
Optimizing Queries with Universal Quantification in
Object-Oriented and Object-Relational Databases

J. Clawsen’ A. Kemper’

‘Universittit Passau
Lehrstuhl fiir Informatik
94030 Passau, Germany

(lastname) @db.jini.uni-passau.d
http://www.db$ni.uni-passau.de/

Abstract

We investigate the optimization and evaluation of
queries with universal quantification in the con-
text of the object-oriented and object-relational
data models. The queries are classified into 16
categories depending on the variables referenced
in the so-called range and quantifier predicates.
For the three most important classes we enumer-
ate the known query evaluation plans and devise
some new ones. These alternative plans are pri-
marily based on anti-semijoin, division, general-
ized grouping with count aggregation, and set dif-
ference. In order to evaluate the quality of the
many different evaluation plans a thorough perfor-
mance analysis on some sample database config-
urations was carried out. The quantitative analy-
sis reveals that-if applicable-the anti-semijoin-
based plans are superior to all the other alter-
natives, even if we employ the most sophisti-
cated division algorithms. Furthermore, exploit-
ing object-oriented features, anti-semijoin plans
can be derived even when this is not possible in
the relational context.

1 Introduction

There exist only few research papers on optimizing and
evaluating queries with universal quantification (see the
discussion of related work below). This lack of atten-
tion is largely due to the absence of an explicit language

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the tit& of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

G. Moerkotte2 K. Peithner’

%niversitit Mannheim
Lehrstuhl f?ir F’raktische Informatik III

68 13 1 Mannheim, Germany
moer@pi3.informatik.uni-munnheim.de
http:/!pi3.informatik.uni-mannheim.de/

construct for universal quantification in SQL-92. In SQL,
the database users are forced to “work around” universal
quantification by nesting not exists-clauses or by formu-
lating the universal quantification as a counting problem.
Therefore, most optimizers of commercial DBMS products
cannot properly detect the hidden universal quantifications
and, as a consequence, generate query evaluation plans that
are far from optimal.

We predict that the interest in universal quantification
will drastically increase in the near future-basically for
three reasons: (1) It is obvious that universal quantifica-
tion is a very important concept in decision support queries
(e.g., finding the suppliers that offer all parts needed for
a particular assembly or finding the employees that have
all the skills required for a particular project). (2) Lan-
guage constructs for explicit universal quantification were
included in the ODMG standard object query language
OQL [Cat961 and are being considered in the SQL3 stan-
dardization [Dat97]. (3) As we will show in this paper,
queries with universal quantification can be evaluated very
efficiently in “modem” data models that support set/multi-
valued references such as the object-oriented model of
ODMG [Cat961 or the object-relational models [Sto96].

Existing work on universal quantification is mostly fo-
cused on a single facet of the problem: Integration into
the query language, equivalences for rewriting or special
implementations for operators supporting universal quan-
tification have been discussed. Almost all of the previous
work on universal quantification was performed in the con-
text of the pure/flat relational data model. Some work has
been done in the object-oriented/object-relational context,
e.g. [Ste95], however, only algebraic equivalences were
discussed. This paper is-to our knowledge-the first com-
prehensive treatment of universal quantification from the
query language level to the evaluation, including correct
treatment of null values.

Graefe and Cole [GC95] give a very thorough account of
evaluating relational division. Unfortunately, query evalu-

286

ation plans based on division are only reasonable for a spe-
cial class of universally quantified queries, i.e., those for
which the quantifier’s range constitutes a closed formula.
Furthermore, the division is a relational algebra operator
tailored for the flat relational model; in a data model sup-
porting multi-valued relationships via set attributes one can
usually do much better.

[HP95, RBG96, Car86, WMSB90] propose generalized
universal quantifiers in different variations for relational
languages, e.g., as SQL extensions. These works are at the
conceptual (i.e., language) level except for [RBG96] which
includes work on evaluating such generalized quantifiers
using special data structures (bit matrices).

Jarke and Koch [JK83] and Bry [Bry89a, Bry89b] de-
vised rules to move selections into the quantifier range def-
inition in order to reduce the number of tuples that have to
be evaluated. Steenhagen [Ste95] lists several alternative
algebra plans for universally quantified queries.

Dayal [Day831 proposed the graft operator which bears
some resemblance with a binary grouping (that we used as
one evaluation technique) except that tree scheme occur-
rences are used as a representation of (intermediate) results.
Later, [Day871 proposed the G-Join, G-Aggr and G-Restr.
The G-Join replaces the graft operator and a sequence of
G-Aggr and G-Restr replaces the previously used prune op-
erator.

[GL87] treated queries with quantification as a special
case of nested queries. The quantifiers exists and not exists
are replaced by count aggregations. More recently, Steen-
hagen [Ste95] investigated rules for unnesting queries in an
object-oriented model.

In this paper we begin with a systematic classification of
queries with universal quantification into 16 categories de-
pending on the bound variables of the so-called range and
quanfijerpredicates. Of these 16 classes we identify the
three most important ones. For each of them we enumer-
ate the known query evaluation plans and devise some new
ones. Our discussion focuses on “modem” data models
with set-valued attributes to represent N:M-relationships-
such as the object-oriented model or the object-relational
model. In such a data model queries with universal quan-
tification can usually be formulated in a much more natu-
ral way than in a flat relational model. To see this point
let us consider the example of Graefe and Cole’s paper:
Representing the N&f-relationship enrolled between Stu-
dents and Courses requires a separate relation Transcript
with StudentId and CourseNo attributes whereas this re-
lationship can be represented as a set-valued attribute en-
rolledCourses of Students in an object-oriented or object-
relational schema. In the relational model, finding the Stu-
dents who have taken all database classes’ is achieved by
the OQL query on the left-hand side. The correspond-

‘We assume that database courses are those courses that contain the
string ‘database’ in the title.

select s select s
from s in Students fmm s in Students
where for all c in where for all c in

select c select c
from c in Courses from c in Courses
where c.Title like “%database?V: where c.Title like “%database%“:

exists t in c in s.encolledCourses
select t
from t in Transcript:

(t.StudentId=s.StudentId
and t.CourseNo = c.CourseNo)

ing query based on an object-oriented or object-relational
schema lacks the nested existential quantification which is
replaced by a set containment predicate, as shown on the
right-hand side. The latter query is certainly more natu-
ral to formulate-especially compared to an SQL-92 for-
mulation of the first query which has to be converted into
an equivalent, yet obscure formulation with two nested not
exists clauses. Aside from user friendliness, we will also
show that the object-oriented and object-relational models
facilitate a much more efficient evaluation of such univer-
sally quantified queries.

The remainder of this paper is organized as follows.
Section 2 presents our classification of universal quantifi-
cation queries and example queries for the three most im-
portant classes. In Section 3 alternative evaluation plans
are presented for the three classes, both in general form and
for the example queries. In addition, the treatment of null
values is discussed. The rest of the paper is dedicated to
a performance analysis: In Section 4 we sketch our query
execution engine and the implementation of some special
operators. They formed the basis for the experimental eval-
uation reported in Section 5. Section 6 concludes the paper
with a summary.

2 Classification and Running Example

2.1 Classikation

As pointed out in the introduction, the OQL query language
of the ODMG standard supports universal quantification.
Therefore, we formulate our example queries in OQL.

The prototypical query pattern upon which we base our
discussion of universal quantifiers being nested within a
query block is

Q G select el
from el in El
where for all e2 in select e2

from e2 in E2
where p: 4

where p (called the range predicate) and q (called the quun-
tifier predicate) are predicates in a subset of the variables
{et ,ez}. This query pattern is denoted by Q. In a calculus,
this query can be stated as follows:

Q - {elEE1ltJez~&:(p~q)) (1)

287

Class-No. 11 (,, 10 I 4W I de21
PO II l I 2 I 3
p(e1) 5 6 7
de21 9 10 11
p(el,e2) 13 14 q

q(el,e2)
4
8
12

El 16

Table 1: Classification Scheme According to the Variable
Bindings

Depending on the subset of variables {et, ez} that occur
in the range and quantijier predicates p(. . .) and q(. . .) we
distinguish 16 classes which are enumerated in Table 1.

In the subsequent discussion we will concentrate on the
following three most important classes:

(12) p(ez),q(el,ez)

The range predicate refers to ez and the quantifier
predicate depends on both, et and ez.

(15) p(el,e2Me2)

The range predicate compares (information of) et and
e2 whereas the quantifier predicate is based on e2 only.

(16) p(el,4,&1,4

Both, range and quantifier predicates compare (prop-
erties of) et and e2.

Let us briefly contemplate why these are the three most im-
portant and-as far as optimization is concerned-also the
most difficult classes. If the range predicate p does not
refer to variable e2 the predicate p could be “moved up”
to the outer level query block because it is independent of
ez. Basically the same holds for the quantifier predicate q:
If it is independent of e2 the query could be rewritten by
pulling up the predicate q into the outer level query block
and thereby simplifying the query evaluation. Furthermore,
if neither the range predicate p nor the quantifier predicate
q refers to ei the quantifier subquery is not correlated to
the outer level query over Et and can be evaluated indepen-
dently. Classes 12, 15, and 16 constitute all possible query
patterns for a correlated quantified subquery in which both
the range and the quantifier predicates refer to e2. From a
user’s perspective, class 4 is also interesting because it cov-
ers the case where the range predicate is missing, i.e., the
entire set E2 constitutes the quantifier’s range. Fortunately,
class 4 can be considered as a simpler variant of class 12
such that all evaluation plans presented for query class 12
also apply for class 4. The remaining classes are handled
in a technical report [CKMP97]. There we present simpli-
fication rules that allow the rewriting of those query classes
either to simple plans that can be evaluated very efficiently
or they are reduced to plans derived for classes 12, 15, and
16.

2.2 Running Example

We want to base the subsequent discussion on the database
schema shown in Figure 1. In this schema there are three
object types: Flight, Airport, and Airline. The relationships

Figure 1: 00 Schema of an Airline Reservation System
from and to between Flight and Airport are single-valued-
denoted by single-ended vectors. The relationship carrier
between Flight and Airline is also single-valued. We as-
sume that all three relationships are represented by corre-
spondingly named relationships (reference attributes) in the
object type Flight. The relationship lounges between Air-
line and Airport is multi-valued and is assumed to be repre-
sented as a multi-valued relationship (set-valued attribute)
in object type Airline.

Example queries for the classes 12, 15, and 16 (cf. Ta-
ble 1) are stated below:

l Query 1 (Class 12) retrieves those airlines that have
lounges in all US airports.

l Query 2 (Class 15) retrieves the airlines that do not
fly to Libya (i.e., all flights’ destinations are outside
Libya).

l Query 3 (Class 16) retrieves the airlines that have
lounges in all airports of their native country.

Query 1: Class 12 Query 2: Class 15 Query 3: Class 16
select al.name select al.name select alname
from al in Airline from al in Airline from al in Airline
where for all ap in where for all fin where for all ap in
(select ap (select f (select ap
from ap in Airport from fin Flight from ap in Airport
where apctry = “USA”): where al = f.canier): where apctry = alctry):
ap in aLlounges f.to.apctty != ‘Libya” ap in aLlounges

3 Alternative Query Evaluation Plans

In this section, we present evaluation plans for the three
main query classes. Beforehand, we have to introduce the
used algebra operators.

3.1 Algebra Operators

For the subsequent evaluation plans, we enhance OQL
by an “if . . . then . . . else . . .“-expression. It is use-
ful for rewriting outer restrictions as proposed in [Mur88,
SPMK95, CM95aJ. At the algebraic level, this is reflected
by an algebra operator

where Et, is the result if p evaluates to true and other-
wise EfdL is the result. Actually, the if-constructs are much
more often used in the simplification rules to optimize the
13 less important classes than in the plans derived here for
the three important classes.

As basic operator for reading an object extent we use the
notation

Eb,Al,. . . ,&I

for an extent belonging to object type E. It returns tuples
consisting of the object identifier e and projects on the (pos-
sibly set-valued) attributes Al,. . . ,A,,. The algebraic coun-
terpart of the “dot” operator in OQL is the expand opera-
tor x [KM90], also called, e.g., materialize [BMG93]. It
may be used both to retrieve attributes and to invoke mem-
ber functions of a referenced object. In this paper, we only
need the attribute access variant (The operator o denotes
tuple concatenation and g is a newly introduced attribute):

xg: &E) := {eo [g: e.a] 1 e E E}

To flatten (unnest) set-valued attributes we use the unnest
operator ~1. Applied on an object type E with a set of at-
tributes A and a set-valued attribute a @ A, it introduces a
new atomic attribute g:

pg&[A,a]) := {el.[A]o[g:ez] I el E E,e2 E el.a}

Furthermore, a scalar aggregation count(E) is used to cal-
culate the cardinality of a collection E.

Relational division El [Al ,A4 + E2[A2] is defined as fol-
lows, cf. [Mai83]:

El + E2 := {tjt E nA1 (El) A ({t} x E2) 2 El}

The anti-semijoin is defined as the complement of the
semijoin operator, cf. also [Gra93, Bry89b, RGL90]:

El &, EZ := {el lel E El A -3e2 E E2 : p(el ,e2)}

The binary grouping operator F [CM95a] is similar to a
join where the intermediate result is nested. That is, for ev-
ery tuple in the left (outer) operand, a set of matching tuples
from the right (inner) operand is constructed. This leads to
more efficiency [RRS91] due to a smaller representation of
the intermediate result. The nestjoin operator as defined
in [Ste95] has similar functionality. While the nestjoin ap-
plies a function to each element before it is added to the set,
the binary grouping operator r may evaluate a function on
the resulting group, replacing the group by the result value
and thus further diminishing its size (e.g., in case of an ag-
gregate function). The binary grouping operator is defined
as follows, cf. [CM95a]:

El [el] rgipif E&21 :=

{elo[g:Gllel EEI,G=~({~~~~~EE~AP))} (2)
For each tuple et of El, the inner relation E2 is selected by
p, is mapped by f, and the result is assigned to the new
attribute g.

3.2 Alternative Evaluation Plans for the Most Impor-
tant Cases

Let us now enumerate alternative query evaluation plans
for the three most important query classes 12, 15, and 16.

3.2.1 Query Class 12: p(ez), q(el,ez)

For illustration, we present the concrete plans for the ex-
ample query in Figure 2.

u = =ap(q,pnry~~~~~ WF$WW~~))
(a) Division @) Set Difference (c) AntiSemijoiu

ifu=0 /-\
then Airline[nmne] A~lineb4 4fme

Grouping with Counting (d) qualifying (e) not qualifying objects
%ame

I %lme
CC, =Cz

I
I

+0

Figure 2: Evaluation Plans for Query 1 (Class 12)
Division This is the principal case for applying the rela-
tional division operator (see, e.g., [Nak90] and [GC95]):

~~p(e*)(E2k*1)#0 (

(El[e11W4(e,,e2)E2[e21) ~-o,(e2)(E2[e~l),El[e11) (3)
If the selection cr,+r) (Ez[ez]) yields at least one object we
can also apply the predicate p to the dividend. We obtain
the following expression:

~Op(.*)(E2[E2])#0 ((El hl Y&+=*) q+?2) &kal))
+~,(,,~(E2[ezl),E1[ell) (4)

If the quantifier predicate q(el ,ez) is of the form e2 E
et JetAttribute-as will most often be the case in an object-
oriented or object-relational schema-the join can be re-
placed by an unnest (JJ) operator (see also the plan for
Query 1 in Figure 2(a):

if, pte2) (E2[e2])#0 (Pe2:setimibute(El h > setAt@u4)
+~,~,,)(E2[e2]),El[el]) (5)

Set Difference Using set difference, the translation is

E~hl-% ((Elk11 x~,(~,)(WZI))

- ~E&dY,(el,e2) q,(&hl))) (6)
This may be optimized to

El hl - (El [el] K 3+1,q) ~,(&2k21)) (7)
This plan is mentioned, e.g., in [Ste95], however using a
regular join instead of a semijoin.

Anti-Semijoin The anti-semijoin can be employed to
eliminate the set difference yielding the following plan (A
similar plan-without range predicate-was proposed in
[Ste95]):

EM ky(el,e2) 54~,)(E2[e21) (8)
The plan depends on the uniqueness of et, i.e., the at-
tribute(s) et must be a (super) key of El. This is especially
fulfilled in the object-oriented context if et constitutes the
object identifier (OID).

289

Grouping with Count Aggregation A common ap-
proach to express universal quantification in SQL is count-
ing. In the following evaluation plan, cl materializes the
number of objects satisfying the range predicate. On the
left-hand side, for each e\ E El the number of objects in E2
satisfying both the range and quantifier predicate is counted
and materialized in ci. The objects of El with equal count
values cl and ~2, i.e., the quantifier predicate is fulfilled for
all elements of the range, qualify.

x {[cl : count(o,(,,)(E2[e21))1) >I (9)
Plan (10) is an optimization of (9). Instead of counting
matches and comparing with the range count, mismatches
are counted.

He, (~=o@l hl &,(c,,ez);count (qe2) (E2k21))) (10)
Actually, as we will see in the quantitative evaluation,
plan (10) may be more costly than (9) due to the negation
of the quantifier predicate q which may prevent the appli-
cation of efficient join methods, e.g., hash join.

3.2.2 Query Class 15: p(el ,e2), q(e2)

Division The division operator is not directly applica-
ble for this class of universal quantification queries. The
division can only be applied if the divisor constitutes a
closed formula not dependent on the dividend. Here, the
quantifier’s range formula o~(~, ,+,*) (E2 [ez]) is obviously not
closed since it has the free variable el depending on the
outer level query over El.

According to the reduction algorithm of [Cod721 a divi-
sion plan would be

This plan is certainly not competitive because typically p
would be a selective predicate. Thus the join in (11) can be
expected to produce almost the Cartesian product. There-
fore, this plan was not further considered in the quantitative
evaluation.

Set Difference The set difference plan is

Eded -%, ((Ed4 Wp(e,,e2)E2k21)

- (WI1 Wp(e,,e*) qe,,E2k21>) (12)
Negating the quantifier predicate q and thus eliminating the
inner difference results in the following plan:

Elk11 - (Elk11 ~<p(e,,e2)~,q(eZ)(E2[e~l)) (13)

Anti-Semijoin The above “set difference” form can eas-
ily be transformed into an equivalent-and obviously more
efficient-anti-semijoin formulation:

El hl $(e,,eZ) %,(,,)(E2k21) (14)

It is also possible to move the predicate lq(e2) into the
anti-semijoin predicate-thereby creating a conjunctive
join predicate. Again, the uniqueness constraint of ei as
described for plan (8) applies.

Grouping with Count Aggregation

% (%=Q ((E&d rc2;p(el,ez);count qe,)(E2k21))

w (El hl L1;p(e~,e+o”“t E2k21))) (15)
Let us explain the above plan from right to left. In the right-
hand side’s binary grouping, for each object ei E El the
number of objects in the quantifier’s range is counted and
materialized in attribute cl. In the left-hand side’s binary
grouping, for each object of El the number of objects of
E2 that are in the quantifier’s range and satisfy the quanti-
fier predicate is counted in attribute ~2. The two relations
are joined on object identity-i.e., on equal ei-attributes-
and then the values cl and c2 are compared in the selec-
tion predicate. Equal count values guarantee that the corre-
sponding object ei E El qualifies.

The above plan appears to be rather inefficient in com-
parison to the anti-semijoin plan because it determines the
quantifier’s range twice. There are two possible optimiza-
tions: we could factor out the range computation or, as we
do in the next plan, we could collapse the two groupings
into one by negating the quantifier predicate.

6, (GO (4 hl rc;p(e,,e2);count tqe2) @2k21))) W)
This plan is very similar to the anti-semijoin plan except
that an object er E El is not discarded as soon as the first
disqualifying object e2 E E2 is encountered; rather the num-
ber of objects of E2 that disqualify er is counted. Therefore,
the plan does more work than is needed and, as a conse-
quence, cannot be better than the anti-semijoin plan.

3.2.3 Query Class 16: p(el,e2), q(el,ez)

Division Here, again, the range predicate depends on the
outer level variable ei . A valid division plan looks similar
to the one for case 15.

Set Difference A translation using set difference is

El hl - G, (@I hl Wp(e,,e2) E2b21)

- (E&l1 WP(C,,e2)~4(e,,e2) E2hl)) (17)

Anti-Semijoin The above query evaluation plan based on
set difference can also be formulated as an equivalent anti-
semijoin plan. First, the difference of the two join expres-
sions can be replaced by a semijoin:

El [el] - (El [ell #p(e,,ez)~14(c,,e2) E&d)
Finally, the remaining set difference is transformed into an
anti-semijoin which also “covers” the semijoin:

Et hl ~P(C,,eZ)~lq(el,EZ) Ed4 (18)
The uniqueness constraint of ei applies as discussed before
(cf. plan (8)).

290

Grouping with Count Aggregation The plans are basi-
tally the same as those devised for query class 15 above.

mapped to false. A predicate $+ with positive polarization

However, the quantifier predicate q(el , ez) cannot be eval-
means that a truth value unknown obtained by evaluating

uated beforehand by a selection on EZ but is transferred into
$ is mapped to true. We will assume that +I- has the
meaning ~(4~); that is, the polarization has priority over

the grouping predicate by a conjunction: negation. Then the following equivalence holds:

ne, %=c2 (CEl hl r~2;p(el,el)hq(el,e2);count E2k21)
-l+- = (+)+ (21)

Using this polarization notation we redace the range and
w CEl Lell rq;p(el,ez);count E2[4))) (19)

=e, (Oc=O CEl Fe11 rc;p(el,e2)A~y(el,e*);count E2[4)) (20)

3.3 Null Values

In this subsection, we will revisit our equivalences under
the aspect of unknown attribute values. The ODMG stan-
dard [Cat961 addresses null values only for object refer-
ences (nil references). Since null values are, however, inte-
gral part of SQL, we will assume SQL semantics [MS931
for null values, i.e., we use a three-valued logic with a third
value unknown. In this three-valued logic the truth value of
(trueAunknown) is unknown, of &dseAunknown) is false,
of (truevunknown) is true, of (falsevunknown) is unknown,
and (Tunknown) is unknown. An object qualifies for a sub-
query if the value of the selection predicate is true; an un-
known value of the query predicate is implicitly mapped to
false.

quantifier predicates p(. . .) and q(. . :) in all evacation
plans (3)-(20) by p- (. . .) and q- (. . .) . That way, unknown
values obtained by evaluating p or q are always mapped
to false before further processing the composite predicate.
We will demonstrate the correctness of this approach on
two example plans for query class 12: First, we consider
the “null value robust” variant of plan (7):

In the presence of null values the semantics of the OQL
query

select el from el in El where for all e2 in
select e:! from ep in E2 where p: q

has to be refined to the following calculus formula:

Q z {el E El I ve:! E {ez E & I p(el,ez)}: q(el,ed} (1’)

Note that in the presence of null values this expression has
a different semantic than the previously stated calculus for-
mula

Q - {el E El I ‘h E EZ : (P * q)} (1)

Take a fixed object ei E El and consider an object eh E E2
for which p(e; , e!J evaluates to unknown. According to (1’)
the object eh is discarded from the range such that the out-
come of q(e’r, eh) is irrelevant for the “fate” of e’, . However,
in the calculus formula (1) the entire predicate p(e\ , e;) =S
q(e\, ei) with the standard meaning lp(e\ , e!J V q(e\ , e!J
is evaluated. Therefore, if q(e\,e;) evaluates to false or
unknown the composite predicate p 3 q evaluates to un-
known-given that p(e; , e!J was unknown. Consequently,
e’1 is discarded from the result.

In order to enforce the intended semantics of OQL
queries we have to slightly modify the evaluation plans
devised in Subsection 3.2. For this purpose we utilize a
notation introduced by [vB91] which we call polarization:
A predicate $- with negative polarization means that af-
ter evaluating $ a possibly obtained truth value unknown is

Elk11 - (E&t1 KY-(el,eZ) ~p-(e,)(E2[~21)) (7’)
The negatively polarized range predicate p-(ez) maps un-
known predicate values to false, thus dropping objects ez
with unknown range predicate from the range subquery.
According to the equivalence (21), the semijoin predi-
cate lq-(el ,e2) yields true for an unknown truth value,
such that an object pair (el,e2) for which p(e2) holds but
q(el, e2) is unknown qualifies for the semijoin result and is
correctly subtracted from the final result.

Next, we consider the anti-semijoin plan:

(8’)

In this plan, corresponding to plan (8), the range predicate
p-(e2) remains the same as above, again discarding ob-
jects e2 with unknown result of p(e2) from the range. The
anti-semijoin predicate Tq-(el , e2) again becomes true for
an unknown quantifier predicate q-because of equiva-
lence (21). Consequently, the object el does not qualify for
the query result, since the anti-semijoin only returns objects
er with no match found.

It is fairly straightforward to verify the validity of this
approach to treat unknown for the remaining plans.

4 Query Evaluation
For comparison of the different evaluation plans, we ex-
ecuted them using our query engine. Its architecture and
some special operators are described in the following.

4.1 Architecture of our Query Engine

The query engine is based on the Merlin client/server stor-
age system [Ger96]. The Merlin system consists of a multi-
threaded page server and a C?+ library that provides the
client run time system, including basic components like
storage manager and page buffer. The query engine con-
sists of a query compiler and an operator library. The com-
piler accepts evaluation plans as input and generates a C++
driver program that is linked with the operator library. The
library provides common relational and object-oriented al-
gebra operators, each encapsulated into a C++ class as an

291

iterator [Gra93]. The hashing variants of matching opera-
tors, e.g., join, set operations, and duplicate elimination use
hybrid hashing [Sha86, Gra93].

4.2 Implementation of the Algebra Operators

Hash Division We have implemented the relational divi-
sion based on hashing as proposed in [GC95]. The algo-
rithm employs two hash tables, a divisor hash table to map
divisor objects to a unique number and a quotient hash ta-
ble to map each quotient candidate to a bit vector. The bit
vector contains one bit position for each divisor object to
keep track of the matched divisor objects (quotient candi-
dates with all bits set are returned as result). Since the bit
vector size scales proportionally to the number of divisor
objects, a large number of divisor objects causes large bit
vectors, necessitating quotient partitioning.

Anti-Semijoin For an anti-semijoin El I?,, E2 all com-
mon implementation alternatives like sort merge, hash, and
nested-loops come into account. We have implemented
block nested-loop and hybrid hash variants. Since a semi-
join is not symmetric, there are two variants of each algo-
rithm.

As a nested-loop algorithm, the input stream that will be
returned from the operator (El) is used as outer loop. The
inner loop is scanned once for each cluster of outer blocks.
A bit vector containing one bit for each outer record is used
to mark if a match has been found for the record. The inner
scan may be terminated early if a match has been found for
all records. Those records with their bit not set are returned.
The other variant of the nested-loops join algorithm (inner
loop to be returned as result) does not seem to be useful
since for all records of the inner input, the operator has to
remember which records have already been returned, ei-
ther by a bit vector or by writing the remaining records to
a temporary file for each scan. An index nested-loops im-
plementation might be advantageous, especially if the join
predicate contains only the index key attribute, such that the
retrieval of the record (object) itself is not even necessary.

The hash variants of the anti-semijoin have been de-
rived from the full hash join which uses the aforementioned
hybrid hashing scheme. Again, two variants are possi-
ble: one returning records from the build input (build I?
probe, called semi-build), the other returning probe records
(build R probe, called semi-probe). The semi-probe al-
gorithm is straightforward: As soon as a matching build
record is found in the hash table, the probe record is
dropped, otherwise it qualifies for the result. The semi-
build uses a bit vector like in the nested-loop implementa-
tion. Both hash variants work without problems if one or
more partitioning levels are required.

In comparison to the nested-loop algorithm, hashing
suffers from the restriction that it is only generally appli-
cable for equi-joins. This condition may be relaxed to the

demand that at least one logical factor in a conjunctive
join predicate must be an equality-comparison. This means
that hashing is not directly applicable for predicates like
e2 E el .SetAttribute, but works for a conjunctive predicate
e2 E el .SetAttribute A et .a = e2.b by performing hashing
over the second factor and then verifying the truth of the
first [Gra93].

Grouping The implementation of a binary grouping op-
erator El rg.p;aggr E2 as used for our application, i.e., per-
forming an aggregation on the groups, is similar to a semi-
join. The hash implementations are based on the cor-
responding semijoin variants semi-build and semi-probe.
The result set consists of all objects er E El, each aug-
mented by an attribute g for the aggregate value. If no
matches are found for a specific er, g is set to a default
value (e.g., 0 for count aggregation). Based on the semijoin
implementation, partitioning is applicable. The intermedi-
ate aggregate results are merged as discussed in [CM95b].
Since the group members may be dropped immediately af-
ter they are processed by the aggregate function, the oper-
ator will perform more efficiently than a full join, however
more costly than a semijoin, since all records of El are re-
turned and no early abort (after first match) is possible. A
nested-loops implementation is straightforward.

Element Test and Set Comparison For predicates like
e2 E el.SetAttribute a set element test is needed. In our
object model implementation, sets are stored as variable-
length unsorted lists. Apart from a naive scan through the
list, sorting in combination with binary search is feasible.
The lists are sorted on demand as soon as an element test is
carried out.

For anti-semijoin plans, the repeated element test e2 E
el.SetAttribute iterating through a fixed set of elements
e2 E S, can be replaced by a subset test S G el .SetAttribute.
This allows to introduce a cardinality test: If the number
of elements in S is larger than the number of elements in
el .SetAttribute, the subset test returns false immediately
(Of course, the presence of duplicates in the (multi-)set S
has to be precluded). Otherwise, the subset test must really
be carried out, i.e., the sets are sorted (if necessary) and
compared in a single linear scan. The “smart anti-semijoin”
variant of Query 1 employs this subset test. Details about
set comparison techniques in join predicates, especially
signature-based set comparison, are discussed in [HM97].

5 Benchmarking

In this section, we present performance experiments com-
paring the alternative evaluation plans that we have dis-
cussed in Section 3.

5.1 Benchmark Platform Parameters

The experiments were performed with the query engine as
described in the previous section. The query client and

292

Table 2: Database Configurations
page server were run on two separate two-processor SUN
SparcStation 20/502MP under Solaris 2.5. The database
was held on the server’s disk of type Seagate ST3 123OWC
with an average access time of 10.4/l 1.4ms (read/write).

For the first set of experiments, we have generated
two different databases. A small one for initial assess-
ment and a larger one. Table 2 shows the size and car-
dinality of both databases. All attribute values except for
Airline.lounges were pseudo-randomly generated and dis-
tributed uniformly. The cardinality of the set-valued at-
tribute Airline.lounges was also distributed uniformly in a
certain range. For an easy modification of the selectivity
of oapaV=‘usA’ and Oapav!=‘Libya’r apctry is an integer at-
tribute and the predicate is in fact a comparison with an
mteger constant, e.g., bapnrys2c. Note that this transition
from an equality predicate to a range predicate does not
change the examined evaluation plans. The individual set
elements of lounges have been filtered such that the num-
ber of US-airports is higher than average, in order to get a
non-empty result for Query 1.

In our query engine, memory allocation is performed on
a per-operator basis. For each hash table and for each ex-
tension scan operator a memory area of 1SMB was used,
such that more complex plans employing several hash ta-
bles get more resources than simpler ones. If we had as-
signed a unique global amount of memory to all plans,
the performance gap between cheap ones (especially anti-
semijoin plans) and more expensive plans like set differ-
ence would have become even larger. Since we wanted to
assess the “pure” evaluation plans, we have not created any
indexes for the experiments.

5.2 Benchmark Results

Small DB (Figure 3 - Figure 5) Let us start with
Query 1. Figure 3 shows run times for all evaluation plans
presented in Section 3. In addition, a “canonical” plan with
a nested-loop implementation is evaluated. On the x-axis
the selectivity of the range predicate, i.e., ~~,,@ry=‘(I~A’, has
been varied. This influences the number of Airport records
in the divisor respectively in the join input. (Note the log-
arithmic scaling in this and some of the following plots.)
The query result cardinality ranges from 576 objects at the
leftmost point (selectivity=0.002) to 0 records on the right.
The run times of the hash-based evaluation plans are all in
the same order of magnitude. Division shows a slight run
time increase with growing number of airports qualifying
for the range. This is due to the increasing number of di-
visor records, resulting in more entries in the divisor hash

table and larger bitmaps in the quotient hash table. Count-
ing matches-denoted “count pas” in the figures-shows
the same tendency. Set difference shows nearly constant
run time, while anti-semijoin run-time decreases with in-
creasing number of airports in the range. The reason is
that a larger number of airports causes an earlier disqual-
ification of airlines, especially in the “smart” implemen-
tation where the cardinalities of both sets are compared
first. For counting mismatches-denoted “count neg”-no
hash implementation is possible. Consequently its nested-
loops implementation is only competitive for a very small
number of airports in the range and behaves similar to the
“canonical” variant for a larger airport count.

For Query 2 (Figure 4), the result ranged from one
record at the left-most point to 959 records at the right-
most end. Anti-semijoin and count negative are the fastest
plans. Both use only a single hash table, as opposed to
set difference and count positive, using two and three hash
tables, respectively. Since in this query, the quantifier pred-
icate is not a set comparison, anti-semijoin cannot exploit
the comparison of set cardinalities. The growing execution
time for count positive is caused by the increasing number
of matches in the final join, whereas the final difference in
the set difference plan becomes cheaper.

The result of Query 3 cannot be changed by simply mod-
ifying a constant in a selection predicate, since both range
and quantifier predicate are join predicates, i.e., they both
depend on et and e2. For this reason, we present only single
bars for each plan (Figure 5). Again, anti-semijoin is the
best plan, followed by count negative. Set difference and
count positive show similar run times around 2 seconds,
while the “canonical” nested-loop implementation again is
an order of magnitude more expensive than anti-semijoin.

Large DB (Figure 6 -Figure 8) After this initial assess-
ment, we have scaled our database to an amount of 10.000
objects of each type. The results (Figures 6-8) confirm the
initial assessment. For all three queries, the anti-semijoin
plan remains the winner. Figure 6 shows the run-times
for Query 1. Division causes moderate costs by the quite
large bit vectors stored in the quotient table (up to 1250
bytes for 10000 divisor records), leading even to quotient
partitioning-causing the drastic increase in run time at the
right-hand side of the figure. Set difference shows nearly
constant run time, while anti-semijoin draws profit from the
“early abort”. Especially “smart antisemi” is very cheap
because of the cardinality test. Count positive contains
three hash operations and thus performs only moderately,
while the run times for the nested-loop plans “count nega-
tive” and “canon” are several orders of magnitudes higher.

In the plot for Query 2 (Figure 7), the canonical variant
is omitted (run time of approx. 2000 set). The remain-
ing four plans behave as before. Figure 8 shows a similar
scenario for Query 3.

293

0.1' .'
0.001 0.01 0.1 1

s&ctii of range prediiate

1' I

0 0.2 0.4 0.8 0.8 1
sekWilyofran9epredicate

Figure 3: Query 1, Small Database Figure 4: Query 2, Small Database

selectivity of range predicate

Figure 6: Query 1, Large Database

40 . ..* _....
3 smaitantis8mi

s30
'Z

20

0
0 20 quoti4~Vdivide6nod[%] 80 100

-*-*___.._._...____--...---- *___
IOQ

H

l----l

CM --s-
antisemi .)#

E
count pas ---+--

.S coun1neg ---e-.

10
ca"m . . * _..

18

18

14

12

z 10

E" 8 .Z

Figure 5: Query 3, Small Database

18, I
18 _______- ----W

14 --.-_____ --3c _____

0 0.2 0.4 0.6 0.8 1
selectivity of range predicate

dii anlisemicntpos mtneg canon

Figure 7: Query 2, Large Database Figure 8: Query 3, Large Database

40 50 80 70 80 90 (99 IOC
prob.divisor-apelementoflwnges[%]

Figure 9: Query 1: Changing the Result Cardinality Figure 10: Query 1: Changing Probability for divisor-ap E lounges

Looking at the Result Cardinality In the following ex-
periment, we wanted to investigate the influence of the re-
sult cardinality upon query run time. For this purpose,
Query 1 was run on variants of the small database with
modified lounges attribute. Given a range of 318 airport
objects, three databases were built. The first one with a
lounges cardinality uniformly distributed between 3 17 and
3 18 with airport references chosen from the range. On this
database, about 50 percent of the airline objects qualified
for the result. In the same way, two further databases were
built, one with constant lounges cardinality of 318 (i.e.,
all airlines qualified for the result), and another one with
lounges cardinality between 3 15 and 3 18, selecting roughly
25 percent of the airlines for the result. The 0 percent mark
was obtained by raising the range to 319, such that no air-
line qualified. Figure 9 shows the run time for the different
plans of Query 1. While division and counting are hardly
influenced by the result cardinality, both anti-semijoin vari-
ants draw profit on the fact. This gain is caused by cardinal-

ity comparison and a cheap element/subset test by means
of sorting. The set difference plan requires an additional
hash operation and is thus more expensive than naive anti-
semijoin.

To avoid the early abort of the smart anti-semijoin due to
mismatching cardinalities, the (rather unrealistic) scenario
was built that all lounges sets and the range have the same
cardinality of 3 18 elements. Instead of the cardinality, the
probability for each of the 318 airports in the range (i.e.,
USA airports) to be element of a lounges set has been var-
ied. Figure 10 depicts the run times of the different plans
for Query 1. The anti-semijoin plans show nearly constant
run times (although the run time for the naive variant in-
creases at a probability close to 100 percent due to an in-
creasing number of element tests), while the run time of
division and counting plans increases with the number of
hits for the quantifier predicate. Since the query result set
is empty except for probabilities close to 99 percent, we
have zoomed the area around 99 percent in the plot.

294

6 Conclusion

We investigated the processing of queries with universal
quantification from tire source level over algebraic rewrit-
ing down to query plan generation and evaluation. Due
to our main focus on object-oriented and object-relational
data models, we were able to derive more valid and much
more efficient algebraic rewritings than known from the re-
lational context. The correct handling of null values was
incorporated into the equivalences.

The quality of the different evaluation plans was eval-
uated by a performance analysis on some sample data-
base configurations. The quantitative analysis has revealed
that-especially if set-valued attributes can be employed-
the new anti-semijoin-based plans are superior to all other
alternatives, even if we employ the most sophisticated di-
vision algorithms. This is due to the fact that the anti-
semijoin is able to draw profit from object-oriented fea-
tures like object identity and the compact representation of
multi-valued relationships.

Acknowledgements

We thank the anonymous referees for many helpful com-
ments. We also thank Gunther Buchner for implementing
the division algorithm.

References
[BMG93] J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences

building the Open OODB Query Optimizer. In Prac. af the ACM
SIGMOD Can& an Management af Data, pages 287-295, Washington,
DC, USA, May 1993.

[Bry89a] F. Bry. Logical rewritings for improving the evaluation of quan-
tified queries. In Int. Crmf on Mathematical Fundamentals of Da-
tabase Systems, volume 364 of Lecture Notes in Computer Science
(LNCS), pages 100-116, June 1989.

[Bry89b] F. Bry. Towards an efficient evaluation of general queries:
Quantifier and disjunction processing revisited. In Prac. af the ACM
SIGMOD Can$ an Manugement of Datu, pages 193-204, Portland,
OR, USA, May 1989.

[Car861 J.V. Carlis. A relational algebra operator, or divide is not enough
to conquer. In Prac. IEEE CanjI an Data Engineering, pages 254-261,
New York, USA, 1986.

[Cat961 R. G. G. Cattell. The Object Database Stanakrd - ODMG-93.
Morgan-Kaufmann Publishers, San Mateo, CA, USA, 1996.

[CKMP97] J. Claussen, A. Kemper, G. Moerkotte, and K. Peithner. Op-
timizing queries with universal quantification in object-oriented and
object-relational databases. Technical Report MIP-9706, Universitit
Passau, 94030 Passau, Germany, March 1997.

[CM95a] S. Cluet and G. Moerkotte. Classification and optimization of
nested queries in object bases. Technical Report 95-6, RWTH Aachen,
1995.

[CM95b] S. Cluet and G. Moerkotte. Efficient evaluation of aggregates
on bulk types. In Pmt. Int. Workshop an Database Pragramming Lrm-
guages, 1995.

[Cod721 E. F. Codd. Relational completeness of data base sublanguages.
In R. Rustin, editor, Database Systems, pages 65-98. Prentice Hall,
Englewood Cliffs, NJ, USA, 1972.

[Dat97] C. J. Date. A Guide to the SQL Standard. Addison-Wesley,
Reading, MA, USA, fourth edition, 1997.

[Day871 U. Dayal. Of nests and trees: A unified approach to processing
queries that contain nested subqueries. In Pmt. af the Can5 an Very
Large Data Bases (VLDB), pages 197-208, Brighton, England, 1987.

[Day831 U. Dayal. Processing queries with quantifiers: A horticultural
approach. In Pmt. ACM SlGMOD/SIGACT Car@ an Print. of Data-
base Syst. (PODS), pages 125-136, Atlanta, USA, March 83.

[GC95] G. Graefe and R. L. Cole. Fast algorithms for universal quan-
tification in large databases. ACM Trans. an Dutabase Systems,
20(2): 187-236, June 1995.

[Ger96] C. A. Gerlhof. Optimierung van Speicherzugri$&asten in Ob-
jektbanken: Clustering und Prefetching, volume 18 of Dissertationen
zu Datenbanken und Infarmatianssystemen. infix-Verlag, Ring&. 32,
53757 Sankt Augustin, 1996. (in German).

[GL87] R. A. Ganski and H. K. T. Long. Optimization of nested SQL
queries revisited. In Prac. af the ACM SIGMOD Can$ on Management
of Data pages 22-33, San Francisco, USA, May 1987.

[Gra93] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73-170, June 1993.

[HM97] S. Helmer and G. Moerkotte. Evaluation of main memory join
algorithms for joins with subset join predicates. In Prac. of the Canf:
on Very Large Data Bases (VLDB), Athens, Greece, August 1997.

[HP951 P.-Y. Hsu and D. S. Parker. Improving SQL with generalized
quantifiers. In Prac. IEEE Canf an Data Engineering, pages 298-305,
Taipeh, Taiwan, 1995.

[JK83] M. Jarke and J. Koch. Range nesting: A fast method to evaluate
quantified queries. In Prac. of the ACM SIGMOD Cans an Manage-
ment af Data, pages 196-206, San Jose, USA, 1983.

[KM901 A. Kemper and G. Moerkotte. Advanced query processing in
object bases using access support relations. In Prac. of the Conf an
Very Large Data Bases (VZDB), pages 290-301, Brisbane, Australia,
1990.

[Mai83] D. Maier. The Theory aflelatirmul Databases. Computer Sci-
ence Press, Rockville, MD, USA, 1983.

[MS931 J. Melton and A. R. Simon. Understanding the new SQL: a
complete guide. Morgan-Kaufmann Publishers, San Mateo, CA, USA,
1993.

[Mur88] M. Muralikrishna. Optimization of multiple-disjunct queries in
a relational database system. Technical Report #750, University of
Wisconsin-Madison, February 1988.

[Nak90] R. Nakano. Translation with optimization from Relational Cal-
culus to Relational Algebra having aggregate functions. ACM Trans.
an Database Systems, 15(4):5 18-557, December 1990.

[RBG96] S. G. Rao, A. Badia, and D. Van Gucht. Providing better sup-
port for a class of decision support queries. In Prac. af the ACM
SlGMOD Co~jI an Management of Data, pages 217-227, Montreal,
Canada, June 1996.

[RGL90] A. Rosenthal and C. Galindo-Legaria. Query graphs, imple-
menting trees and freely-reorderable outerjoins. In Prac. of the ACM
SIGMOD Co~f on Management of Data, pages 291-299, May 1990.

[RRS91] A. Rosenthal, C. Rich, and M. Scholl. Reducing duplicate work
in relational join(s): a modular approach using nested relations. Tech-
nical report, ETH Zurich, 1991.

[Sha86] L. D. Shapiro. Join processing in database systems with large
main memories. ACM Trans. an Database Systems, 11(9):239-264,
September 1986.

[SPMK95] M. Steinbrunn, K. Peithner, G. Moerkotte, and A. Kem-
per. Bypassing joins in disjunctive queries. In Proc. of the Calf on
Very Large Data Buses (VLDB), pages 228-238, Zurich, Switzerland,
September 1995.

[Ste95] H. J. Steenhagen. Optimization @Object Query Languages. PhD
thesis, University of Twente, October 1995.

[Sto96] Stonebraker. Object-Relutional DBMSs: The Next Great Wave.
Morgan-Kaufmann Publishers, San Mateo, CA, USA, 1996.

[vB91] G. von Btiltzingsloewen. SQLAnfragen - Optimierung fiir par-
allele Bearbeitung. FZI-Berichte Informatik. Springer-Verlag. New
York, Berlin, etc., 1991. (in German).

[WMSB90] K. Y. Whang, A. Malhotra, G. Sockut, and L. Bums. Sup-
porting universal quantification in a two-dimensional database query
language. In Prac. IEEE Cant an Data Engineering, pages 68-75,
L.A., CA, February 1990.

295

