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Abstract: Recently there has been an increasing in- 
terest in supporting bulk operations on multidimen- 
sional index structures. Bulk loading refers to the 
process of creating an initial index structure for a 
presumably very large data set. In this paper, we 
present a generic algorithm for bulk loading which 
is applicable to a broad class of index structures. 
Our approach differs completely from previous 
ones for the following reasons. First, sorting multi- 
dimensional data according to a predefined global 
ordering is completely avoided. Instead, our ap- 
proach is based on the standard routines for splitting 
and merging pages which are already fully imple- 
mented in the corresponding index structure. Sec- 
ond, in contrast to inserting records one by one, our 
approach is based on the idea of inserting multiple 
records simultaneously. As an example we demon- 
strate in this paper how to apply our technique to the 
R-tree family. For R-trees we show that the I/O per- 
formance of our generic algorithm meets the lower 
bound of external sorting. Empirical results demon- 
strate that performance improvements are also 
achieved in practice without sacrificing query per- 
formance. 

1 Introduction 

Among the most important non-standard databases are his- 
torical, spatial, image and text databases. For temporal and 
spatial databases, the underlying multidimensional objects 
are embedded typically in a two- or three-dimensional 
space. Objects are not limited to points, but may possess a 
spatial extent. For image and text databases, a multidimen- 
sional object represents an array of features taken from a 
picture and document, respectively. Typically, the dimen- 
sion of the objects is extremely high. In text databases, for 
example, vectors have usually more than 1000 components 
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[Hen 961. Common to all these applications is that one-di- 
mensional index structures (e.g., B+-trees) are not appro- 
priate indexing techniques. 
In order to support queries on multidimensional data sets 
efficiently, a huge number of multidimensional index struc- 
tures have been proposed during the last two decades. Mul- 
tidimensional index structures support insertions, deletions 
and updates, as well as proximity queries (e.g., window 
queries, nearest-neighbor queries). In addition to these tra- 
ditional operations, there is currently an increasing interest 
in supporting bulk operations. A bulk operation is a collec- 
tion of individual operations that are executed in consecu- 
tion, without being interrupted by other requests. The most 
common bulk operation is to create a multidimensional in- 
dex structure for a given set of records from scratch. This 
operation has also been termed bulk loading [DKL+ 941. 
Bulk loading is for example important for processing spa- 
tial joins [LR 941 when (spatial) indices do not exist on the 
participating relations. In this paper, we address the prob- 
lem of supporting bulk loading of multidimensional 
tree-based index structures. 
So far, there has been very little work on bulk loading of 
multidimensional index structures. There have been several 
proposals for bulk loading R-trees [RL 851, [RF 931, [LEL 
951. All of them are based on sorting data according to a 
global one-dimensional criterion (e.g., attribute of the data 
object, space-filling curve). After sorting, they follow the 
standard approach of clustering the data according to the 
linear order (known from B+-trees), i.e., they simply build 
up the R-tree index from bottom to top. In [DKL 941 it has 
been recognized that this approach generally leads to poor 
query performance. The performance of R-trees produced 
by these bulk loading methods seems to be acceptable 
when both of the following assumptions are fulfilled: the 
dimension of the objects is low and the objects have small 
spatial extent (in parameter space). For the applications 
mentioned above, both assumptions generally do not hold, 
and also R-trees may not always be the prime choice for the 
problem at hand. For structures other than R-trees and 
those multidimensional index structures that are based on 
the combination of B+-trees and space-filling curves, the 
problem of bulk loading has not been addressed. 
We propose an approach to bulk loading that is completely 
different from the previous ones used on R-trees. The rea- 
son is that sorting data objects according to a global one-di- 
mensional criterion imposes too strong a limitation on the 
way spatial clustering can be achieved. Instead of sorting, 
the split and merge routines of the particular index structure 
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that is desired for the given setting are exploited for build- 
ing an extremely efficient temporary data structure. The lat- 
ter one is derived from the so-called buffer-tree [Arg 961 
and therefore we use the term buffer-tree throughout the pa- 
per. The buffer-tree differs from the target index structure 
mainly in the following two points. First, each internal 
node of the buffer-tree has an additional (external) buffer 
where records are (temporarily) stored. Second, multiple 
insertions are processed simultaneously in the buffer-tree, 
in the following sense. A node in the tree defers an arriving 
insertion process and stores the corresponding record in its 
buffer. When the number of records in the buffer exceeds a 
predefined threshold, the insertion processes of all records 
in the buffer advance to the next level of the tree. In order 
to determine the subtrees (to which the insertions are di- 
rected), it is sufficient to read the node (with the required 
routing information) into main memory only once. This 
may give a first intuitive hint that the amortized insertion 
cost of the buffer-tree is much lower than the insertion cost 
of the original index structure. In spite of these differences, 
the buffer-tree allows to build up the desired index structure 
incrementally bottom-up, one level at a time. Our approach 
can also be considered a generalization of the bulk loading 
method based on seeded trees [LR 951. In contrast to our 
approach, seeded trees are restricted to create a forest of 
R-trees. In particular, the resulting index structure does not 
always fulfill the properties of an R-tree. Moreover, seeded 
trees gives no performance improvement in the worst-case 
in comparison to the original insertion algorithm of an 
R-tree. 
One of the most important advantages of our approach is its 
applicability to a broad class of tree-based index structures. 
Among them are B+-trees, R-trees [Gut 841, TV-trees [LIF 
941, GIST [HNP 951, buddy-trees [SK90], LSD-trees 
[HSW 891, and multiversion B-trees (MVBTs) [BGO+ 961 
and their relatives [LS 891. Therefore, we describe algo- 
rithms in a generic fashion without making specific as- 
sumptions about the underlying index structure. However, 
in order to make our approach more concrete, we consider 
the R-tree as our prime example in this paper. In particular, 
we show for the R-tree that the I/O performance of our ap- 
proach is asymptotically equal to external sorting [AV 881. 
The remaining paper is structured as follows. The next sec- 
tion introduces the underlying I/O model and our terminol- 
ogy. Section 3 of the paper introduces the buffer-tree. An 
example illustrates the basic ideas of our bulk loading algo- 
rithms. Section 4 describes the generic algorithms in detail. 
In Section 5, we consider the worst-case performance of 
these algorithms when they are applied to R-trees. Section 
6 presents results obtained from an empirical performance 
evaluation. The conclusions are in Section 7. In an appen- 
dix, we summarize the symbols used throughout the paper. 

2 Preliminaries 

In this section we introduce our most important notions. 
Moreover, we discuss first the underlying I/O model and 
then the requirements on the underlying index structure. 

2.1 The I/O model 

Our I/O model corresponds to a disk. We assume that a disk 
is partitioned into pages of fixed size, with random access 
to each page at unit cost. At most B records (data objects) 
can be stored in a data page. Each access to disk transfers 
one page; we denote this as one I/O. The performance of 
our algorithms is measured in the number of I/OS needed 
for performing a sequence of N insertions. In particular, we 
do not focus on the I/O-cost of a single insertion. We make 
use of all available main memory (a supposedly large 
amount) for the operations of the bulk loading algorithm; 
let M denote the maximum number of records the available 
main memory can hold. The I/O cost of the algorithms is 
expressed in terms of N, M and B, i.e., none of these three 
parameters is viewed as a constant. We will abbreviate N/B 
and M/B by n and m, respectively. 
Assuming this I/O model it was shown [AV 881 that exter- 
nal sorting requires O(n log,n) I/OS in the worst-case. 
The I/O cost of bulk loading a one-dimensional index struc- 
ture that preserves the ordering of data (e.g., B+-tree) is 
therefore asymptotically optimal in the worst-case, if it 
meets the lower bound of external sorting. Therefore, our 
goal is to achieve this bound for bulk loading multidimen- 
sional index structures, without sacrificing search perfor- 
mance. 

2.2 External tree-based index structures 

In the following, we assume an index structure to be a tree. 
Each node of the tree corresponds to a page on disk. Rout- 
ing information is stored in index nodes, whereas data 
records are stored in the data nodes. The index nodes to- 
gether with the data nodes form a tree; the data nodes are 
the leaves of the tree. We call the part of the tree that con- 
sists of the index nodes the index tree; the entries of its leaf 
nodes contain references to data nodes, while the entries of 
its internal nodes contain references to index nodes. A 
node also corresponds to a d-dimensional (node) region of 
the dataspace; the records/entries of a node have to lie in 
the corresponding region. The region of a node will be 
stored with the reference to the node as an entry in an index 
node on the next higher level. For an R-tree, the region of 
an index node is the minimum bounding rectangle of the re- 
gions in its child nodes. 
Most (multidimensional) index structures show great simi- 
larities in their internal interface. Similar to [HNE 951, we 
assume that the index structure provides the following op- 
erations: 

l InsertIntoNode: insert a record into a data node or an 
entry into an index node. 

l Split: split an overfull node into two. Note that there are 
some index structures which guarantee that storage in 
nodes is used at least to a certain degree. For example, 
nodes of a B+-tree will be used at least to a degree of 
50%. 

l ChooseSubtree: for a data record and an index node, 
choose a subtree for inserting the record. We assume 

407 



that ChooseSubtree also accepts a node region as pa- 
rameter (instead of a data record). 

Note that these methods will generally be available in mul- 
tidimensional index structures. The only special require- 
ment about these operations is that ChooseSubtree must be 
able to choose a subtree for both record and (node) region. 
This, however, is not a problem for index structures like the 
R-tree, where records and regions are rectangles. Other in- 
dex structures like the B+-tree or the multiversion B-tree 
can easily be extended to support such an operation. The 
details for the MVBT are given in [BSW 961. 

3 The Basic Idea of Bulk Loading 

In this section, we first describe the abstract data structure 
of the buffer-tree. Thereafter, the basic idea of bulk loading 
will be illustrated by an example where the buffer-tree is 
made concrete for bulk loading an R-tree. 

3.1 Review of the Buffer-Tree 

Arge [Arg 961 proposed the buffer-tree for making the 
plane-sweep paradigm applicable to the case when the data 
set is too large for being kept resident in main memory. The 
plane-sweep paradigm is a key technique in the area of 
computational geometry [PS 851. In order to be general 
enough, we modify his definition of the buffer-tree slightly. 

(external) buffer with 
at most p pages 

fan-out of a node is 
at most C 

Figure 1: An index node of the buffer-tree 

- 

-_--__-- 

-----_--_--_--- 
- 

Figure 2: Structure of a buffer-tree 

Definition 1: A tree-based index structure is a buffer-tree 
of order C and maximum buffer capacity p, if the following 
properties are fulfilled: 

(9 each index node contains at most C entries; 
these entries refer to subtrees; 

(ii) 

(iii) 

each index node contains a buffer of at most p 
occupied pages; 

except for the last page, the occupied pages of 
the buffer are guaranteed to be full. 

The structure of the buffer-tree is illustrated in Fig. 2. We 
distinguish between three types of nodes: internal nodes, 
leaf nodes and data nodes. Internal nodes and leaf nodes are 
index nodes whose structure is depicted in Fig. 1. Each of 
these nodes consists of a buffer with at most p pages and a 
routing table with at most C references to subtrees. Note 
that in our terminology a buffer of a node can change its 
size dynamically. We say that a bu$er is full, if it contains 
p full pages (i.e., B*p records). A bufler is empty if it con- 
tains no pages (records). In an intermediate state of an op- 
eration, a buffer can contain more than p pages. We say 
then that there is an overflow of the bufir. Parameter C is 
also called the branching factor; it only depends on the 
available main memory and not as usually on the physical 
page size. That is, the size of an index node in general is 
larger than the physical page size. The size of a data node 
however is equal to the size of a physical page. 
In contrast to an index structure designed for individual 
queries, multiple insertions are processed in the buffer-tree 
simultaneously. An insertion process is in one of the three 
states active, blocked and terminated. Only one of the in- 
sertion processes is active at a time, whereas the others are 
blocked or terminated. We say that an insertion process is 
terminated if its record is in a data page. An active insertion 
process becomes blocked when it arrives at an index node. 
The corresponding record is then inserted into the buffer of 
the index node. At a later point in time, a blocked insertion 
process will be reactivated. 

3.2 Example 

Before going into more details, we first give an example to 
illustrate how buffer-trees are used for bulk loading 
R-trees. The R-tree [Gut 841 is a height-balanced tree suit- 
able for organizing a collection of multidimensional (recti- 
linear) rectangles in a dynamic setting. The distinctive 
property of R-trees is to represent each of the data rectan- 
gles only once in the data structure. This, however, leads to 
the undesirable property that there is overlap between the 
rectangles of index entries which are stored on the same 
level of the tree. An insertion of a new rectangle can in- 
crease this overlap and hence decrease geometric selectiv- 
ity; therefore, researchers have studied the problem of im- 
proving the insertion algorithm [BKSS 901. More pre- 
cisely, new algorithms have been developed for splitting 
nodes and for choosing a subtree where the insertion pro- 
cess will continue. All of these algorithms were designed 
such that an insertion requires the retrieval of nodes from a 
single path of the tree. 
In our example of bulk loading an R-tree, we consider a set 
of 25 rectangles {r 1,. . .,rzs}, see Fig. 3. In order to keep our 
example manageable, we assume the following setting of 
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Figure 3: Sample set of 25 rectangles 

the parameters: B (capacity of a data page) = 3, C (branch- 
ing factor) = 4, p (number of pages in a buffer) = 2. 
In Fig. 4 we depicted the buffer-tree after having started the 
first 23 insertion processes, where rectangles are inserted in 
the order of their indices into an initially empty tree. The 
insertion proceeds as in an R-tree. The buffer-tree consists 
of three index nodes Nl, N2, N3 and five data pages 
Pl,..., Pg. Twelve of the 23 insertion processes have 
reached the leaf level, and therefore, these processes have 
been terminated. The other insertion processes are still 
alive, but blocked. For example, the insertion process of 
rectangle r17 is waiting at node N,. Whenever a node 
blocks an insertion process the corresponding rectangle is 
temporarily stored in its buffer. Note that these buffers are 
generally not resident in main memory. As required in con- 
dition (iii) of Definition 1, the buffer of each of the index 
nodes contains at most p (= 2) pages. 
An insertion into the buffer-tree is processed very similarly 
to an insertion into an R-tree, except that an index node 
keeps and blocks arriving insertions and reactivates them at 
a later point in time. Let us consider the insertion process 
of rectangle rz4. Since the buffer of the root page is not full, 
the insertion process is deactivated at the root and r24 is in- 
serted into the root buffer. In order to support the insertion 
into the root buffer efficiently, we keep the last (occupied) 

Figure 5: Example buffer-tree after clearing the root 
buffer 

page of the root buffer in main memory, as long as no struc- 
tural change is performed. Thereafter, the insertion process 
of rectangle r25 starts. Since the root buffer is already full, 
‘25 cannot be inserted there. Therefore, a structural change 
of the buffer-tree is performed first. The structural change 
consists of reactivating all processes (one by one) which 
are blocked at the root page. Each of these processes takes 
its rectangle from the buffer and advances to the next level 
of the buffer-tree (by calling ChooseSubtree). We also say 
that the buffer (of the root page) is cleared. The situation af- 
ter having cleared the buffer is illustrated in Fig. 5. As de- 
picted, the buffer of Nl has no page, r19, ‘20 rz2, r23 are now 
in the buffer of N2 and r21, rs4 are in the buffer of N3. 

After clearing of a buffer it may happen that some of the 
buffers at the next level contain more than p (= 2) pages, see 

N4 H 
e e 

El8 

i!F 

P P 
r r 
r 

El 
r 

r 

Figure 4: Example buffer-tree after having started Figure 6: Splitting of an index node N3 (at the top) into 
23 insertion processes node N3 and N4 (at the bottom) 
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for example the buffer of node N3 in Fig. 5. These over- 
flows are then eliminated again by clearing those buffers 
one by one. In our example, therefore, the insertion pro- 
cesses of rectangles r13, . . ., ‘16, rlsr r21, r24 continue to the 
leaf level of the buffer-tree. Note that an overflow in a data 
page is treated in the same fashion as known from the 
R-tree: a page is first split into two and then the correpons- 
ing entries are posted to the parent node. 
At the top of Fig. 6, the subtree rooted at node N3 is de- 
picted after having cleared the buffer of N3 partially, with 
r21 and r24 still remaining. Let us assume that rectangle r21 
should be inserted in page P,. Since P4 is already full, an 
overflow occurs and therefore, a new page Ps and a new en- 
try em is created. The insertion of elu in node N3 again pro- 
duces an overflow of the routing table. Therefore, a new 
node N4 (with its own buffer) is created, and some of the 
entries of N3 are moved to N4, see the bottom of Fig. 6. For 
each record from the buffer of N3, ChooseSubtree is called 
to determine whether the record remains in the buffer or 
moves to the buffer of N+ In our example, the buffer of N4 
contains rectangle r24, whereas the buffer of N3 is empty 
(quite a special situation). Only the buffer with the highest 
number of entries is then totally cleared, whereas the other 
buffer remains unchanged. In our example, the buffer of N4 
is cleared (i.e., the insertion process of r2, is activated). The 
entries of the nodes are then posted to the parent node Nl. 
Thereafter, the structural change is finished and rectangle 
r25 is eventually inserted into the root buffer. 
After having started all insertion processes, some of them 
did not arrive at a data node, but are still blocked at an index 
node. Therefore, bulk loading is not terminated yet. What 
remains to be done is to empty all non-empty buffers of the 
buffer-tree in a depth-first order, starting from the root. 
Since we already have illustrated this operation, we will not 
go into further details here. In Fig. 7, the final buffer-tree is 
depicted. Pages P 1,. . . ,Plo now represent the data nodes of 
the target R-tree. 
At first glance, it may seem that the index nodes of the 
buffer-tree already correspond to the index nodes of the tar- 
get R-tree. This is however not the case in general, since we 
took advantage in choosing the size of an index node differ- 
ent from the physical page size. Now, in order to arrive at 
the target R-tree, we create a second buffer-tree by insert- 

P \PAP 
r r r 

l!iEEa 
r r r 

r 
Figure 7: The example buffer-tree after having terminated all insertion processes 

ing the entries el, . . ., es, es, g, elO, ell, el3 which are in 
the index leaf nodes of the first buffer-tree. The second 
buffer-tree will produce all the index pages of the target 
R-tree that are above the leaves. In this way, each level of 
the target R-tree is built by creating a further buffer-tree. 

4 The generic algorithm in details 

In this section, we give a detailed description of the bulk 
loading algorithms without making special assumptions 
about the underlying index structure. Let us recall that the 
index structure provides an interface with the following 
three operations: ZnsertIntoNode, Split and ChooseSubtree. 
These operations will be frequently used in the following 
algorithms. 
An obvious implementation of the buffer-tree would be to 
use the process facilities of the operating system for creat- 
ing a process for each insertion. The overhead for manag- 
ing all these processes (in time and storage cost) would 
however be very high, and therefore we decided against us- 
ing multiple processes. In our approach, only one process 
is used for simulating all the different “processes”. 
The basic structure of our algorithm for bulk loading is 
somehow similar to the algorithm of an (ordinary) insertion 
in an index structure such as an R-tree. In the buffer-tree, an 
insertion operation of a record first traverses the tree from 
the root to a leaf, whereas a restructuring operation can then 
traverse from the leaf backwards to the root. The unique 
feature of the buffer-tree is that multiple insertion opera- 
tions and multiple restructuring operations are processed 
simultaneously in the tree. In the example of the previous 
section we have already discussed how insertions are pro- 
cessed. A restructuring operation is triggered by an over- 
flow in a data node or by an overflow in a routing table of 
an internal node. A restructuring operation consists of a 
split of the overflowing node and an insertion of the new 
entry in its parent index node. Similar to an insertion pro- 
cess of a record, an internal index node also defers an in- 
coming insertion operation of an entry. The index node 
temporarily stores the entry in a list. When all subtrees of 
the node have finished their restructuring operations (i.e., 
each of these subtrees fulfills the properties of a 
buffer-tree), all the entries of the list are inserted in the rout- 
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ing table of the node. This can again produces overflows 
and further restructuring operations. 
The main algorithm of bulk loading is Sturthsert which is 
given below. We assume that the buffer-tree initially con- 
sists of an index page with one reference to an empty data 
page. StartInsert initiates a new insertion process at the 
root of the buffer-tree (Root). First, the number of records 
in the buffer of Root is computed by calling BuferLoad. 
Usually, the load is lower than B*p (i.e., the condition of 
the if-statement is not fulfilled) and then, only ZnsertZnto- 
Bufer is called. This routine simply blocks the insertion 
process and inserts the new record into the root buffer. In 
order to save storage space, the buffer consists of the mini- 
mum number of pages necessary to hold the records. 
Hence, the insertion goes into the currently last page of the 
buffer. If this page is already full, a new page will be added 
to the buffer. After a sequence of B*p calls of StartInsert, 
the buffer is full and the condition of the if-statement is ful- 
filled for the next insertion process. Then, the buffer of 
Root is cleared, i.e., insertion processes are reactivated. As 
the result of a call of CleurBu$el; we obtain a list of entries 
(new-children) which refer to new child nodes of Root. 
Next, InsertChildren inserts these entries of new-children 
into Root. Moreover, a new sibling is created when an over- 
flow occurs in Root or in one of the previously created sib- 
lings. Eventually, InsertChildren returns a list of the new 
siblings to SturtZnsert. If this list is not empty, a new root of 
the buffer-tree is created from this list. 

ALGORITHM StartInsert (Root, R) 
(* An insertion process is started for record R in a 

buffer-tree with rootnode Root. *) 
IF Bu$Aoud(Root) = B*p 

nau-children := ClearBuffer(Root); 
new-siblings := InsertChildren(Root, new-children); 
IF new-siblings is not empty 

create a new root from new-siblings; 
(* update Root *) 

InsertIntoBuffer(Root R); 
END SturtZnsert. 

In the following, we give a detailed description of Cleur- 
Bufer and InsertChildren. Let us first consider the latter 
one (see below). Algorithm InsertChildren inserts entries 
of a list (new-children) into a node (Node). First, entries are 
inserted only into Node until an overtlow occurs. The rout- 
ing table of Node is then split into two and a new entry (re- 
ferring to the new node) is inserted into a list 
(nao-siblings). At that time it might be that some of the en- 
tries from new-children are still unprocessed. In the next 
pass through the for-loop, the entry has to be assigned to 
one of the two nodes. ChooseSubtree is therefore called. 
After the for-statement is processed, the records from the 
buffer of Node are redistributed among Node and its sib- 
lings. Finally, new-siblings is returned. 

ALGORITHM ZnsertChildren(Node, new-children) 

(* The entries from children are inserted in Node. The algo- 
rithm returns a list of nodes (new-siblings) which are de- 
rived from Node through split operations. *) 

new-siblings := [ ]; 
FOREACH entry E from new-children 

all-siblings := new-siblings v {entry of Node ) ; 

ParentNode := ChooseSubtree(all-siblings, E); 

InsertIntoNode(ParentNode, E); 
IF overflow in ParentNode 

Split(routing table of ParentNode); 

(* split routine of the index structure *) 
insert the new entry into new-siblings; 

IF new-siblings is not empty 

(* split the buffer of Node *) 

(* all-siblings = nen-siblings u {entry of Node} *) 

FOREACH record R from the buffer of Node 
Target := ChooseSubtree(all-siblings, R); 

move R from buffer of Node to the one of Target; 

RETURN new-siblings; 

END InsertChildren. 

Most important to the buffer-tree is the algorithm Cleur- 
Bufer for clearing an overllowing buffer of a node. This 
corresponds to activating all blocked processes at a node. 
Clear-Buffer distinguishes between internal index nodes 
and leaf nodes of the index and calls algorithm Cleurlnter- 
nalBuffer and ClearL.eajBu$2r, respectively. 

For the case of an internal index node, the idea of the algo- 
rithm is to read the first B*p records from the buffer and de- 
termine the nodes to which the records should be assigned. 
For a given record R and index node Child, the routine Zn- 
sertZntoBuffer puts R into the last page of the buffer of 
Child. When an overflow occurs in the buffer (i.e., Bufer- 
Loud(Child) is greater than B*p), we provisionally insert 
the corresponding node into a list (overjZow_list). Note 
however that the buffers of the nodes in overfiow-list may 
still receive records from the buffer of Node. After the 
buffer is cleared of B*p records, we traverse through 
ove$owJist and apply ClearBuffer to each of the nodes in 
a recursive fashion. The (indirect) recursive calls return 
lists of entries which refer to new child nodes. After that, 
InsertChildren inserts the entries of these lists into Node. 

An important feature of CleurZntemalBuffer is that a buffer 
is only partially cleared from the first B*p records. The rea- 
son is that then the number of overflow records in a buffer 
is at most B*p (because a node can receive at most B*p 
from its parent). To put in other words, a buffer contains in 
all situations at most 2*B*p records. After emptying a 
buffer partially, it is therefore guaranteed that a buffer con- 
tains at most B*p records. 
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ALGORITHM ClearZnternalBu.r(Node) 
(* Clears the buffer of Node whose entries refer to an index 

node. *) 
overjhw-list := ( }; 
FOREACH R of the first B*p records in buffer of Node 

(* reactivate the insertion process of R *) 
Child := ChooseSubtree(Node, R); 
InsertlntoBuffer(Child, R); 
IF B@erLoad(Child) > B*p 

insert Child into overJlow_list; 
new-children := { ); 
FOREACH Child from overJowJist 

add ClearBuffetfChild) to new-children; 
new-siblings := InsertChildren(Node, new-children); 
RETURN new-siblings; 

END ClearIntemalBuffer. 

The second case (algorithm CleurLeujBu$er) is different 
from the first one. Consider a leaf node, say Node, whose 
buffer should be cleared. For each record in the buffer, 
Choosegubtree delivers the data node where the record is 
then inserted. Since the size of data nodes is limited by the 
physical page size, such nodes have to be split occasionally, 
and corresponding entries then have to be inserted into the 
routing table of Node. This produces an overflow if the 
routing table of Node contains already C references to data 
nodes. The overtlow is eliminated by a split, i.e., both rout- 
ing table and buffer are split into two. The index entries 
which point to new nodes are inserted into new-siblings. 
Thereafter, the clearing algorithm continues with the node 
whose buffer contains most of the data. 

ALGORITHM CleurLeufBu$er(Node) 
(* Clear buffer of Node which is an internal leaf node. Re- 

turns a list of entries of new siblings of Node. *) 
new-siblings := ( }; 
FOREACH record R in buffer of Node 
(* reactivate the insertion process of R *) 

DataNode := ChooseSubtree(Node, R); 
InsertIntoNode(DataNode, R); 
(* insertion process is terminated *) 
IF overflow in DataNode 

Split(DutuNode); 
(* split routine of the index structure *) 
apply corresponding entries to Node; 
(* immediately *) 
IF overflow in Node 

split Node into two (let N be the new node); 
(* split the routing table and the buffer *) 
insert the entry of N into new-siblings; 
update entry of Node; 
IF BufferLoad > Buffet-Lo&Node) 

add ClearLeafBuffer(N) to new-siblings; 
ELSE 

add ClearLeafBuffetfNode) to new-siblings; 
RETURN new-siblings; (* exit of algorithm *) 

REXURN new-siblings; (* is empty *> 
END ClearLeajBuffer. 

After Startlnsert has been called for all records, the buffers 
of the nodes are cleared in a depth-first orda. Ybereafter, all 
records reside in the data pages. Moreover, the data pages 
already represent the lowest level (the data level) of our 
multidimensional index structure. Therefore, this com- 
pletes the algorithm for placing the data into the pages of 
the desired structure. 
The question now arises how the index pages of the struc- 
ture can be created. Note that the index nodes of the 
buffer-tree cannot be used directly, because the size of the 
nodes of the buffer-tree will generally not equal the size of 
nodes in the index structure. This leads to a more general 
problem: How can we efficiently transform a tree with 
fan-out x into a tree with fan-out y? 
Our approach to the problem of creating the index levels of 
the index structure is very similar to the one described 
above for inserting data records. We start to build up a new 
buffer-tree. Instead of inserting records, we use the index 
entries of the nodes from the index leaf level (immediately 
above the data nodes) as input to the new buffer-tree. In or- 
der to insert entries (i.e., node regions), we follow the pro- 
cedure for inserting records. Let us recall that Choosegub- 
tree also accepts node regions as input. As a result, we ob- 
tain a buffer-tree whose “data” pages contain all index 
entries which refer to data pages of the target R-tree. We re- 
peat this process until we arrive at the root of the desired in- 
dex structure. 
The performance of bulk loading an index structure with 
the approach described in this section depends on the avail- 
able main memory and on the performance of the required 
operations of the index structure. We therefore analyze in 
the next section, the performance of our method when it is 
applied to the R-tree. 

5 Performance analysis: bulk loading R-trees 

The members of the R-tree family are ideal candidates for 
exploiting our approach to bulk loading. They obviously 
fulfill all our requirements and provide the desired func- 
tionality. Note that Choosegubtree is implemented in 
R-trees for both data rectangles and index entries. More- 
over, based on the fact that an insertion requires at most 
O(logn n) I/OS, we will show now that our approach of bulk 
loading requires O(n log, n) I/OS for creating an R-tree. 
In order to achieve the desired result, an adequate value for 
C (the branching factor of the buffer-tree) is important. Our 
goal is that the cost for clearing a buffer of an internal node 
should be small. Therefore, the routing table of the node, a 
page of its buffer and one page for each of the child nodes 
should be kept in main memory. As a consequence, C must 
fulfill the following inequality: 

(1) m2 C +C+l 11 B 

For sake of efficiency we choose C as the largest integer 
that fulfills the inequality above. Then, C = O(m) holds. 
For the sake of simplicity, we assume in the following that 
2*p = c. 
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Theorem 1: The total I/O cost for inserting N rectangles 
into an initially empty R-buffer-tree (this is a buffer-tree 
built according to the rules of the R-tree) is O(n log,,, n). 

ProOf: 
The proof is structured similarly to the one given in 
[Arg 961. We distinguish between three components of the 
total cost: the I/O cost for clearing the buffers of internal in- 
dex nodes, the I/O cost for clearing the buffers of index leaf 
nodes, and the I/O-cost for splitting the nodes of the 
buffer-tree. 
Let us first discuss the I/O-cost for clearing the buffers of 
the internal index nodes. A clearing of a full buffer, say X, 
requires O(m) I/OS, because X consists of at most C (= 
O(m)) pages and we can accommodate one page for each 
of the buffers of the child nodes in main memory. There- 
fore, it suffices for each of the data rectangles in the buffer 
X to pay for 0( l/B) I/OS. Since a data rectangle will be in 
at most O(log, n) full buffers on its insertion path, a data 
rectangle has to pay for 0( l/B * log,,, n) I/OS. Therefore, N 
rectangles have to pay a total of O((N/B) log,,, n) = O(n 
log, n) I/OS. 
Second, let us consider the cost for clearing a buffer X of 
an index leaf node. The I/O cost of this operation increases 
monotonically with the number of data nodes. There will 
be, however, not more than (2+(B-l)/b)*C data nodes (after 
having cleared the buffer), as the following thoughts show. 
Recall that b denotes the minimum number of entries in a 
node of the R-tree. The factor B/b is a constant for the 
R-tree, with B/b > 2; it is 3 in many R-tree implementa- 
tions. 
The worst-case scenario that produces a maximum number 
of data nodes is the following: The buffer consists of B*C 
(= 2*B*p) data rectangles. These data rectangles are in- 
serted into the data nodes referenced by the index leaf node 
one by one. There are C data nodes, each of them is full 
(i.e., the data node contains B records). Now, each of the 
first C insertions of rectangles splits a data node into two, 
in such a way that one of the data nodes obtains b rectan- 
gles, and the other gets B-b+l. After that, a new data node 
can be generated only after having inserted a sequence of b 
rectangles. Thus, this process will result in generating at 
most C+(B- l)*C/b data nodes per buffer. Together with the 
C data nodes that are present in the beginning, we get the 
claimed bound. 
The generation of data nodes is, of course, not the only ef- 
fect of clearing an index leaf buffer. In addition, in the in- 
dex leaf node, we have to insert (l+(B-l)/b)*C new index 
entries. This again triggers 1 + B/b( l+(B-1)/b) = 0( 1) split 
operations in the worst case. The cost for splitting internal 
index nodes will be discussed in the following paragraph. 
It is important for clearing the original buffer, however, that 
the splitting process creates only a constant number of new 
nodes. Each of these nodes requires at most O(C) I/OS for 
clearing its buffer (which represents a subset of the original 
buffer). Thus, clearing any original buffer requires at most 
O(m) (= O(C)) I/OS in total. 
Third, let us consider the cost of splitting internal index 
nodes of the tree. Recall that a node that has been split into 

two will have no overflow for the next C*(b/B) insert oper- 
ations, where an insert refers to inserting a new data page 
into the tree. According to [MS 811, there will be at most 
O(n/C) split operations of internal nodes. A split of an in- 
ternal node can also split a buffer into two and therefore, a 
split of an internal node requires O(C) I/OS. Overall, the to- 
tal cost for splitting nodes will therefore be O(n). 
Our desired result directly follows from the discussion of 
the three cases above. Cl 

Theorem 2: The I./O cost for clearing all buffers of a 
R-buffer-tree (this is a buffer-tree built according to the 
rules of the R-tree) is O(n). 

Proof: 
The total number of buffers is O(n/m). Each clearing of a 
buffer requires O(m) I/OS. From the proof of Theorem 1 it 
follows that the corresponding split operations require O(n) 
I/OS. This proves the theorem. 0 

Theorems 1 and 2 show that O(N/B log,,, N/B) I/OS are suf- 
ficient for generating a R-buffer-tree from a set of N rectan- 
gles such that all rectangles reside in data pages. These data 
pages already represent the leaf level of the R-tree. The 
other levels are generated in a recursive fashion. In the next 
step of the recursion, we consider the O(N/B) index entries 
which are referring to the data pages. These entries are pro- 
cessed in the same way as the data rectangles: they are in- 
serted into an initially empty R-buffer-tree. The I/O cost for 
building up the R-buffer-tree is O(N/B* log, (N/B*)). In 
general, the I/O cost for generating the (h-i)-th level of the 
R-tree is O(N/B’+’ log, (N/B’+‘)). The total cost of bulk 
loading an entire R-tree is therefore 

h 

= O(nlogmn) 

This proves the following theorem. 

Theorem 3: The I/O cost for bulk loading an R-tree is 
O(n log,n). 

The result of Theorem 3 is asymptotically optimal for the 
following reasons: First, it meets the lower bound of exter- 
nal sorting. Second, a one-dimensional R-tree can obvi- 
ously be used for sorting. 
In contrast to previous methods for bulk loading R-trees, 
our approach gives a different method for each member of 
the R-tree family. The bulk loading methods differ in the 
routines ChooseSubtree and Split that they inherit from the 
different R-trees. 
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Data Page 
Capacity (B) 11 I/OData 1 Dizoq 1 I/O Buffer 1 

II I I 

10 41.9% 1 0.4% 1 57.7% 

Table 1: Relationship between different access types 

6 Empirical Performance Evaluation 

In this section, we report the results of a preliminary set of 
experiments for bulk loading applied to a structure different 
from R-trees, namely the multiversion B-tree (MVBT) 
[BGO+ 961. All the results are obtained from MVBTs; sim- 
ilar results are expected when our bulk loading method will 
be applied to members of the R-tree family as well as to 
other index structures. The main objective of our set of ex- 
periments is to show that our approach of bulk loading is 
not only asymptotically efficient in the worst-case, but also 
gives excellent performance in the average-case. To this 
end, the I/O cost of bulk loading an MVBT is compared 
with the I/O cost of tuple loading, i.e., an MVBT is created 
by inserting records one by one. Notice that when the same 
set of data records is used, the MVBT created by bulk load- 
ing is identical to the one created by tuple loading. Thus, 
the search performance of MVBTs is not affected by bulk 
loading. 
In our experiments, the I/O cost only refers to the cost of 
creating the leaf level of the MVBT. This is justified be- 
cause the If0 cost for building the other levels will be con- 
siderably lower. The leaf level consists of data pages whose 
size is equal to the physical page size. For bulk loading we 
count all the I/OS required for building the leaf level, 
whereas for tuple loading we count the I/OS for reading and 
writing data pages only. 
For bulk loading, we were primarily interested in the im- 
pact of the following parameters on the I/O cost: m (num- 
ber of pages in main memory) and B (data page capacity). 
In our experiments, the routing table of an index node can 
be kept in one physical page. We therefore count for each 
access to the routing table one I/O. Parameter C (branching 
factor of the routing table) is chosen according to the rule 
from Section 5 (inequality 1). Therefore, C = m - 2 holds. 
The parameter p (capacity of a buffer of an index node) was 
always set to C in our experiments. Both data pages and 
buffer pages of the MVBT correspond to physical pages 
For tuple loading, we used a buffer of m pages in main 
memory. Therefore, both methods of index creation use the 
same amount of main memory (namely m pages). The 
buffer was organized according to the LRU replacement 
strategy. The I/O cost only refers to the number of disk ac- 
cesses. 
The set of experiments were performed in the following 
way. In each experiment, the same level of two MVBTs 

5 ’ bulk loading 

01 I 
10 15 20 25 30 35 40 45 5: 

Figure 8: The I/O cost per data page as a function of B 
(data page capacity) for main memory of 200 pages. 

was created by inserting 100,000 records. When an inser- 
tion was performed, the corresponding record was gener- 
ated at random. The process of creation differed only in 
whether tuple loading or bulk loading was used. For bulk 
loading, we distinguished between accesses to data pages, 
buffer pages and routing tables (of the index nodes). 
Let us first discuss the results of bulk loading only. In Table 
1 we present the relationship among the different types of 
accesses (data page, buffer page, routing table) as a func- 
tion of B (data page capacity). The available main memory 
m was set to 200 pages in these experiments. The results 
show that most accesses are spent for buffer pages. For an 
increasing page capacity, the number of buffer page ac- 
cesses approaches the number of data page accesses. Ac- 
cesses to routing tables have only a minor impact on the to- 
tal I/o cost. 
Next let us compare the cost of the two methods for creat- 
ing the MVBTs. We varied the parameter m= 25, 50, . . ., 
200, and the data page capacity, B = 10,20, . . .,50. All ex- 
periments gave similar results to those plotted in Fig. 8, 
where m= 200. The curves show the number of I/OS di- 
vided by the number of data pages, as a function of B. As 
expected from our worst-case analysis, the cost of tuple 
loading increases almost linearly in B, whereas the cost per 
data page using bulk loading is independent from B. Bulk 
loading requires roughly three I/OS per data page which is 
comparable to the I/O cost of external sorting. 

7 Conclusions 

In this paper we address the problem of bulk loading a set 
of records into an initially empty tree-based index struc- 
ture. From B+-trees it is well known that bulk loading is 
considerably more efficient than inserting records one by 
one. We present a generic approach to bulk loading multi- 
dimensional index structures that avoids sorting the data 
beforehand according to a global ordering. Instead of sort- 
ing, the split and merge routines of the target index struc- 
ture are exploited for building an extremely efficient tem- 
porary data structure. From the temporary structure, the de- 
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sired index structure is built up incrementally, one level 
at a time. 
In contrast to previous approaches, our generic algo- 
rithms are not restricted to R-trees, but can also be ap- 
plied to a broad class of tree-based index structures. One 
member of this class is the multiversion B-tree (MVBT) 
which served as an example in a set of preliminary exper- 
iments. For bulk loading R-trees, we showed that our ap- 
proach requires O(n log, n) disk accesses in the 
worst-case where n and m denote the number of data 
pages and the available main memory (in pages), respec- 
tively. This result is equal to the lower bound of external 
sorting. The same result also holds for the MVBT 
[BSW 961. Results obtained from experiments with an 
implementation of the MVBT confirmed that bulk load- 
ing is considerably more efficient than inserting records 
one by one. 
In our future and current work, we are interested in the 
following issues. First, we are currently investigating im- 
provements of our algorithms with respect to CPU-cost 
(which has not been considered in this paper). This is im- 
portant for index structures like R-trees, which are 
known to consume much CPU-time while inserting 
records. Moreover, we are interested in algorithms for 
bulk loading under a different I/O model which takes into 
account that sequential I/OS are more efficient than ran- 
dom I/OS. 
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Appendix: List of symbols 
b minimum number of records (entries) in a node 

mM/B 

n N/B 

p capacity of the buffers of the buffer-tree (in pages) 

B capacity of a data page (in records) 

C branching factor of the routing table 

M maximum number of records in main memory 

N number of insertions L 
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