The Complexity of Transformation-Based Join
Enumeration

Arjan Pellenkoft!?
arjan@cwi.nl

César A. Galindo-Legaria}
cesarg@microsoft.com

Martin Kersten?
mk@cwi.nl

L Microsoft
One Microsoft Way, Redmond, WA 98052-6399 USA

2owI
P. O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Query optimizers that explore a search space
exhaustively using transformation rules usu-
ally apply all possible rules on each alterna-
tive, and stop when no new information is pro-
duced. A memoizing structure was proposed
in [McK93] to improve the re-use of common
subexpression, thus improving the efficiency of
the search considerably. However, a question
that remained open is, what is the complexity
of the transformation-based enumeration pro-
cess? In particular, with n the number of re-
lations, does it achieve the O(3™) lower bound
established by [OL90]?

In this paper we examine the problem of
duplicates, in transformation-based enumera-
tion. In general, different sequences of trans-
formation rules may end up deriving the
same element, and the optimizer must de-
tect and discard these duplicate elements gen-
erated by multiple paths. We show that
the usual commutativity/associativity rules
for joins generate O(4™) duplicate opera-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

306

tors. We then propose a scheme —within the
generic transformation-based framework— to
avoid the generation of duplicates, which does
achieve the O(3™) lower bound on join enu-
meration. OQur experiments show an improve-
ment of up to a factor of 5 in the optimization
of a query with 8 tables, when duplicates are
avoided rather than detected.

1 Introduction

Ono and Lohman [OL90] gave a lower bound of O(3"),
with n the number of relations, on the complexity of
join enumeration, by counting how many join oper-
ators have to be considered in the bottom-up, dy-
namic programming enumeration algorithm of Sys-
tem R and Starburst.! This algorithm is efficient
for join enumeration, and the code has been exten-
sively tested and tuned over the years. But there is an
advantage to reordering other operators, and choos-
ing among new alternatives based on cost estimation.
Although the algorithm has been extended to deal
with other operators (e.g. aggregates [CS96], outer-
joins [GLRY6), expensive functions [HN96]), there is
no precise characterization of the properties of oper-
ators that can be handled by the enumeration algo-
rithm. There is no general technique for these exten-
sions, and no guarantee that the next extension will
be possible. For example, to deal with subqueries, Se-
shadri et al suggest a clever iterative process in which
an extended bottom-up enumeration module is called

LA careful analysis by Vance [VM96, Van96a] shows that
the bottom-up enumeration algorithm doesn’t achieve this lower
bound in all cases, having a complexity of O(4™).

multiple times [SHP*96] —but we are forced beyond
the bottom-up enumeration framework.

Proponents of “rule-based, extensible optimizers”
would say that the problem is a “lack of extensibility,”
and they would point to a number of research proto-
types that have been developed over the past 10 years.
But the common view is that the tradeoff of extensible
optimizers is efficiency.

Is transformation-based enumeration as efficient as
bottom-up enumeration? The question is relevant
in practice as at least two companies —Tandem and
Microsoft— are adopting a transformation-based opti-
mization engine for new releases of their DBMSs. The
goal is to have cost-based selection of alternatives that
are generated via transformation rules, without per-
formance penalties on join reordering.

In this paper we show that join enumeration can be
done in the lower bound given by Ono and Lohman
[OL90], in a transformation-based system. The two
key components for our result are the memoizing struc-
ture proposed in Volcano [GM93, McK93], and a novel
technique to avoid generating duplicate expressions.

Duplicates are a major problem in transformation-
based enumeration. To generate a complete space, the
general algorithm is to apply all possible transforma-
tion rules, until no new information is produced. To
get a sense of the problem, model the search space as
a graph, where each solution is a node, and trans-
formation rules provide edges between those nodes.
Now, the number of duplicates generated depends
on the size of the number of nodes in the space, n,
and the number of neighbors, b; of each node. The
naive application of transformation rules until no new
elements are generated results in the generation of
S, b; alternatives. For simplicity, assume that the
number of neighbors for each alternative is the same
(b=1b; = by = ... = by), then we get b *n alternatives
generated. Since the are only n nodes in the space,
the number of duplicates is n * (b — 1). Only 1 out of
every b trees generated is new, and (1 — 1/b) of the
plans generated —i.e. most of them as b increases—
are duplicates.

A note on terminology.

Some terms in the “rule-based optimizer literature”
are applied loosely to systems with different character-
istics. In the context of this paper we contrast bottom-
up join enumeration with transformation-based enu-
meration. Transformation-based enumeration consists
of generating all alternatives reachable from an initial
algebraic expression by a set of transformation rules;
so that their estimated cost can be used in choosing
one of them.

307

The paper is organized as follows. In Section
2 we describe the memoizing structure of Volcano
[GM93, McK93], and analyze its complexity. Section
3 identifies and quantifies the problem of duplicates.
Section 4 describes how to enumerate join orders with-
out generating duplicates. Section 5 shows experimen-
tally the performance improvement of avoiding dupli-
cates. Finally our conclusions are given in Section 6.

2 Memoizing

Transformation-based enumeration of a space proceeds
as follows. Keep a set of visited plans, which starts by
containing a single input expression. Apply all trans-
formation rules to visited plans, adding the results to
the set if they are new. When no new plans can be
generated, the complete search space for this set of
transformations has been explored.

For join reordering, the transformations commonly
used (to generate a bushy space) are [BMG93, IW87,
IK91, Kan91):

Rule set RS-BO:

¢ Right Associativity:
(A B)pa C~ A (B C).

o Left Associativity:
A (B CYy~ (A By C.

e Commutativity: A o< B ~ B 1 A.

The set is redundant, because we can drop Right
Associativity (or Left Associativity) and still generate
the same space. We use here the minimal set RS-B1,
which contains only Left Associativity and Commuta-
tivity.

For left linear trees, a minimal rule set based on
[SG88] is: Rule set RS-L1:

e Swap: (A B) < C~ (Aa () B.

e Bottom Commutativity: By <t By ~ By < By,
for base tables B, Bs.

Since there are likely to be many common subex-
pression among the alternatives generated, Volcano
introduced a memory-efficient representation of the
search space, inspired by the idea of memoizing
[McK93].

2.1 The MEMO-structure in Volcano

The MEMO structure minimizes memory require-
ments by maximizing the sharing of common sub-trees.
The main idea behind the MEMO-structure is to avoid
replication of subtrees by using shared copies only. It is
organized as a network of equivalence classes (or sim-
ply classes). Each class is a set of operators which all

produce the same (intermediate) result. The inputs
for the operators are classes, which can be interpreted
as “any operator of that class can be used as input”.
For more details about this structure, see [McK93]. In
this paper we used a sightly simplified version of the
MEMO-structure described there.

abed = [a] o< [bed); [B] o< [acd); [¢] ba [abd];
[d] >a [abc]; [ab] b« [ed]; [ac] > [bd];
[ad] >a [be]; [bed] < [a]; [acd] ba [b];
[abd] p< [c]; [abc] pa (d]; [ed] ba [ab];
[bd] v [ac]; [be] < [ad].

abc = [a] > [be]; [b] = [ac]; [¢] w< [ab];
[bc] v [a]; [ac] v [b]; [ab] >« [c].

abd = [a] pa [bd]; [b] > [ad]; {d] e [abl;
[bd] > [a]; [ad] >« [b]; [ab] o< [d].

acd = [a] va {ed]; [c] ba [ad]; [d] > [ac];

acd = [cd] > [al; [ad] > [¢]; [ac] > [d].

bed = [b] b [ed]; [c] b [bd]; [d] > [be);
[ed] v [B); [bd] » [c]; [be] pa [d].

ab = [a] > [b]; [B] >a [a].

ac = [a] > [c};[c] e [a].

ad = [a] > [d]; [d] > [a].

be = [b] pa [c]; [c] < [B].

bd = [b] o< [d]; [d] o< [B)].

cd =[] pa{d];[d] b [c].

Figure 1: The complete MEMO-structure with bushy
join orders for the completely connected query on
a,b, e d.

Figure 1 depicts the MEMO-structure encoding the
search space of a four-table join query. For conve-
nience, the classes are labeled with the relations that
are being joined. The memo structure for the join
space corresponds closely to the structures kept by
Vance and Maier in their work [VM96).

The MEMO-structure has 11 equivalence classes,
namely “abed”, “abc”, “abd”, “acd”, “bed”, “ab”,

ac”, “ad”, “bc”, “bd”, “cd”, with the first class con-
taining 14 join operators. An operator tree is obtained
from a MEMO-structure by choosing a specific opera-
tor at each level.

Base relations are not shown as operators, although
they are operators in an implementation. Children
of join operators must be classes, so the base table
operator is contained in a one-operator class.

The MEMO-structure helps ameliorate the com-
binatorial explosion of alternative join orders. For
a completely connected join query with n relations,
the number of alternative ordered bushy and linear

join trees is known to be (2::12)!! and n!, respectively

308

[LVZ93, GLPK95]. A completely connected query of 7
relations then already leads to 5040 alternative linear
join trees and 665280 bushy join trees, see Figure 2 for
the number of join trees and operators for both linear
and bushy evaluation orders at several query sizes.

Linear join trees | Bushy join trees

Rel JT Op JT Op
2 2 1 2 2
3 6 6 12 12
4 24 22 120 50
5 120 65 1680 180
6 720 171 [30240 602
7 | 5040 420 | 665280 1932

Figure 2: Number of ordered bushy and linear join
trees for a completely connected query of n relations.

2.2 Size of the MEMO-structure

In comparison to the total number of feasible evalu-
ation orders, the MEMO-structure is an efficient way
of encoding the seach space. The following two theo-
rems give the number of join operators in the MEMO-
structure to encode all bushy or left linear join trees.
The query graph is assumed to be completely con-
nected. The proofs are omitted due to lack of space,
but they can be found in [PGLK96], which contains
results for other query graph topologies.

Theorem 1 The MEMO-structure requires 3" -
27+l 4 1 operators to encode the space of bushy join
trees for a completely connected gquery of n relations.

Theorem 2 The MEMO-structure requires n2("~1) —
n(n+1)/2 operators to encode the space of linear join
trees for a completely connected query of n relations,
forn > 2.

In [OL90] a lower bound was determined for these
combinations of query graph topologies and join tree
shapes by counting how many join operators had to be
considered by their dynamic programming algorithm.
Our findings coincide with their lower bounds.2 Also
the other cases coverd by Ono and Lohman coincide
with our findings and are described in [PGLK96).

2There is a factor of 2 difference, due to the fact that Ono
and Lohman do not count A <t B and B < A as distinct op-
erators, i. e. they use unordered trees. Transformation-based
enumeration can generate unordered trees as well [PGLK96],
but we use ordered trees here for consistency with conventional
rule sets (see rule set RS-BO, it requires ordered trees to work).
In practice the difference is minor, because unordered trees will
most likely consider both children as candidates for, say, the
build input of hash join, in a sense delaying the commutativity
application.

2.3 Exploration process

A complete MEMO-structure — encoding a complete
space — is constructed by recursively exploring the
roots of operator trees, starting with an initial expres-
sion. Exploring an operator is done by exhaustively
applying all transformation rules to generate all al-
ternatives. A detailed description of the exploration
algorithm is given in [McK93].

In general, the application of a transformation rule
can generate an operator that is already present in the
MEMO-structure. The simplest example is the com-
mutativity rule, which, when applied a second time,
reproduces the original operator. So, before inserting
a new operator into the MEMO-structure we have to
make sure it is not already present. A hash table is
used to speed-up the detection of duplicates.

3 Duplicates

Before quantifying the effect of duplicate genera-
tion, we walk through the construction of a MEMO-
structure for a completely connected query, on rela-
tions a,b and ¢. Even in this small example the num-
ber of duplicates is relatively large.

Example 1 For the completely connected query on
the relations “a,b,c,” Figure 3 shows the MEMO-
structures before and after exploring operator {ab] ma
[c]. In the “before” MEMO-structure all children, “ab”
and “c”, have been fully explored. The transformation
rules RS-B1 (see Section 2) generate the following
new operators, when applied to operator [ab] > [¢].

Commutativity: ([ab] >a [¢]) creates ([¢] > [ab])
which is added to the class “abc”.

Associativity: ([ab] > [c]) does not match, the left
child is a class and should be a tree. This is re-
solved by extracting a partial trees for the left
class “ab.”

[a] < [b): First tree (([a] >a [b]) < [¢]) is extracted.
Now the rule matches and is applied. The
new tree ([a] < ([b] > [¢])) is generated,
and added to the MEMO-structure in class
“abc”. The subexpression ([b] > [c]) starts a
new class “bc” since it didn’t appear in the
earlier MEMO-structure.

[b] ba [a]: Second tree (([b] v« [a]) > [c]) is ex-
tracted. It matches the rule, so it is ap-
plied. The new tree ([b] < ([a] = [¢])) is gen-
erated and added to the MEMO-structure.
The subexpression [a] > [c] starts a new class

[%

ac’.

309

After

abc=[ab] > [c]; [c] > [ab];
[a] v« [be]; [b] < [ac]

ab =[a] >« [b]; [b] o< [a]

be =[b] > [c]

ac =[a] < [c]

Before
abc=[ab] > [c]

ab =[a] < [8]; [b] > [a]

Figure 3: MEMO-structure before and after explo-
ration.

The exploration process is continued by applying
transformation rules to the newly created operators.
Now, duplicates are generated. Before the new op-
erators ([c] o< [ab], [a] > [bc], and [b] > [ac]) of the
root class “abc” can be explored, all their children
(“a”,”b”,”¢” “ab”,”bc” and “ac”) must be fully ex-
plored. This results in two new operators, [c] o< [b] and
[c] e« [a], which are added to the appropriate classes.

Commutativity on the new operators produces
[ab] ba [c], [bc] < [a] and [ac] > [b], out of which
[ab] o< [c] already exists. The new operators are added
to the MEMO-structure and explored. Both associa-
tivity and commutativity can be applied to the oper-
ators [bc] > [a] and [ac] < [b], which results in 6 oper-
ators. All these operators were already stored in the
MEMGO-structure. So, during the exploration of class
“abc”, 5 new operators and 7 duplicates were gener-
ated. In Figure 4 the complete “abc” class is shown
together with the duplicates generated. The dupli-
cates are positioned such that they are next to the
non-duplicate operator from which they originated.

Class abc | Duplicates in class abc

[ab] < [c]

[c] > [ad] | [ab] > [c]

[a] ba [bc]

(8] ba [ac]

[bc] > [a] | [a] >4 [be]; [b] v« [ac]; [¢] b< [ab]
fac] b [b] | [b] > [ac]; [a] = [be]; [c] o< [ab]

Figure 4: Fully explored class “abc” and the duplicates
generated.

As illustrated by the previous example, the straight
forward application of transformation rules results in
the generation of operators which are already in the
MEMO-structure —duplicates. The generation of du-
plicates affects the efficiency of the join enumeration
process considerably. For each operator generated the
MEMO-structure has to be searched to determine if
it already exists. The search and the time needed to
generate duplicates are part of the search cost.

3.1 Bushy join trees

The following theorem shows the number of duplicates
generated when exploring the search space of bushy
join trees, for completely connected query graphs. It
assumes a minumal set of unidirectional join associa-
tivity and commutativity rules, See 2.3. If associativ-
ity is enabled in both direction, as is commonly sug-
gested, we simply end up generating more duplicates.

Lemma 1 The number of duplicates generated by
RS-B1 during the exploration of a class that com-
bines k relations, on a completely connected graph, is:
3k~ 3x2F +4.

Proof. In a class that combines k relations, take
an operator [L] 0« [R], with I the number of rela-
tions in [L] and k — ! the number of relations in [R]
(0 < k < n). Applying commutativity and asso-
ciativity on this operator we generate (2! ~2) +1
alternatives. So the total number of operators gen-

erated in the class is 2{:11 k) (2t - 1). Rewrit-

l
ing, the summation becomes 3% — 2f+1 + 1. But
the number of unique operators in such class is
2k _ 2 and of these elements the initial opera-
tor is given instead of being generated. Therefore
the number of duplicates generated in the class is:
3k okl 41 (28 ~2-1)=3*-3+2k+4. =

Theorem 3 The number of duplicates generated by
RS-B1 during the construction of a MEMO-structure
encoding all bushy join trees for o query with n rele-
tions, on a completely connected graph, is: 4" — 3"+ +
2nt+2 _p - 2.

k

classes that combine k relations. In the class
with only one relation no duplicates are generated
since no transformation rules are applied. Using
Lemma 1 the total number of duplicates generated

S Y et (Z) (3% — 3% 2% +-4) . Rewriting results

Proof. The MEMO-structure consists of (i

in: 4 — 3+l pont2 _pn 9 .

3.2 Linear join trees

The following lemma and theorem show how many du-
plicate join operators are generated when generating
the MEMO-structure for all left linear join trees.

Lemma 2 The number of duplicates generated by
RS-L1 during the exploration of a class that com-
bines k relations, on a completely connected graph, is:
k2 —k+1, withk>2.

310

Proof. In a class that combines k relations, take an
operator [L] ba [R], with { the number of relations
in [L] and r the number of relations in [R], r+1 = k
and 0 < k < n. Since we are considering linear join
trees for each operator either [= 1 orr = 1. If
[= 1 only the commutativity rule can be applied,
if r = 1 also the swap rules applies and generates
k — 1 operators. Both cases happen k times, so in
aclass kx1+kx*(1+k—1) = k? + k operator are
generated.

In a class there are only 2k unique operators and
one of these, the initial operator, is already given.
This brings the number of duplicates per class to
B+k—-2k-1)=k>~-k+1 m

Theorem 4 The number of duplicates generated by
RS-L1 during the construction of a MEMO-structure
encoding the left linear join trees for a query with n
relations, on a completely connected graph, is: 2™ +
nn~1)2""2-1-n% n>2.

Proof. The MEMO-structure consists of Z

classes that combine k relations. In the class with
only one relation no duplicates are generated since
no transformation rule can be applied. In the class
with two relations only the commutativity rule can
be applied and results in one duplicate. Since there

n - .
are (2) such classes, 221 duplicates are gen-

erated.

For k > 2 we use Lemma 2 so the total number of
Z (k% — k +1).
Rewriting and adding the duplicates generated by
the classes with two relations results in: 2" +n(n —

duplicates generated is Y r_3

1272 —1-n? "
Linear join trees | Bushy join trees
Rel | Op | Duplicates | Op | Duplicates
2 1 1 2 1
3 6 10 12 10
4 22 47 50 71
5 65 166 | 180 416
6 [171 517 | 602 2157
7 | 420 1422 | 1932 10326

Figure 5: Number of duplicates generated during the
exploration of a MEMO-structure.

Figure 5 shows concrete numbers for the size of the
MEMO-structure and the duplicates generated (both
buhsy and linear trees), as a function of the number
of relations joined, for fully connected graphs. The

second column gives the number of operators needed
to encode all bushy trees using the MEMO-structure.
The number of duplicates generated during the explo-
ration process is given in column 3. For linear join
trees the size of the MEMO-structure and the number
of duplicates generated is given in column 4 and 5.

Combining the results form Section 2.2 and The-
orem 3 shows that for buhsy join trees the ratio of
duplicates over new elements is O(2"'°8(4/3)). Also for
linear join trees the number of duplicates outgrows the
number of unique operators quickly.

4 Duplicate-free join order generation

Although the space complexity of transformation-
based join enumeration is O(3"™), by Theorem 1, the
enumeration process itself takes O(4"), by Theorem
2. In this Section we show how to avoid generating
duplicates. This makes the enumeration process as ef-
ficient as the lower bound of O(3™) given by Ono and
Lohman.

To avoid the generation of duplicates, information
about the behavior of transformation rules is used.
The simplest example is commutativity: If an ele-
ment was generated by applying the commutativity
rule, there is no point in applying that rule again, be-
cause it will result in the original element.3

In general, we need to keep track of the “derivation
history” of each operator, or conversely, which rules
are still worth applying. For example, the application
of the commutativity rule will switch the commutativ-
ity rule off in the rule set of the resulting operator.

4.1 Duplicate free transformation rules for
completely connected queries

To generate all alternative bushy join trees for com-
pletely connected query graphs we use the following
transformation rules:

Rule set RS-B2:

R; : Commutativity z gy 2>y
Disable all rules Ry, Rs, R3, R4 for application on
the new operator <.

3This observation, for commutativity, was made early on in
[GD87], where it led to the idea of “unidirectional transforma-
tion rules.” An idea that has taken several forms in follow up
projects. Cycles of length 2 in the search space are easy to
avoid, but the advantage of excluding only those short cycles
is marginal. In terms of complexity, it is easy to see that they
introduce a constant factor slowdown, so their removal does not
affect the complexity. In practice, we ran experiments where
those cycles were avoided, but this never made a difference of
more than 2% in performance, with queries of up to 8 tables.
Most duplicates are generated by larger cycles in the search
graph.

311

R, : Right associativity
(z < y) by 2 = g (Y D3 2)
Disable rules Rs, R3, R4 for application on the

new operator t<s.

R3 : Left associativity
T b (y by 2) = (T D) <3 2
Disable rules Ry, R3, Ry for application on the

new operator b<g.

R4 : Exchange
(w o) b1 (y g 2) = (w B3) by (T 45 2)
Disable all rules Ry, Rs, R3, R4 for application on

D<ly.

For example, consider a completely connected query
on the relations w, z,y and z. Using the initial element
[wz] < [y2] of a class and the fully explored classes of
“wz” and “yz” the four transformation rules generate
six sets of elements as shown in Figure 6.

R,
[wz] 4 [yz] — [y2] > [wz]
Ry R
— [w] = [zyz] — [zy2] < [w]
[z] < [wy2] [wyz] pa [z]
R3 R1
— [wzy] > [2] — [2] > [wzy]
[wzz] > [y] [y] > [wzz]
Ry
— [wy] pa [z2]
[wz] pa [yz]
[zy] ba [w2]
[z2] >a [wy]

Figure 6: Sets generated by the transformation rules

Rule R, combines each operator of class “wz” with
the right operand [yz]. Rule R3 does a similar thing for
the operators of class “yz”. Rule R4 combines the op-
erators of class “wz” with the operators of class “yz”
and rule Ri generates the mirror images for the ele-
ments generated by rule Ry, R3 and the initial element.

Keeping a summary of the derivation history for
each operator increases the memory requirements.
However, the applicability of a rule can be encoded
using a single bit. With four transformation rules
each operator needs 4 extra bits of memory to store
the derivation history. Alternatively, rules Ry and R3
could be modified so they generate two substitutes in-
stead of only one, for each pattern, and skip a later
application of R;.

Theorem 5 No duplicates are generated when the
transformation rules, Ry, Ro,Rs and Ry, are applied
as described.

Proof. Two operators can not be identical if they
are both generated by the same rule —i.e. elements
of the same set. Namely, rule R; is used to generate
mirror images of operators, since the left and right
operand will never be identical a duplicate can not
be generated. Rule Ry combines the unique opera-
tors of the left child with the right operand of the
initial operator resulting in only unique operators.
The same holds for rule R3. Rule R4 combines the
unique operators of the left and right operand re-
sulting in only unique operators.

Also, no two derivation paths can result in the same
operator — i.e. elements of different sets. Suppose
the application of rule R, generated the same ele-
ment as rule R3; Ry, then [w] ba [zyz] or (2] > [wyz]
has to be equal to [z] > [wzy) or [y] o< [wzz]. This
can not be true since w,x,y,2 are disjunct non-
empty sets of relations. A similar argument can be
given for any other combination of sets. N

Theorem 6 For completely connected queries the
transformation rules Ry, R, R3 and R4 generate all
valid bushy join orders.

Proof. In a fully explored class that references n re-
lations the number of join operators is A(n) = 2" -2
(See proof of lemma 1). Using the initial element
of a class, say [L] > [R] the transformation rules
generate the following elements. Rule R; combines
each element of class [L] with [R] resulting in A(|L|)
new operators. Similarly rule R3 generates A(|R|)
new elements. Rule R4 combines each element of
class [L] with each element of class [R] which re-
sults in A(|L|) x A(JR|) new elements. Finally rule
R, generates the mirror images for the initial op-
erator and the operators generated by rule R, and
R;. Adding all the newly created operators and
the initial operator we get: 2 4+ 2 x A(|L|) + 2 *
A(IR]) + A(]L]) = A(JR)). Rewriting shows that
2+ 2x A(|L)) + 2 « A(IR]) + A(IL]) x A(|R|) =
A(|L|+|R]) which is the number of elements for the
fully explored class with |L| + |R| relations. Since,
by Theorem 3, no duplicates are generated we must
have generated all valid bushy join orders. »

4.2 Example

Given a completely connected query on five relations
{a,b,c,d, e} and the MEMO-structure as shown in Fig-
ure 7, where class “abcede” is about to be explored. Of

312

abcde = [ab] a [cde]

cde = [c] o [de]; [de] pa [c]; [d] b [ce];
[ce] > [d]; [e] > [cd]; [ed] b [e]

ab = [a] > [b];] o [a]

cd =[] >ad);[d]]

ce = [c] pale]; [¢] b [c]

de = [d]>[e];[e] = [d]

Figure 7: MEMO-structure in which [ab] b« [cde] is
about to be explored.

the initial operator of class “abcde”, [ab] b« [cde] , the
child classes have been explored exhaustively.

The exploration process starts by applying rules Ry,
R3 and R4 to [ab] > [cde], then R; is applied to gen-
erate the mirror images. This results in the following
elements.

Ry: Each operator of the left subtree [ab], is com-
bined with the right subtree [cde] to obtain {a] b«
[bede], [b] > [acde], which are added to class
“abcde”.

R3: Combines each operator of the right subtree [cde]
with the left subtree [ab] to obtain: [abc] <
[de], [abde] >« [¢], [abd] b« [cel, [abee] > [d], [abe] >
[cd], [abed] pa [e], which are also added to class
“abcde”.

R4: Combines the operators of the left subtree with
each split of the right subtree, so we obtain: [ac]
[bde], [ade] >a [be], [ad] v« [bee), [ace] ba [bd], [ae] >
[bed), [acd] v [be] and their mirror images [bde] >a
[ac], [bc] va [ade], [bee] >a [ad], [bd] > [ace], [bed] <
[ae], [be] b« [acd].

Ry: Generates all the mirror images of the original
join operator and the operator generated by R»
and Rj3.

Now the fully explored class “abcde” contains 30
operators. During the exploration 20 new classes were
created and, in turn, fully explored.

Linear join trees

To generate all linear trees efficiently — without dupli-
cates — we use the following two transformation rules
and application schema. The proofs for completeness
and efficiency are omitted but are similar to proofs for
the case of bushy join trees.

Rule R;:
(AMO B)] C- (AM2 C) iz B.
Disable rule R; for application on operator b<g.
A,B and C are classes which reference one or
more relations.

Rule R»:
(T'able; <o Tablez) — (Tabley <; Tabley).
Disable rule R, for application on operator <.
Table; and Tables are classes which reference ex-
actly one relation.

5

In this section we experimentally verify the efficiency
improvement of the duplicate free join enumeration
process. For completely connected queries, from 3 to 8
relations, we generated all bushy and linear join trees
using both sets of transformation rules — the naive
transformation rules and the duplicate-free rules.

The measurements have been performed on a 90
MHz Pentium PC running Windows NT. It’s main
memory was 64Mb which was more than enough to
contain the largest MEMO-structure — all bushy
trees for a query of 8 relations. The measurements
have been performed using the Cascades optimizer,
which is a descendent of the Volcano optimizer. How-
ever no feature was used that wasn’t already present
in Volcano. The one modification on the domain-
independent, transformation-rule kernel was to add
the ability to disable transformation rules. The re-
mainder of the logic is done completely within the
domain-specific set of transformation rules.

For each unique “logical” join operator we also gen-
erated a single “physical” operator (Nested Loop). For
each physical operator some cost estimation was done
— i.e. cardinality — which makes the generation of a
physical operator more expensive than the generation
of a logical operator. However, the estimation cost are
constant per physical operator and is only performed
for unique operators and not for duplicates. Avoid-
ing the generation of physical plans would make the
improvement factor even bigger.

Each experiment has been performed several times
and the graphs represent the averages over these runs.
The variation amongst the runs was very small, less
then 0.5%,

Experiments

Bushy join trees.

For the naive generation of bushy join trees we used
the commutativity and associativity rules as described
in Section 2.3. In [GD87] it was already observed that
the performance of the join enumerator could be im-
proved by applying the commutativity rule only once.
This avoids all generation cycles of length two — i.e.

313

cycles like (@ ba b) = (b <t a) — (a > b). However
the improvement is very small, for 8 relations the im-
provement is less than 2%. When generating all bushy
trees using the naive set of rules, cycles of length 2
were avoided.

Figure 8 shows the (scaled) time required to gen-
erate all bushy trees for completely connected queries
from 3 to 8 relations. The scaling of the graphs is done
using the time to generate all bushy trees for a query
of tree relations, as a reference.

Bushy join trees

naive nies
duplicate free riles »&--

10004

1004

Time (scaled)

Tables

Figure 8: Exhaustive generation of bushy trees for
completely connected queries.

The experiments show that duplicate free genera-
tion of join orders is always faster than generating and
discarding duplicates. The performance gain increases
from a factor 1.22 for three relations to a factor 5.67
for eight relations. Based on the complexity analysis
of the generation algorithms the improvement factor
will increase further as queries get larger.

Linear join trees.

The naive method for generating the complete space
of linear join trees uses Swami’s [SG88] “Swap” rule
—ie. (A B)<aC — (A= C) < B —and the com-
mutativity rule. As in the naive generation of bushy
join trees the commutativity rule is applied only once
to avoid cycles of length 2.

Figure 9 shows the experimental results for gener-
ating all linear trees using the naive method, in which
duplicates are generated, and the efficient method that
avoids the generation of duplicates. The time for gen-
erating all linear join trees for a query of tree relations,
using the duplicate-free rules, was used as reference for
scaling the graphs. For linear trees, avoiding the gener-
ation of duplicates shows a performance improvement
of a factor 1.33 to 3.67 for queries from three to eight

Linear join trees

naive nites -+—
duplicate free rules -+--

Time (scaled)}

Tables

Figure 9: Exhaustive generation of linear trees for
completely connected queries.

relations. Again the improvement factor will keep in-
creasing with the number of relations.

6 Conclusion

In this paper we showed that the join enumeration pro-
cess of transformation-based optimizers can be made
as efficient as the lower bound of O(3™) given for the
problem by Ono and Lohman [OL90], as long as we
avoid generating duplicates. We showed that the num-
ber of duplicates is O(4™), and it exceeds the number
of new elements even for small queries.

Our approach to an efficient search is to keep track
of the transformation rules that can still be applied
without generating duplicates. We descibed the mech-
anism in detail, for the generation of bushy and linear
join trees. Our experiments demonstrated a significant
improvement in optimization time, as large as a factor
of 5 for 8-table joins.

The implementation of our approach was rela-
tively simple, requiring only a minor extension to the
transformation-rule engine —the ability to turn off
transformation rules. Of course, most of the work
went into devising the appropriate set of transforma-
tion rules, which is a very important task, seldom em-
phasized in the rule-base optimization literature.

There is considerable work left on the general prob-
lem of duplicates and how to avoid them, and we be-
lieve this is a promising area of research. For an arbi-
trary set of transformation rules, it might be hard to
transform it into an efficient, duplicate-avoiding set.
But we suspect there are useful, tractable classes.

314

Acknowledgements

Bennet Vance considered the problem of duplicates
and arrived at the Exchange transformation rule in-
dependently of us, using it in a slightly different way
[Van96b]. We are grateful to him for estimulating dis-
cussions, sharing of his results [Van96a}, and comments
on this paper.

References

[BMG93] J.A. Blakeley, W. J. McKenna, and
G. Graefe. Experiences bulding the open
oodb query optimizer. Proceedings of the
ACM SIGMOD Conf on Management of
Data, Washington DC, 1993.

[CS96] S. Chaudhuri and K. Shim. Optimizing
queries with aggregate vieuws. Inferna-
tional Conference on Extending Database
Technology, Avignon, France, pages 167—

182, 1996.

G. Graefe and D. J. DeWitt. The exodus
optimizer generator. Proc. of the ACM-
SIGMOD Conference on Management of
Data, pages 160-172, 1987.

[GD87]

[GLPK95] C. A. Galindo-Legaria, A. Pellenkoft, and
M. L. Kersten. Uniformly-distributed ran-
dom generation of join orders. In Pro-
ceedings of the International Conference on
Database Theory, Prague, pages 280-293,
1995. Also CWI Technical Report CS-

R9431.

[GLR96] C. A. Galindo-Legaria and Arnon Rosen-
thal. Quterjoin simplification and reorder-
ing for query optimization. To appear in
ACM Transactions on Database Systems,

1996.

G. Graefe and W. J. McKenna. The
Volcano optimizer generator: Extensibil-
ity and efficient search. Procedings of the
9th International Conference on Data En-
gineering, Vienne, Austria, pages 209-218,
1993.

[GM93]

[HN96] J.M. Hellerstein and J.F. Naughton. Query

execution techiques for caching expensive
methods. Proceedings of the ACM SIG-
MOD Conf on Management of Data, Mon-
treal, pages 423 —~ 434, 1996.

[IK91] Y. E. Ioannidis and Y. C. Kang. Left-
deep vs. bushy trees: An analysis of strat-

egy spaces and its implications for query

optimization. Proc. of the ACM-SIGMOD
Conference on Management of Data, pages
168-177, 1991.

Iwar] Y. E. Ioannidis and E. Wong. Query op-
timization by simulated annealing. Proc.
of the ACM-SIGMOD Conference on Man-
agement of Data, pages 9-22, 1987.

[Kan91] Y. C. Kang. Randomized Algorithms for
Query Optimization. PhD thesis, Univer-
sity of Wisconsin-Madison, 1991. Technical
report #1053.

[LVZ93] R. S. G. Lanzelotte, P. Valduriez, and
M. Zait. On the effectiveness of optimiza-
tion search strategies for parallel execution
spaces. Proc. of the 19th VLDB Confer-
ence, Dublin, Ireland, pages 493-504, 1993.

[McK93] W.J. McKenna. Efficient Search in Exten-
sible Database Query Optimization: The
Volcano Optimizer Generator. PhD thesis,
University of Colorado, Boulder, 1993.

[OL90] K. Ono and G. M. Lohman. Measuring the
complexity of join enumeration in query
optimization. Proc. of the 16th VLDB Con-
ference, Brisbane, Australia, pages 314-
325, 1990.

[PGLK96] A. Pellenkoft, G.A. Galindo-Legaria, and
M.L. Kersten. Complexity of transforma-
tion based optimizers and duplicate free
generation of alternatives. Technical Re-

port CS-R9639, CWI, 1996.

[SG8g] A. N. Swami and A. Gupta. Optimization
of large join queries. Proc. of the ACM-
SIGMOD Conference on Management of
Data, pages 8-17, 1988.

[SHP+96] P. Seshadri, J.M. Hellerstein, H. Pirahesh,
T.Y.C. Leung, R. Ramakrishnan, D. Sri-
vastava, P.J. Stuckey, and S. Sudarshan.
Cost-based optimization for magic: Alge-
bra and implementation. Proceedings of the
ACM SIGMOD Conf on Management of
Data, Montreal, pages 435-446, 1996.

[Van96a] B. Vance. Complexity of join enumeration
in starburst, 1996. Manuscript.

[Van96b] B. Vance. Personal communication, 1996.

[VM96] B. Vance and D. Maier. Rapid bushy join-
order optimization with cartesian prod-
ucts. In Proceedings of the ACM SIGMOD
Conf on Management of Data, Montreal,
pages 35-46, 1996.

315

