
A Generic Approach to Bulk Loading Multidimensional Index Structures

Jochen van den Bercken’ Bernhard Seeger’ Peter Widmayeg

‘Fachgebiet Informatik, Universitst Marburg 21nstitut fiir Theoretische Informatik
Hans-Meerwein-Str., D-35032 Marburg, Germany ETH-Zentrum, CH-8092 Ziirich, Switzerland

e-mail: widmayer@inf.ethz.ch e-mail: { lustname} @informatik.uni-marburg.de

Abstract: Recently there has been an increasing in-
terest in supporting bulk operations on multidimen-
sional index structures. Bulk loading refers to the
process of creating an initial index structure for a
presumably very large data set. In this paper, we
present a generic algorithm for bulk loading which
is applicable to a broad class of index structures.
Our approach differs completely from previous
ones for the following reasons. First, sorting multi-
dimensional data according to a predefined global
ordering is completely avoided. Instead, our ap-
proach is based on the standard routines for splitting
and merging pages which are already fully imple-
mented in the corresponding index structure. Sec-
ond, in contrast to inserting records one by one, our
approach is based on the idea of inserting multiple
records simultaneously. As an example we demon-
strate in this paper how to apply our technique to the
R-tree family. For R-trees we show that the I/O per-
formance of our generic algorithm meets the lower
bound of external sorting. Empirical results demon-
strate that performance improvements are also
achieved in practice without sacrificing query per-
formance.

1 Introduction

Among the most important non-standard databases are his-
torical, spatial, image and text databases. For temporal and
spatial databases, the underlying multidimensional objects
are embedded typically in a two- or three-dimensional
space. Objects are not limited to points, but may possess a
spatial extent. For image and text databases, a multidimen-
sional object represents an array of features taken from a
picture and document, respectively. Typically, the dimen-
sion of the objects is extremely high. In text databases, for
example, vectors have usually more than 1000 components

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

[Hen 961. Common to all these applications is that one-di-
mensional index structures (e.g., B+-trees) are not appro-
priate indexing techniques.
In order to support queries on multidimensional data sets
efficiently, a huge number of multidimensional index struc-
tures have been proposed during the last two decades. Mul-
tidimensional index structures support insertions, deletions
and updates, as well as proximity queries (e.g., window
queries, nearest-neighbor queries). In addition to these tra-
ditional operations, there is currently an increasing interest
in supporting bulk operations. A bulk operation is a collec-
tion of individual operations that are executed in consecu-
tion, without being interrupted by other requests. The most
common bulk operation is to create a multidimensional in-
dex structure for a given set of records from scratch. This
operation has also been termed bulk loading [DKL+ 941.
Bulk loading is for example important for processing spa-
tial joins [LR 941 when (spatial) indices do not exist on the
participating relations. In this paper, we address the prob-
lem of supporting bulk loading of multidimensional
tree-based index structures.
So far, there has been very little work on bulk loading of
multidimensional index structures. There have been several
proposals for bulk loading R-trees [RL 851, [RF 931, [LEL
951. All of them are based on sorting data according to a
global one-dimensional criterion (e.g., attribute of the data
object, space-filling curve). After sorting, they follow the
standard approach of clustering the data according to the
linear order (known from B+-trees), i.e., they simply build
up the R-tree index from bottom to top. In [DKL 941 it has
been recognized that this approach generally leads to poor
query performance. The performance of R-trees produced
by these bulk loading methods seems to be acceptable
when both of the following assumptions are fulfilled: the
dimension of the objects is low and the objects have small
spatial extent (in parameter space). For the applications
mentioned above, both assumptions generally do not hold,
and also R-trees may not always be the prime choice for the
problem at hand. For structures other than R-trees and
those multidimensional index structures that are based on
the combination of B+-trees and space-filling curves, the
problem of bulk loading has not been addressed.
We propose an approach to bulk loading that is completely
different from the previous ones used on R-trees. The rea-
son is that sorting data objects according to a global one-di-
mensional criterion imposes too strong a limitation on the
way spatial clustering can be achieved. Instead of sorting,
the split and merge routines of the particular index structure

406

that is desired for the given setting are exploited for build-
ing an extremely efficient temporary data structure. The lat-
ter one is derived from the so-called buffer-tree [Arg 961
and therefore we use the term buffer-tree throughout the pa-
per. The buffer-tree differs from the target index structure
mainly in the following two points. First, each internal
node of the buffer-tree has an additional (external) buffer
where records are (temporarily) stored. Second, multiple
insertions are processed simultaneously in the buffer-tree,
in the following sense. A node in the tree defers an arriving
insertion process and stores the corresponding record in its
buffer. When the number of records in the buffer exceeds a
predefined threshold, the insertion processes of all records
in the buffer advance to the next level of the tree. In order
to determine the subtrees (to which the insertions are di-
rected), it is sufficient to read the node (with the required
routing information) into main memory only once. This
may give a first intuitive hint that the amortized insertion
cost of the buffer-tree is much lower than the insertion cost
of the original index structure. In spite of these differences,
the buffer-tree allows to build up the desired index structure
incrementally bottom-up, one level at a time. Our approach
can also be considered a generalization of the bulk loading
method based on seeded trees [LR 951. In contrast to our
approach, seeded trees are restricted to create a forest of
R-trees. In particular, the resulting index structure does not
always fulfill the properties of an R-tree. Moreover, seeded
trees gives no performance improvement in the worst-case
in comparison to the original insertion algorithm of an
R-tree.
One of the most important advantages of our approach is its
applicability to a broad class of tree-based index structures.
Among them are B+-trees, R-trees [Gut 841, TV-trees [LIF
941, GIST [HNP 951, buddy-trees [SK90], LSD-trees
[HSW 891, and multiversion B-trees (MVBTs) [BGO+ 961
and their relatives [LS 891. Therefore, we describe algo-
rithms in a generic fashion without making specific as-
sumptions about the underlying index structure. However,
in order to make our approach more concrete, we consider
the R-tree as our prime example in this paper. In particular,
we show for the R-tree that the I/O performance of our ap-
proach is asymptotically equal to external sorting [AV 881.
The remaining paper is structured as follows. The next sec-
tion introduces the underlying I/O model and our terminol-
ogy. Section 3 of the paper introduces the buffer-tree. An
example illustrates the basic ideas of our bulk loading algo-
rithms. Section 4 describes the generic algorithms in detail.
In Section 5, we consider the worst-case performance of
these algorithms when they are applied to R-trees. Section
6 presents results obtained from an empirical performance
evaluation. The conclusions are in Section 7. In an appen-
dix, we summarize the symbols used throughout the paper.

2 Preliminaries

In this section we introduce our most important notions.
Moreover, we discuss first the underlying I/O model and
then the requirements on the underlying index structure.

2.1 The I/O model

Our I/O model corresponds to a disk. We assume that a disk
is partitioned into pages of fixed size, with random access
to each page at unit cost. At most B records (data objects)
can be stored in a data page. Each access to disk transfers
one page; we denote this as one I/O. The performance of
our algorithms is measured in the number of I/OS needed
for performing a sequence of N insertions. In particular, we
do not focus on the I/O-cost of a single insertion. We make
use of all available main memory (a supposedly large
amount) for the operations of the bulk loading algorithm;
let M denote the maximum number of records the available
main memory can hold. The I/O cost of the algorithms is
expressed in terms of N, M and B, i.e., none of these three
parameters is viewed as a constant. We will abbreviate N/B
and M/B by n and m, respectively.
Assuming this I/O model it was shown [AV 881 that exter-
nal sorting requires O(n log,n) I/OS in the worst-case.
The I/O cost of bulk loading a one-dimensional index struc-
ture that preserves the ordering of data (e.g., B+-tree) is
therefore asymptotically optimal in the worst-case, if it
meets the lower bound of external sorting. Therefore, our
goal is to achieve this bound for bulk loading multidimen-
sional index structures, without sacrificing search perfor-
mance.

2.2 External tree-based index structures

In the following, we assume an index structure to be a tree.
Each node of the tree corresponds to a page on disk. Rout-
ing information is stored in index nodes, whereas data
records are stored in the data nodes. The index nodes to-
gether with the data nodes form a tree; the data nodes are
the leaves of the tree. We call the part of the tree that con-
sists of the index nodes the index tree; the entries of its leaf
nodes contain references to data nodes, while the entries of
its internal nodes contain references to index nodes. A
node also corresponds to a d-dimensional (node) region of
the dataspace; the records/entries of a node have to lie in
the corresponding region. The region of a node will be
stored with the reference to the node as an entry in an index
node on the next higher level. For an R-tree, the region of
an index node is the minimum bounding rectangle of the re-
gions in its child nodes.
Most (multidimensional) index structures show great simi-
larities in their internal interface. Similar to [HNE 951, we
assume that the index structure provides the following op-
erations:

l InsertIntoNode: insert a record into a data node or an
entry into an index node.

l Split: split an overfull node into two. Note that there are
some index structures which guarantee that storage in
nodes is used at least to a certain degree. For example,
nodes of a B+-tree will be used at least to a degree of
50%.

l ChooseSubtree: for a data record and an index node,
choose a subtree for inserting the record. We assume

407

that ChooseSubtree also accepts a node region as pa-
rameter (instead of a data record).

Note that these methods will generally be available in mul-
tidimensional index structures. The only special require-
ment about these operations is that ChooseSubtree must be
able to choose a subtree for both record and (node) region.
This, however, is not a problem for index structures like the
R-tree, where records and regions are rectangles. Other in-
dex structures like the B+-tree or the multiversion B-tree
can easily be extended to support such an operation. The
details for the MVBT are given in [BSW 961.

3 The Basic Idea of Bulk Loading

In this section, we first describe the abstract data structure
of the buffer-tree. Thereafter, the basic idea of bulk loading
will be illustrated by an example where the buffer-tree is
made concrete for bulk loading an R-tree.

3.1 Review of the Buffer-Tree

Arge [Arg 961 proposed the buffer-tree for making the
plane-sweep paradigm applicable to the case when the data
set is too large for being kept resident in main memory. The
plane-sweep paradigm is a key technique in the area of
computational geometry [PS 851. In order to be general
enough, we modify his definition of the buffer-tree slightly.

(external) buffer with
at most p pages

fan-out of a node is
at most C

Figure 1: An index node of the buffer-tree

-

-_--__--

-----_--_--_---
-

Figure 2: Structure of a buffer-tree

Definition 1: A tree-based index structure is a buffer-tree
of order C and maximum buffer capacity p, if the following
properties are fulfilled:

(9 each index node contains at most C entries;
these entries refer to subtrees;

(ii)

(iii)

each index node contains a buffer of at most p
occupied pages;

except for the last page, the occupied pages of
the buffer are guaranteed to be full.

The structure of the buffer-tree is illustrated in Fig. 2. We
distinguish between three types of nodes: internal nodes,
leaf nodes and data nodes. Internal nodes and leaf nodes are
index nodes whose structure is depicted in Fig. 1. Each of
these nodes consists of a buffer with at most p pages and a
routing table with at most C references to subtrees. Note
that in our terminology a buffer of a node can change its
size dynamically. We say that a bu$er is full, if it contains
p full pages (i.e., B*p records). A bufler is empty if it con-
tains no pages (records). In an intermediate state of an op-
eration, a buffer can contain more than p pages. We say
then that there is an overflow of the bufir. Parameter C is
also called the branching factor; it only depends on the
available main memory and not as usually on the physical
page size. That is, the size of an index node in general is
larger than the physical page size. The size of a data node
however is equal to the size of a physical page.
In contrast to an index structure designed for individual
queries, multiple insertions are processed in the buffer-tree
simultaneously. An insertion process is in one of the three
states active, blocked and terminated. Only one of the in-
sertion processes is active at a time, whereas the others are
blocked or terminated. We say that an insertion process is
terminated if its record is in a data page. An active insertion
process becomes blocked when it arrives at an index node.
The corresponding record is then inserted into the buffer of
the index node. At a later point in time, a blocked insertion
process will be reactivated.

3.2 Example

Before going into more details, we first give an example to
illustrate how buffer-trees are used for bulk loading
R-trees. The R-tree [Gut 841 is a height-balanced tree suit-
able for organizing a collection of multidimensional (recti-
linear) rectangles in a dynamic setting. The distinctive
property of R-trees is to represent each of the data rectan-
gles only once in the data structure. This, however, leads to
the undesirable property that there is overlap between the
rectangles of index entries which are stored on the same
level of the tree. An insertion of a new rectangle can in-
crease this overlap and hence decrease geometric selectiv-
ity; therefore, researchers have studied the problem of im-
proving the insertion algorithm [BKSS 901. More pre-
cisely, new algorithms have been developed for splitting
nodes and for choosing a subtree where the insertion pro-
cess will continue. All of these algorithms were designed
such that an insertion requires the retrieval of nodes from a
single path of the tree.
In our example of bulk loading an R-tree, we consider a set
of 25 rectangles {r 1,. . .,rzs}, see Fig. 3. In order to keep our
example manageable, we assume the following setting of

408

Figure 3: Sample set of 25 rectangles

the parameters: B (capacity of a data page) = 3, C (branch-
ing factor) = 4, p (number of pages in a buffer) = 2.
In Fig. 4 we depicted the buffer-tree after having started the
first 23 insertion processes, where rectangles are inserted in
the order of their indices into an initially empty tree. The
insertion proceeds as in an R-tree. The buffer-tree consists
of three index nodes Nl, N2, N3 and five data pages
Pl,..., Pg. Twelve of the 23 insertion processes have
reached the leaf level, and therefore, these processes have
been terminated. The other insertion processes are still
alive, but blocked. For example, the insertion process of
rectangle r17 is waiting at node N,. Whenever a node
blocks an insertion process the corresponding rectangle is
temporarily stored in its buffer. Note that these buffers are
generally not resident in main memory. As required in con-
dition (iii) of Definition 1, the buffer of each of the index
nodes contains at most p (= 2) pages.
An insertion into the buffer-tree is processed very similarly
to an insertion into an R-tree, except that an index node
keeps and blocks arriving insertions and reactivates them at
a later point in time. Let us consider the insertion process
of rectangle rz4. Since the buffer of the root page is not full,
the insertion process is deactivated at the root and r24 is in-
serted into the root buffer. In order to support the insertion
into the root buffer efficiently, we keep the last (occupied)

Figure 5: Example buffer-tree after clearing the root
buffer

page of the root buffer in main memory, as long as no struc-
tural change is performed. Thereafter, the insertion process
of rectangle r25 starts. Since the root buffer is already full,
‘25 cannot be inserted there. Therefore, a structural change
of the buffer-tree is performed first. The structural change
consists of reactivating all processes (one by one) which
are blocked at the root page. Each of these processes takes
its rectangle from the buffer and advances to the next level
of the buffer-tree (by calling ChooseSubtree). We also say
that the buffer (of the root page) is cleared. The situation af-
ter having cleared the buffer is illustrated in Fig. 5. As de-
picted, the buffer of Nl has no page, r19, ‘20 rz2, r23 are now
in the buffer of N2 and r21, rs4 are in the buffer of N3.

After clearing of a buffer it may happen that some of the
buffers at the next level contain more than p (= 2) pages, see

N4 H
e e

El8

i!F

P P
r r
r

El
r

r

Figure 4: Example buffer-tree after having started Figure 6: Splitting of an index node N3 (at the top) into
23 insertion processes node N3 and N4 (at the bottom)

409

for example the buffer of node N3 in Fig. 5. These over-
flows are then eliminated again by clearing those buffers
one by one. In our example, therefore, the insertion pro-
cesses of rectangles r13, . . ., ‘16, rlsr r21, r24 continue to the
leaf level of the buffer-tree. Note that an overflow in a data
page is treated in the same fashion as known from the
R-tree: a page is first split into two and then the correpons-
ing entries are posted to the parent node.
At the top of Fig. 6, the subtree rooted at node N3 is de-
picted after having cleared the buffer of N3 partially, with
r21 and r24 still remaining. Let us assume that rectangle r21
should be inserted in page P,. Since P4 is already full, an
overflow occurs and therefore, a new page Ps and a new en-
try em is created. The insertion of elu in node N3 again pro-
duces an overflow of the routing table. Therefore, a new
node N4 (with its own buffer) is created, and some of the
entries of N3 are moved to N4, see the bottom of Fig. 6. For
each record from the buffer of N3, ChooseSubtree is called
to determine whether the record remains in the buffer or
moves to the buffer of N+ In our example, the buffer of N4
contains rectangle r24, whereas the buffer of N3 is empty
(quite a special situation). Only the buffer with the highest
number of entries is then totally cleared, whereas the other
buffer remains unchanged. In our example, the buffer of N4
is cleared (i.e., the insertion process of r2, is activated). The
entries of the nodes are then posted to the parent node Nl.
Thereafter, the structural change is finished and rectangle
r25 is eventually inserted into the root buffer.
After having started all insertion processes, some of them
did not arrive at a data node, but are still blocked at an index
node. Therefore, bulk loading is not terminated yet. What
remains to be done is to empty all non-empty buffers of the
buffer-tree in a depth-first order, starting from the root.
Since we already have illustrated this operation, we will not
go into further details here. In Fig. 7, the final buffer-tree is
depicted. Pages P 1,. . . ,Plo now represent the data nodes of
the target R-tree.
At first glance, it may seem that the index nodes of the
buffer-tree already correspond to the index nodes of the tar-
get R-tree. This is however not the case in general, since we
took advantage in choosing the size of an index node differ-
ent from the physical page size. Now, in order to arrive at
the target R-tree, we create a second buffer-tree by insert-

P \PAP
r r r

l!iEEa
r r r

r
Figure 7: The example buffer-tree after having terminated all insertion processes

ing the entries el, . . ., es, es, g, elO, ell, el3 which are in
the index leaf nodes of the first buffer-tree. The second
buffer-tree will produce all the index pages of the target
R-tree that are above the leaves. In this way, each level of
the target R-tree is built by creating a further buffer-tree.

4 The generic algorithm in details

In this section, we give a detailed description of the bulk
loading algorithms without making special assumptions
about the underlying index structure. Let us recall that the
index structure provides an interface with the following
three operations: ZnsertIntoNode, Split and ChooseSubtree.
These operations will be frequently used in the following
algorithms.
An obvious implementation of the buffer-tree would be to
use the process facilities of the operating system for creat-
ing a process for each insertion. The overhead for manag-
ing all these processes (in time and storage cost) would
however be very high, and therefore we decided against us-
ing multiple processes. In our approach, only one process
is used for simulating all the different “processes”.
The basic structure of our algorithm for bulk loading is
somehow similar to the algorithm of an (ordinary) insertion
in an index structure such as an R-tree. In the buffer-tree, an
insertion operation of a record first traverses the tree from
the root to a leaf, whereas a restructuring operation can then
traverse from the leaf backwards to the root. The unique
feature of the buffer-tree is that multiple insertion opera-
tions and multiple restructuring operations are processed
simultaneously in the tree. In the example of the previous
section we have already discussed how insertions are pro-
cessed. A restructuring operation is triggered by an over-
flow in a data node or by an overflow in a routing table of
an internal node. A restructuring operation consists of a
split of the overflowing node and an insertion of the new
entry in its parent index node. Similar to an insertion pro-
cess of a record, an internal index node also defers an in-
coming insertion operation of an entry. The index node
temporarily stores the entry in a list. When all subtrees of
the node have finished their restructuring operations (i.e.,
each of these subtrees fulfills the properties of a
buffer-tree), all the entries of the list are inserted in the rout-

410

ing table of the node. This can again produces overflows
and further restructuring operations.
The main algorithm of bulk loading is Sturthsert which is
given below. We assume that the buffer-tree initially con-
sists of an index page with one reference to an empty data
page. StartInsert initiates a new insertion process at the
root of the buffer-tree (Root). First, the number of records
in the buffer of Root is computed by calling BuferLoad.
Usually, the load is lower than B*p (i.e., the condition of
the if-statement is not fulfilled) and then, only ZnsertZnto-
Bufer is called. This routine simply blocks the insertion
process and inserts the new record into the root buffer. In
order to save storage space, the buffer consists of the mini-
mum number of pages necessary to hold the records.
Hence, the insertion goes into the currently last page of the
buffer. If this page is already full, a new page will be added
to the buffer. After a sequence of B*p calls of StartInsert,
the buffer is full and the condition of the if-statement is ful-
filled for the next insertion process. Then, the buffer of
Root is cleared, i.e., insertion processes are reactivated. As
the result of a call of CleurBu$el; we obtain a list of entries
(new-children) which refer to new child nodes of Root.
Next, InsertChildren inserts these entries of new-children
into Root. Moreover, a new sibling is created when an over-
flow occurs in Root or in one of the previously created sib-
lings. Eventually, InsertChildren returns a list of the new
siblings to SturtZnsert. If this list is not empty, a new root of
the buffer-tree is created from this list.

ALGORITHM StartInsert (Root, R)
(* An insertion process is started for record R in a

buffer-tree with rootnode Root. *)
IF Bu$Aoud(Root) = B*p

nau-children := ClearBuffer(Root);
new-siblings := InsertChildren(Root, new-children);
IF new-siblings is not empty

create a new root from new-siblings;
(* update Root *)

InsertIntoBuffer(Root R);
END SturtZnsert.

In the following, we give a detailed description of Cleur-
Bufer and InsertChildren. Let us first consider the latter
one (see below). Algorithm InsertChildren inserts entries
of a list (new-children) into a node (Node). First, entries are
inserted only into Node until an overtlow occurs. The rout-
ing table of Node is then split into two and a new entry (re-
ferring to the new node) is inserted into a list
(nao-siblings). At that time it might be that some of the en-
tries from new-children are still unprocessed. In the next
pass through the for-loop, the entry has to be assigned to
one of the two nodes. ChooseSubtree is therefore called.
After the for-statement is processed, the records from the
buffer of Node are redistributed among Node and its sib-
lings. Finally, new-siblings is returned.

ALGORITHM ZnsertChildren(Node, new-children)

(* The entries from children are inserted in Node. The algo-
rithm returns a list of nodes (new-siblings) which are de-
rived from Node through split operations. *)

new-siblings := [];
FOREACH entry E from new-children

all-siblings := new-siblings v {entry of Node) ;

ParentNode := ChooseSubtree(all-siblings, E);

InsertIntoNode(ParentNode, E);
IF overflow in ParentNode

Split(routing table of ParentNode);

(* split routine of the index structure *)
insert the new entry into new-siblings;

IF new-siblings is not empty

(* split the buffer of Node *)

(* all-siblings = nen-siblings u {entry of Node} *)

FOREACH record R from the buffer of Node
Target := ChooseSubtree(all-siblings, R);

move R from buffer of Node to the one of Target;

RETURN new-siblings;

END InsertChildren.

Most important to the buffer-tree is the algorithm Cleur-
Bufer for clearing an overllowing buffer of a node. This
corresponds to activating all blocked processes at a node.
Clear-Buffer distinguishes between internal index nodes
and leaf nodes of the index and calls algorithm Cleurlnter-
nalBuffer and ClearL.eajBu$2r, respectively.

For the case of an internal index node, the idea of the algo-
rithm is to read the first B*p records from the buffer and de-
termine the nodes to which the records should be assigned.
For a given record R and index node Child, the routine Zn-
sertZntoBuffer puts R into the last page of the buffer of
Child. When an overflow occurs in the buffer (i.e., Bufer-
Loud(Child) is greater than B*p), we provisionally insert
the corresponding node into a list (overjZow_list). Note
however that the buffers of the nodes in overfiow-list may
still receive records from the buffer of Node. After the
buffer is cleared of B*p records, we traverse through
ove$owJist and apply ClearBuffer to each of the nodes in
a recursive fashion. The (indirect) recursive calls return
lists of entries which refer to new child nodes. After that,
InsertChildren inserts the entries of these lists into Node.

An important feature of CleurZntemalBuffer is that a buffer
is only partially cleared from the first B*p records. The rea-
son is that then the number of overflow records in a buffer
is at most B*p (because a node can receive at most B*p
from its parent). To put in other words, a buffer contains in
all situations at most 2*B*p records. After emptying a
buffer partially, it is therefore guaranteed that a buffer con-
tains at most B*p records.

411

ALGORITHM ClearZnternalBu.r(Node)
(* Clears the buffer of Node whose entries refer to an index

node. *)
overjhw-list := (};
FOREACH R of the first B*p records in buffer of Node

(* reactivate the insertion process of R *)
Child := ChooseSubtree(Node, R);
InsertlntoBuffer(Child, R);
IF B@erLoad(Child) > B*p

insert Child into overJlow_list;
new-children := {);
FOREACH Child from overJowJist

add ClearBuffetfChild) to new-children;
new-siblings := InsertChildren(Node, new-children);
RETURN new-siblings;

END ClearIntemalBuffer.

The second case (algorithm CleurLeujBu$er) is different
from the first one. Consider a leaf node, say Node, whose
buffer should be cleared. For each record in the buffer,
Choosegubtree delivers the data node where the record is
then inserted. Since the size of data nodes is limited by the
physical page size, such nodes have to be split occasionally,
and corresponding entries then have to be inserted into the
routing table of Node. This produces an overflow if the
routing table of Node contains already C references to data
nodes. The overtlow is eliminated by a split, i.e., both rout-
ing table and buffer are split into two. The index entries
which point to new nodes are inserted into new-siblings.
Thereafter, the clearing algorithm continues with the node
whose buffer contains most of the data.

ALGORITHM CleurLeufBu$er(Node)
(* Clear buffer of Node which is an internal leaf node. Re-

turns a list of entries of new siblings of Node. *)
new-siblings := (};
FOREACH record R in buffer of Node
(* reactivate the insertion process of R *)

DataNode := ChooseSubtree(Node, R);
InsertIntoNode(DataNode, R);
(* insertion process is terminated *)
IF overflow in DataNode

Split(DutuNode);
(* split routine of the index structure *)
apply corresponding entries to Node;
(* immediately *)
IF overflow in Node

split Node into two (let N be the new node);
(* split the routing table and the buffer *)
insert the entry of N into new-siblings;
update entry of Node;
IF BufferLoad > Buffet-Lo&Node)

add ClearLeafBuffer(N) to new-siblings;
ELSE

add ClearLeafBuffetfNode) to new-siblings;
RETURN new-siblings; (* exit of algorithm *)

REXURN new-siblings; (* is empty *>
END ClearLeajBuffer.

After Startlnsert has been called for all records, the buffers
of the nodes are cleared in a depth-first orda. Ybereafter, all
records reside in the data pages. Moreover, the data pages
already represent the lowest level (the data level) of our
multidimensional index structure. Therefore, this com-
pletes the algorithm for placing the data into the pages of
the desired structure.
The question now arises how the index pages of the struc-
ture can be created. Note that the index nodes of the
buffer-tree cannot be used directly, because the size of the
nodes of the buffer-tree will generally not equal the size of
nodes in the index structure. This leads to a more general
problem: How can we efficiently transform a tree with
fan-out x into a tree with fan-out y?
Our approach to the problem of creating the index levels of
the index structure is very similar to the one described
above for inserting data records. We start to build up a new
buffer-tree. Instead of inserting records, we use the index
entries of the nodes from the index leaf level (immediately
above the data nodes) as input to the new buffer-tree. In or-
der to insert entries (i.e., node regions), we follow the pro-
cedure for inserting records. Let us recall that Choosegub-
tree also accepts node regions as input. As a result, we ob-
tain a buffer-tree whose “data” pages contain all index
entries which refer to data pages of the target R-tree. We re-
peat this process until we arrive at the root of the desired in-
dex structure.
The performance of bulk loading an index structure with
the approach described in this section depends on the avail-
able main memory and on the performance of the required
operations of the index structure. We therefore analyze in
the next section, the performance of our method when it is
applied to the R-tree.

5 Performance analysis: bulk loading R-trees

The members of the R-tree family are ideal candidates for
exploiting our approach to bulk loading. They obviously
fulfill all our requirements and provide the desired func-
tionality. Note that Choosegubtree is implemented in
R-trees for both data rectangles and index entries. More-
over, based on the fact that an insertion requires at most
O(logn n) I/OS, we will show now that our approach of bulk
loading requires O(n log, n) I/OS for creating an R-tree.
In order to achieve the desired result, an adequate value for
C (the branching factor of the buffer-tree) is important. Our
goal is that the cost for clearing a buffer of an internal node
should be small. Therefore, the routing table of the node, a
page of its buffer and one page for each of the child nodes
should be kept in main memory. As a consequence, C must
fulfill the following inequality:

(1) m2 C +C+l 11 B

For sake of efficiency we choose C as the largest integer
that fulfills the inequality above. Then, C = O(m) holds.
For the sake of simplicity, we assume in the following that
2*p = c.

412

Theorem 1: The total I/O cost for inserting N rectangles
into an initially empty R-buffer-tree (this is a buffer-tree
built according to the rules of the R-tree) is O(n log,,, n).

ProOf:
The proof is structured similarly to the one given in
[Arg 961. We distinguish between three components of the
total cost: the I/O cost for clearing the buffers of internal in-
dex nodes, the I/O cost for clearing the buffers of index leaf
nodes, and the I/O-cost for splitting the nodes of the
buffer-tree.
Let us first discuss the I/O-cost for clearing the buffers of
the internal index nodes. A clearing of a full buffer, say X,
requires O(m) I/OS, because X consists of at most C (=
O(m)) pages and we can accommodate one page for each
of the buffers of the child nodes in main memory. There-
fore, it suffices for each of the data rectangles in the buffer
X to pay for 0(l/B) I/OS. Since a data rectangle will be in
at most O(log, n) full buffers on its insertion path, a data
rectangle has to pay for 0(l/B * log,,, n) I/OS. Therefore, N
rectangles have to pay a total of O((N/B) log,,, n) = O(n
log, n) I/OS.
Second, let us consider the cost for clearing a buffer X of
an index leaf node. The I/O cost of this operation increases
monotonically with the number of data nodes. There will
be, however, not more than (2+(B-l)/b)*C data nodes (after
having cleared the buffer), as the following thoughts show.
Recall that b denotes the minimum number of entries in a
node of the R-tree. The factor B/b is a constant for the
R-tree, with B/b > 2; it is 3 in many R-tree implementa-
tions.
The worst-case scenario that produces a maximum number
of data nodes is the following: The buffer consists of B*C
(= 2*B*p) data rectangles. These data rectangles are in-
serted into the data nodes referenced by the index leaf node
one by one. There are C data nodes, each of them is full
(i.e., the data node contains B records). Now, each of the
first C insertions of rectangles splits a data node into two,
in such a way that one of the data nodes obtains b rectan-
gles, and the other gets B-b+l. After that, a new data node
can be generated only after having inserted a sequence of b
rectangles. Thus, this process will result in generating at
most C+(B- l)*C/b data nodes per buffer. Together with the
C data nodes that are present in the beginning, we get the
claimed bound.
The generation of data nodes is, of course, not the only ef-
fect of clearing an index leaf buffer. In addition, in the in-
dex leaf node, we have to insert (l+(B-l)/b)*C new index
entries. This again triggers 1 + B/b(l+(B-1)/b) = 0(1) split
operations in the worst case. The cost for splitting internal
index nodes will be discussed in the following paragraph.
It is important for clearing the original buffer, however, that
the splitting process creates only a constant number of new
nodes. Each of these nodes requires at most O(C) I/OS for
clearing its buffer (which represents a subset of the original
buffer). Thus, clearing any original buffer requires at most
O(m) (= O(C)) I/OS in total.
Third, let us consider the cost of splitting internal index
nodes of the tree. Recall that a node that has been split into

two will have no overflow for the next C*(b/B) insert oper-
ations, where an insert refers to inserting a new data page
into the tree. According to [MS 811, there will be at most
O(n/C) split operations of internal nodes. A split of an in-
ternal node can also split a buffer into two and therefore, a
split of an internal node requires O(C) I/OS. Overall, the to-
tal cost for splitting nodes will therefore be O(n).
Our desired result directly follows from the discussion of
the three cases above. Cl

Theorem 2: The I./O cost for clearing all buffers of a
R-buffer-tree (this is a buffer-tree built according to the
rules of the R-tree) is O(n).

Proof:
The total number of buffers is O(n/m). Each clearing of a
buffer requires O(m) I/OS. From the proof of Theorem 1 it
follows that the corresponding split operations require O(n)
I/OS. This proves the theorem. 0

Theorems 1 and 2 show that O(N/B log,,, N/B) I/OS are suf-
ficient for generating a R-buffer-tree from a set of N rectan-
gles such that all rectangles reside in data pages. These data
pages already represent the leaf level of the R-tree. The
other levels are generated in a recursive fashion. In the next
step of the recursion, we consider the O(N/B) index entries
which are referring to the data pages. These entries are pro-
cessed in the same way as the data rectangles: they are in-
serted into an initially empty R-buffer-tree. The I/O cost for
building up the R-buffer-tree is O(N/B* log, (N/B*)). In
general, the I/O cost for generating the (h-i)-th level of the
R-tree is O(N/B’+’ log, (N/B’+‘)). The total cost of bulk
loading an entire R-tree is therefore

h

= O(nlogmn)

This proves the following theorem.

Theorem 3: The I/O cost for bulk loading an R-tree is
O(n log,n).

The result of Theorem 3 is asymptotically optimal for the
following reasons: First, it meets the lower bound of exter-
nal sorting. Second, a one-dimensional R-tree can obvi-
ously be used for sorting.
In contrast to previous methods for bulk loading R-trees,
our approach gives a different method for each member of
the R-tree family. The bulk loading methods differ in the
routines ChooseSubtree and Split that they inherit from the
different R-trees.

413

Data Page
Capacity (B) 11 I/OData 1 Dizoq 1 I/O Buffer 1

II I I

10 41.9% 1 0.4% 1 57.7%

Table 1: Relationship between different access types

6 Empirical Performance Evaluation

In this section, we report the results of a preliminary set of
experiments for bulk loading applied to a structure different
from R-trees, namely the multiversion B-tree (MVBT)
[BGO+ 961. All the results are obtained from MVBTs; sim-
ilar results are expected when our bulk loading method will
be applied to members of the R-tree family as well as to
other index structures. The main objective of our set of ex-
periments is to show that our approach of bulk loading is
not only asymptotically efficient in the worst-case, but also
gives excellent performance in the average-case. To this
end, the I/O cost of bulk loading an MVBT is compared
with the I/O cost of tuple loading, i.e., an MVBT is created
by inserting records one by one. Notice that when the same
set of data records is used, the MVBT created by bulk load-
ing is identical to the one created by tuple loading. Thus,
the search performance of MVBTs is not affected by bulk
loading.
In our experiments, the I/O cost only refers to the cost of
creating the leaf level of the MVBT. This is justified be-
cause the If0 cost for building the other levels will be con-
siderably lower. The leaf level consists of data pages whose
size is equal to the physical page size. For bulk loading we
count all the I/OS required for building the leaf level,
whereas for tuple loading we count the I/OS for reading and
writing data pages only.
For bulk loading, we were primarily interested in the im-
pact of the following parameters on the I/O cost: m (num-
ber of pages in main memory) and B (data page capacity).
In our experiments, the routing table of an index node can
be kept in one physical page. We therefore count for each
access to the routing table one I/O. Parameter C (branching
factor of the routing table) is chosen according to the rule
from Section 5 (inequality 1). Therefore, C = m - 2 holds.
The parameter p (capacity of a buffer of an index node) was
always set to C in our experiments. Both data pages and
buffer pages of the MVBT correspond to physical pages
For tuple loading, we used a buffer of m pages in main
memory. Therefore, both methods of index creation use the
same amount of main memory (namely m pages). The
buffer was organized according to the LRU replacement
strategy. The I/O cost only refers to the number of disk ac-
cesses.
The set of experiments were performed in the following
way. In each experiment, the same level of two MVBTs

5 ’ bulk loading

01 I
10 15 20 25 30 35 40 45 5:

Figure 8: The I/O cost per data page as a function of B
(data page capacity) for main memory of 200 pages.

was created by inserting 100,000 records. When an inser-
tion was performed, the corresponding record was gener-
ated at random. The process of creation differed only in
whether tuple loading or bulk loading was used. For bulk
loading, we distinguished between accesses to data pages,
buffer pages and routing tables (of the index nodes).
Let us first discuss the results of bulk loading only. In Table
1 we present the relationship among the different types of
accesses (data page, buffer page, routing table) as a func-
tion of B (data page capacity). The available main memory
m was set to 200 pages in these experiments. The results
show that most accesses are spent for buffer pages. For an
increasing page capacity, the number of buffer page ac-
cesses approaches the number of data page accesses. Ac-
cesses to routing tables have only a minor impact on the to-
tal I/o cost.
Next let us compare the cost of the two methods for creat-
ing the MVBTs. We varied the parameter m= 25, 50, . . .,
200, and the data page capacity, B = 10,20, . . .,50. All ex-
periments gave similar results to those plotted in Fig. 8,
where m= 200. The curves show the number of I/OS di-
vided by the number of data pages, as a function of B. As
expected from our worst-case analysis, the cost of tuple
loading increases almost linearly in B, whereas the cost per
data page using bulk loading is independent from B. Bulk
loading requires roughly three I/OS per data page which is
comparable to the I/O cost of external sorting.

7 Conclusions

In this paper we address the problem of bulk loading a set
of records into an initially empty tree-based index struc-
ture. From B+-trees it is well known that bulk loading is
considerably more efficient than inserting records one by
one. We present a generic approach to bulk loading multi-
dimensional index structures that avoids sorting the data
beforehand according to a global ordering. Instead of sort-
ing, the split and merge routines of the target index struc-
ture are exploited for building an extremely efficient tem-
porary data structure. From the temporary structure, the de-

414

sired index structure is built up incrementally, one level
at a time.
In contrast to previous approaches, our generic algo-
rithms are not restricted to R-trees, but can also be ap-
plied to a broad class of tree-based index structures. One
member of this class is the multiversion B-tree (MVBT)
which served as an example in a set of preliminary exper-
iments. For bulk loading R-trees, we showed that our ap-
proach requires O(n log, n) disk accesses in the
worst-case where n and m denote the number of data
pages and the available main memory (in pages), respec-
tively. This result is equal to the lower bound of external
sorting. The same result also holds for the MVBT
[BSW 961. Results obtained from experiments with an
implementation of the MVBT confirmed that bulk load-
ing is considerably more efficient than inserting records
one by one.
In our future and current work, we are interested in the
following issues. First, we are currently investigating im-
provements of our algorithms with respect to CPU-cost
(which has not been considered in this paper). This is im-
portant for index structures like R-trees, which are
known to consume much CPU-time while inserting
records. Moreover, we are interested in algorithms for
bulk loading under a different I/O model which takes into
account that sequential I/OS are more efficient than ran-
dom I/OS.

References

[Arg 961 L. Arge, “Efficient External-Memory Data
Structures and Applications”, BRICS Dissertation Se-
ries, DS-96-3, University of Aarhus, 1996.
[AV 881 A. Aggarwal and J. S. Vitter. “The Input/Output
Complexity of Sorting and Related Problems”, Commu-
nications of the ACM, 31(9), September 1988,
1116-1127.
[BKSS 901 Beckmann N., Kriegel H.-P., Schneider R.,
Seeger B.: “The R*-tree: An ESficient and Robust Access
Method for Points and Rectangles”, F’roc. ACM SIG-
MOD, 1990, pp. 322-33 1.
[BSW 961 Jochen Van den Bercken, Bernhard Seeger,
Peter Widmayer: “A Generic Approach to Bulk Loading
Multidimensional Index Structures”. Technical Report
13, University of Marburg, Computer Science Depart-
ment, 1996.
[DKL+ 941 David J. Dewitt, Navin Kabra, Jun Luo,
Jignesh M. Patel, Jie-Bing Yu: “Client-Server Paradise”,
Proc. VLDB 1994: 558-569
[BGO+ 961 B. Becker, S. Gschwind, T. Ohler, B. Seeger,
P. Widmayer, “An asymptotically optimal multiversion
B-tree”, VLDB Journal 5(4), 1996: 264-275.
[Gut 841 A. Guttman, “R-trees: a dynamic index struc-
ture for spatial searching”, Proc. ACM SIGMOD, 1984,
47-57.

[Hen 961 A. Henrich: “Adapting a Spatial Access Struc-
ture for Document Representations in Vector Space”,
Proc. 5th Int. Conf. on Information and Knowledge Man-
agement (CIKM), 1996.
[HNP 951 J. Hellerstein, J. Naughton A. Pfeffer, “Gener-
alized Search Trees for Database Systems”, Proc. VLDB,
1995,562-513.
[HSW 891 A. Henrich, H.-W. Six, P. Widmayer: “The
LSD tree: Spatial Access to Multidimensional Point and
Nonpoint Objects”. Proc. VLDB 1989: 45-53.
[KF 931 Kamel, I., Faloutsos, C.: “On Packing R-trees”,
Proc. 2nd Int. Conf. on Information and Knowledge
Management (CIKM), 1993,490-499.
[LEL 951 Leutenegger, S. T., Edgington, J., Lopez, M.
A.: “Efficient Bulk Loading of R-trees”, Univ. of Den-
ver, Technical Report 95-l.
[LJF 941 King-Ip Lin, H. V. Jagadish, Christos Falout-
SOS: “The TV-Tree: An Index Structure for High-Dimen-
sional Data”. VLDB Journal 3(4): 5 17-542 (1994)
[LR 941 M.-L. Lo, C. V. Ravishankar: “Spatial Joins Us-
ing Seeded Trees”, Proc. ACM SIGMOD, 1994,
209-220.
[LR 951 M.-L. Lo, C. V. Ravishankar: “Generating
Seeded Trees from Data Sets”. Symp. on Large Spatial
Databases, in Lecture Notes in Computer Science, Vol.
95 1, 1995,328-347.
[LS 891 D. Lomet, B. Salzberg, “Access Methods for
Multiversion Data”, Proc. ACM SIGMOD, 1989, pp.
315-324.
[MS 811 D. Maier, S. Salveter, “Hysterical B-trees”, In-
formation Processing Letters, Vol. 12(4), 1981, pp.
199-202.
[PS 851 F. P. Preparata, M. I. Shamos, “Computational
Geometry: An Introduction”, Springer-Verlag, 1985.
[RL 851 N. Roussopoulos, D. Leifker: “Direct Spatial
Search on Pictorial Databases Using Packed R-Trees”.
Proc. SIGMOD 1985: 17-31.
[SK 901 B. Seeger, H.-P. Kriegel, “The Buddy-Tree: An
Efficient and Robust Access Method for Spatial Data
Base Systems”. Proc. VLDB 1990: 590-601.

Appendix: List of symbols
b minimum number of records (entries) in a node

mM/B

n N/B

p capacity of the buffers of the buffer-tree (in pages)

B capacity of a data page (in records)

C branching factor of the routing table

M maximum number of records in main memory

N number of insertions L

415

