaf */ 
{ if N is not full 

then store entry in N 
else Split(N,entry(O,)) ; }} 

The determination of the set Ni,, - routing objects 
for which no enlargement of the covering radius is 
needed - can be optimized by saving distance com- 
putations. From Lemma 3.2, by substituting 0, for & 
and setting r(0,) z r(Q) = 0, we derive that: 

If Id(O,, O,)-d(O,, Op)(> r(0,) then d(O,, 0,) > (0,) 

from which it follows that 0,. # Ni,,. Note that this 
optimization cannot be applied in the root node. 

3.4 Split Management 

As any other dynamic balanced tree, M-tree grows in 
a bottom-up fashion. The overflow of a node N is 
managed by allocating a new node, N’, at the same 
level of N, partitioning the entries among these two 
nodes, and posting (promoting) to the parent node, 
Np, two routing objects to reference the two nodes. 
When the root splits, a new root is created and the 
M-tree grows by one level up. 

Split(N:node; E:H-tree-entry) 
{ let n/ = entries of node N U {E}; 

ifN is not the root then 
let 0, be the parent of N. stored in Np node; 

Allocate a nev node N’; 
Promote (JV , O,, , Op2 ) ; 
Partition(hf,O,, ,Opa ,n/l ,&I ; 
Store Nl’s entries in N and Nz’s entries in N’; 
if N is the current root 
then { 

else { 

Allocate a new root node, Np; 
Store entry(O,,) and entryCOp,) in Np; } 
Replace entry with entry(O,,) in N,,; 
if node Np is full 
then Split (N,, entryto,,)) 
else store entry(Op,) in N,,; }} 

The Promote method chooses, according to some 
specific criterion, two routing objects, O,, and O,, , to 
be inserted into the parent node, Np. The Partition 
method divides entries of the overflown node (the N 
set) into two disjoint subsets, Nl and Nz, which are 
then stored in nodes N and N’, respectively. A specific 
implementation of the Promote and Partition meth- 
ods defines what we call a split policy . Unlike other 
(static) metric tree designs, each relying on a specific 
criterion to organize objects, M-tree offers a possibil- 
ity of implementing alternative split policies, in order 
to tune performance depending on specific application 
needs (see Section 4). 

Regardless of the specific split policy, the semantics 
of covering radii has to be preserved. If the split node 
is a leaf, then the covering radius of a promoted object, 
say Opl, is set to 

r(Opl) = ma4d(Oj, O,,)lO~ E A41 

whereas if overflow occurs in an internal node 

r(Opl) = max{d(O,, O,,) + r(Or)IOr E NI) 
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which guarantees that d(Oj,O,,) 5 ~(0~~) holds for 
any object in T(O,,). 

4 Split Policies 

The “ideal” split policy should promote O,, and Or, 
objects, and partition other objects so that the two so- 
obtained regions would have minimum “volume” and 
minimum “overlap”. Both criteria aim to improve the 
effectiveness of search algorithms, since having small 
(low volume) regions leads to well-clustered trees and 
reduces the amount of indexed dead space - space 
where no object is present - and having small (possi- 
bly null) overlap between regions reduces the number 
of paths to be traversed for answering a query. 

The minimum-volume criterion leads to devise split 
policies which try to minimize the values of the cover- 
ing radii, whereas the minimum-overlap requirement 
suggests that, for fixed values of covering radii, the 
distance between chosen reference objects should be 
maximized.4 

Besides above requirements, which are quite “stan- 
dard” also for SAMs [BKSSSO], the possible high CPU 
cost of computing distances should also be taken into 
account. This suggests that even naive policies (e.g. 
a random choice of routing objects), which however 
execute few distance computations, are worth consid- 
ering. 

4.1 Choosing the Routing Objects 

The Promote method determines, given a set of en- 
tries, N, two objects to be promoted and stored into 
the parent node. The specific algorithms we consider 
can first be classified according to whether or not they 
“confirm” the original parent object in its role. 

Definition 4.1 A confirmed split policy chooses as 
one of the promoted objects, say O,, , the object O,, 
i.e. the parent object of the split node. 

In other terms, a confirmed split policy just “extracts” 
a region, centered on the second routing object, O,,, 
from the region which will still remain centered on 0,. 
In general, this simplifies split execution and reduces 
the number of distance computations. 

The alternatives we describe for implementing 
Promote are only a selected subset of the whole set 
we have experimentally evaluated. 

mRAD The “minimum (sum of) RADii” algorithm is 
the most complex in terms of distance computa- 
tions. It considers all possible pairs of objects and, 
after partitioning the set of entries, promotes the 

4Note that, without a detailed knowledge of the distance 
function, it is impossible to quantify the exact amount of overlap 
of two non-disjoint regions in a metric space. 

pair of objects for which the sum of covering radii, 
~(0~~) + r(Opa), is minimum. 

mHRAD This is similar to mRAD, but it minimizes the 
maximum of the two radii. 

MLBDIST The acronym stands for “Maximum Lower 
Bound on DISTance” . This policy differs from 
previous ones in that it only uses the pre- 
computed stored distances. In the confirmed ver- 
sion, where O,, 5 O,, the algorithm determines 
O,, as the farthest object from O,, that is 

RANDOM This variant selects in a random way the ref- 
erence object(s). Although it is not a “smart” 
strategy, it is fast and its performance can be used 
as a reference for other policies. 

SAMPLING This is the RAHDOH policy, but iterated over 
a sample of objects of size s > 1. For each of the 
s(s - 1)/2 pairs of objects in the sample, entries 
are distributed and potential covering radii estab- 
lished. The pair for which the resulting maximum 
of the two covering radii is minimum is then se- 
lected. In case of confirmed promotion, only s 
different distributions are tried. The sample size 
in our experiments was set to l/10-th of node ca- 
pacity. 

4.2 Distribution of the Entries 

Given a set of entries N and two routing objects O,, 
and O,,, the problem is how to efficiently partition 
N into two subsets, Nl and Nz. For this purpose we 
consider two basic strategies. The first one is based on 
the idea of the generalized hyperplane decomposition 
[Uhlgl] and leads to unbalanced splits, whereas the 
second obtains a balanced distribution. They can be 
shortly described as follows. 

Generalized Hyperplane: Assign each object Oj E 
N to the nearest routing object: if d(Oj,O,,) 5 
d(Oj, O,,) then assign Oj to Nl, else assign Oj to 
nr,. 

Balanced: Compute d(Oj, O,,) and d(Oj, Or,) for all 
Oj E N. Repeat until N is empty: 

a Assign to Nl the nearest neighbor of O,, in 
N and remove it from N; 

l Assign to Nz the nearest neighbor of Or, in 
N and remove it from N. 

Depending on data distribution and on the way how 
routing objects are chosen, an unbalanced split policy 
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can lead to a better objects’ partitioning, due to the 
additional degree of freedom it obtains. It has to be 
remarked that, while obtaining a balanced split with 
SAMs forces the enlargement of regions along only the 
necessary dimensions, in a metric space the consequent 
increase of the covering radius would propagate to all 
the “dimensions”. 

5 Experimental Results 

In this section we provide experimental results on the 
performance of M-tree in processing similarity queries. 
Our implementation is based on the GiST C++ pack- 
age [HNP95], and uses a constant node size of 4 
KBytes. Although this can influence results, in that 
node capacity is inversely related to the dimensional- 
ity of the data sets, we did not investigate the effect 
of changing the node size. 

We tested all the split policies described in Section 
4, and evaluated them under a variety of experimen- 
tal settings. To gain the flexibility needed for com- 
parative analysis, most experiments were baaed on 
synthetic data sets, and here we only report about 
them. Data sets were obtained by using the proce- 
dure described in [JDBB] which generates normally- 
distributed clusters in a Dim-D vector space. In all 
the experiments the number of clusters is 10, the vari- 
ance is u2 = 0.1, and clusters’ centers are uniformly 
distributed (Figure 2 shows a 2-D sample). Distance 
is evaluated using the L, metric, i.e. L,(O,,O,) = 
maxyjy { 1 O,b] - O,b] I), which leads to hyper-cubic 
search (and covering) regions. Graphs concerning con- 
struction costs are obtained by averaging the costs of 
building 10 M-trees, and results about performance on 
query processing are averaged over 100 queries. 

Figure 2: A sample data set used in the experiments 

Balanced vs. Unbalanced Split Policies 
We first compare the performance of the Balanced 

and Generalized Hyperplane implementations of the 
Partition method (see Section 4.2). Table 1 shows 
the overhead of a balanced policy with respect to the 
corresponding unbalanced one to process range queries 
with side “Imm (Dim = 2,10) on lo4 objects. Sim- 
ilar results were also obtained for larger dimensionali- 
ties and for all the policies not shown here. In the ta- 
ble, as well as in all other figures, a “confirmed” split 

policy is identified by the suffix I, whereas 2 designates 
a “non-confirmed” policy (see Definition 4.1). 

The first value in each entry pair refers to distance 
computations (CPU cost) and the second value to page 
reads (I/O costs). The most important observation is 
that Balanced leads to a considerable CPU overhead 
and also increases I/O costs. This depends on the 
total volume covered by an M-tree - the sum of the 
volumes covered by all its routing objects - as shown 
by the “volume overhead” lines in the table. For in- 
stance, on 2-D data sets, using Balanced rather than 
Generalized Hyperplane with the RANDOM-1 policy 
leads to an M-tree for which the covered volume is 
4.60 times larger. Because of these results, in the fol- 
lowing, all the split policies are based on Generalized 
Hyperplane. 
The Effect of Dimensionality 

We now consider how increasing the dimensionality 
of the data set influences the performance of M-tree. 
The number of indexed objects is IO4 in all the graphs. 

Figure 3 shows that all the split policies but mRAD2 
and mMRAD-2 compute almost the same number of dis- 
tances for building the tree, and that this number de- 
creases when Dim grows. The explanation is that in- 
creasing Dim reduces the node capacity, which has a 
beneficial effect on the numbers of distances computed 
by insertion and split algorithms. The reduction is 
particularly evident for mRAD2 and mMRADZ, whose 
CPU split costs grow as the square of node capacity. 
I/O costs, shown in Figure 4, have an inverse trend 
and grow with space dimensionality. This can again 
be explained by the reduction of node capacity. The 
fastest split policy is RANDOM2 and the slowest one is, 
not surprisingly, mRADZ2. 

Figure 3: Distance camp. for building M-tree 

Y: 
0 5 10 15 20 & 30 25 4 45 50 

Figure 4: I/O costs for building M-tree 
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RANDOH- SAMPLING-1 H-LB-DIST-1 RANDOM-2 mRAD-2 
Dim = 2 volume ovh. 4.60 4.38 3.90 4.07 1.69 

did. ovh, I/O ovh. 2.27,2.11 1.97,1.76 1.93,1.57 2.09,1.96 1.40,1.30 

Dim = 10 volume ovh. 1.63 1.31 1.49 2.05 2.40 
dist. ovh, I/O ovh. 1.58,1.18 1.38,0.92 1.34,0.91 1.55,1.39 1.69,1.12 

Table 1: Balanced vs. unbalanced split policies: CPU, I/O, and volume overheads 

Figure 5 shows that the “quality” of tree construc- 
tion, measured by the average covered volume per 
page, depends on split policy complexity, and that the 
criterion of the cheap MLBDIST-I policy is indeed ef- 
fective enough. 

0’ 
0 5 10 15 20 

4: 
30 36 40 45 so 

Figure 5: Average covered volume per page 

Performance on lo-NN query processing, consider- 
ing both I/O’s and distance selectivities, is shown in 
Figures 6 and 7, respectively - distance selectivity is 
the ratio of computed distances to the total number of 
objects. 

, , , , , , , , _-- 

Figure 6: I/O’s for processing lo-NN queries 

0.35 , , , , , , , , , , 

01 ’ 8 ’ a 8 t - 1 0 5 10 15 20 c 30 35 40 45 50 

Figure 7: Distance selectivity for lo-NN queries 

Some interesting observations can be done about 
these results. First, policies based on “non-confirmed” 
promotion, perform better that “confirmed” policies as 
to I/O costs, especially on high dimensions where they 
save up to 25% I/O’s. This can be attributed to the 
better object clustering that such policies can obtain. 
I/O costs increase with the dimensionality mainly be- 

cause of the reduced page capacity, which leads to 
larger trees. For the considered range of Dim values, 
node capacity varies by a factor of 10, which almost 
coincides with the ratio of I/O costs at Dim = 50 to 

the costs at Dim = 5. 
As to distance selectivity, differences emerge only 

with high values of Dim, and favor mMRAD2 and 
mRAD-2, which exhibit only a moderate performance 
degradation. Since these two policies have the same 
complexity, and because of above results, mRAD2 is 

discarded in subsequent analyses. 
Scalability 

Another major challenge in the design of M-tree was 
to ensure scalability of performance with respect to the 
size of the indexed data set. This addresses both as- 
pects of efficiently building the tree and of performing 
well on similarity queries. 

Table 2 shows the average number of distance com- 
putations and I/O operations per inserted object, for 
2-D data sets whose size varies in the range lo4 t 105. 
Results refer to the RANDOM2 policy, but similar trends 
were also observed for the other policies. The moder- 
ate increase of the average number of distance compu- 
tations depends both on the growing height of the tree 
and on the higher density of indexed objects within 
clusters. This is because the number of clusters was 
kept fixed at 10, regardless of the data set size. 

Figures 8 and 9 show that both I/O and CPU (dis- 
tance computations) lo-NN search costs grow loga- 
rithmically with the number of objects, which demon- 
strates that M-tree scales well in the data set size, and 
that the dynamic management algorithms do not de- 
teriorate the quality of the search. It has to be empha- 
sized that such a behavior is peculiar to the M-tree, 
since other known metric trees are intrinsically static. 

o 2 ,,t, d cbi.cl‘(xBIW, * 10 

Figure 8: I/O’s for processing IO-NN queries 

As to the relative behaviors of split policies, fig- 
ures show that “cheap” policies (e.g. RANDOM and 
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n. ofobjects (x104) 1 2 3 4 5 6 7 8 9 10 
avg. n. dist. camp. 45.0 49.6 53.6 57.5 61.4 65.0 68.7 72.2 73.6 74.7 
avg. n. I/O’s 8.9 9.3 9.4 9.5 9.6 9.6 9.6 9.6 9.7 9.8 

Table 2: Average number of distance computations and I/O’s for building the M-tree (RANDOHZ split policy) 

Figure 9: Distance computations for lo-NN queries 

M_LBDIST-1) are penalized by the high node capac- 
ity (A4 = 60) which arises when indexing 2-D points. 
Indeed, the higher M is, the more effective “complex” 
split policies are. This is because the number of alter- 
natives for objects’ promotion grows as M2, thus for 
high values of M the probability that cheap policies 
perform a good choice considerably decreases. 

5.1 Comparing M-tree and R’-tree 

The final set of experiments we present compares M- 
tree with R*-tree. The R*-tree implementation we use 
is the one available with the GiST package. We defi- 
nitely do not deeply investigate merits and drawbacks 
of the two structures, rather we provide some refer- 
ence results obtained from an access method which is 
well-known and largely used in database systems. Fur- 
thermore, although M-tree has an intrinsically wider 
applicability range, we consider important to evalu- 
ate its relative performance on “traditional” domains 
where other access methods could be used as well. 

Results in Figures 10 and 11 compare I/O and 
CPU costs, respectively, to build R*-tree and M-tree, 
the latter only for the RANDOHZ, MLBDIST-1, and 
mMRAD2 policies. The trend of the graphs for R*-tree 
confirms what already observed about the influence of 
the node capacity (see Figures 3 and 4). Graphs em- 
phasize the different perfomance of M-trees and R*- 
trees in terms of CPU costs, whereas both structures 
have similar I/O building costs. 

0 5 10 15 20 c 3-J 35 40 45 50 
Figure 10: I/O costs for building M-tree and W-tree 

0 5 10 16 al 
L% 

30 36 a 45 

Figure 11: Distance computations for building M-tree 
and R*-tree 

Figures 12 and 13 show the search costs for square 
range queries with side D’mm. It can be observed 
that I/O costs for R*-tree are higher than those of all 
M-tree variants. In order to present a fair compari- 
son of CPU costs, Figure 13 also shows, for each M- 
tree split policy, a graph (labelled (non opt)) where 
the optimization for reducing the number of distance 
computations (see Lemma 3.2) is not applied. Graphs 
show that this optimization is highly effective, saving 
up to 40% distance computations (similar results were 
obtained for NN-queries). Note that, even without 
such an optimization, M-tree is almost always more 
efficient than R*-tree. 

From these results, which we remind are far from 
providing a detailed comparison of M-trees and R*- 
trees, we can anyway see that M-tree is a competi- 
tive access method even for indexing data from vector 
spaces. 

Figure 12: I/O’s for processing range queries 

Figure 13: Distance selectivity for range queries 
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6 Conclusions 

The M-tree is an original index/storage structure with 
the following major innovative properties: 

l it is a paged, balanced, and dynamic secondary 
memory structure able to index data sets from 
generic metric spaces; 

l similarity range and nearest neighbor queries can 
be performed and results ranked with respect to 
a given query object; 

l query execution is optimized to reduce both the 
number of page reads and the number of distance 
computations; 

l it is also suitable for high-dimensional vector data. 

Experimental results show that M-tree achieves its pri- 
mary goal, that is, dynamicity and, consequently, scal- 
ability with the size of data sets from generic met- 
ric spaces. Analysis of many available split policies 
suggests that the proper choice should reflect the rel- 
ative weights that CPU (distance computation) and 
I/O costs may have. This possibility of “tuning” M- 
tree performance with respect to these two cost factors, 
which are highly dependent on the specific application 
domain, has never been considered before in the anal- 
ysis of other metric trees. Our implementation, based 
on the GiST package, makes clear that M-tree can ef- 
fectively extend the set of access methods of a database 
system.5 

Current and planned research work includes: sup- 
port for more complex similarity queries, use of vari- 
able size nodes to perform only “good” splits [BKKSG], 
and parallelization of CPU and I/O loads. Real-life 
applications, such as fingerprint identification and pro- 
tein matching, are also considered. 
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