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Abstract 

Current data models like the NF2 model 
and object,-oriented models support set-valued 
at.t,ribut,t:s. Hence, it, becomes possible to 
havt> join prcdica.tes ba.sed on set, comparison. 
This paper int,roduces and evaluates two main 
memory algorithms to evaluate efficiently this 
kind of join. More specifically, we concentrate 
on subset predicates. 

1 Introduction 

Since the invention of relational database systems, 
tremendous effort has been undertaken in order to de- 
velop efficient, join algorithms. Starting from a simple 
n(>st.c)tl-loop join algorithm, the first improvement was 
t*hr int,roduction of the merge join [l]. Later, the hash 
,joirl [2, 7] and its improvements [20, 23, 28, 391 be- 
came alternatives to the merge join. For overviews see 
[27, 371 and for a comparison between the sort-merge 
and hash joins see [13, 141. 

A lot of effort has also been spent on parallelizing 
join algorithms based on sorting [lo, 25, 26, 341 and 
hashing [6, 12, 361. Another important research area 
is t,he development of index structures that allow to 
accelerate the evaluation of joins [16, 22,21, 29, 40,421. 

.411 of these algorithms concentra.te on simple join 
pr(~dic~;ites ba.sc~tl on t,he comparison of two a,tomic val- 
ues. Pr~~domina.nt. is the work on equi-joins, i.e., where 
t.hr join predicat,e is based on the equality of atomic 
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values. Only a few articles deal with special issues like 
non-equi-joins 191, non-equi-joins in conjunction with 
aggregate functions [5], and pointer-based joins [8,38]. 
An area where more complex join predicates occur is 
that of spatial database systems. Here, special algo- 
rithms to support spatial joins have been developed 
[3, 15, 18, 24, 301. 

Despite this large body of work on efficient join pro- 
cessing, the authors are not aware of any work describ- 
ing join algorithms for the efficient computation of the 
join if its predicate is based on set comparisons like 
set equality (=) or subset equal (C) . These joins were 
irrelevant in the relational context since attribute val- 
ues had to be atomic. However, newer data models 
like NF2 [32, 351 or object-oriented models like the 
ODMG-Model [4] support set-valued attributes, and 
many interesting queries require a join based on set 
comparison. Consider for example the query for faith- 
ful couples. There, we join persons with persons in 
condition of the equality of their children attributes. 
Another example query is that of job matching. There, 
we join job offers with persons such that the set-valued 
attribute required-skills is a subset of the persons’ set- 
valued attribute skills. We could give plenty of more 
queries involving joins based on set comparisons but 
we think these suffice for motivation. Note that all 
the examples work on possibly large sets of objects, 
but with limited set cardinality. We believe that this 
is the most common case found in practice. This belief 
is backed by our observations on real applications for 
object-oriented databases. 

The rest of the paper is organized as follows. In the 
next section, we introduce some basic notions needed 
in order to develop our join algorithms. Sections 3 
introduces and evaluates several join algorithms where 
the join predicate is subset equal. Algorithms for other 
join predicates can be found in the full paper [17]. 
Section 4 concludes the paper. 
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2 Preliminaries 

2.1 General Assumptions 

For the rest, of the paper, we assume the existence of 
t\vo rtllations RI a.nd R.2 with set-valued join attributes 
(I i+ll(l 6. \I;(’ (IO IIO~ (‘il.l’t’ abollt t,he exa.ct, type of the 
at,tribut,es (I, and 0 t,hat is whether it is e.g. a rela- 
tion. a sc’t of’ st,riugs, or a set of object identifiers. We 
just assume that they are sets and that their elements 
provide an equality predicate. 

The goal of the paper is to compute efficiently the 
join expression 

RI &Cb R2 - 

More specifically, we introduce a join algorithm based 
on hashing and compare its performance with a nested- 
loop st,ra.tegy. Two other join algorithms, sort-merge 
and H t.rrc,-ba.sed one, a.nd set, equality predicat,es are 
tl~5(~1~1l~~l in [ 171. 

For c~orlvc~nic~rlc~f~. we a.ssume tha,t there exists an (in- 
jr~ct~ivr) func:t,ion m which maps each element within 
the sets of RI .a and R2 .b to the domain of integers. 
The function m is dependent on the elements’ type of 
the set-valued attributes. For integers, the function 
is identity, for strings and other types, techniques like 
folding can be used. From now on, we assume without 
loss of generality that the type of the sets is integer. If 
this is not the case, the function m has to be applied 
before we do anything else with the set elements. 

2.2 Set Comparison 

Thc~ costs of comparing two sets by C differ signifi- 
cantly depending on the used algorithm. Hence, we 
first discuss some of the alternatives for comparing 
sets. Consider the case in which we want to evalu- 
ate s c t for two sets s and t. We could check whether 
each element in s occurs in t. If t is implemented as an 
array or list, then this algorithm takes O(lsl . ItI). For 
small sets, this might be a reasonable strategy. For 
large sets, however, the comparison cost of this simple 
st,rat,clgy can br significant,. Hence, we consider further 
illl~~l~lliil i\fos for SCt ~oiiiparison. 

OII(~ obviotis alt,r77lat,ive t,o evaluate efficiently s C t 
is I.0 I~aw ii sc:a~h t,ree or a hash table representation 
of t. Since we assume that the representation of set- 
valued attributes is not of this kind but instead con- 
sists in a list or an array of elements, we abandon this 
solution since the memory consumption and cpu time 
needed in order to construct this indexed representa- 
tions are too expensive in comparison to the methods 
that. follow. 

Another alternative to implement set comparison 
is based on sorting the elements. Assuming an array 
r.cl)rclsent,a.t,iorl of t.he elernent,s of the set,, we denote the 
i-th element, of a set, s by s[i]. We start with comparing 

the smallest elements. If s[O] is smaller than t[O], there 
is no chance to find s[O] somewhere in t. Hence, the 
result will be false. If s[O] is greater than t[O], then 
we compare s[O] with t[l]. In case s[O] = t[O], we can 
start comparing s[ l] with t [ 11. The following algorithm 
implements this idea: 

if (s->setcard > t->setcard) return false; 
i=j=O; 

while(i < s->setcard && j < t->setcard) 
if(sCi1 > tCj1) j++; 
else if (s[i] < t[jl> return false; 
else /* (s[il == t[jl) */ 

( i++; j++; ) 
if(i==s->setcard) return true; 
return false ; 

The first line implements a pretest based on car- 
dinality. The remaining lines implement the idea 
outlined above. The run time of the algorithm is 

WI + ItI). Ag ain, since we do not assume that the 
sets are sorted, we have a run time complexity of 
WI 1% I4 + PI 1% ItI). 

The third alternative we considered for implement- 
ing set comparisons is based on signatures. This algo- 
rithm first computes the signature of each set-valued 
attribute and then compares the signatures before 
comparing the actual sets using the naive set compar- 
ison algorithm. This gives rise to a run time complex- 
ity of O(lsl + It/). Signatures and their computation 
are the subjects of the next section. Furthermore, the 
next section introduces some basic results that will be 
needed for tuning some of the hash join algorithms. 

2.3 Signatures 

2.3.1 Introduction 

A signature is a bit field of a certain length &called the 
signature length. Signatures are used to represent or 
approximate sets. For our application, it suffices if we 
set one bit within the signature for each element of the 
set whose signature we want to compute. Assuming a 
function msig that maps each set element to an integer 
in the interval [0, b[, the signature can be computed by 
successively setting the msig (z)-th bit for each element 
x in the set. For a set s, let us denote the signature of 
s by sig(s). 

Similar to hashing, we cannot assume that the bits 
set for the elements of a set are really distinct. But 
still, the following property holds: 

s c t ===3 sig(s) & sig( t) 

where sig(s) C_ sig(t) is defined as 

sig(s) g sig(t) := sig(s)&%g(t) = 0 
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wit,h & denoting bitwise arlrl and 1 denoting bitwise 
comple,ment. Hence, a pretest based on signatures 
can be very fast, since it involves only bit operations. 
Agairr. wc do not assrrrrr( tha.t t,he elemems of t,hc sets 
of t,hr relat,ion’s tuples comain their signatures, all the 
sul)soqucnt, join algorithms which use signatures have 
to construct. them. Hence, their cost will highly de- 
pend on the quality of the algorithm used to imple- 
ment msig. Here, we can measure the quality by the 
probability that the reverse direction of the above im- 
plications do not hold. Such a case is called a false 
drop. The probability of false drops is calculated in 
the next subsection. 

The function rn+, can be implemented in several 
different ways. We invest,igated two principle ap- 
I)r’oa(~lr(~s. Thcx first al)pr’oach uses a random number 
g(‘rr(‘r’ii t,or whosc~ seed is t,he set element. The result- 
~rlg IIIIIII~K’I give>> t,llcs I)it t.o be set, within t,he signa- 
t,urc. In our implementation, we used two different 
random number generators: rand() of the C-library 
and DiscreteUniform of the GNU-library. The second 
approach just. takes the set element modulo the signa- 
ture length. The advantage of the former is a possible 
slight reduction of the false drop probability, the ad- 
vanta,ge of the la.tter is a much better run time. 

2.3.2 False Drop Probability 

Consider two sets s and t and their signatures sZg(s) 
and ~%,fl(t). If for a predica.te 19 si,g(s)Osiy(t), we call 
t,his a drop. If additionally sot holds, we call this a 
right drop. If sig(s)dsig(t) and ~(.sOt), we call this a 
false drop. False drops exist, because by hashing the 
data elements and superimposing their signatures, it 
is possible that two different sets are mapped onto the 
same signature. 

The false drop probabilities for subset predicates 
have been studied,[ll, 19, 31, 331 and can be approxi- 
mated by the following general formula [19]: 

df‘(b, k. I’,,, I’,) z (1 _ ,-$yT, (1) - 

Herc~. h denot,es t,he signature lengt,h, k the number of 
bit,s set per set element (in this paper, we will assume 
k = l), r, = Js] the cardinality of the set on the left 
side of the predicate sot, and rt = It) the cardinality 
of the set t on the, right side. 

3 Join Predicates with C 

This section discusses algorithms to compute 

RI WR,.acR~.b R2 

for two rela.tions Rr and R2 with set-valued attributes 
u and b. Obviously, these algorithms will also be 
useful for computing joins like RI ~Rl.a>Rz.b R2, 

RI WRl.aCRz.b R2, and RI WRl.a>Rz.b R2. For the ht- 

ter two only slight modifications are necessary. This 
section is organized as follows. The next subsection 
contains a. description of the nested-loop join and the 
hash join. The last subsection covers the evaluation of 
these join algorithms. 

3.1 Algorithms 

3.1.1 Nested-Loop Joins 

There are three different possible implementations of 
the nested-loop join. Each alternative is based on a 
different implementation of the c predicate. The first 
alternative applies the naive implementation, the sec- 
ond applies the implementation based on sorting, and 
the third alternative utilizes signatures. For details on 
the different implementations for C see Sec. 2.2. 

For space reasons, we cannot give the performance 
evaluation of the different nested-loop join algorithms 
(see [17]) but we repeat the most important conclusion 
that we draw from the evaluation: the signature-based 
set comparison performs best and the naive implemen- 
tation of s performs worst. Hence, the signature- 
based variant will be used for further comparison. 

We give a rough estimation of the running time of 
the signature-based nested-loop join algorithm. Let 
Csig be the costs to compare two signatures, C,,,(r) 
the costs for comparing two sets (T stands for the av- 
erage set cardinality), Ccreate(F) the costs for creating 
a signature, and Phit the probability that two (arbi- 
trary) signatures taken from RI and R2 match. Phit 
is equal to the sum of the selectivity between RI and 
Rz and the false drop probability df,. Note that costs 
C crea&) are linear in 7. The complexity of Cset(p) 
depends on the algorithm that is used (cf. section 
2.2). We neglected the costs for the result construc- 
tion, since they are the same for all join algorithms. 
Then the costs for the hash join are 

CNL x (l&I + IR2l) . Ccreate(3 + 

11111 * IR2(. Csig + 

JR11 . (R2l . hit . Cset(3 (‘4 

The first term reflects the creation costs of the sig- 
natures for all tuples in RI and R2. The second term 
accounts for the comparison costs of every signature 
of the tuples in RI with every signature of the tuples 
in R2. The third term incorporates the testing of all 
drops encountered. For small values of &it C,VL is 
characterized by the term (RI ( . lR2l . Csig. . 

3.1.2 Signature-HaSh Join 

Using signatures to hash sets seems easy for evaluat- 
ing joins based on set equality. For subset predicates 



this is not so obvious. In principle, two different ap- 
proa,ches exist,. First, we could redundantly insert ev- 
ery tuple with a set-valued attribute a into the hash 
t,ablr> for every possible subset of u. Since this results in 
a tremendous storage overhead, we abandoned this so- 
lution. The second approach inserts every tuple once 
into the hash table. Now the problem is to retrieve 
for a given tuple all those tuples whose set-valued at- 
tribute is a subset of the given tuple. More specifically, 
given a signature of the set-valued attribute of a tuple, 
t,he question is how to generate the hash keys for all 
subsets. This problem can be solved by restricting the 
ha.sh functions used. A hash function has degree n, if 
it allvays produces a bit. pattern of length n. Let, h be 
a ha.sh fimct,ion of degree n. A Ic-restriction is a bit 
I)iltl.(‘~ll of’ length II wllerc at, most, k bits are set. We 
call a hash function of degree n G-cupable if for all sets 
s, all its subsets t, and all k-restrictions the following 
holds: 

s C_ t ==+ (k&h(s)).&+k&h(t)) = 0. 

Note that signatures are c-capable. 
Assuming a C-capable hash function h, we can step 

quickly through all the hash values of the subsets of 
a given set s by an algorithm applied by Vance and 
Meier in their blitzsplit join ordering algorithm [41]: 

a = h(s); 
s = a & -a; 
while(s) { 

s = a & (s - a); 
process(s); 1 

Although the inner part of the loop encompasses only 
a small number of machine instructions, it is executed 
exponentially often in the number of bits set within 
t,hr ha.sh value h(s). This suggests to keep the number 
of’ I)it s sc’t sn~all. How(~v~r. for signa.tures t,his would 
result, in a high fa.lse drop probability. The problem 
can be a.voided by using only part of the signature for 
the above subset traversal algorithm. Assuming a C- 
capable hash function this poses no difficulties, since 
for example truncation to the last d bits is possible. 

In order to derive a hash join for the subset equal 
predicate, we proceed in several steps: 

1. 

2. 

3. 

4. 

5. 

building the hash table (including the computa- 
tion of the hash values) 

tuning the parameters 

the actual join algorithm 

fine tuning of the algorithm 

discussion of implementation details 

Building the hash table. 

We consider two alternative approaches. In the direct 
approach, we consider a signature of length b, but take 
only the lowest d bits as a direct pointer into the hash 
table. (The reasons for this become obvious in the next 
step.) From this it follows that the hash table must 
have a size of 2d. Let us denote the lowest d bits of 
the signature of a set-valued attribute a of some tuple 
t by partsig( t).’ Every tuple t of the relation to be 
hashed is now inserted into the hash table at address 
partsig ( t ) . 

Tuning the parameters. 

The signature size b and the partial signature size dare 
crucial tuning parameters, since they determine the 
number of hash table entries and the collision chain 
lengths, which in turn have an impact on the running 
time of the join algorithm. If b becomes very small, 
i.e. much smaller than the set cardinality, then we can 
expect every bit to be set. Hence, many collisions oc- 
cur. If b becomes very large, say 1,000 times the set 
cardinality, we can expect that almost none of the d 
bits of the partial signature is set. Again, many colli- 
sions occur. Hence, both extremes collect all tuples in 
one collision chain. 

The problem is now to determine the optimal value 
of b. Our partial signature contains the most infor- 
mation content possible, if on the average d/2 bits are 
set. Since we assume that the bits which are set are 
distributed uniformly over the signature, this amounts 
to determine the partial signature size so that half of 
the bits are set in the full signature. 

In section 2.3.2, we gave the formula to determine 
the number of bits set as 

w = b(l - (1 - ;)‘) 

where b is the signature size and T is the (average) set 
cardinality. For a given set cardinality, the problem is 
now to determine the optimal value for b. This b can 
be derived analytically as 

A formal derivation of this result can be found in [17]. 
Hence, if we determine bopt by this formula, we can 

expect that half of our d bits in the partial signature 
will be set and that the collision chain length is mini- 
mal. Let us give at least the results of one experiment 
validating this analytical finding. For a set cardinal- 
ity of 100, the optimal value of b can be computed as 

‘For computing the signature and the partial signature, we 
consider only the modulo approach, since the approaches using 
random number generators are too slow. 
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Figure 1: Tuning partial signature sizes 

bopf = 144.77. Figure 1 gives the experimental results. 
On the left-hand side, the number of bits set in the par- 
t,ia.l signature depending on the signature size is given. 
Each curve corresponds t,o a different partial signature 
size d. It follows that the according hash table has 2” 
entries. For d = 8, we find that for some number a 
little smaller than 150, 4 bits are set. This is exactly 
what we expect after our analysis. On the right-hand 
side, the maximum collision chain lengths for different 
partial signature lengths are given. We find that for 
values around 145, the collision chain lengths become 
minimal. Hence, we can use formula 3 to tune our 
hash t,ables. Further, we find that the accurate value 
for t h(x parCal signat,ure size is not, t,oo important. In 
ortlt~~ t,o IN, very clost~ t,o t,he minimum collision chain 
l(‘llgtI~. ii value from 130-200 will do. 

The signature-hash join. 

After having built hash tables with reasonably short 
collision chains, we come to the problem of comput- 
ing the join RI WR~.~~R~.~ Rz. We first transform this 
problem into computing the join of Rz WR2.b>R1 ,a RI. 
Then, the hash table is constructed for RI. The last 
step consists in finding all the joining tuples of R1 for 
csach t.uple in Rg For a given tuple t2 E Rz, we have to 
find all t,he tuples tl in RI such that tz > tl. We do so 
1)~. gcsnc,rating wit,11 the algorithm above-all the par- 
tial signatures for all subsets of t2 and ‘look for these 
partial signatures within the hash table. For all tuples 
found, we perform (1) a comparison of the full signa- 
ture and, if necessary, (2) an explicit set comparison 
to take car& of false drops. 

We refer to the approach where the hash table size 
is 2d for a given partial signature size by the direct ap- 

preach since the signatures are directly used as hash 
keys. However, we did not want to be bound to hash 
table sizes of 2d only. Hence, we added a modulo 
computation in order to allow for arbitrary hash ta- 
ble sizes. Let n be the chosen hash table size. Then, 
the tuples t are inserted into the hash table at address 
partsig(t) mod n. For retrieving the joining tuples, we 
apply also the mod n to the partial signatures S of 
the subsets. We refer to this indirect approach by mod 
and to the direct approach by dir. 

Theoretical analysis and fine tuning 

Let us now have a closer look at the tuning parameters. 
Obviously, the signature length and the partial signa- 
ture length heavily influence the performance of the 
hash join. The shorter the partial signature, the longer 
are the collision chains (witness Fig. 1). The longer 
the partial signature, the more bits are set within it. 
Hence, the more hash table entries have to be checked 
for each tuple. On the average 2: entries have to be 
checked if we set the signature length to b,t. Hence, a 
large d gives small collision chains but results in many 
hash table lookups. 

Let us formalize these thoughts. If we assume that 
the signature values are uniformly distributed, the av- 
erage length of a collision chain is equal to 

During join processing we have to look up all match- 
ing signatures in RI, i.e. all signatures which are a 
subset of t2.b for every tuple t2 E R2. As previously 
mentioned, after optimizing the signatures we expect 
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Figure 2: Performance of the hash join depending on the partial signature size 

half of the bits to be set. So the mean number of hash 
lookups per set are 

T7,,,,,1, = 2 4 (5) 

FOI t.11~~ t.ut,al r~~rntm of lookups and accesses to 
items in the collision chain per tuple t2 E R2 we get 

IRll 
ctotlook = icoll ’ cloak = 2” (6) 

2 

One could assume tha.t the larger d’ becomes, the 
smaller the lookup costs per set become. This is, how- 
ever, not, the whole truth. Obviously, d cannot be 
intlofillitcl!~ largr. twcame of memory limits. Also d 
~110u1d 11ot. bo laqyr than log2 IR, 1: because an average 
c,ollision chain l(~ngt,h Mow one does not, improve the 
lookup cost significantly. A very large d does however 
increase the mean number of hash lookups, which is 
more crucial. See figure 2 that displays, results of our 
experiments confirming these arguments. It follows 
that a hash table in the order of 1 RI 1 is reasonable and 
should also be feasible. 

Let us now approximate the costs for the hash join 
(Cinsert are the costs for inserting an item into a hash 
table, usually Cinsert = 0( 1) for collision chains). 

CH = (IRll + lR2l) . G-ate@) + 

I& I ..Gnsert + 
IR21.!%C. + 

24 =g 
lR21 . IRl( . Phit . Cset(T) (7) 

For hash join we have an additional term for creat- 
ing the hash table. The third term, determining the 
costs for the signature comparisons, has also ch&nged 
(cf. (2)). Again, we omitted the costs for the construc- 
tion of the result. 

Implementation details 

For the computation of signatures, for each element 
of the set one has to determine which bit to be set. 
One approach is to use the set element as a seed in a 
random number generator. We used two different ran- 
dom number generator8 (r-and from the C-library and 
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Figure 3: Performance of different join algorithms for E 

Discr&eCini~o~rn, from the GNU-library]. We also in- 
vestigated the simple approach where the set element 
is mapped to the bit to be set by the modulo func- 
tion. We found that the random number generators 
resulted in a more uniform distribution of the bits to 
be set and, hence, in smaller collision chains. However, 
the decrease in collision chain length could not com- 
pensate for the high run time of the random number 
generator itself. As a consequence, for main-memory 
,joill ;Ilgorit,hms random number generat,ors do not, pay. 
F(JI, it joiu algorit.hms \vorking with disks, t,he situation 
rnight look diff(>rrbrit 

In our implernent,ation, we allocated the signatures 
individually. Some tuning concerning this point is pos- 
sible. For the set comparison we relied on the (whole) 
signature, That is, for each qualifying collision chain 
the given signature was compared to every signature of 

the elements within the collision chain. For every drop, 
the naive set comparison algorithm is applied. We also 
experimented with the sort-based comparison, but the 
faster comparison does fiat compensate for the sorting 
of the set elements. This is mainly due to the low false 
drop probabilities encountered. 

3.2 Evaluation 

3.2.1 Theoretical evaluation 

Comparing hash join to nested-loop join we immedi- 
ately see that hash join has additional costs for creat- 
ing a hash table and different costs for comparing the 
signatures (see (2) and (7)). As seen before, it makes 
sense to choose the hash table size in the order of the 
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cardinality of RI. Hence, we set 

d=log,IRl) 

Then t,he costs for.comparing signatures become equal 
to 

lR21 . Jiizri. Gig 
for hash join as opposed to 

lR21 . I& I . Gig 

for nested-loop join. How will this influence the per- 
formance of the algorithms? 

Small values of Phi, and small set, cardinalities in- 
UXYN that impa.ct of t,htB signat,ure comparison costs 
(IRZ ( JR, 1 C.v;q for nest,ed-loop join and I Rz I m. 
C,‘s,y for hash ,join, respectively) on the total costs. 
Let, us look closer at this case, in which the hash 
join outperforms the nested-loop join. The value of 
Phit depends almost exclusively on the selectivity be- 
tween RI and Rz, because the false drop probability 
can be held very. low. For small selectivities, how- 
ever, hash join is better than nested-loop join, as 
many unnecessary comparisons are avoided. Obvi- 
ously, small set cardinalities result in a decrease of 
the signature creation costs Ccreate (F) and set com- 
parison costs Cset@). Hence, the proportion of the 
t,erm (IR1(+IRal).C~~ente(~) and the term IR2l.IR11. 
Ph%t Cset (F) in the total costs decreases. If we assume 
) RI 1 = 1 Rz I,= n, then the comparison of the signatures 
can be achieved in’O(n1,5) for the hash join in contrast 
to O(n2) for the nested-loop join. So the larger the re- 
lations are, the greater the performance gain of the 
hash join will be (under the assumption that Phit and 
the set cardinalities are small). 

Vice versa large selectivities and large set cardinal- 
ities increase the influence of the signature creation 
cost-s ((I RI I+ 1 R2 I) . CcrerLte (T)) and the set comparison 
cost,s (In, I.IX21.P,,,t~C,cr (F)) on the total costs. There- 
forcl t,he performa.nc:e gain of the hash join will not, be 
as large, beca.use the fraction of the total costs concern- 
ing the signature comparison costs (I R2 I . m. C’s,) 
decreases. 

3.2.2 Experimental evaluation 

We also evaluated the nested-loop join and hash join 
experimentally. Due to time constraints we had to 
keep the benchmarks simple (see table 1 for the cho- 
sen parameters). Both the element distribution and 
t,he set cardinalit,y dist,ribut,ion was uniform. The se- 
lectivity was implicitly defined by the element and set 
cartlinality distribution. It was fairly small (lower than 
0.0008 in all cases) and we did not investigate it fur- 
ther. 

Table 1: Parameters for benchmarks 

Figure 3 shows the performance evaluation of our 
join algorithms. More specifically, it contains the run 
time of the nested-loop algorithm with signature-based 
set comparison and the hash join with the tuned pa- 
rameters set according to the above considerations for 
the signature length and the partial signature length. 
The hash join allocates dynamically a signature ob- 
ject for each tuple to be hashed. This signature object 
in turn allocates the signature bit vector dynamically. 
Only one signature object is allocated for all tuples of 
the outer relations. It is cleared before re-usage.’ This 
makes sense since clearing is less expensive than dy- 
namic allocation. If the signatures are allocated stati- 
cally, we can gain a factor of three. 

As predicted in 3.2.1, the speedup for using hash 
join decreases for large set cardinality when compared 
to nested-loop join as the costs for creating signatures 
and comparing sets increase. For relations containing 
10.000 tuples, the hash join saves a factor of up $0 10 
for small sets (containing 10 elements) and a factor 
of up to 5-6 for large sets (containing 100 elements). 
Also, because of the low selectivity used in the bench- 
marks, for large relation cardinalities, the hash join 
algorithm performs better than the nested-loop algo- 
rithm. For larger set cardinality the break-even point 
moves to the right as can be clearly seen in figure 3. 

4 Conclusion 

For the first time, this paper investigates join algo- 
rithms for join predicates based on set comparisons. 
More specifically, this paper treats subset predicates. 
It has been shown that remarkably more efficient al- 
gorithms exist than a naive nested-loop join. Even the 
signature nested-loop join results in an order of magni- 
tude improvement over the naive nested-loop join. The 
hash join surpasses the signature nested-loop join only 
by a factor of 5-10 depending on various parameters. 
Although this is a result’ that is not to be neglected, the 
question arises whether even better alternatives exist. 
This is one issue for future research. Other problems 
need to be solved as well. First, join algorithms whose 
join predicate is based on non-empty intersection have 
to be developed. Second, all the algorithms presented 
are main memory algorithms. Hence, variants for sec- 
ondary storage have to be developed. Also the dif- 
ferent tuning parameters will have to be adjusted for 
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secondary storage variants. For example, lowering col- 
lision chain entries a,nd false drops by using random 
11u111bcr gerlt!rat,ors and larger signatures might, pay. 
Third. parallelizing t,he.se algorit,hms is an interesting 
issue by itself. 
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