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Abstract 

In order to provide database availability in the 
presence of node and site failures, traditional 
l-safe algorithms disallow primary and hot 
standby replicas to be located at the same site. 
This means that the failure of a single primary 
node must be handled like a failure of the en- 
tire primary site. Furthermore, this excludes 
symmetric site configurations, where the pri- 
mary replicas are located at the site closest to 
the accessing clients. In this paper, we present 
three novel l-safe algorithms that allow the 
above restrictions to be removed. The rela- 
tive performance of these and the traditional 
algorithms are evaluated by means of simula- 
tion studies. Our main conclusion is that the 
restrictions of the traditional algorithms can 
be removed without significantly increasing 
the processing overhead, during normal oper- 
ation. From an evaluation based on perfor- 
mance, availability, and transaction durabil- 
ity, the novel dependency tracking algorithm 
provides the best overall solution. 

1 Introduction 

The high availability requirement of critical database 
applications is typically met by keeping a hot standby 
database at a geographically remote site. The hot 
standby takes over and continues the service, in case 
a disaster hits the primary. Updates made at the pri- 
mary must be reflected at the hot standby, in order 
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to keep it consistent. This can be achieved by l-safe 
or 2-safe algorithms [GR93, Lyo88]. In 2-safe algo- 
rithms, the changes made by a transaction are reflected 
at both the primary and hot standby before commit. 
This guarantees the durability of a committed trans- 
action, even in case of disasters. The price paid is 
increased response time by at least one round trip de- 
lay. Long round trip delays will cause problems for 
the applications demanding stringent response times. 
The l-safe algorithms solve this problem at the cost 
of some committed transactions lost in a disaster. In 
l-safe algorithms, transactions commit at the primary 
without consulting the hot standby. Therefore, if a 
disaster hits the primary before the updates are prop- 
agated to the hot standby, the committed transaction 
will be lost, referred to as a missing transaction. Some 
bank, travel [PGM92], and telecom [Hva94] applica- 
tions adopt a l-safe strategy. 

Masking a primary node failure is more costly in 
the traditional l-safe than in the 2-safe algorithm. A 
primary node failure in the 2-safe algorithm is masked 
by its hot standby node taking over, but in the tradi- 
tional l-safe algorithms, a global take-over is required, 
i.e., all the hot standby nodes must take over in order 
to maintain the database consistency. A global take- 
over causes unnecessarily many active transactions to 
abort at the primaries. Besides, the unavailability of 
the database is higher in a global take-over. This is not 
acceptable for many operationally critical database ap- 
plications in like telecommunication and process con- 
trol. 

The traditional l-safe algorithms have an inherent 
limitation. In order to mask primary failures, they re- 
quire a uniform site configuration, i.e., a site can con- 
tain only the primary nodes or only the hot standby 
nodes. A site failure cannot be masked in symmet- 
ric configurations, where a site contains both primary 
and hot standby nodes. However, node failures can be 
masked in both uniform and symmetric site configura- 
tions. 

The uniform site configuration is inefficient for the 
applications having symmetric load, i.e., most of the 



transactions originating from a site access the same 
primary data set. For example, assume a bank that 
has customers in London and Paris. London is kept 
as the primary site and Paris as the hot standby site. 
Most of the transactions that originate from London 
access the data belonging to London customers and 
the same applies to those from Paris. Since London 
is kept as the primary site, even l-safe transactions 
originating from Paris suffer a round-trip delay. This 
may be unacceptable for the Paris customers. A better 
solution will be: The London site contains the primary 
data for London customers and the hot standby data 
for Paris customers, and Paris vice versa. But such 
a mix will violate the uniform site restriction of the 
traditional l-safe algorithms. 

In this paper, we introduce three l-safe algorithms 
that relax the uniform site restriction and reduce the 
take-over cost: Extended Locking Algorithm (XL), 
Dependency Tracking Algorithm (DT), and Extended 
Epoch Algorithm (EE). 

The paper is organized as follows: Section 2 sum- 
marizes related work. Section 3 describes the architec- 
ture, and motivation for our contribution. Section 4 
describes the three novel l-safe algorithms. Section 5 
compares these algorithms with 2-safe and traditional 
l-safe algorithms on the basis of a simulation. Section 
6 summarizes the main ideas presented in the paper. 

2 Related Work 

2-Safe and traditional l-safe algorithms are discussed 
in [GR93, Lyo88]. A traditional l-safe algorithm, 
called dependency reconstruction algorithm (DR), is 
described in [PGM92, KHGMPSl]. It can be used for 
bundle and stream model architectures. In the bun- 
dle model, all log records belonging to a transaction 
are bundled together and sent to the hot standby site. 
The stream model is similar to the one described in 
Section 3.1, where, each primary node sends the log 
records to its hot standby. This is opposed to the sin- 
gle log stream for the whole site, adopted by Tandem 
[Tan87]. A single log stream is not scalable to the num- 
ber of nodes at a site. To handle the bundle model, 
and log records arriving out of order at the hot standby 
in both models, a ticket system is introduced. This is 
used to execute the transactions at the hot standby 
in an order equivalent to the execution order at the 
primary. 

A group commit approach at the hot standby, 
named the Epoch algorithm (E), is described in 
[GMPSOb]. Th is algorithm allows for trading effi- 
ciency for minimum divergence. Minimum divergence 
means that no transactions other than those miss- 
ing or depending on missing transactions should be 
aborted. 2-Safe and l-safe hybrid schemes are dis- 

cussed in [GMPSOa, MT093]. The advantages and 
disadvantages of the l-safe and 2-safe algorithms are 
discussed in [PGM92, KHGMPSl] in detail. 

l-Safe products are provided by: Tandem [Tan87], 
IBM [ibm95, MT093], Oracle [ora95], Sybase [syb95], 
Informix [inf94], and other vendors. 

3 Context 

3.1 System Architecture 

0 F3 

0 Pz 

0 m-1 
0 Pn 

Figure 1: System architecture of uniform and symmet- 
ric configurations. 

The shared-nothing system architecture used in the 
following sections is described here. A site contains 
one or more nodes. Nodes at a site are situated in the 
same vicinity, and are interconnected by a replicated 
LAN to mask single communication failures. Sites are 
connected by high bandwidth, replicated communica- 
tion lines. An I’m alive protocol combined with a vir- 
tual partition management protocol is used to maintain 
a consistent set of available nodes [ASC85]. Network 
partitioning is not considered in this paper. Sites are 
placed far apart, and this inflicts considerable commu- 
nication cost. 

The system uses an asymmetric replication scheme 
where one set of replicas is designated as the primary 
and the other as the hot standby. Each of the primary 
nodes contain a disjoint partition of a single database 
and its hot standby node contains a mirrored copy. 
The union of all nodes at a site gives the complete 
database. 

A two phase commit (2PC) protocol is employed for 
each transaction execution. Primary and hot standby 
participants (PP and HP) are coordinated by a pri- 
mary and a hot standby coordinator (PC and HC). 
The transactions are run at the primaries with strict 
concurrency control, and log records are propagated to 
the hot standbys via multiple log streams (one stream 
for each primary-hot standby pair). The communica- 
tion protocol is reliable, delivering log records to the 
hot standby in the same order as sent, without loosing 
any, and logs are redone sequentially in the same or- 
der at the hot standby. The log records contain enough 
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information to recreate the dependencies between the 
transactions at the hot standby. The failures occurring 
in the system are of node or site granularity. 

For simplicity, this paper considers a two-site con- 
figuration, see Figure 1. The first configuration is 
uniform. The primary site contains nodes which ac- 
commodate only the primary replica, and the hot 
standby site contains the hot standby replica. This 
configuration is relevant for the traditional l-safe al- 
gorithms. The second one is a symmetric site configu- 
ration, where each site contains a mix of primary and 
hot standby nodes. This configuration is relevant for 
the 2-safe algorithm and the algorithms of Section 4. 

3.2 Inadequacy of Traditional l-Safe Algo- 
rithms 

2-Safe transactions are atomic with respect to both 
primary and hot standby. A transaction does not com- 
mit at the primary without consulting the hot standby. 
This is referred to as the cross atomicity property. 
l-Safe transactions lack this property. They commit 
at the primaries without consulting the hot standbys. 
Thus, if the primaries fail before the updates are prop- 
agated to the hot standbys, then the transaction will 
be lost. 

Lacking the cross atomicity causes the traditional 
l-safe algorithms to use an expensive global take-over 
to mask a single primary node failure. This applies to 
both uniform and symmetric configurations. This is 
explained by the following example. Assume transac- 
tion Tl involves primary nodes PI and Pz, and their 
hot standbys HI and HZ. The transaction commits 
at the primary nodes, but PZ crashes before the up- 
date has been propagated to its hot standby Hz. Now, 
the transaction is partially reflected and thus violates 
the atomicity property. Take-over by PZ’S counter- 
part HZ will not help in this situation because it is 
ignorant of the transaction. There are two ways to re- 
store the database consistency at this point: 1) Global 
take-over: All hot standby nodes takes over from the 
database state prior to TI’S commitment; 2) Com- 
pensation at the primary: Effects of partially re- 
flected Tl and all the transactions that depend on it 
are compensated at the primaries. The traditional l- 
safe algorithms cannot adopt the latter approach, since 
the primaries have no knowledge of the transactions 
missed at the hot standbys. 

The traditional l-safe algorithms have an inherent 
problem when they are executed on symmetric config- 
urations, namely, a site failure before the log propaga- 
tion will lead to an inconsistent database. The follow- 
ing example illustrates this. Assume the symmetric 
configuration of Figure 1. Transaction Tl involves pri- 
mary nodes PI and Pz, and their hot standbys HI and 
Hz. The transaction commits at the primaries, but 

site2 failes before P2’s update has been propagated 
to H2. NOW the transaction is partially reflected and 
thus violates the atomicity property. Global take-over 
is impossible, since some hot standbys, like HI, are 
unreachable due to the failure of sites. To avoid this 
inconsistency, the traditional l-safe algorithms adopt 
the uniform site configuration, such that a primary 
site failure can be masked by a global take-over, as 
mentioned in the previous example. 

If the traditional l-safe algorithms can be adapted 
to incorporate the cross atomicity property, i.e., pri- 
mary waits to release the resources until the trans- 
action’s fate at the hot standby is known, without 
compromising the response time requirement, then we 
can solve both problems of the traditional l-safe algo- 
rithms. One way to achieve this is to imitate the a-safe 
algorithm, by keeping the resources at the primary 
until the hot standby’s decision is known. The XL 
algorithm (Section 4.1) adopts this approach. Keep- 
ing resources longer reduces concurrency, and hence, 
throughput. To remedy this, we recommend the DT 
algorithm (Section 4.2), which uses a less conflicting 
lock mode to track missing transactions and the ones 
depending on them at the primary. If a disaster hits, 
these transactions are aborted at the primary. Thus, 
the expensive global take-over is avoided. Since these 
algorithms incorporate the cross atomicity, they can 
be run on symmetric configurations. They satisfy the 
minimum divergence criteria, as P-safe and l-safe de- 
pendency reconstruction algorithms do. 

We introduce the EE algorithm (Section 4.3), which 
incorporates cross atomicity property into the epoch 
algorithm. It keeps track of the epochs that can not 
commit at the hot standby. These are compensated 
at the primary nodes. This algorithm violates the 
minimum divergence, as much as the epoch does, by 
abandoning all transactions belonging to the unsuc- 
cessful epoch, even though they do not miss or de- 
pend on a missing transaction. Our novel algorithms 
adopt equally well to finer replication granularities 
than nodes like, e.g., fragments. This aspect is not 
further investigated in this paper. 

4 l-Safe Cross Atomicity Algorithms 

4.1 The Extended Locking Algorithm 

The XL algorithm can be viewed as a slightly modi- 
fied variant of the 2-safe algorithm. The main modifi- 
cation is as follows: In the absence of failures, in the 
2-safe algorithm, the votes from the HPs and HC will 
not differ from the corresponding votes of the PPs and 
PC. In the XL algorithm we exploit this observation to 
reduce the response time of transactions. The steps in- 
volved in normal transaction execution, are illustrated 
in Figure 2. Once the PC has received ready messages 
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from all PPs, and itself agrees to commit the trans- 
action, the transaction has reached its l-safe com- 
mit point. At this point the client is informed about 
the outcome of the transaction. When the PC, in ad- 
dition, has received ready messages from the HPs, it 
logs the commit decision at the HC. When this is com- 
pleted, the transaction has reached the a-safe com- 
mit point. Like in the 2-safe algorithm, all exclusive 
primary locks are kept past the P-safe commit point. 
In the event of failure, the algorithm will not differenti- 
ate between l-safe committed and active transactions. 
Thus, the system only guarantees durability of l-safe 
committed transactions in the absence of failure. Fur- 
thermore, the correctness of the XL algorithm, rests on 
the correctness of the 2-safe algorithm, and requires no 
additional proof. 

HP PP PC 

Figure 2: Transaction execution of the extended lock- 
ing algorithm. 

The XL algorithm is simple, compared to the other 
l-safe algorithms, and reduces the transaction re- 
sponse time significantly, compared to the 2-safe algo- 
rithm. However, locks are kept for the same duration 
as in the 2-safe algorithm. Compared to other l-safe 
algorithms, this tends to increase lock contention and 
reduce throughput for transactions accessing hot-spot 
data. 

4.2 The Dependency Tracking Algorithm 

To remove the disadvantages of the XL algorithm, pri- 
mary locks must be downgraded prior to the 2-safe 
commit point to track transactions past l-safe com- 
mit and to reduce lock contention. To support fine 
granularity take-overs, and symmetric configurations, 
such an algorithm must: 1) After a primary node fail- 
ure, remove the effects of l-safe committed transac- 
tions that cannot be installed at the hot standbys, 
from the remaining primaries; 2) After a site failure, 
recover a transaction consistent state from a mix of 
primary and hot standby nodes. In addition, the hot 
standby commit protocol must be able to provide suf- 
ficient throughput to keep up with the l-safe commit 

rate of the primaries. 
The DT algorithm is designed to meet these re- 

quirements, while still providing minimum divergence 
in the event of a failure. The DT algorithm is based 
on the stream model dependency reconstruction algo- 
rithm (DR) of [KHGMPSl, PGM92]. 

Transactions are first serialized, executed, and 
atomically l-safe committed at the primaries. Log 
records are propagated to the hot standbys outside 
the time critical path. Based on the log records re- 
ceived from the primary nodes, the hot standbys re- 
construct the dependencies between transactions. The 
transactions are then atomically 2-safe committed and 
redone at the hot standbys. To be able to reconstruct 
all dependencies between transactions from the log se- 
quence, all operations performed by write transactions 
including reads and coarse granularity locks must be 
reflected in the log stream. Strict two-phase locking is 
employed by all nodes. 

In order to meet the extended recovery require- 
ments, the DT algorithm maintains dependency lock 
information at the primaries, and increases the syn- 
chronization between the primary and hot standby 
commit protocols, as compared to DR. Furthermore, 
the recovery subsystems at all primaries, have been ex- 
tended to handle abortion of l-safe committed trans- 
actions. 

Normal execution: The main steps performed 
by the DT algorithm during normal transaction exe- 
cution are illustrated in Figure 3. Note that the l-safe 
commit decision is taken by the PC, while the 2-safe 
commit decision is taken by the HC. After the exe- 
cution phase of the transaction is completed, the PC 
makes a l-safe commit decision based on its own vote 
and the votes received from the PPs and informs the 
client of the transaction’s outcome. It then sends l- 
safe commit messages to all involved PPs and the HC. 
In case of failure, it coordinates the abortion of the 
transaction. 

The lock managers at the PPs are extended to track 
the dependencies between l-safe committed transac- 
tions. For each normal lock mode, a corresponding l- 
safe lock mode is provided. l-Safe locks are compatible 
with all normal locks. The compatibilities between dif- 
ferent l-safe locks correspond to those of normal lock 
modes. When a PP receives a l-safe commit message, 
it requests a set of l-safe locks corresponding to its 
current locks, and then releases all the normal locks. 
This allows other transactions to obtain normal locks 
on the same data items. 

When the HC receives a l-safe commit message, it 
starts executing the 2-safe commit protocol. After the 
HPs have received all the transaction’s log records, 
and obtained all locks, they inform the HC of their 
willingness to commit the transaction. When HC has 
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Figure 3: Transaction execution of the dependency 
tracking algorithm. 

received ready messages from all HPs, it makes the 2- 
safe commit decision, and informs the PC and the HPs 
of this. The PC forwards the 2-safe commit message to 
the involved PPs. When a PP receives a 2-safe commit 
message, it releases all l-safe locks, and acknowledges 
the completion of the transaction execution. 

Compared to the DR algorithm, the DT algorithm 
requires some additional message transfers during nor- 
mal operation: A 2-safe commit message to each PP 
involved in the transaction, and one 2-safe acknowl- 
edgment from the PC to the HC. However, these mes- 
sage transfers are outside the critical path of the trans- 
actions. Delaying these messages will only affect the 
duration of l-safe locks. They can therefore be piggy- 
backed on other messages. 

Recovering from failures: The dependency lock 
information, maintained by the PPs are utilized for 
three purposes: 1) Enable efficient identification of a 
transaction consistent state after a site failure in the 
symmetric configuration; 2) Provide immediate partial 
database availability after a node or site failure; and 
3) Simplify identification of l-safe committed transac- 
tions to be rolled back after a failure.’ To minimize the 
number of l-safe committed transactions rolled back 
due to failures, they are rolled forward whenever possi- 
ble. We assume that local commit status information 
for all transactions that may be involved in the recov- 
ery after a failure is available at all involved nodes. 

Local recovery: When a PP learns about the 
failure of another PP, it immediately blocks new and 
active transactions from becoming dependent on l-safe 
committed transactions that may have to be aborted, 

1 An alternative would be to reconstruct the dependency in- 
formation at the primary nodes at recovery time. However, this 
would require extensive analysis of potentially large log volumes, 
which would increase the recovery time substantially. This op- 
tion is therefore excluded from further discussion due to the 
consequences for system availability. 

by acquiring normal exclusive locks on all data items 
the transactions l-safe lock. Unaffected parts of the 
database remain available to new transactions. Dur- 
ing recovery processing, a PP might have to respond 
to two types of messages in addition to those received 
during normal operation: 1) l-safe abort from the 
PC after a PP failure indicating that a transaction in 
the l-safe commit state, must be rolled back. The PP 
will inspect the l-safe and normal lock queues, and 
abort all transactions both active and l-safe commit- 
ted, that depend on the transaction. It will also send 
abort messages to the PCs for these transactions. 2) 
2-safe ready requests from HC after an HP failure. 
The HC might have to determine whether a trans- 
action no longer depends on other l-safe committed 
transactions, at the PP corresponding to the failed 
HP. In these situations the HC sends a 2-safe ready re- 
quest to the PP. After receiving such a request, the PP 
waits until the transaction has obtained all requested 
l-safe locks, before sending a a-safe ready message 
to the HC. If the transaction has to be aborted, due 
to being dependent on another aborting l-safe com- 
mitted transaction, the PP sends an abort message to 
the HC. When the recovery processing at the PP is 
completed, i.e., all l-safe locks requested prior to the 
detection of the failure have been released, the PP logs 
the completion of recovery, and releases the exclusive 
locks acquired at the beginning of the recovery pro- 
cessing. 

When an HP learns about the failure of its counter- 
part, it acquires shield locks for all data items affected 
by operations for which it has received log records 
prior to the failure, which are unprocessed. These 
shield locks are incompatible with all locks at pri- 
maries, but compatible with all locks at hot standbys. 
When this is completed the HP assumes the role of 
PP for new transactions, making the remaining parts 
of the database available to these. It then continues its 
HP processing of log records received from the failed 
node with some modifications to the processing rules. 
If it receives an abort message for a transaction from 
the HC, it converts the transaction’s locks to dirty 
locks, and aborts the transaction. Subsequent trans- 
actions that attempt to acquire locks for dirty-locked 
data items, will also be aborted. If an HP under re- 
covery, receives a l-safe commit message for a trans- 
action for which it has received none or only some 
of the log records prior to the failure, it responds by 
sending an abort message to the HC. When the recov- 
ery processing is completed, i.e., all the log received 
prior to the failure has been processed, the HP re- 
leases the shield locks and all dirty locks, making the 
entire replica available to new transactions. 

No take-over is required for HPs whose counterparts 
are not affected by the failure. However, data items ac- 
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cessed by l-safe committed transactions that must be 
aborted, are still dirty-locked, leading to the abortion 
of subsequent transactions that tries to acquire locks 
on them. When the HP receives an end of recovery log 
record from the PP, all dirty-locks are released. 

Global recovery processing: The global re- 
covery processing after a failure is coordinated by the 
active PCs and HCs. The PCs and HCs act as pro- 
cess pairs. If one of them is affected by a node failure, 
the other takes over its responsibilities. In these sit- 
uations, participants will send messages to the acting 
coordinator instead of to the failed. All transactions in 
the active state, whose PPs or PC are affected by the 
failure, are aborted. Transactions in the l-safe com- 
mitted state are 2-safe committed whenever possible. 
The HC, or acting HC if the original HC has failed, will 
base its decision on the votes received from the HPs, 
whenever these are available. If one or more of the 
HPs are unavailable, the HC will send 2-safe ready re- 
quests to the corresponding PPs, and use the responses 
from these instead of the missing HP votes. The a-safe 
commit state of the primary nodes lags behind that of 
the hot standbys. Thus, the dependencies represented 
by the l-safe lock queue, constitute a superset of the 
dependencies currently available at the HPs. When a 
PP sends a 2-safe ready message to the HC, i.e., when 
the transaction has obtained all requested l-safe locks, 
it is guaranteed that it is no longer dependent on any 
l-safe committed transaction at this PP/HP pair of 
nodes. In situations where either the PC or HC of 
a transaction have failed, the remaining coordinator 
might have to poll one or more of the participants, to 
obtain information lost due to the failure. One partic- 
ular failure scenario requires special attention: If the 
PC fails while all involved PPs are in the ready or l- 
safe commit state, but before the HC has been started, 
i.e., the node where the HC is to be executing does not 
receive the l-safe commit message from the PC, nei- 
ther the PC nor the HC will be available. In this case, 
the involved PPs or HPs, will start a dedicated coordi- 
nator at one of the remaining nodes, which will identify 
the set of participants, and abort the transaction. 

Correctness: The correctness of the DT algo- 
rithm rests on the correctness of the dependency re- 
construction algorithm [GMPSOb, KHGMPSl]. The 
recovered state after a failure, will be based on the de- 
pendencies reconstructed by the HPs whenever these 
are available. Dependencies between transactions lost 
at failed HPs can be recovered from the dependency 
information kept at the PPs. In the event of a site 
failure in the symmetric configuration, there will al- 
ways be sufficient information available at the remain- 
ing site to recover a transaction consistent database 
state. l-Safe committed transactions are only aborted 
if affected by PP or PC failures, where log records 

or messages are lost, or if they are dependent on other 
aborted l-safe committed transactions. Thus, the min- 
imum divergence criteria is fulfilled. 

4.3 The Extended Epoch Algorithm 

In the DT algorithm, dependencies between transac- 
tions are traced at a fine granularity, i.e., at the gran- 
ularity of locks. This minimizes the loss of l-safe 
committed transactions due to failures. However, re- 
construction of dependencies and the logging of read 
operations mean that the hot standby load will only 
be slightly lower than that of the primaries. In the 
symmetric configuration, it would be possible to in- 
crease system performance by utilizing resources at 
hot standbys for execution of PCs. Thus, it would 
be desirable to keep the HP resource consumption as 
low as possible. In the EE algorithm, we reduce the 
CPU resource consumption of the HPs, by tracking de- 
pendencies between transactions at the granularity of 
epochs. The EE algorithm is a simple adaption of the 
single mark epoch algorithm presented in [GMPSOb], 
to the symmetric site configuration. Like in the origi- 
nal algorithm, epoch identifiers (EIDs) are distributed 
periodically and synchronously by an epoch coordina- 
tor. When a node is informed of the change of epoch, 
it includes an end of epoch record in its log. By uti- 
lizing the properties of the 2PC protocol and strict 
concurrency control mechanisms, each transaction is 
assigned a single commit EID, i.e., the current EID 
known by the PC at the commit point. It is ensured 
that a transaction with a given commit EID is only de- 
pendent on transactions that committed in the same 
or earlier epochs. Epochs are atomically committed at 
the hot standby nodes. The epoch commit processing 
is coordinated by an epoch commit coordinator. Com- 
pared to the original epoch algorithm, the following 
extensions are made: 1) The epoch coordinator dis- 
tributes the new EIDs to all nodes in the system; 2) 
To allow PCs to run at hot standby nodes, these nodes 
must also keep a primary transaction log. Log records 
generated at these nodes, must be propagated to the 
corresponding nodes at the opposite site; 3) The epoch 
commit coordinator must include all nodes in the sys- 
tem in the epoch commit protocol; 4) The PPs keep 
track of all locks acquired by data modifying opera- 
tions, for all transactions that committed in an epoch, 
i.e., whose PCs reached the l-safe commit point in the 
epoch; 5) Epoch commit decisions are logged at both 
sites before the epoch is committed. After a primary 
node or a site failure, the epoch commit coordinator 
determines the EID of the last epoch that can be com- 
mitted, and broadcasts it to all remaining nodes. If 
the epoch commit coordinator has failed, its backup 
process broadcasts the last committed EID. When a 
PP learns about the failure, it stops processing new 
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Table 1: Simulation parameters. 
SPECint 269 
CPU: send msg: intra-node 2500 instr. 
CPU: send msg: intra, inter-site 32500 instr. 
Intra-site line delay 0.01 ms 
Inter-site line delay 2.5 ms 
Log generation 850 instr. 
Data access 12550 instr. 
Piggyback interval 20ms 
Epoch length 30 ms 

transactions, and waits for the broadcast of the last 
committed EID. When this is received, it reacquires all 
locks held by the transactions of uncommitted epochs, 
and resumes the execution of new transactions. The 
rollback of l-safe committed and active transactions 
are performed based on the log. 

After a failure, the EE algorithm recovers the same 
state as the original epoch algorithm. Thus, no ad- 
ditional proof of correctness is provided. Due to the 
use of epochs as the unit for 2-safe commitment of 
transactions, the minimum divergence criteria is not 
fulfilled. 

5 Performance Evaluation 

In order to evaluate the performance and transac- 
tion durability properties of the cross atomicity algo- 
rithms vs. traditional l-safe and 2-safe algorithms, we 
perform a set of simulation studies. We obtain esti- 
mates for throughput, mean response time, and CPU 
usage at primary and hot standby nodes during nor- 
mal operation, and for the numbers of active and l-safe 
committed transactions aborted after a primary node 
failure. The former metrics are estimated for two dif- 
ferent loads: 1) Asymmetric load, where all clients are 
located at the same site; 2) Symmetric load, where 
half of the clients are located at each site. The frac- 
tion of write transactions ranges from 0.1 to 1.0. For 
all estimated values, 95%, 52.5% confidence intervals 
are established. 

The simulation model is based on the ClustRa 
DBMS [HTBH95, BGH+96], which keeps real-time 
data in main memory, and performs main memory log- 
ging at two sites, to meet sub 15 ms response time 
requirements. This reflects a typical environment of, 
e.g., operational telecom applications, where l-safe so- 
lutions are applied. The simulation parameters used 
throughout the simulations, listed in Table 1, are ob- 
tained from measurements on ClustRa. Each of the 
two sites, consists of eight ultra SPARC nodes, inter- 
connected by ATM networks. Message transfers are 
heavily CPU-bound operations, and the overhead pr. 
message is substantial. This corresponds to the cur- 
rent state of the Internet/ATM communication tech- 

nology. To reduce the number of message transfers, 
non time critical messages are piggy-backed on other 
messages. The workload consists of a mix of read-only 
and write transactions, accessing 4 tuples each. The 
number of writes performed by write transactions, is 
binomially distributed, and ranges from 1 to 4 with 
mean 2.5. In the performance experiments, transac- 
tions are generated by eight clients in a back-to-back 
manner. In the symmetric load case, 80% of the trans- 
actions for cross atomicity algorithms only access data 
items whose primary replicas are located at the orig- 
inating site. In the simulations estimating the conse- 
quences of failures, transactions are generated at a rate 
of 400 tps with exponentially distributed inter arrival 
times. 

Performance estimates: The performance of the 
six algorithms under the asymmetric load, are pre- 
sented in Figure 4. As would be expected, all l-safe 
algorithms show significantly higher performance than 
the 2-safe algorithm, due to their avoidance of inter- 
site communication inside time critical paths. How- 
ever, there is no significant difference in performance 
between the DT and EE cross atomicity algorithms, 
and their traditional l-safe counterparts. From this, 
we conclude that the cross atomicity property can be 
provided, without significantly increasing the process- 
ing overhead during normal operation. The E and EE 
algorithms are less sensitive to increasing write-ratios, 
than the other algorithms. Epoch management over- 
heads at the primary nodes are only dependent on the 
epoch length. Increasing the epoch length will, thus, 
reduce the overhead and increase the throughput, but 
will also increase the consequences of primary node 
failures. Furthermore, these algorithms avoid the log- 
ging of read operations. The throughput for the DR 
and DT algorithms follow slightly steeper curves. This 
is due to logging of read operations performed by write 
transactions and to more complex commit protocols 
for write transactions. Furthermore, the reconstruc- 
tion of dependencies increases the CPU usage at the 
hot standby nodes, as compared to the other algo- 
rithms. The poor performance of the XL algorithm 
is primarily due to high lock contention at the pri- 
mary nodes. All exclusive locks are kept past the 2- 
safe commit point. Thus, two round trips of inter-site 
communication are completed before these locks are 
released. The performance impact of this depends on 
the length of the inter-site communication delay, and 
on the access pattern of the transactions. 

The performance results obtained under the sym- 
metric load are presented in Figure 5. Like in the 
asymmetric load case, the performance of the E and 
EE algorithms is dependent on the epoch length. 
Thus, we have excluded the EE algorithm from this ex- 
periment. Due to their cross atomicity properties, the 
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Figure 4: Performance of the uniform configuration. 

DT, XL, and 2-safe algorithms are capable of utilizing 
the access pattern of this workload, by locating pri- 
mary replicas, at the same site as the clients, by which 
they will most frequently be accessed. However, for 
the 20% of transactions that access data items whose 
primaries are located at the opposite site, the response 
times will include an inter-site round trip delay. The 
other algorithms are not able to utilize this informa- 
tion. Thus, an inter-site round trip delay will be added 
to the response times of all transactions originating 
at the hot standby site. The DT algorithm provides 
higher performance than the other l-safe algorithms, 
especially for lower values of write-ratio. This is due to 
its ability to access local primary replicas for a larger 
fraction of the transactions. Furthermore, symmetric 
site configuration allows for utilization of unused re- 
sources at the hot standby nodes. While for the DR 
and E algorithms, lock holding times are unaffected 
by accesses of remote primaries, this is not the case 
for the DT algorithm. Thus, the performance bene- 
fit of the DT algorithm decreases for high write-ratios 
due to increased lock contention. The performance of 
the XL and 2-safe algorithms are slightly decreased, as 
compared to the asymmetric load experiment. This is 

due to the fact that some of the read-only transactions 
require access to primaries located at the opposite site. 

Estimates of transaction durability proper- 
ties: Estimates of the number of active and l-safe 
committed transactions to be aborted after a primary 
node failure are presented in Figure 6. The DT al- 
gorithm provides the lowest number of active transac- 
tions aborted due to primary node failures. It allows 
all active transactions not directly affected by the fail- 
ure to be completed. Furthermore, due to the short 
response time and the transaction generation rate used 
in this experiment, the number of active transactions 
at failure times, is low. For the 2-safe and XL algo- 
rithms, their longer active periods increase the num- 
ber of transactions active at the failing node when the 
failure occurs. In the DR, E, and EE algorithms, all 
transactions that are active in the system when the 
failure is detected, must be aborted. 

Of the l-safe algorithms, XL provides the lowest 
number of l-safe aborted transactions. This is due to 
its policy of disallowing other transactions from access- 
ing data modified by l-safe committed transactions. 
The number of lost l-safe committed transactions of 
the DR and DT algorithms, are slightly higher than for 
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XL, but still very low. This is due to their fine gran- 
ularity reconstruction of dependencies. The number 
of lost l-safe committed transactions of the E and EE 
algorithms exceeds the other algorithms by one order 
of magnitude due to their coarse granularity tracking 
of dependencies. The number can be reduced by de- 
creasing the epoch length. It should be noted that the 
number of l-safe committed transactions lost due to a 
failure, in the E and EE algorithms will be indepen- 
dent of the number of actual dependencies between the 
transactions. 

The DT and XL algorithms will be able to restore 
partial database availability immediately after a pri- 
mary node failure without any global coordination. 
The EE algorithm requires identification of the latest 
epoch that can be committed, before partial database 
availability can be restored. Both DR and E algo- 
rithms require execution of a global take-over which 
makes the entire database unavailable until the take- 
over is completed. 

60 
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Figure 5: Performance of the symmetric configuration. 

6 Summary and Conclusions 

In this paper we have focused on the properties of l- 
safe transaction execution algorithms. In order to pro- 
vide database availability in the presence of node and 
site failures, traditional l-safe algorithms disallow pri- 
mary and hot standby replicas of different data items 
to be stored at the same site. This means that a single 
primary node failure must be handled like a failure of 
the entire primary site. Furthermore, this requirement 
disallows symmetric configurations, where the primary 
replicas are located at the site closest to the access- 
ing clients. We defined the cross atomicity property 
of transaction execution algorithms, and showed that 
the above restrictions can be removed for algorithms 
that fulfill this property. Furthermore, we presented 
three novel l-safe algorithms based on the 2-safe, de- 
pendency reconstruction and epoch algorithms respec- 
tively, and showed that they provide cross atomicity 
as well as meeting the traditional l-safe correctness 
requirements. The relative performance of these algo- 
rithms and the traditional l-safe and 2-safe algorithms 
were evaluated by means of a set of simulation stud- 
ies. Our main conclusion is that the cross atomicity 
property can be provided without significantly increas- 
ing the processing overhead during normal operations. 
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Figure 6: The number of aborted transactions after a primary node failure. 

The EE algorithm provides high performance, but less 
durability for l-safe committed transactions than the 
other algorithms. The XL algorithm is very simple, 
but its performance is very sensitive to long inter-site 
communication delays in the presence of hot spots. 
From an evaluation based on performance, transaction 
durability, and system availability, the DT algorithm 
provides the best overall solution. 
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