
l-Safe Algorithms for Symmetric Site Configurations

Rune Humborstad, Maitrayi Sabaratnam,
Svein-Olaf Hvasshovd

Dept. of Computer and Information Science
Norwegian University of

Science & Technology
N-7034 Trondheim, Norway

humbor,maitrayi,sophus@idi.ntnu.no

Oystein Torbjornsen
Telenor R&D

N-7005 Trondheim, Norway
oytor@fou.telenor.no

Abstract

In order to provide database availability in the
presence of node and site failures, traditional
l-safe algorithms disallow primary and hot
standby replicas to be located at the same site.
This means that the failure of a single primary
node must be handled like a failure of the en-
tire primary site. Furthermore, this excludes
symmetric site configurations, where the pri-
mary replicas are located at the site closest to
the accessing clients. In this paper, we present
three novel l-safe algorithms that allow the
above restrictions to be removed. The rela-
tive performance of these and the traditional
algorithms are evaluated by means of simula-
tion studies. Our main conclusion is that the
restrictions of the traditional algorithms can
be removed without significantly increasing
the processing overhead, during normal oper-
ation. From an evaluation based on perfor-
mance, availability, and transaction durabil-
ity, the novel dependency tracking algorithm
provides the best overall solution.

1 Introduction

The high availability requirement of critical database
applications is typically met by keeping a hot standby
database at a geographically remote site. The hot
standby takes over and continues the service, in case
a disaster hits the primary. Updates made at the pri-
mary must be reflected at the hot standby, in order

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

to keep it consistent. This can be achieved by l-safe
or 2-safe algorithms [GR93, Lyo88]. In 2-safe algo-
rithms, the changes made by a transaction are reflected
at both the primary and hot standby before commit.
This guarantees the durability of a committed trans-
action, even in case of disasters. The price paid is
increased response time by at least one round trip de-
lay. Long round trip delays will cause problems for
the applications demanding stringent response times.
The l-safe algorithms solve this problem at the cost
of some committed transactions lost in a disaster. In
l-safe algorithms, transactions commit at the primary
without consulting the hot standby. Therefore, if a
disaster hits the primary before the updates are prop-
agated to the hot standby, the committed transaction
will be lost, referred to as a missing transaction. Some
bank, travel [PGM92], and telecom [Hva94] applica-
tions adopt a l-safe strategy.

Masking a primary node failure is more costly in
the traditional l-safe than in the 2-safe algorithm. A
primary node failure in the 2-safe algorithm is masked
by its hot standby node taking over, but in the tradi-
tional l-safe algorithms, a global take-over is required,
i.e., all the hot standby nodes must take over in order
to maintain the database consistency. A global take-
over causes unnecessarily many active transactions to
abort at the primaries. Besides, the unavailability of
the database is higher in a global take-over. This is not
acceptable for many operationally critical database ap-
plications in like telecommunication and process con-
trol.

The traditional l-safe algorithms have an inherent
limitation. In order to mask primary failures, they re-
quire a uniform site configuration, i.e., a site can con-
tain only the primary nodes or only the hot standby
nodes. A site failure cannot be masked in symmet-
ric configurations, where a site contains both primary
and hot standby nodes. However, node failures can be
masked in both uniform and symmetric site configura-
tions.

The uniform site configuration is inefficient for the
applications having symmetric load, i.e., most of the

transactions originating from a site access the same
primary data set. For example, assume a bank that
has customers in London and Paris. London is kept
as the primary site and Paris as the hot standby site.
Most of the transactions that originate from London
access the data belonging to London customers and
the same applies to those from Paris. Since London
is kept as the primary site, even l-safe transactions
originating from Paris suffer a round-trip delay. This
may be unacceptable for the Paris customers. A better
solution will be: The London site contains the primary
data for London customers and the hot standby data
for Paris customers, and Paris vice versa. But such
a mix will violate the uniform site restriction of the
traditional l-safe algorithms.

In this paper, we introduce three l-safe algorithms
that relax the uniform site restriction and reduce the
take-over cost: Extended Locking Algorithm (XL),
Dependency Tracking Algorithm (DT), and Extended
Epoch Algorithm (EE).

The paper is organized as follows: Section 2 sum-
marizes related work. Section 3 describes the architec-
ture, and motivation for our contribution. Section 4
describes the three novel l-safe algorithms. Section 5
compares these algorithms with 2-safe and traditional
l-safe algorithms on the basis of a simulation. Section
6 summarizes the main ideas presented in the paper.

2 Related Work

2-Safe and traditional l-safe algorithms are discussed
in [GR93, Lyo88]. A traditional l-safe algorithm,
called dependency reconstruction algorithm (DR), is
described in [PGM92, KHGMPSl]. It can be used for
bundle and stream model architectures. In the bun-
dle model, all log records belonging to a transaction
are bundled together and sent to the hot standby site.
The stream model is similar to the one described in
Section 3.1, where, each primary node sends the log
records to its hot standby. This is opposed to the sin-
gle log stream for the whole site, adopted by Tandem
[Tan87]. A single log stream is not scalable to the num-
ber of nodes at a site. To handle the bundle model,
and log records arriving out of order at the hot standby
in both models, a ticket system is introduced. This is
used to execute the transactions at the hot standby
in an order equivalent to the execution order at the
primary.

A group commit approach at the hot standby,
named the Epoch algorithm (E), is described in
[GMPSOb]. Th is algorithm allows for trading effi-
ciency for minimum divergence. Minimum divergence
means that no transactions other than those miss-
ing or depending on missing transactions should be
aborted. 2-Safe and l-safe hybrid schemes are dis-

cussed in [GMPSOa, MT093]. The advantages and
disadvantages of the l-safe and 2-safe algorithms are
discussed in [PGM92, KHGMPSl] in detail.

l-Safe products are provided by: Tandem [Tan87],
IBM [ibm95, MT093], Oracle [ora95], Sybase [syb95],
Informix [inf94], and other vendors.

3 Context

3.1 System Architecture

0 F3

0 Pz

0 m-1
0 Pn

Figure 1: System architecture of uniform and symmet-
ric configurations.

The shared-nothing system architecture used in the
following sections is described here. A site contains
one or more nodes. Nodes at a site are situated in the
same vicinity, and are interconnected by a replicated
LAN to mask single communication failures. Sites are
connected by high bandwidth, replicated communica-
tion lines. An I’m alive protocol combined with a vir-
tual partition management protocol is used to maintain
a consistent set of available nodes [ASC85]. Network
partitioning is not considered in this paper. Sites are
placed far apart, and this inflicts considerable commu-
nication cost.

The system uses an asymmetric replication scheme
where one set of replicas is designated as the primary
and the other as the hot standby. Each of the primary
nodes contain a disjoint partition of a single database
and its hot standby node contains a mirrored copy.
The union of all nodes at a site gives the complete
database.

A two phase commit (2PC) protocol is employed for
each transaction execution. Primary and hot standby
participants (PP and HP) are coordinated by a pri-
mary and a hot standby coordinator (PC and HC).
The transactions are run at the primaries with strict
concurrency control, and log records are propagated to
the hot standbys via multiple log streams (one stream
for each primary-hot standby pair). The communica-
tion protocol is reliable, delivering log records to the
hot standby in the same order as sent, without loosing
any, and logs are redone sequentially in the same or-
der at the hot standby. The log records contain enough

317

information to recreate the dependencies between the
transactions at the hot standby. The failures occurring
in the system are of node or site granularity.

For simplicity, this paper considers a two-site con-
figuration, see Figure 1. The first configuration is
uniform. The primary site contains nodes which ac-
commodate only the primary replica, and the hot
standby site contains the hot standby replica. This
configuration is relevant for the traditional l-safe al-
gorithms. The second one is a symmetric site configu-
ration, where each site contains a mix of primary and
hot standby nodes. This configuration is relevant for
the 2-safe algorithm and the algorithms of Section 4.

3.2 Inadequacy of Traditional l-Safe Algo-
rithms

2-Safe transactions are atomic with respect to both
primary and hot standby. A transaction does not com-
mit at the primary without consulting the hot standby.
This is referred to as the cross atomicity property.
l-Safe transactions lack this property. They commit
at the primaries without consulting the hot standbys.
Thus, if the primaries fail before the updates are prop-
agated to the hot standbys, then the transaction will
be lost.

Lacking the cross atomicity causes the traditional
l-safe algorithms to use an expensive global take-over
to mask a single primary node failure. This applies to
both uniform and symmetric configurations. This is
explained by the following example. Assume transac-
tion Tl involves primary nodes PI and Pz, and their
hot standbys HI and HZ. The transaction commits
at the primary nodes, but PZ crashes before the up-
date has been propagated to its hot standby Hz. Now,
the transaction is partially reflected and thus violates
the atomicity property. Take-over by PZ’S counter-
part HZ will not help in this situation because it is
ignorant of the transaction. There are two ways to re-
store the database consistency at this point: 1) Global
take-over: All hot standby nodes takes over from the
database state prior to TI’S commitment; 2) Com-
pensation at the primary: Effects of partially re-
flected Tl and all the transactions that depend on it
are compensated at the primaries. The traditional l-
safe algorithms cannot adopt the latter approach, since
the primaries have no knowledge of the transactions
missed at the hot standbys.

The traditional l-safe algorithms have an inherent
problem when they are executed on symmetric config-
urations, namely, a site failure before the log propaga-
tion will lead to an inconsistent database. The follow-
ing example illustrates this. Assume the symmetric
configuration of Figure 1. Transaction Tl involves pri-
mary nodes PI and Pz, and their hot standbys HI and
Hz. The transaction commits at the primaries, but

site2 failes before P2’s update has been propagated
to H2. NOW the transaction is partially reflected and
thus violates the atomicity property. Global take-over
is impossible, since some hot standbys, like HI, are
unreachable due to the failure of sites. To avoid this
inconsistency, the traditional l-safe algorithms adopt
the uniform site configuration, such that a primary
site failure can be masked by a global take-over, as
mentioned in the previous example.

If the traditional l-safe algorithms can be adapted
to incorporate the cross atomicity property, i.e., pri-
mary waits to release the resources until the trans-
action’s fate at the hot standby is known, without
compromising the response time requirement, then we
can solve both problems of the traditional l-safe algo-
rithms. One way to achieve this is to imitate the a-safe
algorithm, by keeping the resources at the primary
until the hot standby’s decision is known. The XL
algorithm (Section 4.1) adopts this approach. Keep-
ing resources longer reduces concurrency, and hence,
throughput. To remedy this, we recommend the DT
algorithm (Section 4.2), which uses a less conflicting
lock mode to track missing transactions and the ones
depending on them at the primary. If a disaster hits,
these transactions are aborted at the primary. Thus,
the expensive global take-over is avoided. Since these
algorithms incorporate the cross atomicity, they can
be run on symmetric configurations. They satisfy the
minimum divergence criteria, as P-safe and l-safe de-
pendency reconstruction algorithms do.

We introduce the EE algorithm (Section 4.3), which
incorporates cross atomicity property into the epoch
algorithm. It keeps track of the epochs that can not
commit at the hot standby. These are compensated
at the primary nodes. This algorithm violates the
minimum divergence, as much as the epoch does, by
abandoning all transactions belonging to the unsuc-
cessful epoch, even though they do not miss or de-
pend on a missing transaction. Our novel algorithms
adopt equally well to finer replication granularities
than nodes like, e.g., fragments. This aspect is not
further investigated in this paper.

4 l-Safe Cross Atomicity Algorithms

4.1 The Extended Locking Algorithm

The XL algorithm can be viewed as a slightly modi-
fied variant of the 2-safe algorithm. The main modifi-
cation is as follows: In the absence of failures, in the
2-safe algorithm, the votes from the HPs and HC will
not differ from the corresponding votes of the PPs and
PC. In the XL algorithm we exploit this observation to
reduce the response time of transactions. The steps in-
volved in normal transaction execution, are illustrated
in Figure 2. Once the PC has received ready messages

318

from all PPs, and itself agrees to commit the trans-
action, the transaction has reached its l-safe com-
mit point. At this point the client is informed about
the outcome of the transaction. When the PC, in ad-
dition, has received ready messages from the HPs, it
logs the commit decision at the HC. When this is com-
pleted, the transaction has reached the a-safe com-
mit point. Like in the 2-safe algorithm, all exclusive
primary locks are kept past the P-safe commit point.
In the event of failure, the algorithm will not differenti-
ate between l-safe committed and active transactions.
Thus, the system only guarantees durability of l-safe
committed transactions in the absence of failure. Fur-
thermore, the correctness of the XL algorithm, rests on
the correctness of the 2-safe algorithm, and requires no
additional proof.

HP PP PC

Figure 2: Transaction execution of the extended lock-
ing algorithm.

The XL algorithm is simple, compared to the other
l-safe algorithms, and reduces the transaction re-
sponse time significantly, compared to the 2-safe algo-
rithm. However, locks are kept for the same duration
as in the 2-safe algorithm. Compared to other l-safe
algorithms, this tends to increase lock contention and
reduce throughput for transactions accessing hot-spot
data.

4.2 The Dependency Tracking Algorithm

To remove the disadvantages of the XL algorithm, pri-
mary locks must be downgraded prior to the 2-safe
commit point to track transactions past l-safe com-
mit and to reduce lock contention. To support fine
granularity take-overs, and symmetric configurations,
such an algorithm must: 1) After a primary node fail-
ure, remove the effects of l-safe committed transac-
tions that cannot be installed at the hot standbys,
from the remaining primaries; 2) After a site failure,
recover a transaction consistent state from a mix of
primary and hot standby nodes. In addition, the hot
standby commit protocol must be able to provide suf-
ficient throughput to keep up with the l-safe commit

rate of the primaries.
The DT algorithm is designed to meet these re-

quirements, while still providing minimum divergence
in the event of a failure. The DT algorithm is based
on the stream model dependency reconstruction algo-
rithm (DR) of [KHGMPSl, PGM92].

Transactions are first serialized, executed, and
atomically l-safe committed at the primaries. Log
records are propagated to the hot standbys outside
the time critical path. Based on the log records re-
ceived from the primary nodes, the hot standbys re-
construct the dependencies between transactions. The
transactions are then atomically 2-safe committed and
redone at the hot standbys. To be able to reconstruct
all dependencies between transactions from the log se-
quence, all operations performed by write transactions
including reads and coarse granularity locks must be
reflected in the log stream. Strict two-phase locking is
employed by all nodes.

In order to meet the extended recovery require-
ments, the DT algorithm maintains dependency lock
information at the primaries, and increases the syn-
chronization between the primary and hot standby
commit protocols, as compared to DR. Furthermore,
the recovery subsystems at all primaries, have been ex-
tended to handle abortion of l-safe committed trans-
actions.

Normal execution: The main steps performed
by the DT algorithm during normal transaction exe-
cution are illustrated in Figure 3. Note that the l-safe
commit decision is taken by the PC, while the 2-safe
commit decision is taken by the HC. After the exe-
cution phase of the transaction is completed, the PC
makes a l-safe commit decision based on its own vote
and the votes received from the PPs and informs the
client of the transaction’s outcome. It then sends l-
safe commit messages to all involved PPs and the HC.
In case of failure, it coordinates the abortion of the
transaction.

The lock managers at the PPs are extended to track
the dependencies between l-safe committed transac-
tions. For each normal lock mode, a corresponding l-
safe lock mode is provided. l-Safe locks are compatible
with all normal locks. The compatibilities between dif-
ferent l-safe locks correspond to those of normal lock
modes. When a PP receives a l-safe commit message,
it requests a set of l-safe locks corresponding to its
current locks, and then releases all the normal locks.
This allows other transactions to obtain normal locks
on the same data items.

When the HC receives a l-safe commit message, it
starts executing the 2-safe commit protocol. After the
HPs have received all the transaction’s log records,
and obtained all locks, they inform the HC of their
willingness to commit the transaction. When HC has

319

Figure 3: Transaction execution of the dependency
tracking algorithm.

received ready messages from all HPs, it makes the 2-
safe commit decision, and informs the PC and the HPs
of this. The PC forwards the 2-safe commit message to
the involved PPs. When a PP receives a 2-safe commit
message, it releases all l-safe locks, and acknowledges
the completion of the transaction execution.

Compared to the DR algorithm, the DT algorithm
requires some additional message transfers during nor-
mal operation: A 2-safe commit message to each PP
involved in the transaction, and one 2-safe acknowl-
edgment from the PC to the HC. However, these mes-
sage transfers are outside the critical path of the trans-
actions. Delaying these messages will only affect the
duration of l-safe locks. They can therefore be piggy-
backed on other messages.

Recovering from failures: The dependency lock
information, maintained by the PPs are utilized for
three purposes: 1) Enable efficient identification of a
transaction consistent state after a site failure in the
symmetric configuration; 2) Provide immediate partial
database availability after a node or site failure; and
3) Simplify identification of l-safe committed transac-
tions to be rolled back after a failure.’ To minimize the
number of l-safe committed transactions rolled back
due to failures, they are rolled forward whenever possi-
ble. We assume that local commit status information
for all transactions that may be involved in the recov-
ery after a failure is available at all involved nodes.

Local recovery: When a PP learns about the
failure of another PP, it immediately blocks new and
active transactions from becoming dependent on l-safe
committed transactions that may have to be aborted,

1 An alternative would be to reconstruct the dependency in-
formation at the primary nodes at recovery time. However, this
would require extensive analysis of potentially large log volumes,
which would increase the recovery time substantially. This op-
tion is therefore excluded from further discussion due to the
consequences for system availability.

by acquiring normal exclusive locks on all data items
the transactions l-safe lock. Unaffected parts of the
database remain available to new transactions. Dur-
ing recovery processing, a PP might have to respond
to two types of messages in addition to those received
during normal operation: 1) l-safe abort from the
PC after a PP failure indicating that a transaction in
the l-safe commit state, must be rolled back. The PP
will inspect the l-safe and normal lock queues, and
abort all transactions both active and l-safe commit-
ted, that depend on the transaction. It will also send
abort messages to the PCs for these transactions. 2)
2-safe ready requests from HC after an HP failure.
The HC might have to determine whether a trans-
action no longer depends on other l-safe committed
transactions, at the PP corresponding to the failed
HP. In these situations the HC sends a 2-safe ready re-
quest to the PP. After receiving such a request, the PP
waits until the transaction has obtained all requested
l-safe locks, before sending a a-safe ready message
to the HC. If the transaction has to be aborted, due
to being dependent on another aborting l-safe com-
mitted transaction, the PP sends an abort message to
the HC. When the recovery processing at the PP is
completed, i.e., all l-safe locks requested prior to the
detection of the failure have been released, the PP logs
the completion of recovery, and releases the exclusive
locks acquired at the beginning of the recovery pro-
cessing.

When an HP learns about the failure of its counter-
part, it acquires shield locks for all data items affected
by operations for which it has received log records
prior to the failure, which are unprocessed. These
shield locks are incompatible with all locks at pri-
maries, but compatible with all locks at hot standbys.
When this is completed the HP assumes the role of
PP for new transactions, making the remaining parts
of the database available to these. It then continues its
HP processing of log records received from the failed
node with some modifications to the processing rules.
If it receives an abort message for a transaction from
the HC, it converts the transaction’s locks to dirty
locks, and aborts the transaction. Subsequent trans-
actions that attempt to acquire locks for dirty-locked
data items, will also be aborted. If an HP under re-
covery, receives a l-safe commit message for a trans-
action for which it has received none or only some
of the log records prior to the failure, it responds by
sending an abort message to the HC. When the recov-
ery processing is completed, i.e., all the log received
prior to the failure has been processed, the HP re-
leases the shield locks and all dirty locks, making the
entire replica available to new transactions.

No take-over is required for HPs whose counterparts
are not affected by the failure. However, data items ac-

320

cessed by l-safe committed transactions that must be
aborted, are still dirty-locked, leading to the abortion
of subsequent transactions that tries to acquire locks
on them. When the HP receives an end of recovery log
record from the PP, all dirty-locks are released.

Global recovery processing: The global re-
covery processing after a failure is coordinated by the
active PCs and HCs. The PCs and HCs act as pro-
cess pairs. If one of them is affected by a node failure,
the other takes over its responsibilities. In these sit-
uations, participants will send messages to the acting
coordinator instead of to the failed. All transactions in
the active state, whose PPs or PC are affected by the
failure, are aborted. Transactions in the l-safe com-
mitted state are 2-safe committed whenever possible.
The HC, or acting HC if the original HC has failed, will
base its decision on the votes received from the HPs,
whenever these are available. If one or more of the
HPs are unavailable, the HC will send 2-safe ready re-
quests to the corresponding PPs, and use the responses
from these instead of the missing HP votes. The a-safe
commit state of the primary nodes lags behind that of
the hot standbys. Thus, the dependencies represented
by the l-safe lock queue, constitute a superset of the
dependencies currently available at the HPs. When a
PP sends a 2-safe ready message to the HC, i.e., when
the transaction has obtained all requested l-safe locks,
it is guaranteed that it is no longer dependent on any
l-safe committed transaction at this PP/HP pair of
nodes. In situations where either the PC or HC of
a transaction have failed, the remaining coordinator
might have to poll one or more of the participants, to
obtain information lost due to the failure. One partic-
ular failure scenario requires special attention: If the
PC fails while all involved PPs are in the ready or l-
safe commit state, but before the HC has been started,
i.e., the node where the HC is to be executing does not
receive the l-safe commit message from the PC, nei-
ther the PC nor the HC will be available. In this case,
the involved PPs or HPs, will start a dedicated coordi-
nator at one of the remaining nodes, which will identify
the set of participants, and abort the transaction.

Correctness: The correctness of the DT algo-
rithm rests on the correctness of the dependency re-
construction algorithm [GMPSOb, KHGMPSl]. The
recovered state after a failure, will be based on the de-
pendencies reconstructed by the HPs whenever these
are available. Dependencies between transactions lost
at failed HPs can be recovered from the dependency
information kept at the PPs. In the event of a site
failure in the symmetric configuration, there will al-
ways be sufficient information available at the remain-
ing site to recover a transaction consistent database
state. l-Safe committed transactions are only aborted
if affected by PP or PC failures, where log records

or messages are lost, or if they are dependent on other
aborted l-safe committed transactions. Thus, the min-
imum divergence criteria is fulfilled.

4.3 The Extended Epoch Algorithm

In the DT algorithm, dependencies between transac-
tions are traced at a fine granularity, i.e., at the gran-
ularity of locks. This minimizes the loss of l-safe
committed transactions due to failures. However, re-
construction of dependencies and the logging of read
operations mean that the hot standby load will only
be slightly lower than that of the primaries. In the
symmetric configuration, it would be possible to in-
crease system performance by utilizing resources at
hot standbys for execution of PCs. Thus, it would
be desirable to keep the HP resource consumption as
low as possible. In the EE algorithm, we reduce the
CPU resource consumption of the HPs, by tracking de-
pendencies between transactions at the granularity of
epochs. The EE algorithm is a simple adaption of the
single mark epoch algorithm presented in [GMPSOb],
to the symmetric site configuration. Like in the origi-
nal algorithm, epoch identifiers (EIDs) are distributed
periodically and synchronously by an epoch coordina-
tor. When a node is informed of the change of epoch,
it includes an end of epoch record in its log. By uti-
lizing the properties of the 2PC protocol and strict
concurrency control mechanisms, each transaction is
assigned a single commit EID, i.e., the current EID
known by the PC at the commit point. It is ensured
that a transaction with a given commit EID is only de-
pendent on transactions that committed in the same
or earlier epochs. Epochs are atomically committed at
the hot standby nodes. The epoch commit processing
is coordinated by an epoch commit coordinator. Com-
pared to the original epoch algorithm, the following
extensions are made: 1) The epoch coordinator dis-
tributes the new EIDs to all nodes in the system; 2)
To allow PCs to run at hot standby nodes, these nodes
must also keep a primary transaction log. Log records
generated at these nodes, must be propagated to the
corresponding nodes at the opposite site; 3) The epoch
commit coordinator must include all nodes in the sys-
tem in the epoch commit protocol; 4) The PPs keep
track of all locks acquired by data modifying opera-
tions, for all transactions that committed in an epoch,
i.e., whose PCs reached the l-safe commit point in the
epoch; 5) Epoch commit decisions are logged at both
sites before the epoch is committed. After a primary
node or a site failure, the epoch commit coordinator
determines the EID of the last epoch that can be com-
mitted, and broadcasts it to all remaining nodes. If
the epoch commit coordinator has failed, its backup
process broadcasts the last committed EID. When a
PP learns about the failure, it stops processing new

321

Table 1: Simulation parameters.
SPECint 269
CPU: send msg: intra-node 2500 instr.
CPU: send msg: intra, inter-site 32500 instr.
Intra-site line delay 0.01 ms
Inter-site line delay 2.5 ms
Log generation 850 instr.
Data access 12550 instr.
Piggyback interval 20ms
Epoch length 30 ms

transactions, and waits for the broadcast of the last
committed EID. When this is received, it reacquires all
locks held by the transactions of uncommitted epochs,
and resumes the execution of new transactions. The
rollback of l-safe committed and active transactions
are performed based on the log.

After a failure, the EE algorithm recovers the same
state as the original epoch algorithm. Thus, no ad-
ditional proof of correctness is provided. Due to the
use of epochs as the unit for 2-safe commitment of
transactions, the minimum divergence criteria is not
fulfilled.

5 Performance Evaluation

In order to evaluate the performance and transac-
tion durability properties of the cross atomicity algo-
rithms vs. traditional l-safe and 2-safe algorithms, we
perform a set of simulation studies. We obtain esti-
mates for throughput, mean response time, and CPU
usage at primary and hot standby nodes during nor-
mal operation, and for the numbers of active and l-safe
committed transactions aborted after a primary node
failure. The former metrics are estimated for two dif-
ferent loads: 1) Asymmetric load, where all clients are
located at the same site; 2) Symmetric load, where
half of the clients are located at each site. The frac-
tion of write transactions ranges from 0.1 to 1.0. For
all estimated values, 95%, 52.5% confidence intervals
are established.

The simulation model is based on the ClustRa
DBMS [HTBH95, BGH+96], which keeps real-time
data in main memory, and performs main memory log-
ging at two sites, to meet sub 15 ms response time
requirements. This reflects a typical environment of,
e.g., operational telecom applications, where l-safe so-
lutions are applied. The simulation parameters used
throughout the simulations, listed in Table 1, are ob-
tained from measurements on ClustRa. Each of the
two sites, consists of eight ultra SPARC nodes, inter-
connected by ATM networks. Message transfers are
heavily CPU-bound operations, and the overhead pr.
message is substantial. This corresponds to the cur-
rent state of the Internet/ATM communication tech-

nology. To reduce the number of message transfers,
non time critical messages are piggy-backed on other
messages. The workload consists of a mix of read-only
and write transactions, accessing 4 tuples each. The
number of writes performed by write transactions, is
binomially distributed, and ranges from 1 to 4 with
mean 2.5. In the performance experiments, transac-
tions are generated by eight clients in a back-to-back
manner. In the symmetric load case, 80% of the trans-
actions for cross atomicity algorithms only access data
items whose primary replicas are located at the orig-
inating site. In the simulations estimating the conse-
quences of failures, transactions are generated at a rate
of 400 tps with exponentially distributed inter arrival
times.

Performance estimates: The performance of the
six algorithms under the asymmetric load, are pre-
sented in Figure 4. As would be expected, all l-safe
algorithms show significantly higher performance than
the 2-safe algorithm, due to their avoidance of inter-
site communication inside time critical paths. How-
ever, there is no significant difference in performance
between the DT and EE cross atomicity algorithms,
and their traditional l-safe counterparts. From this,
we conclude that the cross atomicity property can be
provided, without significantly increasing the process-
ing overhead during normal operation. The E and EE
algorithms are less sensitive to increasing write-ratios,
than the other algorithms. Epoch management over-
heads at the primary nodes are only dependent on the
epoch length. Increasing the epoch length will, thus,
reduce the overhead and increase the throughput, but
will also increase the consequences of primary node
failures. Furthermore, these algorithms avoid the log-
ging of read operations. The throughput for the DR
and DT algorithms follow slightly steeper curves. This
is due to logging of read operations performed by write
transactions and to more complex commit protocols
for write transactions. Furthermore, the reconstruc-
tion of dependencies increases the CPU usage at the
hot standby nodes, as compared to the other algo-
rithms. The poor performance of the XL algorithm
is primarily due to high lock contention at the pri-
mary nodes. All exclusive locks are kept past the 2-
safe commit point. Thus, two round trips of inter-site
communication are completed before these locks are
released. The performance impact of this depends on
the length of the inter-site communication delay, and
on the access pattern of the transactions.

The performance results obtained under the sym-
metric load are presented in Figure 5. Like in the
asymmetric load case, the performance of the E and
EE algorithms is dependent on the epoch length.
Thus, we have excluded the EE algorithm from this ex-
periment. Due to their cross atomicity properties, the

322

10
t

OJ I

0.1 0.3 OS 087 0.9 1

Write-ratio

g 20
10

0
0.1 0.3 0.5 0.7 0.9 1

Write-ratio

Figure 4: Performance of the uniform configuration.

DT, XL, and 2-safe algorithms are capable of utilizing
the access pattern of this workload, by locating pri-
mary replicas, at the same site as the clients, by which
they will most frequently be accessed. However, for
the 20% of transactions that access data items whose
primaries are located at the opposite site, the response
times will include an inter-site round trip delay. The
other algorithms are not able to utilize this informa-
tion. Thus, an inter-site round trip delay will be added
to the response times of all transactions originating
at the hot standby site. The DT algorithm provides
higher performance than the other l-safe algorithms,
especially for lower values of write-ratio. This is due to
its ability to access local primary replicas for a larger
fraction of the transactions. Furthermore, symmetric
site configuration allows for utilization of unused re-
sources at the hot standby nodes. While for the DR
and E algorithms, lock holding times are unaffected
by accesses of remote primaries, this is not the case
for the DT algorithm. Thus, the performance bene-
fit of the DT algorithm decreases for high write-ratios
due to increased lock contention. The performance of
the XL and 2-safe algorithms are slightly decreased, as
compared to the asymmetric load experiment. This is

due to the fact that some of the read-only transactions
require access to primaries located at the opposite site.

Estimates of transaction durability proper-
ties: Estimates of the number of active and l-safe
committed transactions to be aborted after a primary
node failure are presented in Figure 6. The DT al-
gorithm provides the lowest number of active transac-
tions aborted due to primary node failures. It allows
all active transactions not directly affected by the fail-
ure to be completed. Furthermore, due to the short
response time and the transaction generation rate used
in this experiment, the number of active transactions
at failure times, is low. For the 2-safe and XL algo-
rithms, their longer active periods increase the num-
ber of transactions active at the failing node when the
failure occurs. In the DR, E, and EE algorithms, all
transactions that are active in the system when the
failure is detected, must be aborted.

Of the l-safe algorithms, XL provides the lowest
number of l-safe aborted transactions. This is due to
its policy of disallowing other transactions from access-
ing data modified by l-safe committed transactions.
The number of lost l-safe committed transactions of
the DR and DT algorithms, are slightly higher than for

323

14 T

: 2500 -c \ -1

E 1500

loo0

500

0

n

I

0.1 0.3 OS 0.7 039 1

70 T x-
60 t x-x-)(-x-x

04 I

O,l 0.3 0.5 0.7 03 1

Write-ratio

XL, but still very low. This is due to their fine gran-
ularity reconstruction of dependencies. The number
of lost l-safe committed transactions of the E and EE
algorithms exceeds the other algorithms by one order
of magnitude due to their coarse granularity tracking
of dependencies. The number can be reduced by de-
creasing the epoch length. It should be noted that the
number of l-safe committed transactions lost due to a
failure, in the E and EE algorithms will be indepen-
dent of the number of actual dependencies between the
transactions.

The DT and XL algorithms will be able to restore
partial database availability immediately after a pri-
mary node failure without any global coordination.
The EE algorithm requires identification of the latest
epoch that can be committed, before partial database
availability can be restored. Both DR and E algo-
rithms require execution of a global take-over which
makes the entire database unavailable until the take-
over is completed.

60

I

0.1 83 OS 0.7 03 1

Write-ratio

Figure 5: Performance of the symmetric configuration.

6 Summary and Conclusions

In this paper we have focused on the properties of l-
safe transaction execution algorithms. In order to pro-
vide database availability in the presence of node and
site failures, traditional l-safe algorithms disallow pri-
mary and hot standby replicas of different data items
to be stored at the same site. This means that a single
primary node failure must be handled like a failure of
the entire primary site. Furthermore, this requirement
disallows symmetric configurations, where the primary
replicas are located at the site closest to the access-
ing clients. We defined the cross atomicity property
of transaction execution algorithms, and showed that
the above restrictions can be removed for algorithms
that fulfill this property. Furthermore, we presented
three novel l-safe algorithms based on the 2-safe, de-
pendency reconstruction and epoch algorithms respec-
tively, and showed that they provide cross atomicity
as well as meeting the traditional l-safe correctness
requirements. The relative performance of these algo-
rithms and the traditional l-safe and 2-safe algorithms
were evaluated by means of a set of simulation stud-
ies. Our main conclusion is that the cross atomicity
property can be provided without significantly increas-
ing the processing overhead during normal operations.

324

Figure 6: The number of aborted transactions after a primary node failure.

The EE algorithm provides high performance, but less
durability for l-safe committed transactions than the
other algorithms. The XL algorithm is very simple,
but its performance is very sensitive to long inter-site
communication delays in the presence of hot spots.
From an evaluation based on performance, transaction
durability, and system availability, the DT algorithm
provides the best overall solution.

Acknowledgments

The authors would like to thank Svein Erik Bratsberg, Tore
Saeter, and 0ystein Grovlen for their valuable comments.

References
[ASC85]

[BGH+96]

[GMPSOa]

[GMPSOb]

[GR93]

[HTBH95]

[Hva94]

A.E. Abbadi, D. Skeen, and F. Christian. An
Efficient Fault-Tolerant Protocol for Repli-
cated Data Management. ACM Distributed
Database Systems, pages 259-73, 1985.

SE. Bratsberg, 0. Grovlen, S.O. Hvasshovd,
B.P. Munch, and 0. Torbjornsen. Providing
a Highly Available Database by Replication
and Online Self-Repair. Engineering Intelli-
gent Systems, pages 131-139, 1996.

H. Garcia-Molina and C.A. Polyzois. Issues
in Disaster Recovery. IEEE Compcon, San
Fransisco, CA, September, 1990.

H. Garcia-Molina and C.A. Polyzois. Two
Epoch Algorithms for Disaster Recovery.
Proceedings of the 16th VLDB Conference,
1990.

J. Gray and A. Reuter. “Transaction Pro-
cessing: Concepts and Techniques”. Morgan
Kaufmann Publishers Inc., 1993.

SO. Hvasshovd, 0. Torbjornsen, S. E. Brats-
berg, and P. Holager. The ClustRa Telecom
Database: High Availability, High Through-
put and Real Time Response. In Proceedings
of the Zlst VLDB Conference, Ziirich, 1995.

S.O. Hvasshovd. Global Location Register -
High Level Description Study. INMARSAT

[ibm95]

[inf94]

[KHGMPSl]

[LYOW

[MT0931

[ora95]

[PGM92]

byb951

[Tan871

study, Report TF R 44/94, Norwegian Tele-
corn Research, 1994.

IMS/ESA Administration Guide: System,
Version 5, First Edition. Technical Report
SC26-8013-00, IBM, April 1995.

INFORMIX-Online
Dynamic Server, Database Server, Adminis-
trator’s Guide, Volume 1, Version 7.1. Prod-
uct Documentation Part No. 000-7778, IN-
FORMIX Software Inc., December 1994.

R.P. King, N. Halim, H. Garcia-Molina,
and C.A. Polyzois. Management of Re-
mote Backup Copy for Disaster Recovery.
ACM fiansactions on Database Systems,
June 1991.

J. Lyon. Design Considerations in Replicated
Database Systems for Disaster Protection.
IEEE, Compcon, 1988.

C. Mohan, K. Treiber, and R. Obermark.
Algorithms for the Management of Remote
Backup Data Bases for Disaster Recovery.
IEEE 9th International Conference on Data
Engineering, pages 511-518, 1993.

Oracle7 Server Distributed Systems: Repli-
cated Data, Release 7.1. Product Documen-
tation Part No. A21903-2, ORACLE Corpo-
ration, 1995.

C.A. Polyzois and H. Garcia-Molina. Eval-
uation of Remote Backup Algorithms for
Transaction-Processing Systems. 1992.

Replication Server Technical Publications.
Replication Server Administration Guide.
Technical Report 32511-01-0101, Sybase
Inc., March 1995.

Tandem Computer Corp. “Remote DupZi-
cate Database Facility (RDF) System Man-
agement Manual”, 1987.

325

