
M-tree: An Efficient Access Method
for Similarity Search in Metric Spaces

Pa010 Ciaccia Marco Patella
DEIS - CSITE-CNR DEIS - CSITE-CNR

Bologna, Italy Bologna, Italy
pciaccia@deis.unibo.it mpatella@deis . unibo . it

Pave1 Zezula
CNUCE-CNR

Piss, Italy
zezula@iei.pi.cnr.it

Abstract

A new access method, called M-tree, is pro-
posed to organize and search large data sets
from a generic “metric space”, i.e. where ob-
ject proximity is only defined by a distance
function satisfying the positivity, symmetry,
and triangle inequality postulates. We detail
algorithms for insertion of objects and split
management, which keep the M-tree always
balanced - several heuristic split alternatives
are considered and experimentally evaluated.
Algorithms for similarity (range and k-nearest
neighbors) queries are also described. Re-
sults from extensive experimentation with a
prototype system are reported, considering as
the performance criteria the number of page
I/O’s and the number of distance computa-
tions. The results demonstrate that the M-
tree indeed extends the domain of applica-
bility beyond the traditional vector spaces,
performs reasonably well in high-dimensional
data spaces, and scales well in case of growing
files.

1 Introduction

Recently, the need to manage various types of data
stored in large computer repositories has drastically

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

increased and resulted in the development of multi-
media database systems aiming at a uniform manage-
ment of voice, video, image, text, and numerical data.
Among the many research challenges which the multi-
media technology entails - including data placement,
presentation, synchronization, etc. - content-based re-
trieval plays a dominant role. In order to satisfy the
information needs of users, it is of vital importance to
effectively and efficiently support the retrieval process
devised to determine which portions of the database
are relevant to users’ requests.

In particular, there is an urgent need of index-
ing techniques able to support execution of similarity
queries. Since multimedia applications typically re-
quire complex distance functions to quantify similari-
ties of multi-dimensional features, such as shape, tex-
ture, color [FEF+94], image patterns [VM95], sound
[WBKW96], text, fuzzy values, set values [HNP95], se-
quence data [AFS93, FRM94], etc., multi-dimensional
(spatial) access methods (SAMs), such as R-tree
[Gut841 and its variants [SRF87, BKSSSO], have been
considered to index such data. However, the applica-
bility of SAMs is limited by the following assumptions
which such structures rely on:

1.

2.

objects are, for indexing purposes, to be repre-
sented by means of feature values in a multi-
dimensional vector space;

the (dis)similarity of any two objects has to be
based on a distance function which does not in-
troduce any correlation (or “cross-talk”) between
feature values [FEF+94]. More precisely, an L,
metric, such as the Euclidean distance, has to be
used.

Furthermore, from a performance point of view, SAMs
assume that comparison of keys (feature values) is a
trivial operation with respect to the cost of accessing a
disk page, which is not always the case in multimedia

426

applications. Consequently, no attempt in the design
of these structures has been done to reduce the number
of distance computations.

A more general approach to the “similarity index-
ing” problem has gained some popularity in recent
years, leading to the development of so-called metric
trees (see [UhlSl]). M e t ric trees only consider relative
distances of objects (rather than their absolute posi-
tions in a multi-dimensional space) to organize and
partition the search space, and just require that the
function used to measure the distance (dissimilarity)
between objects is a metric (see Section 2), so that the
triangle inequality property applies and can be used to
prune the search space.

Although the effectiveness of metric trees has been
clearly demonstrated [Chi94, Bri95, B097], current de-
signs suffer from being intrinsically static, which limits
their applicability in dynamic database environments.
Contrary to SAMs, known metric trees have only tried
to reduce the number of distance computations re-
quired to answer a query, paying no attention to I/O
costs.

In this article, we introduce a paged metric tree,
called M-tree, which has been explicitly designed to
be integrated with other access methods in database
systems. We demonstrate such possibility by imple-
menting M-tree in the GiST (Generalized Search Tree)
[HNP95] framework, which allows specific access meth-
ods to be added to an extensible database system.

The M-tree is a balanced tree, able to deal with
dynamic data files, and as such it does not require
periodical reorganizations. M-tree can index objects
using features compared by distance functions which
either do not fit into a vector space or do not use an L,
metric, thus considerably extends the cases for which
efficient query processing is possible. Since the design
of M-tree is inspired by both principles of metric trees
and database access methods, performance optimiza-
tion concerns both CPU (distance computations) and
I/O costs.

After providing some preliminary background in
Section 2, Section 3 introduces the basic M-tree prin-
ciples and algorithms. In Section 4, we discuss the
available alternatives for implementing the split strat-
egy used to manage node overflows. Section 5 presents
experimental results. Section 6 concludes and suggests
topics for future research activity.

2 Preliminaries

Indexing a metric space means to provide an efficient
support for answering similarity queries, i.e. queries
whose purpose is to retrieve DB objects which are
“similar” to a reference (query) object, and where the
(dis)similarity between objects is measured by a spe-

cific metric distance function d.
Formally, a metric space is a pair, M = (D,d),

where V is a domain of feature values - the indexing
keys - and d is a total (distance) function with the
following properties:l

1. d(O,, 0,) = d(C),, 0,) (symmetry)

2. d(O,, 0,) > 0 (0, # 0,) and d(O,, 0,) = 0
(non negativity)

3. d(O,, 0,) 5 4% 0,) + d(Oz,O,)
(triangle inequality)

In principle, there are two basic types of similarity
queries: the range query and the k nearest neighbors
query.

Definition 2.1 (Range)
Given a query object Q E 2) and a maximum search

distance r(Q), the range query range(Q, r(Q)) selects
all indexed objects Oj such that d(Oj, Q) 5 r(Q). q

Definition 2.2 (k nearest neighbors (LNN))
Given a query object Q E 2) and an integer k 2 1,

the k-NN query NN(&, k) selects the k indexed objects
which have the shortest distance from Q. 0

There have already been some attempts to tackle the
difficult metric space indexing problem. The FastMap
algorithm [FL951 transforms a matrix of pairwise dis-
tances into a set of low-dimensional points, which can
then be indexed by a SAM. However, FastMap as-
sumes a static data set and introduces approximation
errors in the mapping process. The Vantage Point
(VP) tree [Chi94] partitions a data set according to
distances the objects have with respect to a reference
(vantage) point. The median value of such distances
is used as a separator to partition objects into two
balanced subsets, to which the same procedure can re-
cursively be applied. The MVP-tree [B097] extends
this idea by using multiple vantage points, and exploits
pre-computed distances to reduce the number of dis-
tance computations at query time. The GNAT de-
sign [Bri95] applies a different - so-called generalized
hyperplane [Uhlgl] - partitioning style. In the basic
case, two reference objects are chosen and each of the
remaining objects is assigned to the closest reference
object. So obtained subsets can recursively be split
again, when necessary.

Since all of the above organizations build trees by
means of a top-down recursive process, these trees are
not guaranteed to remain balanced in case of inser-
tions and deletions, and require costly reorganizations
to prevent performance degradation.

‘In order to simplify the presentation, we sometimes refer to
0, as an object, rather than as the feature value of the object
itself.

427

3 The M-tree

The research challenge which has led to the design of
M-tree was to combine advantages of balanced and
dynamic SAMs, with the capabilities of static metric
trees to index objects using features and distance func-
tions which do not fit into a vector space and are only
constrained by the metric postulates.

The M-tree partitions objects on the basis of their
relative distances, as measured by a specific distance
function d, and stores these objects into fixed-size
nodes,2 which correspond to constrained regions of the
metric space. The M-tree is fully parametric on the
distance function d, so the function implementation is
a black-box for the M-tree. The theoretical and appli-
cation background of M-tree is thoroughly described
in [ZCRSG]. In this article, we mainly concentrate on
implementation issues in order to establish some basis
for performance evaluation and comparison,

3.1 The Structure of M-tree Nodes

Leaf nodes of any M-tree store all indexed (database)
objects, represented by their keys or features, whereas
internal nodes store the so-called routing objects. A
routing object is a database object to which a routing
role is assigned by a specific promotion algorithm (see
Section 4).

For each routing object 0, there is an associated
pointer, denoted ptr(T(O,)), which references the root
of a sub-tree, T(O,), called the cowering tree of 0,.
All objects in the covering tree of 0, are within the
distance r(0,) from O,., r(O,.) > 0, which is called the
covering radius of 0, and forms a part of the 0, entry
in a particular M-tree node. Finally, a routing object
0, is associated with a distance to P(O,), its parent
object, that is the routing object which references the
node where the 0, entry is stored. Obviously, this
distance is not defined for entries in the root of the
M-tree. The general information for a routing object
entry is summarized in the following table.

(feature value of the) routing object

~~

An entry for a database object Oj in a leaf is quite sim-
ilar to that of a routing object, but no covering radius
is needed, and the pointer field stores the actual ob-

ject identifier (oid), which is used to provide access to
the whole object possibly resident on a separate data

2Nothing would prevent using variable-size nodes, as it is
done in the X-tree [BKK96]. For simplicity, however, we do not
consider this possibility here.

file.3 In summary, entries in leaf nodes are structured
as follows.

Oj (feature value of the) DB object
oid(Oj) object identifier
d(Oj, P(Oj)) distance of Oj from its parent

3.2 Processing Similarity Queries

Before presenting specific algorithms for building the
M-tree, we show how the information stored in nodes
is used for processing similarity queries. Although per-
formance of search algorithms is largely influenced by
the actual construction of the M-tree , the correctness
and the logic of search are independent of such aspects.

In both the algorithms we present, the objective is
to reduce, besides the number of accessed nodes, also
the number of distance computations needed to exe-
cute queries. This is particularly relevant when the
search turns out to be CPU- rather than I/O-bound,
which might be the case for computationally intensive
distance functions. For this purpose, all the informa-
tion concerning (pre-computed) distances stored in the
M-tree nodes, i.e. d(O;, P(Oi)) and r(Oi), is used to
effectively apply the triangle inequality.

3.2.1 Range Queries

The query range(&, r(Q)) selects all the DB objects
such that d(Oj,Q) < r(Q). Algorithm RS starts from
the root node and recursively traverses all the paths
which cannot be excluded from leading to objects sat-
isfying the above inequality.

RS(N:node, Q:query-object, r(Q):search~adius)
{ let 0, be the parent object of node N;

if N is not a leaf
then { V 0, in N do:

if Id(O,, Q) - d(O,, 0,) (5 r(Q) + r(0,)
then { Compute d(O,, Q);

if 4% 9) I r(Q) + r(Or)
then RS(*ptr(T(O,)),Q,r(Q)); }}

else { V 0, in N do:
if Id(O,,Q)-d(O,,Or)l<r(Q)
then { Compute d(0, , Q) ;

if d(O,, Q) I r(Q)
then add oid(Oj) to the result ; }}}

Since, when accessing node N, the distance between
Q and O,, the parent object of N, has already been
computed, it is possible to prune a sub-tree without
computing any new distance at all. The condition ap-
plied for pruning is as follows.

Lemma 3.1 If d(Op,Q) > r(Q) + r(O,.), then, for
each object Oj in T(O,), it is d(Oj,Q) > r(Q). Thus,
T(0,) can be safely pruned from the search.

30f course, the M-tree can also be used as a primary data
organization, where the whole objects are stored in the leaves of
the tree.

428

a) b)

Figure 1: Lemma 3.2 applied to avoid distance com-
putations

In fact, since d(Oj, Q) 2 d(O,, Q)-d(Oj, 0,) (triangle
inequality) and d(Oj,Or) < r(0,) (def. of covering
radius), it is d(Oj,Q) 2 d(O,,&) - r(0,). Since, by
hypothesis, it is d(Or,Q) - r(0,) > r(Q), the result
follows.

In order to apply Lemma 3.1, the d(O,, Q) distance
has to be computed. This can be avoided by taking
advantage of the following result.

Lemma 3.2 IfId(O,,Q)-d(Or,O,)l>r(Q)+r(O~),
then d(O,, Q) > r(Q) + r(O,).

This is a direct consequence of the triangle inequality,
which guarantees that both d(Or, Q) 2 d(O,, Q) -
d(O,,O,) (Figure 1 a) and d(O,, Q) 2 d(Or,O,) -
d(O,, Q) (Figure 1 b) hold. The same optimization
principle is applied to leaf nodes as well. Experimen-
tal results (see Section 5) show that this technique
can save up to 40% distance computations. The only
case where distances are necessary to compute is when
dealing with the root node, for which 0, is undefined.

3.2.2 Nearest Neighbor Queries

The k-NNSearch algorithm retrieves the k nearest
neighbors of a query object Q - it is assumed that
at least k objects are indexed by the M-tree. We
use a branch-and-bound technique, quite similar to
the one designed for R-trees [RKV95], which utilizes
two global structures: a priority queue, PR, and a k-
elements array, NN, which, at the end of execution,
contains the result.

PR is a queue of pointers to active sub-trees, i.e. sub
trees where qualifying objects can be found. With the
pointer to (the root of) sub-tree T(O,), a lower bound,
d,i”(T(O,)), on the distance of any object in T(0,)
from Q is also kept. The lower bound is

dmin(T(Or)) = max{d(O,, Q) - r(G), 0)

since no object in T(0,) can have a distance from Q
less than d(O,, Q) - r(0,). These bounds are used by
the ChooseNode function to extract from PR the next
node to be examined.

Since the pruning criterion of k-NNSearch is dy-
namic - the search radius is the distance between Q

and its current k-th nearest neighbor - the order in
which nodes are visited can affect performance. The
heuristic criterion implemented by the ChooseNode
function is to select the node for which the d,,,i,, lower
bound is minimum. According to our experimental
observations, other criteria do not lead to better per-
formance.

ChooseNode(PR:priority-queue) : node
{ let Lin(T(O~)) = min{Lin(T(Or))}.

considering all the entries in PR;
Remove entry Cptr(T(0:)) ,d,i,(T(Oz))l from PR;
return *ptr(T(O:)); }

At the end of execution, the i-th entry of the NN
array will have value NNCil = Loid ,d(Oj, Q)l,
with Oj being the i-th nearest neighbor of Q. The
distance value in the i-th entry is denoted as d;, so
that dk is the largest distance value in NN. Clearly, dk
plays the role of a dynamic search radius, since any
sub-tree for which dmin(T(Or)) > dk can be safely
pruned.

Entries of the NR array are initially set to
NNCil = C-,001 (i= l,..., k), i.e. oid’s are undefined
and di = 00. As the search starts and (internal) nodes
are accessed, the idea is to compute, for each sub-tree
T(O,), an upper bound, d,,,(T(O,)), on the distance
of any object in T(0,) from Q. The upper bound is
set to

dmoz(T(Or)) = d(O,, Q) + r(O,)

Consider the simplest case k = 1, two sub-trees,
f(jA$Land T(O,,), and amme that d,,,(T(O,,)) =

min(T(Ora)) = 7. Since d,,,(T(Op,)) guaran-
tees that an object whose distance from Q is at most
5 exists in T(O,,), T(O,,) can be pruned from the
search. The d,,, bounds are inserted in appropriate
positions in the NN array, just leaving the oid field un-
defined. The k-NNSearch algorithm is given below.

k-NNSearch(T:rootnode,Q:query-object,k:integer)
{ PR = CT,-];

for i = 1 to k do: NN[i] = [-,001;
while PR #a do:
{ Nextlode = ChooseNode(

k-NNHodeSearch(NextHode,Q, k); }}

The $-NNNodeSearch method implements most of
the search logic. On an internal node, it first deter-
mines active sub-trees and inserts them into the PR
queue. Then, if needed, it calls the RN-Update function
(not specified here) t o p f er orm an ordered insertion in
the RN array and receives back a (possibly new) value
of dk. This is then used to remove from PR all sub-trees
for which the dmin lower bound exceeds dk. Similar ac-
tions are performed in leaf nodes. In both cases, the
optimization to reduce the number of distance compu-
tations by means of the pre-computed distances from
the parent object, is also applied.

429

k-NNHodeSearch(N:node,Q:query-object ,k: integer)
{ let 0, be the parent object of node N;

if N is not a leaf then
{ V 0, in N do:

if Id(O,,Q) -d(O,,O,)) 5 dk +r(O,) then
{ Compute d(O,,Q);

if dmi,(T(Or)) 5 dk then
{ add Cptr(T(O,)),d,i,(T(O,))l to PR;

if dmaz(T(Or)) < dk then

{ dk = NN-Update(C-,d,,,(T(O,))l) ;
Remove from PR all entries

for which dmin(T(Or)) > dk; }}}}
else /* N is a leaf */
{ VO, inNdo:

if (d(O,, Q) - d(O,, 0,) 1 < dk then
{Compute d(O,, Q);
if d(O,, Q) 5 dk then
{ dk = NNJJpdate([oid(O,),d(Oj,Q)l) ;

Remove from PR all entries
for which dmin(T(Or)) > dk; }}}}

3.3 Building the M-tree

Algorithms for building the M-tree specify how objects
are inserted and deleted, and how node overflows and
underflows are managed.. Due to space limitations,
deletion of objects is not described in this article.

The Insert algorithm recursively descends the M-
tree to locate the most suitable leaf node for accommo-
dating a new object, 0,, possibly triggering a split if
the leaf is full. The basic rationale used to determine
the “most suitable” leaf node is to descend, at each
level of the tree, along a sub-tree, T(O,), for which
no enlargement of the covering radius is needed, i.e.
d(O,,O,) 5 r(0,). If multiple sub-trees with this
property exist, the one for which object 0, is clos-
est to 0, is chosen. This heuristics tries to obtain
well-clustered sub-trees, which haa a beneficial effect
on performance.

If no routing object for which d(O,,O,) 5 ~(0,)
exists, the choice is to minimize the increase of the
covering radius, d(O,, 0,) - r(0,). This is tightly re-
lated to the heuristic criterion that suggests to mini-
mize the overall “volume” covered by routing objects
in the current node.
Insert (N :node, entry (0,) :H-tree-entry)
{ let, N’ be the set of entries in node N;

if N is not a leaf then
{ let AC;, = entries such that d(O,,O,) 5 r(0,);

if AL # 0
then let entry E n/,, :d(O:, 0,) is minimum;
else { let entry(O,‘) E N:

d(Or , 0,) - ~(0:) is minimum;
let r(O:) = d(O:,O,); }

Insert (*ptr (T(O:)) , entry (0,)) ; }
else /* N is a leaf */
{ if N is not full

then store entry in N
else Split(N,entry(O,)) ; }}

The determination of the set Ni,, - routing objects
for which no enlargement of the covering radius is
needed - can be optimized by saving distance com-
putations. From Lemma 3.2, by substituting 0, for &
and setting r(0,) z r(Q) = 0, we derive that:

If Id(O,, O,)-d(O,, Op)(> r(0,) then d(O,, 0,) > (0,)

from which it follows that 0,. # Ni,,. Note that this
optimization cannot be applied in the root node.

3.4 Split Management

As any other dynamic balanced tree, M-tree grows in
a bottom-up fashion. The overflow of a node N is
managed by allocating a new node, N’, at the same
level of N, partitioning the entries among these two
nodes, and posting (promoting) to the parent node,
Np, two routing objects to reference the two nodes.
When the root splits, a new root is created and the
M-tree grows by one level up.

Split(N:node; E:H-tree-entry)
{ let n/ = entries of node N U {E};

ifN is not the root then
let 0, be the parent of N. stored in Np node;

Allocate a nev node N’;
Promote (JV , O,, , Op2) ;
Partition(hf,O,, ,Opa ,n/l ,&I ;
Store Nl’s entries in N and Nz’s entries in N’;
if N is the current root
then {

else {

Allocate a new root node, Np;
Store entry(O,,) and entryCOp,) in Np; }
Replace entry with entry(O,,) in N,,;
if node Np is full
then Split (N,, entryto,,))
else store entry(Op,) in N,,; }}

The Promote method chooses, according to some
specific criterion, two routing objects, O,, and O,, , to
be inserted into the parent node, Np. The Partition
method divides entries of the overflown node (the N
set) into two disjoint subsets, Nl and Nz, which are
then stored in nodes N and N’, respectively. A specific
implementation of the Promote and Partition meth-
ods defines what we call a split policy . Unlike other
(static) metric tree designs, each relying on a specific
criterion to organize objects, M-tree offers a possibil-
ity of implementing alternative split policies, in order
to tune performance depending on specific application
needs (see Section 4).

Regardless of the specific split policy, the semantics
of covering radii has to be preserved. If the split node
is a leaf, then the covering radius of a promoted object,
say Opl, is set to

r(Opl) = ma4d(Oj, O,,)lO~ E A41

whereas if overflow occurs in an internal node

r(Opl) = max{d(O,, O,,) + r(Or)IOr E NI)

430

which guarantees that d(Oj,O,,) 5 ~(0~~) holds for
any object in T(O,,).

4 Split Policies

The “ideal” split policy should promote O,, and Or,
objects, and partition other objects so that the two so-
obtained regions would have minimum “volume” and
minimum “overlap”. Both criteria aim to improve the
effectiveness of search algorithms, since having small
(low volume) regions leads to well-clustered trees and
reduces the amount of indexed dead space - space
where no object is present - and having small (possi-
bly null) overlap between regions reduces the number
of paths to be traversed for answering a query.

The minimum-volume criterion leads to devise split
policies which try to minimize the values of the cover-
ing radii, whereas the minimum-overlap requirement
suggests that, for fixed values of covering radii, the
distance between chosen reference objects should be
maximized.4

Besides above requirements, which are quite “stan-
dard” also for SAMs [BKSSSO], the possible high CPU
cost of computing distances should also be taken into
account. This suggests that even naive policies (e.g.
a random choice of routing objects), which however
execute few distance computations, are worth consid-
ering.

4.1 Choosing the Routing Objects

The Promote method determines, given a set of en-
tries, N, two objects to be promoted and stored into
the parent node. The specific algorithms we consider
can first be classified according to whether or not they
“confirm” the original parent object in its role.

Definition 4.1 A confirmed split policy chooses as
one of the promoted objects, say O,, , the object O,,
i.e. the parent object of the split node.

In other terms, a confirmed split policy just “extracts”
a region, centered on the second routing object, O,,,
from the region which will still remain centered on 0,.
In general, this simplifies split execution and reduces
the number of distance computations.

The alternatives we describe for implementing
Promote are only a selected subset of the whole set
we have experimentally evaluated.

mRAD The “minimum (sum of) RADii” algorithm is
the most complex in terms of distance computa-
tions. It considers all possible pairs of objects and,
after partitioning the set of entries, promotes the

4Note that, without a detailed knowledge of the distance
function, it is impossible to quantify the exact amount of overlap
of two non-disjoint regions in a metric space.

pair of objects for which the sum of covering radii,
~(0~~) + r(Opa), is minimum.

mHRAD This is similar to mRAD, but it minimizes the
maximum of the two radii.

MLBDIST The acronym stands for “Maximum Lower
Bound on DISTance” . This policy differs from
previous ones in that it only uses the pre-
computed stored distances. In the confirmed ver-
sion, where O,, 5 O,, the algorithm determines
O,, as the farthest object from O,, that is

RANDOM This variant selects in a random way the ref-
erence object(s). Although it is not a “smart”
strategy, it is fast and its performance can be used
as a reference for other policies.

SAMPLING This is the RAHDOH policy, but iterated over
a sample of objects of size s > 1. For each of the
s(s - 1)/2 pairs of objects in the sample, entries
are distributed and potential covering radii estab-
lished. The pair for which the resulting maximum
of the two covering radii is minimum is then se-
lected. In case of confirmed promotion, only s
different distributions are tried. The sample size
in our experiments was set to l/10-th of node ca-
pacity.

4.2 Distribution of the Entries

Given a set of entries N and two routing objects O,,
and O,,, the problem is how to efficiently partition
N into two subsets, Nl and Nz. For this purpose we
consider two basic strategies. The first one is based on
the idea of the generalized hyperplane decomposition
[Uhlgl] and leads to unbalanced splits, whereas the
second obtains a balanced distribution. They can be
shortly described as follows.

Generalized Hyperplane: Assign each object Oj E
N to the nearest routing object: if d(Oj,O,,) 5
d(Oj, O,,) then assign Oj to Nl, else assign Oj to
nr,.

Balanced: Compute d(Oj, O,,) and d(Oj, Or,) for all
Oj E N. Repeat until N is empty:

a Assign to Nl the nearest neighbor of O,, in
N and remove it from N;

l Assign to Nz the nearest neighbor of Or, in
N and remove it from N.

Depending on data distribution and on the way how
routing objects are chosen, an unbalanced split policy

431

can lead to a better objects’ partitioning, due to the
additional degree of freedom it obtains. It has to be
remarked that, while obtaining a balanced split with
SAMs forces the enlargement of regions along only the
necessary dimensions, in a metric space the consequent
increase of the covering radius would propagate to all
the “dimensions”.

5 Experimental Results

In this section we provide experimental results on the
performance of M-tree in processing similarity queries.
Our implementation is based on the GiST C++ pack-
age [HNP95], and uses a constant node size of 4
KBytes. Although this can influence results, in that
node capacity is inversely related to the dimensional-
ity of the data sets, we did not investigate the effect
of changing the node size.

We tested all the split policies described in Section
4, and evaluated them under a variety of experimen-
tal settings. To gain the flexibility needed for com-
parative analysis, most experiments were baaed on
synthetic data sets, and here we only report about
them. Data sets were obtained by using the proce-
dure described in [JDBB] which generates normally-
distributed clusters in a Dim-D vector space. In all
the experiments the number of clusters is 10, the vari-
ance is u2 = 0.1, and clusters’ centers are uniformly
distributed (Figure 2 shows a 2-D sample). Distance
is evaluated using the L, metric, i.e. L,(O,,O,) =
maxyjy { 1 O,b] - O,b] I), which leads to hyper-cubic
search (and covering) regions. Graphs concerning con-
struction costs are obtained by averaging the costs of
building 10 M-trees, and results about performance on
query processing are averaged over 100 queries.

Figure 2: A sample data set used in the experiments

Balanced vs. Unbalanced Split Policies
We first compare the performance of the Balanced

and Generalized Hyperplane implementations of the
Partition method (see Section 4.2). Table 1 shows
the overhead of a balanced policy with respect to the
corresponding unbalanced one to process range queries
with side “Imm (Dim = 2,10) on lo4 objects. Sim-
ilar results were also obtained for larger dimensionali-
ties and for all the policies not shown here. In the ta-
ble, as well as in all other figures, a “confirmed” split

policy is identified by the suffix I, whereas 2 designates
a “non-confirmed” policy (see Definition 4.1).

The first value in each entry pair refers to distance
computations (CPU cost) and the second value to page
reads (I/O costs). The most important observation is
that Balanced leads to a considerable CPU overhead
and also increases I/O costs. This depends on the
total volume covered by an M-tree - the sum of the
volumes covered by all its routing objects - as shown
by the “volume overhead” lines in the table. For in-
stance, on 2-D data sets, using Balanced rather than
Generalized Hyperplane with the RANDOM-1 policy
leads to an M-tree for which the covered volume is
4.60 times larger. Because of these results, in the fol-
lowing, all the split policies are based on Generalized
Hyperplane.
The Effect of Dimensionality

We now consider how increasing the dimensionality
of the data set influences the performance of M-tree.
The number of indexed objects is IO4 in all the graphs.

Figure 3 shows that all the split policies but mRAD2
and mMRAD-2 compute almost the same number of dis-
tances for building the tree, and that this number de-
creases when Dim grows. The explanation is that in-
creasing Dim reduces the node capacity, which has a
beneficial effect on the numbers of distances computed
by insertion and split algorithms. The reduction is
particularly evident for mRAD2 and mMRADZ, whose
CPU split costs grow as the square of node capacity.
I/O costs, shown in Figure 4, have an inverse trend
and grow with space dimensionality. This can again
be explained by the reduction of node capacity. The
fastest split policy is RANDOM2 and the slowest one is,
not surprisingly, mRADZ2.

Figure 3: Distance camp. for building M-tree

Y:
0 5 10 15 20 & 30 25 4 45 50

Figure 4: I/O costs for building M-tree

432

RANDOH- SAMPLING-1 H-LB-DIST-1 RANDOM-2 mRAD-2
Dim = 2 volume ovh. 4.60 4.38 3.90 4.07 1.69

did. ovh, I/O ovh. 2.27,2.11 1.97,1.76 1.93,1.57 2.09,1.96 1.40,1.30

Dim = 10 volume ovh. 1.63 1.31 1.49 2.05 2.40
dist. ovh, I/O ovh. 1.58,1.18 1.38,0.92 1.34,0.91 1.55,1.39 1.69,1.12

Table 1: Balanced vs. unbalanced split policies: CPU, I/O, and volume overheads

Figure 5 shows that the “quality” of tree construc-
tion, measured by the average covered volume per
page, depends on split policy complexity, and that the
criterion of the cheap MLBDIST-I policy is indeed ef-
fective enough.

0’
0 5 10 15 20

4:
30 36 40 45 so

Figure 5: Average covered volume per page

Performance on lo-NN query processing, consider-
ing both I/O’s and distance selectivities, is shown in
Figures 6 and 7, respectively - distance selectivity is
the ratio of computed distances to the total number of
objects.

, , , , , , , , _--

Figure 6: I/O’s for processing lo-NN queries

0.35 , , , , , , , , , ,

01 ’ 8 ’ a 8 t - 1 0 5 10 15 20 c 30 35 40 45 50

Figure 7: Distance selectivity for lo-NN queries

Some interesting observations can be done about
these results. First, policies based on “non-confirmed”
promotion, perform better that “confirmed” policies as
to I/O costs, especially on high dimensions where they
save up to 25% I/O’s. This can be attributed to the
better object clustering that such policies can obtain.
I/O costs increase with the dimensionality mainly be-

cause of the reduced page capacity, which leads to
larger trees. For the considered range of Dim values,
node capacity varies by a factor of 10, which almost
coincides with the ratio of I/O costs at Dim = 50 to

the costs at Dim = 5.
As to distance selectivity, differences emerge only

with high values of Dim, and favor mMRAD2 and
mRAD-2, which exhibit only a moderate performance
degradation. Since these two policies have the same
complexity, and because of above results, mRAD2 is

discarded in subsequent analyses.
Scalability

Another major challenge in the design of M-tree was
to ensure scalability of performance with respect to the
size of the indexed data set. This addresses both as-
pects of efficiently building the tree and of performing
well on similarity queries.

Table 2 shows the average number of distance com-
putations and I/O operations per inserted object, for
2-D data sets whose size varies in the range lo4 t 105.
Results refer to the RANDOM2 policy, but similar trends
were also observed for the other policies. The moder-
ate increase of the average number of distance compu-
tations depends both on the growing height of the tree
and on the higher density of indexed objects within
clusters. This is because the number of clusters was
kept fixed at 10, regardless of the data set size.

Figures 8 and 9 show that both I/O and CPU (dis-
tance computations) lo-NN search costs grow loga-
rithmically with the number of objects, which demon-
strates that M-tree scales well in the data set size, and
that the dynamic management algorithms do not de-
teriorate the quality of the search. It has to be empha-
sized that such a behavior is peculiar to the M-tree,
since other known metric trees are intrinsically static.

o 2 ,,t, d cbi.cl‘(xBIW, * 10

Figure 8: I/O’s for processing IO-NN queries

As to the relative behaviors of split policies, fig-
ures show that “cheap” policies (e.g. RANDOM and

433

n. ofobjects (x104) 1 2 3 4 5 6 7 8 9 10
avg. n. dist. camp. 45.0 49.6 53.6 57.5 61.4 65.0 68.7 72.2 73.6 74.7
avg. n. I/O’s 8.9 9.3 9.4 9.5 9.6 9.6 9.6 9.6 9.7 9.8

Table 2: Average number of distance computations and I/O’s for building the M-tree (RANDOHZ split policy)

Figure 9: Distance computations for lo-NN queries

M_LBDIST-1) are penalized by the high node capac-
ity (A4 = 60) which arises when indexing 2-D points.
Indeed, the higher M is, the more effective “complex”
split policies are. This is because the number of alter-
natives for objects’ promotion grows as M2, thus for
high values of M the probability that cheap policies
perform a good choice considerably decreases.

5.1 Comparing M-tree and R’-tree

The final set of experiments we present compares M-
tree with R*-tree. The R*-tree implementation we use
is the one available with the GiST package. We defi-
nitely do not deeply investigate merits and drawbacks
of the two structures, rather we provide some refer-
ence results obtained from an access method which is
well-known and largely used in database systems. Fur-
thermore, although M-tree has an intrinsically wider
applicability range, we consider important to evalu-
ate its relative performance on “traditional” domains
where other access methods could be used as well.

Results in Figures 10 and 11 compare I/O and
CPU costs, respectively, to build R*-tree and M-tree,
the latter only for the RANDOHZ, MLBDIST-1, and
mMRAD2 policies. The trend of the graphs for R*-tree
confirms what already observed about the influence of
the node capacity (see Figures 3 and 4). Graphs em-
phasize the different perfomance of M-trees and R*-
trees in terms of CPU costs, whereas both structures
have similar I/O building costs.

0 5 10 15 20 c 3-J 35 40 45 50
Figure 10: I/O costs for building M-tree and W-tree

0 5 10 16 al
L%

30 36 a 45

Figure 11: Distance computations for building M-tree
and R*-tree

Figures 12 and 13 show the search costs for square
range queries with side D’mm. It can be observed
that I/O costs for R*-tree are higher than those of all
M-tree variants. In order to present a fair compari-
son of CPU costs, Figure 13 also shows, for each M-
tree split policy, a graph (labelled (non opt)) where
the optimization for reducing the number of distance
computations (see Lemma 3.2) is not applied. Graphs
show that this optimization is highly effective, saving
up to 40% distance computations (similar results were
obtained for NN-queries). Note that, even without
such an optimization, M-tree is almost always more
efficient than R*-tree.

From these results, which we remind are far from
providing a detailed comparison of M-trees and R*-
trees, we can anyway see that M-tree is a competi-
tive access method even for indexing data from vector
spaces.

Figure 12: I/O’s for processing range queries

Figure 13: Distance selectivity for range queries

434

6 Conclusions

The M-tree is an original index/storage structure with
the following major innovative properties:

l it is a paged, balanced, and dynamic secondary
memory structure able to index data sets from
generic metric spaces;

l similarity range and nearest neighbor queries can
be performed and results ranked with respect to
a given query object;

l query execution is optimized to reduce both the
number of page reads and the number of distance
computations;

l it is also suitable for high-dimensional vector data.

Experimental results show that M-tree achieves its pri-
mary goal, that is, dynamicity and, consequently, scal-
ability with the size of data sets from generic met-
ric spaces. Analysis of many available split policies
suggests that the proper choice should reflect the rel-
ative weights that CPU (distance computation) and
I/O costs may have. This possibility of “tuning” M-
tree performance with respect to these two cost factors,
which are highly dependent on the specific application
domain, has never been considered before in the anal-
ysis of other metric trees. Our implementation, based
on the GiST package, makes clear that M-tree can ef-
fectively extend the set of access methods of a database
system.5

Current and planned research work includes: sup-
port for more complex similarity queries, use of vari-
able size nodes to perform only “good” splits [BKKSG],
and parallelization of CPU and I/O loads. Real-life
applications, such as fingerprint identification and pro-
tein matching, are also considered.

Acknowledgements

This work has been funded by the EC ESPRIT LTR Proj.
9141 HERMES. P. Zezula has also been supported by
Grants GACR 102/96/0986 and KONTAKT PM96 S028.

References
[AFS93] R. Agrawal, C. Faloutsos, and A. Swami. Effi-

cient similarity search in sequence databases.
FODO’93, pp. 69-84, Chicago, IL, Oct. 1993.
Springer LNCS, Vol. 730.

[BKK96] S. Berchtold, D.A. Keim, and H.-P. Kriegel.
The X-tree: An index structure for high-
dimensional data. 2&nd VLDB, pp. 28-39,
Mumbai (Bombay), India, Sept. 1996.

[BKSSSO] N. Beckmann, H.-P. Kriegel, R. Schneider,
and B. Seeger. The R.-tree: An efficient and
robust access method for points and rectan-
gles. ACM SIGMOD, pp. 322-331, Atlantic
City, NJ, May 1990.

5 We are now implementing M-tree in the PostgreSQL system.

[B097]

[Bri95]

[Chi94]

[FEF+ 941

[FL951

[FRM94]

[Gut841

[HNP95]

[JD88]

[RKV95]

[SRF87]

[Uhf911

[VM95]

T. Bozkaya and M. Ozsoyoglu. Distance-
baaed indexing for high-dimensional metric
spaces. ACM SIGMOD, pp. 357-368, Tucson,
AZ, May 1997.

S. Brin. Near neighbor search in large met-
ric spaces. 21st VLDB, pp. 574-584, Zurich,
Switzerland, Sept. 1995.

T. Chiueh. Content-based image indexing.
20th VLDB, pp. 582-593, Santiago, Chile,
Sept. 1994.

C. Faloutsos, W. Equitz, M. Flickner,
W. Niblack, D. Petkovic, and R. Barber. Ef-
ficient and effective querying by image con-
tent. J. of Intell. In. Sys., 3(3/4):231-262,
July 1994.

C. Faloutsos and K.-I. Lin. FastMap: A
fast algorithm for indexing, data-mining and
visualization of traditional and multimedia
datasets. ACM SIGMOD, pp. 163-174, San
Jose, CA, June 1995.

C. Faloutsos, M. Ranganathan, and
Y. Manolopoulos. Fast subsequence match-
ing in time-series databases. ACM SIGMOD,
pp. 419-429, Minneapolis, MN, May 1994.

A. Guttman. R-trees: A dynamic index struc-
ture for spatial searching. ACM SIGMOD, pp.
47-57, Boston, MA, June 1984.

J.M. Hellerstein, J.F. Naughton, and A. Pfef-
fer. Generalized search trees for database sys-
tems. 2fst VLDB, Zurich, Switzerland, Sept.
1995.

A.K. Jain and R.C. Dubes. Algorithms for
Clustering Data. Prentice-Hall, 1988.

N. Roussopoulos, S. Kelley, and F. Vincent.
Nearest neighbor queries. ACM SIGMOD, pp.
71-79, San Jose, CA, May 1995.

T.K. Sellis, N. Roussopoulos, and C. Falout-
SOS. The Rt-tree: A dynamic index for multi-
dimensional objects. 13th VLDB, pp. 507-
518, Brighton, England, Sept. 1987.

J.K. Uhlmann. Satisfying general proxim-
ity/similarity queries with metric trees. Inf.
Proc. Lett., 40(4):175-179, Nov. 1991.

M. Vassilakopoulos and Y. Manolopoulos.
Dynamic inverted quadtree: A structure for
pictorial databases. In. Sys., 20(6):483-500,
Sept. 1995.

[WBKW96] E. Wold, T. Blum, D. Keislar, and
J. Wheaton. Content-based classification,
search, and retrieval of audio. IEEE Multi-
media, 3(3):27-36, 1996.

[ZCR96] P. Zezula, P. Ciaccia, and F. Rabitti. M-
tree: A dynamic index for similarity queries in
multimedia databases. TR 7, HERMES ES-
PRIT LTR Project, 1996. Available at URL
http://uwu.ced.tuc.gr/hermes/.

435

