
Evaluation of Main Memory Join Algorithms for Joins
with Subset Join Predicates

Sven Helmer Guido Moerkotte
helmer~Qpi3.informatik.uni-mannheim.de moer@pi3.informatik.uni-mannheim.de

Fakultgt fiir Mathematik und Informatik, University of Mannheim, Germany

Abstract

Current data models like the NF2 model
and object,-oriented models support set-valued
at.t,ribut,t:s. Hence, it, becomes possible to
havt> join prcdica.tes ba.sed on set, comparison.
This paper int,roduces and evaluates two main
memory algorithms to evaluate efficiently this
kind of join. More specifically, we concentrate
on subset predicates.

1 Introduction

Since the invention of relational database systems,
tremendous effort has been undertaken in order to de-
velop efficient, join algorithms. Starting from a simple
n(>st.c)tl-loop join algorithm, the first improvement was
t*hr int,roduction of the merge join [l]. Later, the hash
,joirl [2, 7] and its improvements [20, 23, 28, 391 be-
came alternatives to the merge join. For overviews see
[27, 371 and for a comparison between the sort-merge
and hash joins see [13, 141.

A lot of effort has also been spent on parallelizing
join algorithms based on sorting [lo, 25, 26, 341 and
hashing [6, 12, 361. Another important research area
is t,he development of index structures that allow to
accelerate the evaluation of joins [16, 22,21, 29, 40,421.

.411 of these algorithms concentra.te on simple join
pr(~dic~;ites ba.sc~tl on t,he comparison of two a,tomic val-
ues. Pr~~domina.nt. is the work on equi-joins, i.e., where
t.hr join predicat,e is based on the equality of atomic

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or. to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

values. Only a few articles deal with special issues like
non-equi-joins 191, non-equi-joins in conjunction with
aggregate functions [5], and pointer-based joins [8,38].
An area where more complex join predicates occur is
that of spatial database systems. Here, special algo-
rithms to support spatial joins have been developed
[3, 15, 18, 24, 301.

Despite this large body of work on efficient join pro-
cessing, the authors are not aware of any work describ-
ing join algorithms for the efficient computation of the
join if its predicate is based on set comparisons like
set equality (=) or subset equal (C) . These joins were
irrelevant in the relational context since attribute val-
ues had to be atomic. However, newer data models
like NF2 [32, 351 or object-oriented models like the
ODMG-Model [4] support set-valued attributes, and
many interesting queries require a join based on set
comparison. Consider for example the query for faith-
ful couples. There, we join persons with persons in
condition of the equality of their children attributes.
Another example query is that of job matching. There,
we join job offers with persons such that the set-valued
attribute required-skills is a subset of the persons’ set-
valued attribute skills. We could give plenty of more
queries involving joins based on set comparisons but
we think these suffice for motivation. Note that all
the examples work on possibly large sets of objects,
but with limited set cardinality. We believe that this
is the most common case found in practice. This belief
is backed by our observations on real applications for
object-oriented databases.

The rest of the paper is organized as follows. In the
next section, we introduce some basic notions needed
in order to develop our join algorithms. Sections 3
introduces and evaluates several join algorithms where
the join predicate is subset equal. Algorithms for other
join predicates can be found in the full paper [17].
Section 4 concludes the paper.

386

2 Preliminaries

2.1 General Assumptions

For the rest, of the paper, we assume the existence of
t\vo rtllations RI a.nd R.2 with set-valued join attributes
(I i+ll(l 6. \I;(’ (IO IIO~ (‘il.l’t’ abollt t,he exa.ct, type of the
at,tribut,es (I, and 0 t,hat is whether it is e.g. a rela-
tion. a sc’t of’ st,riugs, or a set of object identifiers. We
just assume that they are sets and that their elements
provide an equality predicate.

The goal of the paper is to compute efficiently the
join expression

RI &Cb R2 -

More specifically, we introduce a join algorithm based
on hashing and compare its performance with a nested-
loop st,ra.tegy. Two other join algorithms, sort-merge
and H t.rrc,-ba.sed one, a.nd set, equality predicat,es are
tl~5(~1~1l~~l in [171.

For c~orlvc~nic~rlc~f~. we a.ssume tha,t there exists an (in-
jr~ct~ivr) func:t,ion m which maps each element within
the sets of RI .a and R2 .b to the domain of integers.
The function m is dependent on the elements’ type of
the set-valued attributes. For integers, the function
is identity, for strings and other types, techniques like
folding can be used. From now on, we assume without
loss of generality that the type of the sets is integer. If
this is not the case, the function m has to be applied
before we do anything else with the set elements.

2.2 Set Comparison

Thc~ costs of comparing two sets by C differ signifi-
cantly depending on the used algorithm. Hence, we
first discuss some of the alternatives for comparing
sets. Consider the case in which we want to evalu-
ate s c t for two sets s and t. We could check whether
each element in s occurs in t. If t is implemented as an
array or list, then this algorithm takes O(lsl . ItI). For
small sets, this might be a reasonable strategy. For
large sets, however, the comparison cost of this simple
st,rat,clgy can br significant,. Hence, we consider further
illl~~l~lliil i\fos for SCt ~oiiiparison.

OII(~ obviotis alt,r77lat,ive t,o evaluate efficiently s C t
is I.0 I~aw ii sc:a~h t,ree or a hash table representation
of t. Since we assume that the representation of set-
valued attributes is not of this kind but instead con-
sists in a list or an array of elements, we abandon this
solution since the memory consumption and cpu time
needed in order to construct this indexed representa-
tions are too expensive in comparison to the methods
that. follow.

Another alternative to implement set comparison
is based on sorting the elements. Assuming an array
r.cl)rclsent,a.t,iorl of t.he elernent,s of the set,, we denote the
i-th element, of a set, s by s[i]. We start with comparing

the smallest elements. If s[O] is smaller than t[O], there
is no chance to find s[O] somewhere in t. Hence, the
result will be false. If s[O] is greater than t[O], then
we compare s[O] with t[l]. In case s[O] = t[O], we can
start comparing s[l] with t [11. The following algorithm
implements this idea:

if (s->setcard > t->setcard) return false;
i=j=O;

while(i < s->setcard && j < t->setcard)
if(sCi1 > tCj1) j++;
else if (s[i] < t[jl> return false;
else /* (s[il == t[jl) */

(i++; j++;)
if(i==s->setcard) return true;
return false ;

The first line implements a pretest based on car-
dinality. The remaining lines implement the idea
outlined above. The run time of the algorithm is

WI + ItI). Ag ain, since we do not assume that the
sets are sorted, we have a run time complexity of
WI 1% I4 + PI 1% ItI).

The third alternative we considered for implement-
ing set comparisons is based on signatures. This algo-
rithm first computes the signature of each set-valued
attribute and then compares the signatures before
comparing the actual sets using the naive set compar-
ison algorithm. This gives rise to a run time complex-
ity of O(lsl + It/). Signatures and their computation
are the subjects of the next section. Furthermore, the
next section introduces some basic results that will be
needed for tuning some of the hash join algorithms.

2.3 Signatures

2.3.1 Introduction

A signature is a bit field of a certain length &called the
signature length. Signatures are used to represent or
approximate sets. For our application, it suffices if we
set one bit within the signature for each element of the
set whose signature we want to compute. Assuming a
function msig that maps each set element to an integer
in the interval [0, b[, the signature can be computed by
successively setting the msig (z)-th bit for each element
x in the set. For a set s, let us denote the signature of
s by sig(s).

Similar to hashing, we cannot assume that the bits
set for the elements of a set are really distinct. But
still, the following property holds:

s c t ===3 sig(s) & sig(t)

where sig(s) C_ sig(t) is defined as

sig(s) g sig(t) := sig(s)&%g(t) = 0

387

wit,h & denoting bitwise arlrl and 1 denoting bitwise
comple,ment. Hence, a pretest based on signatures
can be very fast, since it involves only bit operations.
Agairr. wc do not assrrrrr(tha.t t,he elemems of t,hc sets
of t,hr relat,ion’s tuples comain their signatures, all the
sul)soqucnt, join algorithms which use signatures have
to construct. them. Hence, their cost will highly de-
pend on the quality of the algorithm used to imple-
ment msig. Here, we can measure the quality by the
probability that the reverse direction of the above im-
plications do not hold. Such a case is called a false
drop. The probability of false drops is calculated in
the next subsection.

The function rn+, can be implemented in several
different ways. We invest,igated two principle ap-
I)r’oa(~lr(~s. Thcx first al)pr’oach uses a random number
g(‘rr(‘r’ii t,or whosc~ seed is t,he set element. The result-
~rlg IIIIIII~K’I give>> t,llcs I)it t.o be set, within t,he signa-
t,urc. In our implementation, we used two different
random number generators: rand() of the C-library
and DiscreteUniform of the GNU-library. The second
approach just. takes the set element modulo the signa-
ture length. The advantage of the former is a possible
slight reduction of the false drop probability, the ad-
vanta,ge of the la.tter is a much better run time.

2.3.2 False Drop Probability

Consider two sets s and t and their signatures sZg(s)
and ~%,fl(t). If for a predica.te 19 si,g(s)Osiy(t), we call
t,his a drop. If additionally sot holds, we call this a
right drop. If sig(s)dsig(t) and ~(.sOt), we call this a
false drop. False drops exist, because by hashing the
data elements and superimposing their signatures, it
is possible that two different sets are mapped onto the
same signature.

The false drop probabilities for subset predicates
have been studied,[ll, 19, 31, 331 and can be approxi-
mated by the following general formula [19]:

df‘(b, k. I’,,, I’,) z (1 _ ,-$yT, (1) -

Herc~. h denot,es t,he signature lengt,h, k the number of
bit,s set per set element (in this paper, we will assume
k = l), r, = Js] the cardinality of the set on the left
side of the predicate sot, and rt = It) the cardinality
of the set t on the, right side.

3 Join Predicates with C

This section discusses algorithms to compute

RI WR,.acR~.b R2

for two rela.tions Rr and R2 with set-valued attributes
u and b. Obviously, these algorithms will also be
useful for computing joins like RI ~Rl.a>Rz.b R2,

RI WRl.aCRz.b R2, and RI WRl.a>Rz.b R2. For the ht-

ter two only slight modifications are necessary. This
section is organized as follows. The next subsection
contains a. description of the nested-loop join and the
hash join. The last subsection covers the evaluation of
these join algorithms.

3.1 Algorithms

3.1.1 Nested-Loop Joins

There are three different possible implementations of
the nested-loop join. Each alternative is based on a
different implementation of the c predicate. The first
alternative applies the naive implementation, the sec-
ond applies the implementation based on sorting, and
the third alternative utilizes signatures. For details on
the different implementations for C see Sec. 2.2.

For space reasons, we cannot give the performance
evaluation of the different nested-loop join algorithms
(see [17]) but we repeat the most important conclusion
that we draw from the evaluation: the signature-based
set comparison performs best and the naive implemen-
tation of s performs worst. Hence, the signature-
based variant will be used for further comparison.

We give a rough estimation of the running time of
the signature-based nested-loop join algorithm. Let
Csig be the costs to compare two signatures, C,,,(r)
the costs for comparing two sets (T stands for the av-
erage set cardinality), Ccreate(F) the costs for creating
a signature, and Phit the probability that two (arbi-
trary) signatures taken from RI and R2 match. Phit
is equal to the sum of the selectivity between RI and
Rz and the false drop probability df,. Note that costs
C crea&) are linear in 7. The complexity of Cset(p)
depends on the algorithm that is used (cf. section
2.2). We neglected the costs for the result construc-
tion, since they are the same for all join algorithms.
Then the costs for the hash join are

CNL x (l&I + IR2l) . Ccreate(3 +

11111 * IR2(. Csig +

JR11 . (R2l . hit . Cset(3 (‘4

The first term reflects the creation costs of the sig-
natures for all tuples in RI and R2. The second term
accounts for the comparison costs of every signature
of the tuples in RI with every signature of the tuples
in R2. The third term incorporates the testing of all
drops encountered. For small values of &it C,VL is
characterized by the term (RI (. lR2l . Csig. .

3.1.2 Signature-HaSh Join

Using signatures to hash sets seems easy for evaluat-
ing joins based on set equality. For subset predicates

this is not so obvious. In principle, two different ap-
proa,ches exist,. First, we could redundantly insert ev-
ery tuple with a set-valued attribute a into the hash
t,ablr> for every possible subset of u. Since this results in
a tremendous storage overhead, we abandoned this so-
lution. The second approach inserts every tuple once
into the hash table. Now the problem is to retrieve
for a given tuple all those tuples whose set-valued at-
tribute is a subset of the given tuple. More specifically,
given a signature of the set-valued attribute of a tuple,
t,he question is how to generate the hash keys for all
subsets. This problem can be solved by restricting the
ha.sh functions used. A hash function has degree n, if
it allvays produces a bit. pattern of length n. Let, h be
a ha.sh fimct,ion of degree n. A Ic-restriction is a bit
I)iltl.(‘~ll of’ length II wllerc at, most, k bits are set. We
call a hash function of degree n G-cupable if for all sets
s, all its subsets t, and all k-restrictions the following
holds:

s C_ t ==+ (k&h(s)).&+k&h(t)) = 0.

Note that signatures are c-capable.
Assuming a C-capable hash function h, we can step

quickly through all the hash values of the subsets of
a given set s by an algorithm applied by Vance and
Meier in their blitzsplit join ordering algorithm [41]:

a = h(s);
s = a & -a;
while(s) {

s = a & (s - a);
process(s); 1

Although the inner part of the loop encompasses only
a small number of machine instructions, it is executed
exponentially often in the number of bits set within
t,hr ha.sh value h(s). This suggests to keep the number
of’ I)it s sc’t sn~all. How(~v~r. for signa.tures t,his would
result, in a high fa.lse drop probability. The problem
can be a.voided by using only part of the signature for
the above subset traversal algorithm. Assuming a C-
capable hash function this poses no difficulties, since
for example truncation to the last d bits is possible.

In order to derive a hash join for the subset equal
predicate, we proceed in several steps:

1.

2.

3.

4.

5.

building the hash table (including the computa-
tion of the hash values)

tuning the parameters

the actual join algorithm

fine tuning of the algorithm

discussion of implementation details

Building the hash table.

We consider two alternative approaches. In the direct
approach, we consider a signature of length b, but take
only the lowest d bits as a direct pointer into the hash
table. (The reasons for this become obvious in the next
step.) From this it follows that the hash table must
have a size of 2d. Let us denote the lowest d bits of
the signature of a set-valued attribute a of some tuple
t by partsig(t).’ Every tuple t of the relation to be
hashed is now inserted into the hash table at address
partsig (t) .

Tuning the parameters.

The signature size b and the partial signature size dare
crucial tuning parameters, since they determine the
number of hash table entries and the collision chain
lengths, which in turn have an impact on the running
time of the join algorithm. If b becomes very small,
i.e. much smaller than the set cardinality, then we can
expect every bit to be set. Hence, many collisions oc-
cur. If b becomes very large, say 1,000 times the set
cardinality, we can expect that almost none of the d
bits of the partial signature is set. Again, many colli-
sions occur. Hence, both extremes collect all tuples in
one collision chain.

The problem is now to determine the optimal value
of b. Our partial signature contains the most infor-
mation content possible, if on the average d/2 bits are
set. Since we assume that the bits which are set are
distributed uniformly over the signature, this amounts
to determine the partial signature size so that half of
the bits are set in the full signature.

In section 2.3.2, we gave the formula to determine
the number of bits set as

w = b(l - (1 - ;)‘)

where b is the signature size and T is the (average) set
cardinality. For a given set cardinality, the problem is
now to determine the optimal value for b. This b can
be derived analytically as

A formal derivation of this result can be found in [17].
Hence, if we determine bopt by this formula, we can

expect that half of our d bits in the partial signature
will be set and that the collision chain length is mini-
mal. Let us give at least the results of one experiment
validating this analytical finding. For a set cardinal-
ity of 100, the optimal value of b can be computed as

‘For computing the signature and the partial signature, we
consider only the modulo approach, since the approaches using
random number generators are too slow.

369

Figure 1: Tuning partial signature sizes

bopf = 144.77. Figure 1 gives the experimental results.
On the left-hand side, the number of bits set in the par-
t,ia.l signature depending on the signature size is given.
Each curve corresponds t,o a different partial signature
size d. It follows that the according hash table has 2”
entries. For d = 8, we find that for some number a
little smaller than 150, 4 bits are set. This is exactly
what we expect after our analysis. On the right-hand
side, the maximum collision chain lengths for different
partial signature lengths are given. We find that for
values around 145, the collision chain lengths become
minimal. Hence, we can use formula 3 to tune our
hash t,ables. Further, we find that the accurate value
for t h(x parCal signat,ure size is not, t,oo important. In
ortlt~~ t,o IN, very clost~ t,o t,he minimum collision chain
l(‘llgtI~. ii value from 130-200 will do.

The signature-hash join.

After having built hash tables with reasonably short
collision chains, we come to the problem of comput-
ing the join RI WR~.~~R~.~ Rz. We first transform this
problem into computing the join of Rz WR2.b>R1 ,a RI.
Then, the hash table is constructed for RI. The last
step consists in finding all the joining tuples of R1 for
csach t.uple in Rg For a given tuple t2 E Rz, we have to
find all t,he tuples tl in RI such that tz > tl. We do so
1)~. gcsnc,rating wit,11 the algorithm above-all the par-
tial signatures for all subsets of t2 and ‘look for these
partial signatures within the hash table. For all tuples
found, we perform (1) a comparison of the full signa-
ture and, if necessary, (2) an explicit set comparison
to take car& of false drops.

We refer to the approach where the hash table size
is 2d for a given partial signature size by the direct ap-

preach since the signatures are directly used as hash
keys. However, we did not want to be bound to hash
table sizes of 2d only. Hence, we added a modulo
computation in order to allow for arbitrary hash ta-
ble sizes. Let n be the chosen hash table size. Then,
the tuples t are inserted into the hash table at address
partsig(t) mod n. For retrieving the joining tuples, we
apply also the mod n to the partial signatures S of
the subsets. We refer to this indirect approach by mod
and to the direct approach by dir.

Theoretical analysis and fine tuning

Let us now have a closer look at the tuning parameters.
Obviously, the signature length and the partial signa-
ture length heavily influence the performance of the
hash join. The shorter the partial signature, the longer
are the collision chains (witness Fig. 1). The longer
the partial signature, the more bits are set within it.
Hence, the more hash table entries have to be checked
for each tuple. On the average 2: entries have to be
checked if we set the signature length to b,t. Hence, a
large d gives small collision chains but results in many
hash table lookups.

Let us formalize these thoughts. If we assume that
the signature values are uniformly distributed, the av-
erage length of a collision chain is equal to

During join processing we have to look up all match-
ing signatures in RI, i.e. all signatures which are a
subset of t2.b for every tuple t2 E R2. As previously
mentioned, after optimizing the signatures we expect

390

Figure 2: Performance of the hash join depending on the partial signature size

half of the bits to be set. So the mean number of hash
lookups per set are

T7,,,,,1, = 2 4 (5)

FOI t.11~~ t.ut,al r~~rntm of lookups and accesses to
items in the collision chain per tuple t2 E R2 we get

IRll
ctotlook = icoll ’ cloak = 2” (6)

2

One could assume tha.t the larger d’ becomes, the
smaller the lookup costs per set become. This is, how-
ever, not, the whole truth. Obviously, d cannot be
intlofillitcl!~ largr. twcame of memory limits. Also d
~110u1d 11ot. bo laqyr than log2 IR, 1: because an average
c,ollision chain l(~ngt,h Mow one does not, improve the
lookup cost significantly. A very large d does however
increase the mean number of hash lookups, which is
more crucial. See figure 2 that displays, results of our
experiments confirming these arguments. It follows
that a hash table in the order of 1 RI 1 is reasonable and
should also be feasible.

Let us now approximate the costs for the hash join
(Cinsert are the costs for inserting an item into a hash
table, usually Cinsert = 0(1) for collision chains).

CH = (IRll + lR2l) . G-ate@) +

I& I ..Gnsert +
IR21.!%C. +

24 =g
lR21 . IRl(. Phit . Cset(T) (7)

For hash join we have an additional term for creat-
ing the hash table. The third term, determining the
costs for the signature comparisons, has also ch&nged
(cf. (2)). Again, we omitted the costs for the construc-
tion of the result.

Implementation details

For the computation of signatures, for each element
of the set one has to determine which bit to be set.
One approach is to use the set element as a seed in a
random number generator. We used two different ran-
dom number generator8 (r-and from the C-library and

391

Figure 3: Performance of different join algorithms for E

Discr&eCini~o~rn, from the GNU-library]. We also in-
vestigated the simple approach where the set element
is mapped to the bit to be set by the modulo func-
tion. We found that the random number generators
resulted in a more uniform distribution of the bits to
be set and, hence, in smaller collision chains. However,
the decrease in collision chain length could not com-
pensate for the high run time of the random number
generator itself. As a consequence, for main-memory
,joill ;Ilgorit,hms random number generat,ors do not, pay.
F(JI, it joiu algorit.hms \vorking with disks, t,he situation
rnight look diff(>rrbrit

In our implernent,ation, we allocated the signatures
individually. Some tuning concerning this point is pos-
sible. For the set comparison we relied on the (whole)
signature, That is, for each qualifying collision chain
the given signature was compared to every signature of

the elements within the collision chain. For every drop,
the naive set comparison algorithm is applied. We also
experimented with the sort-based comparison, but the
faster comparison does fiat compensate for the sorting
of the set elements. This is mainly due to the low false
drop probabilities encountered.

3.2 Evaluation

3.2.1 Theoretical evaluation

Comparing hash join to nested-loop join we immedi-
ately see that hash join has additional costs for creat-
ing a hash table and different costs for comparing the
signatures (see (2) and (7)). As seen before, it makes
sense to choose the hash table size in the order of the

392

cardinality of RI. Hence, we set

d=log,IRl)

Then t,he costs for.comparing signatures become equal
to

lR21 . Jiizri. Gig
for hash join as opposed to

lR21 . I& I . Gig

for nested-loop join. How will this influence the per-
formance of the algorithms?

Small values of Phi, and small set, cardinalities in-
UXYN that impa.ct of t,htB signat,ure comparison costs
(IRZ (JR, 1 C.v;q for nest,ed-loop join and I Rz I m.
C,‘s,y for hash ,join, respectively) on the total costs.
Let, us look closer at this case, in which the hash
join outperforms the nested-loop join. The value of
Phit depends almost exclusively on the selectivity be-
tween RI and Rz, because the false drop probability
can be held very. low. For small selectivities, how-
ever, hash join is better than nested-loop join, as
many unnecessary comparisons are avoided. Obvi-
ously, small set cardinalities result in a decrease of
the signature creation costs Ccreate (F) and set com-
parison costs Cset@). Hence, the proportion of the
t,erm (IR1(+IRal).C~~ente(~) and the term IR2l.IR11.
Ph%t Cset (F) in the total costs decreases. If we assume
) RI 1 = 1 Rz I,= n, then the comparison of the signatures
can be achieved in’O(n1,5) for the hash join in contrast
to O(n2) for the nested-loop join. So the larger the re-
lations are, the greater the performance gain of the
hash join will be (under the assumption that Phit and
the set cardinalities are small).

Vice versa large selectivities and large set cardinal-
ities increase the influence of the signature creation
cost-s ((I RI I+ 1 R2 I) . CcrerLte (T)) and the set comparison
cost,s (In, I.IX21.P,,,t~C,cr (F)) on the total costs. There-
forcl t,he performa.nc:e gain of the hash join will not, be
as large, beca.use the fraction of the total costs concern-
ing the signature comparison costs (I R2 I . m. C’s,)
decreases.

3.2.2 Experimental evaluation

We also evaluated the nested-loop join and hash join
experimentally. Due to time constraints we had to
keep the benchmarks simple (see table 1 for the cho-
sen parameters). Both the element distribution and
t,he set cardinalit,y dist,ribut,ion was uniform. The se-
lectivity was implicitly defined by the element and set
cartlinality distribution. It was fairly small (lower than
0.0008 in all cases) and we did not investigate it fur-
ther.

Table 1: Parameters for benchmarks

Figure 3 shows the performance evaluation of our
join algorithms. More specifically, it contains the run
time of the nested-loop algorithm with signature-based
set comparison and the hash join with the tuned pa-
rameters set according to the above considerations for
the signature length and the partial signature length.
The hash join allocates dynamically a signature ob-
ject for each tuple to be hashed. This signature object
in turn allocates the signature bit vector dynamically.
Only one signature object is allocated for all tuples of
the outer relations. It is cleared before re-usage.’ This
makes sense since clearing is less expensive than dy-
namic allocation. If the signatures are allocated stati-
cally, we can gain a factor of three.

As predicted in 3.2.1, the speedup for using hash
join decreases for large set cardinality when compared
to nested-loop join as the costs for creating signatures
and comparing sets increase. For relations containing
10.000 tuples, the hash join saves a factor of up $0 10
for small sets (containing 10 elements) and a factor
of up to 5-6 for large sets (containing 100 elements).
Also, because of the low selectivity used in the bench-
marks, for large relation cardinalities, the hash join
algorithm performs better than the nested-loop algo-
rithm. For larger set cardinality the break-even point
moves to the right as can be clearly seen in figure 3.

4 Conclusion

For the first time, this paper investigates join algo-
rithms for join predicates based on set comparisons.
More specifically, this paper treats subset predicates.
It has been shown that remarkably more efficient al-
gorithms exist than a naive nested-loop join. Even the
signature nested-loop join results in an order of magni-
tude improvement over the naive nested-loop join. The
hash join surpasses the signature nested-loop join only
by a factor of 5-10 depending on various parameters.
Although this is a result’ that is not to be neglected, the
question arises whether even better alternatives exist.
This is one issue for future research. Other problems
need to be solved as well. First, join algorithms whose
join predicate is based on non-empty intersection have
to be developed. Second, all the algorithms presented
are main memory algorithms. Hence, variants for sec-
ondary storage have to be developed. Also the dif-
ferent tuning parameters will have to be adjusted for

393

secondary storage variants. For example, lowering col-
lision chain entries a,nd false drops by using random
11u111bcr gerlt!rat,ors and larger signatures might, pay.
Third. parallelizing t,he.se algorit,hms is an interesting
issue by itself.

Acknowledgments

We thank B. Rossi and W. Scheufele for carefully read-
ing a first draft of the paper. We also thank the anony-
mous referees for many useful comments. Especially
one of them, whose hints improved the theoretical part
of the paper quadratically (if not even exponentially).

References

\I \I* Blasg:(~u imtl Iz’. P. Eswaran. 01: the evaluation
of’ quc‘ries iu a relational database system. Technical
Report IBM Research Report, RJ1745, IBM, 1976.

K. Bratbergsengen. Hashing methods and relational
algebra operations. In Proc. ht. Conf. on Very Large
Data Bases (VLDB), pages 323-333, 1984.

T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using R-trees. In Proc. of
the ACM SIGMOD Conf. on Management of Data,
pages 237-246, 1993.

R Cat,t,ell. editor. The Oblect Database Standard:
ODMG-93. Morgan Kaufmann, 1996. Release 1.2.

S. Cluet. and G. Moerkotte. Efficient evaluation of
aggregates on bulk types. In Proc. Int. Workshop on
Database Programming Languages, 1995.

D. Dewitt and R. Gerber. Multiprocessor hash-based
join algorithms. In PTOC. Int. Conf. ‘on Very Large
Data Bases (VLDB), pages 151-164, Stockholm, Swe-
den, 1985.

D. Dewitt, R. Katz, F. Ohlken, L. Shapiro, M. Stone-
braker, -and D., Wood. Implementation techniques for
main memory database systems. In Proc. of the ACM
SIC MOD Cm!f’. m. Marrcl.gern,ent of Data, pages l-8,
1984.

D. DeWit,t, D. Lieuwen, and M. Mehta. Pointer-
based join techniques for object-oriented databases.
In PDIS, 1993.

D. Dewitt, J. Naughton, and D. Schneider. An eval-
uation of non-equijoin algorithms. In Proc. Int. Conf.
on Very Large’ Data Bases (VLDB), pages 443-452,
Barcelona, Spain, 1991.

D. Dewitt, J. Naughton, arid D. Schneider. Parallel
sorting on a shared-nothing architecture using prob-
abilistic splitting. In Int. Conf. on Parallel and Dis-
trxbuted Inforrr~atzon Systems, Miami Beach, Fl, 1991.

C’. Falout,sos and S. Christodoulakis. Signature files:
An access method for documents and its analytical
performance eyaluation. ACM nansactions on Ofice
Informations Systems, 2(4):267-288, October 1984.

PI

1131

[I41

1151

WI

1171

WI

PO1

Pll

PI

[231

I241

1251

S. Fushimi, M. Kitsuregawa, and H. Tanaka. An
overview of the systems software of a parallel rela-
tional database machine: GRACE. In Proc. Int. Conf.
on Very Large Data Bases (VLDB), pages 209-219,
1986.

G. Graefe. Sort-merge-join: An idea whose time
has(h) passed? In Proc. IEEE Conference on Data
Engineering, pages 406-417, Houston, TX, 1994.

G. Graefe, A. Linville, and L. Shapiro. Sort versus
hash revisited. IEEE nans. on Data and Knowledge
Eng., 6(6):934-944, Dec. 1994.

0. Giinther. Efficient computation of spatial joins. In
PTOC. IEEE Conference on Data Engineering, pages
50-59, Vienna, Austria, Apr. 1993.

T. HLrder. Implementing a generalized access path
structure for a relational database system. ACM
Trans. on Database Systems, 3(3):285-298, 1978.

S. Helmer and G. Moerkotte. Evaluation of main
memory join algorithms for joins with set comparison
join predicates. Technical Report 13/96, University of
Mannheim, Mannheim, Germany, 1996.

E. Hoe1 and H. Samet. Benchmarking spatial join
operations with spatial output. In Proc. Int. Conf.
on Very Large Data Bases (VLDB), pages 606-618,
Zurich, 1995.

Y. Ishikawa, H. Kitagawa, and N. Ohbo. Evaluation of
signature files as set access facilities in oodbs. In Proc.
of the 1993 ACM SIGMOD, pages 247-256, Washing-
ton D.C., 1993.

M. Kamath and K. Ramamritham. Bucket skip merge
join: A scalable algorithm for join processing in very
large databases using indexes. Technical Report 20,
University of Massachusetts at Amherst, Amherst,
MA, 1996.

C. Kilger and G. Moerkotte. Indexing multiple sets. In
PTOC. Int. Conf. on Very Large Data Bases (VLDB),
pages 180-191, Santiago, Chile, Sept. 1994.

W. Kim, K. C. Kim, and A. Dale. Indexing tech-
niques for object-oriented databases. In W. Kim and
F. H. Lochovsky, editors, Object-Oriented Concepts,
Databases, and Applications, pages 371-394, Mas-
sachusetts, 1989. Addison Wesley.

M. Kitsuregawa, M. .Nakayama, and M. Takagi. The
effect of bucket size tuning in the dynamic hybrid
GRACE hash join method. In PTOC. ht. Conf. on
Very Large Data Bases (VLDB), pages 257-266, 1989.

M.-L. Lo and C. Ravishankar. Spatial hash-joins. In
Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 247-258, Montreal, Canada, Jun 1996.

R.. Lorie and H. Young. A low communicatioti sort
algorithm for a parallel database machine. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages
135-144, 1989. also published as: IBM TR RJ 6669,
Feb. 1989.

394

[26] J. Menon. A study of sort algorithms for multiproces-
sor DB machines. In Proc. Int. Conf., on Very Large
Data Bases (VLDB), pages 197-206, Kyoto, 1986.

[27] I’. Mishra and M. H. Eich. Join processing in relational
tlitt iiba.ws. A CM Corrr;orrtrrr!l Surmys. 24(1):63-113,
I !I!)2

[42] Z. Xie and J. Han. Join index hierarchies for support-
ing efficient navigation in object-oriented databases.
In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 522-533, 1994.

[28] M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-
partitioned join method using dynamic destaging
strategy. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 468-478, 1988.

[29] P. O’Neil and G. Graefe. Multi-table joins through
bitmapped join indices. SIGMOD Record, 24(3):8-11,
Sep 1995.

[30] J. Pate1 and D. Dewitt. Partition based spatial-merge
join. In Proc. of the ACM SIGMOD Conf. on Man-
oLyernc,nt of’ Data, pagw 259 -270, Montreal, Canada,
.Jun 1996.

j31j C.S Roberts. Partial-match retrieval via the
method of superimposed codes. Proc. of the IEEE,
67(12):1624-1642, December 1979.

[32] M. Roth, H. Korth, and A. Silberschatz. Extend-
ing relational algebra and calculus for nested rela-
tional databases. ACM nans. on Database Systems,
13(4):389-417,‘Dec 1988.

[33] R. Sacks-Davis and K. Ramamohanarao. A two level
superimposed coding scheme for partial match re-
t,rieval. Inform&on Systems. 8(4):273-280. 1983.

[34] 1). S&berg. .A. Tsukerman, .J. Gra,v, M. Stewart,
S 1-r~1. ilntl B. \Faughan. Fast,Sort.: an distributed
single-input single-output, external sort. In Proc. of
the ACM SIGMOD Conf. on Management of Data,
pages 94-101, 1990.

(351 H.-J. Schek and M. H. Scholl. The relational model
with relation-valued attributes. Information Systems,
11(2):137-147, 1986.

[36] D. Schneider and D. Dewitt. Tradeoffs in process-
ing complex join queries via hashing in multiprocessor
database machines. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 469-480. Brisbane, 1990.

[37] L. D. Shapiro. Join processing in database systems
wth laqqs mai;, armories. ACM Tra.ns. on Databa,se
Systems, 11(3):239-264, 1986.

[38] E. J. Shekita and M. J. Carey. A performance eval-
uation of pointer-based joins. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 300-
311, 1990.

[39] D. Shin and A. Meltzer. A new join algorithm. SIG-
MOD Record, 23(4):13-18, Dec. 1994.

[40] P. Valduriez. Join indices. ACM fians. on Database
Systems, 12(2):218- 246, 1987.

1411 13. \‘ance and D. iY1aier. Rapid bushy join-order op-
t,imizat,iou with cartesian products. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages
35-46, Toronto, Canada, 1996.

395

