
Principles of Optimally Placing Data in Tertiary 
Storage Libraries 

Stavros Christodoulakis* Peter Triantafillou* 
{stavros, peter, fenia}@ced.tuc.gr 

Fenia A. Zioga* 

Multimedia Systems Institute of Crete (MU.S.I.C.), Technical University of Crete (T.U.C.) 
P.O. Box 133, Chania 73100, Greece 

Abstract 

Recently, technological advances have resulted 
in the wide availability of commercial prod- 
ucts offering near-line, robot-based, tertiary 
storage libraries. Thus, such libraries have 
become a crucial component of modern large- 
scale storage servers, given the very large stor- 
age requirements of modern applications. Al- 
though the subject of optimal data placement 
(ODP) strategies has received considerable at- 
tention for other storage devices (such as mag- 
netic and optical disks and disk arrays), the 
issue of optimal data placement in tertiary 
libraries has been neglected. The latter is- 
sue is more critical since tertiary storage re- 
mains three orders of magnitude slower than 
secondary storage. In this paper, we address 
this issue by deriving such optimal placement 
algorithms. First, we study the ODP problem 
in disk libraries (jukeboxes) and subsequently, 
in tape libraries. In our studies, we consider 
different scheduling algorithms, different con- 
figurations of disk libraries and different tape 
library technologies (reflecting different exist- 
ing commercial products) and show how these 
impact on the ODP strategy. 
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1 Introduction 

In large scale storage servers which are configured to 
include multiple on-line and off-line storage media and 
which deal with a large number of requests with un- 
predictable access patterns, the problem of minimizing 
the cost of accessing data stored in all media is critical 
for the performance of the system. 

In this paper we examine tape and disk libraries for 
which we derive data placement algorithms in order to 
optimize the access cost. Typical tape/disk libraries 
include a few drives and many more (typically a few 
hundreds) disks/tapes. Disks/tapes are loaded onto 
the drives or unloaded from them by a robotic mech- 
anism which typically consists of one arm. When a 
particular “loaded” object is requested the disk/tape 
drive head first places the read head onto the disk/tape 
location where the object resides and then reads the 
object. The components of the access cost which re- 
flect this sequence of actions during an object access 
are: 

l Robot cost (Trobot), i.e., the time needed for the 
robot arm to unload an on-line disk/tape and load 
a requested off-line one. 

l Head Positioning cost (T,heeeakd), i.e., the delay due 
to the placement of the disk/tape drive head on 
the appropriate disk/tape location (Thead). In 
the case of disks, the positioning cost includes 
the seek to the appropriate track and the rotation 

CC%%on ) to the appropriate sector of the track. 
In the case of tapes, the positioning cost includes 
only the search operation (Tsh,eanp,h) to the appro- 
priate tape location where the object resides. 

l Transfer cost (Ttransfer), i.e., the time needed for 
the head to read the object. 

When a request arrives for an object stored in the 
library the following events occur: 

236 



4 

b) 

C> 

First, the tape/disk that contains the requested 
object must be located and if it is off-line it must 
be exchanged with an on-line “victim” tape. The 
selection of the “victim” tape/disk is determined 
by a replacement algorithm. This tape/disk ex- 
change process takes Trobot seconds and depends 
on the particular hardware of the library while 
it has been found to be independent of the par- 
ticular tape/disk that is requested each time and 
the distances traveled by the robot arm ([Che94]). 
Typical values for the total robot delay range from 
10 to 30 seconds. 

Secondly, the tape/disk head locates the re- 
quested object within the tape/disk in T,h,“,4p,, (or 
T:tAd + Tag’&,) seconds. 

Finally, the object is read by the head in Ttransf eT 
seconds. 

The alternative placement schemes impact on some 
of the components of the access cost, not all of them: 
the transfer cost is always paid regardless of the place- 
ment and hence is not taken into account in the cost 
minimization’. On the contrary, TSheykd, TShey$, and 
Trobot are affected by the placement strategy. 

1.1 The Problem 

Accessing tertiary libraries is typically at least 3 or- 
ders of magnitude costlier than accessing secondary 
storage. Yet, related research has neglected the issue 
of optimal data placement in tertiary storage while 
the issue has received considerable attention for disk 
based secondary storage ([Chr97c], [ChrSl] [Chr97b], 
[Tri97a], [Tri97b], and [Won83]). In this paper, we ad- 
dress the issue of optimal data placement in tertiary 
storage in order to minimize the expected access cost. 

The access cost in disk libraries is dominated by the 
disk exchange operation since it takes many seconds 
(while head positioning takes on average less than 20 
ms). In tape libraries, both the head positioning delay 
and the robot delay (as defined above) participate in 
the estimation of the access cost. Even high-end tape 
drive products have a seek delay of more than one 
second per GB. 

This paper focuses on the issue of minimizing the 
delay of random accesses in both tape and disk li- 
braries. We consider a disk/tape library consisting of 
T disks/tapes and D drives and a set of 0 objects with 
different access probabilities. The access cost depends 
on the placement strategies that: 

‘Since the rotation component of the head positioning cost 
does not depend on the placement, the term head positioning 
delay will refer to the seek delay only. 

1. determine which objects are placed onto which 
media, and 

2. determine the order with which the objects of 
some media are placed in it ([Tri97b]). 

For disk libraries, only placement strategies that de- 
termine which objects are placed on which disks are 
relevant. For tape libraries the placement strategies 
must solve the problem at both levels. 

The paper is organized in five sections. In section 2 
an overview is provided describing the mathematical 
tools that are used throughout the paper and which 
are based on the Majorization theory and the theory 
of Schur functions. In section 3 the optimal placement 
problem for single and multiple drive libraries and un- 
der different scheduling algorithms is examined and 
solved. In section 4 the problem is solved for tape li- 
braries and optimal algorithms are derived for different 
tape library technologies. Finally, section 5 contains 
concluding remarks and summarizes the results. 

2 Mathematical Tools 

Majorization Theory and Schur Functions 

Let us consider two decreasing probability vectors 
p’ = (pr, . . . ,pn) and < = (ql, . . . , qn). Formally, we 
say that i; majorizes & which is symbolized as <+p’, 
if Z=lPi 2 X:=1 Qi for all j < n and CyZlpi = 
Cy=r qi. Intuitively, p’ majorizes 4’ implies that p’ is 
a “more skewed vector” than ii. The concept of ma- 
jorization can be used to compare the values of func- 
tions of vectors that are of a specific kind (Schur func- 
tions) . 

If a function I#I : R” + R is Schur convex (or 
Schur increasing) and p’ majorizes 4, then $(p’) 2 
I$({). If a function 4(x) is a Schur concave (or Schur 
decreasing) and p’ majorizes cl, then #J(G) < 4(G). 

A necessary and sufficient condition for a continu- 
ously differentiable function 4 : R” + R to be Schur 
convex (concave) is that 4 is symmetric on R” and for 
all i # j: 

where each xi is a component of the vector x’ = 
(a,..., tn) (see [Mar79]). 

Using the properties of Schur functions we have 
proved (see [Chr97a]) the following lemma which will 
be applied in the cost analysis: 

Lemma 1: Let p’, &Qn be two decreasing real-valued 
vectors and assume that p’majorizes f, that is f+ F. 
Then n 

Cj.Pj Iej.qj 
j=l j=l 
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i.e., the sum of the products j pi is minimized for 
the most skewed vector. 

Proof 

See [Chr97a] and [Mar79]. 

3 Disk Libraries 

Let D denote the number of disk drives in our system 
and T be the total number of disks. The disks have 
identical storage and functional characteristics. There 
are 0 equally sized objects each having access proba- 
bility pi, i = 1, . . . ,O, that must be placed onto the 
T identical disks. Each disk can hold K objects. The 
number of object locations across all disks is equal to 
the number of objects 0 that must be placed in them. 
We assume that no replication of objects is allowed. 
We also assume a steady system state in which all 
drives are loaded. Let d” denote the ith disk of the 
library (i = 1,. . . , T) and 1; be the jth storage loca- 
tion within the ith disk di. Table 1 summarizes the 
parameters of our system. 

Table 1: The parameters of our system. 

cumulative probability of the j 

n F I (P’,..., nT) row nrobabilities. n 

_ 22 (Pl,.. . , pi) column probabilities. 

p’i (pi,.. . ,p”,) probabilities of jth tape. 
Pj (pj,... , p:) probabilities of jth column. 

We define pj to be the probability that the ob- 
ject stored at location lf is requested. The cumu- 
lative probability p” that the disk d’ is requested is 
pi = c;zlp;. W e d fi e ne pj to be the cumulative prob- 
ability that an object stored at any of the lj locations 
of the T disks is requested. The probability pi is then 
pj = CT=, pj. The disks of the library can be viewed 
as a 2-dimensional array in which rows correspond to 
disks and columns to object locations within the disks. 
Then we can define the vector consisting of the row 

probabilities @ = (p’, . . . , pT) and the vector consist- 
ing of the column probabilities pc = (~1, . . . , pK) of 
the array. 

We wish to determine the optimal placement of the 
0 objects onto the T. K storage locations of the disk 
library. This placement problem can be viewed as a 
two-level problem: 

1. Decide which objects must be placed onto which 
disk. 

2. Given the objects to be placed within each disk, 
determine the precise mapping of these objects to 
the storage locations of the disk. 

For disk libraries, the expression “placement problem” 
refers to the first level problem of allocating objects to 
disks. As for the second level problem the related lit- 
erature (see [ChrSl, Chr97c, Tri97a, Won83]) provides 
various solutions. 

We characterize as optimal the placement scheme 
which results in the minimum expected number of disk 
exchanges for a random request. 

We should note that there are two factors that affect 
the minimization of the disk exchange cost: 

The placement strategy itself of the 0 objects 
across the T disks. 

b) The algorithm employed in selecting the next disk 
to load (i.e., given a number of requests in a queue 
waiting for tertiary storage service, which request 
will be selected for service next and hence which 
one of the referenced disks will be loaded next). 

3.1 Disk Library with a Single Drive 

Let us first consider the case of D = 1 and T > 1, that 
is, there is only one disk drive in the system and many 
disks. This means, that each time only one from the 
T disks can be on-line. 

3.1.1 Optimal Placement with FCFS Schedul- 
ing 

The access cost C$ij, is the expected disk exchange 
delay that is caused by a random request. Let Trobot be 
the time taken for an on-line disk to be removed from 
its drive and be replaced by an off-line disk. Trobot is 
independent from the relative position of the disks on 
the shelves ([Che94]). 

Let pezehange be the probability that a disk ex- 
change is triggered by a random request. Then: 

pexchange = &“(l -Pi> 
i=l 
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The product #(l-p”) is the probability that the disk 
d” is requested (which occurs with probability pi) and 
it is not on-line because the previous request had not 
requested it (which occurs with probability (1 - p”)). 
The summation over all disks expresses the fact that 
the requested disk may be any disk. The expected disk 
exchange delay is: 

8’ (p) = %bot . &xtxhange = i’-iobot disk ep’(l -Pi) 

i=l 

Theorem 1: The function C$~,(~) is Schur 
concave. In other words, for all i # j 

Proof 

In our case, the partial derivative of the cost function 
with respect to p” is 

Thus: (p” - pi) ( !$$ _ ?$$ ) = (p” - pi)[(l - 

2~“) - (1 - 2#)] = 2(p” - #)(# - p”) 5 0. The above 
equation holds for all i # j. Moreover, C~,‘?,(~) is 
symmetric. 0 
This result is interpreted as follows: since the row 
probability vector P’ E RT has as components the cu- 
mulative probabilities of the disks (@ = (p’ , . . , pT)), 
if Sr, S2 are two different placement schemes which re- 
sult in the row probability vectors p’, ?‘” and p’ 
4 P’, then the cost function is minimized when the 
placement Ss is enforced (see section 2). This is true, 
since the row probability vector which is produced by 
Sz majorizes the corresponding vector of Sr scheme 
and thus C$,(?) < C$i!,(?). The optimal place- 
ment scheme SoPt is then the scheme with row vector 
F&t such that P” < F&t where P” is the row vector 
that any placement scheme other than SOPt produces. 
In other words, we must place the objects in the disks 
in such a way that the resulting row vector majorizes 
all other possible row vectors. Such an optimal place- 
ment algorithm is presented below. 

Algorithm 1: ODP in Disk Libraries 

Initialize FreeDisks to include all system disks: 
FreeDisks=(dt, . . , 8). 

Initialize UnallocatedObjects to include all system 
objects: UnallocatedObjects=(O~, . . . ,Oo). 

Set dnert to d’. 
while the set UnallocatedObjects is not empty do 

begin 
Select from the set UnallocatedObjects the Ii’ 
objects having the maximum cumulative 
probability. 
Place the selected objects on disk dnext. 
Remove the selected objects from the set 

UnallocatedObjects. 
Remove disk di from the set FreeDisks. 
Set dnext to &next+1 

end 

3.1.2 Optimal Placement with Bypass 
Scheduling 

So far, we have assumed that requests are serviced with 
First Come First Served (FCFS) scheduling. FCFS 
scheduling is fair for all requests and simple to imple- 
ment but different alternatives of request scheduling 
which take advantage of the on-line disk are likely to 
perform better. 

Bypass scheduling is such a scheduling policy. It 
gives highest priority to all the requests in the queue 
that reference the on-line disk regardless of their ar- 
rival times. The disk di is replaced only when there is 
no unserviced request for it in the queue. 

Assume that the queue of pending requests contains 
N unserviced requests for the T disks of the library 
and the drive of the system is loaded with the disk d”. 
Let R be the set of all these pending requests. Then, 
we define the reference set Rj c R of disk dj to be 
the set of pending requests that hit disk dj. If X such 
non-empty different sets exist in the queue then the 
number of disk exchanges will be X if the reference 
set R” of the on-line disk is empty, otherwise it will 
be X -1. This means that the expected number of 
disk exchanges to service the N requests in the queue 
is equal to the expected number of different reference 
sets that exist in the queue: 

E(no of disk exchanges) = CT=, (1 - (1 - p’)“) (1) 

The ith term 1 - (l-~~)~ in the summation is the 
probability2 that the reference set R” of disk di is 
non-empty. Recalling that the definition of the access 
cost is the product of the expected number of disk ex- 
changes times the constant delay of a disk exchange 
T ,.,&,t, we can derive the access cost C$,,, when by- 
pass scheduling is employed: 

c(l) 
bypass = Trotmt * E (no of disk exchanges) (‘4 

2A selection with replacement modeling is clearly suitable 

here. 
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or substituting the expected number of disk exchanges 
from equation (1): 

(y) 
bypass = Troeot * T-&-P’)N (3) 

i=l 

The access cost of equation (3) is then our cost func- 
tion which will be examined for minimization. In par- 
ticular, we will_determine the distribution of the prob- 
dii;;~;lb”d P’ = (pl, . , PT) w ic minimizes our h h 

Theorem 2: The function q!(P) = CfII, (l-p”)N is 
Schur-convex. 

Proof 

The derivative of 4 with respect to p” is 

8 
dpi 

= -J/(1 - p”)N-l 

For all i # j the product (pi - #) (3 - 3) is (pi - 

pi) (-N( 1 - ~“)~-l + N( 1 - pi)“-l) > 0. We can 

verify that if for example pi < $ then N(l-#)N-l - 
N( 1 -pi)N-l < 0. Moreover, 4(p) is symmetric. 0 
According to equation (3) the cost is minimized when 
the function 4(p) = CT=, (l-~“)~ is maximized. 
This occurs when the placement is such, that the prob- 
abilities distributed across all T disks compose a pO$ 
vector which majorizes the vector of any other place- 
ment scheme since according to the above theorem 
O(p) is Schur convex (see section 2). This result 
is the same as the one that we proved for the case 
of FCFS scheduling of requests. Therefore, the opti- 
mal placement algorithm for Bypass scheduling is the 
same algorithm that we provided for the case of FCFS 
scheduling of requests. 

3.1.3 Optimal Placement of Variable Sized 
Objects 

The optimal placement algorithm must place the ob- 
jects onto the disks, so that the resulting l$ vec- 

tor majorizes the p vector of any other placement 
scheme, in order to accomplish the minimum number 
of disk exchanges. For equally sized objects it was 
sufficient to accumulate as big a probability as possi- 
ble onto the first disk, then onto the second and so 
on. The objective is the same in this case as well. 
However, since the object sizes vary, the algorithm 
should take them into consideration. The construc- 
tion of the most skewed vector FJpt is reducible to the 
well-known “O-l” knapsack problem of the algorithmic 

literature ([Hor78]) which has been solved with dy- 
namic programming. In addition, we have constructed 
an efficient heuristic algorithm which determines the 
placement of variable-sized objects within the disk li- 
brary in polynomial time. The heuristic algorithm 
is omitted due to space limitations but can be found 
in ([Chr97a]). 

3.2 Multiple Disk Drive Configuration 

We now study a system with multiple disk drives and 
multiple disks. We define the probability P(~I~) to be 
the probability that the i and j disks are on-line for 
i,j= 1 “, T. Furthermore, we assume that the row 
probability vector pR = (p’, p2,. ,pT) is increasing, 
i.e., p’ < p2 < . . . < pT. Among the placement al- 
gorithms which produce an increasing 3 pR vector we 
will determine the one with the minimum cost. 

The scheme that is proposed below is based on the 
assumption that when a miss occurs (i.e., a request 
refers to an off-line disk), a disk replacement algorithm 
replaces the least popular on-line idle disk. This algo- 
rithm is called the Least Popular Disk Replace- 
ment Algorithm (LPR). In the following sections, 
we will derive a placement strategy such that when 
combined with the LPR algorithm the random access 
cost is minimized. 

3.2.1 Access Cost Minimization for the Case 
of Two Disk Drives and Three Disks 

We first concentrate on a restricted example where 
D = 2 and T = 3. The row probability vector is 
pR = (p’, p2, p”) with p1 < p2 < p3. Figure (1) shows 
the corresponding Markov chain state diagram. The 
arrows show transitions among the states along with 
the probability of occurrence of the transition. 

The node labeled (i, j) represents a system state, 
in which the disks i and j are on-line. The Markov 
chain contains a closed subset of states, namely, {(2,3), 
(1,3)}, since no one-step transition from any of these 
states to state (1,2) is possible. Therefore, the Markov 
chain is reducible. The probabilitiesp(113), pc213) can be 
calculated by solving the system: 

p(2,3) = p(l,3) .+ p2 + p(2s3) * cp2 + p3) 

p(ls3) = p(2p3) * pl + p(~,3) * cpl + p3) 

po,3) + p(2,3) = 1 

Thus, 

p(l!3) = p’ 

P’ + P2 
p(2B3) = p2 

P1 +P2 

3The fact that we consider placements with increasing PR 
vectors is not limiting. The same results are obtained when 
considering all placements with decreasing FR vectors. 
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p2+P3 drive, and switches between the p1 and p2 disks on the 
second drive. 

Intuitively, this replacement policy has as result 
that the disk with the highest probability remains on- 
line, in the steady system state, continuously. This 
is why the Markov chain is reducible. In the steady 
state therefore, the system behaves as if it had one 
on-line disk drive and two disks to be exchanged, and 
therefore it behaves like the single drive system. 

PlW 
Generalizing the ODP for T disks and D 
drives 

Figure 1: Diagram of Markov-chains for 2 drives and 
3 disks (p’ < p2 < p”). 
Now the probability of an exchange is 

Pezchange = 
p(2s3) *pl +p(l,3) *p2 

2 1 

= (plp+p2) *pl+ (plp+p2) *p2 

= (pl :p2, 
* (p’ * p2 + p1 * p2) 

2P1P2 

= (pl+ P”) 

and the cost function is 

c$:L(p’) = %bot * Pexchange = T 
2P1P2 

rob& * (pl + p2) 

These results can naturally be expanded to apply 
to more general configurations of D drives and T > D 
disks. The corresponding Markov chain will also con- 
tain a subset of closed states and will be reducible. In 
the steady system state, the D-l drives will be con- 
tinuously occupied by the D-l disks with the highest 
probabilities. The one drive left will be used to keep 
one of the T-D+1 remaining disks. Hence, the optimal 
placement policy continues to place the probabilities 
in such a way that the resulting @ vector majorizes 
all others and combines this scheme with the replace- 
ment policy which maintains the D - 1 most popular 
disks on-line always, and performs exchanges in the 
one remaining disk drive. Such a policy minimizes 
disk exchanges due to the skewed arrangement of the 
disk probabilities. 

Theorem 3: The function C$Ei(p) is Schur concave. 
4 Tape Libraries 

The factors that influence the estimation of the cost 
Proof of accessing the tape objects are the head position- 

ing delay and the robot delay. The head delay that is 
It can be easily verified that the partial derivative associated with an object access is attributed to two 

of the latter cost function is factors: a) the search delay, which is the time taken by 

a@) 
drsk _ 2(P2)2 

the head in order to locate the requested object within 
-- 

w (pl + p2)2 * Tfwbot 
the tape, and b) perhaps, the rewind delay, which is 
the time taken for the tape to perform the rewind op- 

The Schur condition (p’ - p’)($$ - $$) for con- 
cavity is: 

eration. Thus, 

head delay = search delay + rewind delay (4) 

(P’ - P”) * 
2(PZ 1” 2(P1 1” 

- (p' +p2)2 *Trobot 
1 (P’ + P212 

= $l++p;;j (P’ - P”)(p” - p’) * Trobot 5 0 

The robot delay is the delay introduced when a 
loaded tape is removed from its tape drive and placed 
on the shelf and an off-line tape containing the newly 
requested object is subsequently placed on that par- 
ticular drive. 

for all p1 # p2. Moreover, Cif),(P’) is symmetric. 0 
Therefore, our cost function is minimized when the 
row probability vector FR is the one that majorizes all 
other possible vectors that correspond to other place- 
ment schemes of the same objects. This placement 
policy is combined with the replacement algorithm, 
which maintains the p3 disk always on-line on the first 

Given the current technology, two alternatives exist 
for the estimation of the access cost: 

1. Only the head delay is taken into account in the 
cost determination. 

This is meaningful for environments where the 
robot delay is negligible as compared to the head 
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delay and can therefore be ignored in the cost 
calculations with negligible error. Such environ- 
ments could for example be the AMPEX DST 
tape libraries with tape capacities up to 165 GB, 
search speed equal to 800 MB/set and resulting 
average search time of approximately 100 sec. The 
latter value of the head delay is dominant when 
compared to the typical value of the robot delay 
which is reported to be less than 6 sec. 

2. Both the head delay and the robot delay con- 
tribute to the cost determination. 

The AMPEX DST 810 tape library with cartridge 
capacity 3 GB is such an example. In this environ- 
ment, the average search time is 1.5-2.0 set which 
is smaller than the robot delay. Hence, exchanges 
must also be considered in the cost derivation. 

Furthermore, the determination of the access cost 
can vary depending on the operational characteristics 
of the tape drives. One key issue is the rewind opera- 
tion. Two alternatives are currently supported: 

l In some technologies tape drives must essen- 
tially rewind to the PBOT4, before being ejected 
([Amp97, Exa971). This is the case for example 
for the Exabyte tapes. In the Ampex DST series 
this feature of rewinding to the physical beginning 
of a tape before eject is only optional. 

l Other tape drives, such as the AMPEX DST se- 
ries define “zones” at multiple locations along the 
tape, enabling rewind to proceed alternatively to 
any of the zones ([Amp97]) before ejection. Most 
frequently, the zone nearest to the head is selected 
in order to minimize the rewind time. 

The system parameters included in Table 1 hold for 
the case of tape libraries, if “disk” is replaced with 
“tape”. For example, the symbol 1; denotes the jth 
location within the ith tape. Moreover, the ith tape 
is symbolized as ti. We are interested in determining 
the optimal placement of the T. K objects across all 
T. K possible locations of the T tapes5. Optimality 
of placement is achieved when the expected delay of 
accessing a random object is minimized. 

We consider tapes with dominant head delay and 
therefore the cost function is approximated to be equal 
to the expected head delay incurred in a random ac- 
cess. According to the definition of the head delay (4), 
our cost function is the summation of the search and 

4 Physical Beginning of Tape. 
5We assume that the number of object locations across all 

tapes and the number of objects that need to be placed in them 
are equal. We also assume that no replication of objects is al- 
lowed. Furthermore, the system is in a steady state i.e., all 
drives are loaded. 

the rewind delay. Let the average search speed of 
the tape head be SchSp, and let RwSp be the aver- 
age rewind speed. Let also dseareh be the expected 
distance (in number of bits) traveled by the head 
with SchSp to reach a desired tape location. Then, 

d search our cost function will be the summation of ___ 

d 
SchSp 

(search delay) plus Jeareh (rewind delay). In general, 
RwSp 

RwSp > SchSp. Thus, if Rwf, 1 < Rwf < 2, is a 

constant such that (Rwf) 2 = dJearch + dJearch 

then our cost function is: 
SchSp RwSp 

AccCst = (Rwf) (d,,,,,h/SchSp) 

Since SchSp and Rwf are constant the cost function 
depends only on the expected value of the distance of 
the requested object from the current head position 
(dsearch). 

As explained previously, the current tape technol- 
ogy supports two alternatives for tape rewinding. Nat- 
urally, the methodology of estimating the cost of a ran- 
dom tape access and the corresponding optimal place- 
ment algorithm differ depending on the tape rewind- 
ing technology, since the search distances are differ- 
ent for different rewinding technologies. Section (4.1) 
provides the cost analysis and the optimal placement 
scheme for tapes which rewind to the nearest zone, 
while section (4.2) examines tapes which rewind to the 
PBOT. Both analyses are then further specialized in 
two cases for FIFO and SCAN ([Chr97a]) scheduling 
algorithms which represent systems under light and 
heavy load, respectively. 

We should recall that optimal placement solutions 
for single disks have been provided. In [Won831 the 
optimal placement of objects within a magnetic disk 
in order to optimize the random access cost is proved 
to be the organ-pipe arrangement. The organ-pipe ar- 
rangement of a set of n probabilities pr , . . . , p, places 
the largest probability at the middle point. Then, it 
repetitively places the next largest probability, alter- 
nating between the position immediately to the left 
(right) of those already placed and the position im- 
mediately to the right (left). Similar placement algo- 
rithms have been developed for CLV disks ([Tri97a]) 
and multi-zoned CAV disks ([Chr97c]). 

4.1 Tapes that Rewind to the Nearest Zone. 

We examine tapes which enable tape rewinding to the 
nearest tape zone as opposed to tapes which require 
to be rewound to their physical beginning before they 
can be ejected. The cost analysis is different depend- 
ing on the request scheduling policy. Therefore, we 
have separately examined the cases of FCFS and Scan 
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scheduling which are appropriate for lightly and heav- 
ily loaded systems respectively and have derived opti- 
mal placement algorithms. In the following, we present 
the cost analysis and the optimal placement for the 
case where there is a single request for each tape. The 
case where there are several requests per tape which 
are scheduled using a SCAN-like algorithm is studied 
in [Chr97a] and is omitted for space reasons. 

4.1.1 Placement of Objects within a Tape 

The cost function for a single tape is the expected 
distance that must be traveled by the tape head in 
order to serve a random request for an object of this 
tape and it is derived as follows: let 1; and lf be two 
locations within a random tape t”. Assume that IL 
is the current head location (i.e., the location of the 
object that was previously requested from t”) and 1: is 
the location where the head must be moved to access 
the object of the next request for t”. The distance 
d sea,.eh(lL -+ li) that must be traveled is then: 

(w-~+1)2, ,ifw>z 

d mreh(l; + II> = (z-w-1)2, ,ifw<t 

0, ,ifw=.z 

The definition of dseareh(lL -+ If) is such that the 
distance when moving from the tape location Ii to 

tU+1 is 0, while the distance when moving from the 
tape location 1; to location cm1 is 2 Z (i.e., the head 
always moves from the end of the wth object to the 
beginning of the zth object). 

The expected distance dfeareh that must be traveled 
within ti to serve a random request that hits ti is de- 
rived by summing the distances of all possible events 
of moving between any 1;) lf tape locations, i.e.: 

dim-~ = 
“_“, .,,” 

c p;p:(z - w - 1)Z + c p;p:(w - z + 1)Z = 

2” 
W<Z W>Z 

dtpearc,, = c,,, P,P: Iw - 4 Z + Z c, (~3)’ (5) 

In the search distance function, the term 2 C, (~1))~ 
is independent from the relative placement of proba- 
bilities within the tape. Therefore, the only relevant 
distance component is Cc,,,, &pi ]w - z] 2. This is 
exactly the cost function that must be minimized when 
considering the traditional problem of placing objects 
on a disk. Wong has shown ([Wong3]) that this (seek 
cost) function is minimized when objects are placed 
in an organ pipe arrangement. Therefore, given the 

information about which objects must be placed on 
which tape, the optimal placement of objects within 
each tape is the one that performs an organ-pipe ar- 
rangement of the object probabilities. 

4.1.2 Assignment of Objects to Tapes 

We are now left with the problem of optimally deter- 
mining the contents of each tape, i.e., which objects to 
place in the tapes. The cost function is the expected 
total distance dseareh traveled within all tapes when 
each of the tapes serves a random request for one of 
the objects that it holds. In other words, the cost func- 
tion is dseareh = CT=, dteareh or from equation (5) 

&arch = CL (c,,, PlPl Iw - 4 z + z c, (Pi)‘) 

and CL, C,,, P~P: Iw - zl = C,,, (CL, P’WP~ Iw -A) 
= c,,, Iw - ZI (CL, PbPl) 

Theorem 4: The function 4(Fw) = C~=,p~p~ is 
Schur convex for all w = 1, , . . , Ii. 

Proof 

Differentiating we get w = pi and w = py. 

Assuming, for example, dewcreasing column &ctor@ it 
holds that for all i < m, p& > p:, pi > py and there- 
fore (ph-pr)(pi-py) > 0. It can also be verified that 

+ 
4(Pw) is symmetric. Thus, +(Pw) is Schur convex. 0 
Therefore, (from section 2) for each column vector 

2lJ = (P;,P;, . . . , pz) the sum CT=, pf,,pi is minimum 
when the vector FU = (pi, pi, . . . , pz) is majorized by 
all other possible vectors (i.e., has as equal components 
as possible or is as uniform as possible). 

Since we have shown that within each tape the or- 
gan pipe placement is optimal we know that the q1 
probability (assuming q1 > q2 > . . > qo) will be 
placed in the middle location of one tape say in tiK 

for 1 5 i 5 T. A consequence of the “pw uniform’ 
optimality condition that we just derived is the place- 
ment of the T biggest probabilities in the T middle 
locations of all tapes. Then, the only way to produce 
the most uniform P’K column vector is to fill the rest 
of its components w%h 42,. . . , qT. Thus, we will have 
each of the T most popular objects in the middle lo- 
cation of a tape. The same holds for the rest of the 
locations within the tapes. 

The optimal placement scheme is shown in figure (2) 
for a library consisting of 3 tapes assuming that each 

6The fact that we consider placements with decreasing col- 
umn vectors is not limiting. The same results are obtained when 
considering all placements which result in increasing columns. 
Our objective is to determine the placement with the minimum 
cost among the placements which produce decreasing columns. 
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tape can hold 5 equally sized objects that have differ- 
ent access probabilities. 

’ Tapes with Zone-rewind P g Tapes with PBOT-rewind $ 

. . ..~. %&/$qqqq 
P, >p,> . . . . . . . . . . >P,5 P, >P, > . . . . . . . >P,< 

Figure 2: Optimal placement scheme. 

4.2 Tapes that Rewind to the PBOT 

In this section, we examine tapes which always rewind 
to their beginning before being ejected. As we have 
already mentioned the analysis is different depending 
on the request scheduling policy. In the following, we 
derive the optimal placement for systems with FCFS 
scheduling while the analysis for SCAN scheduling can 
be found in ([Chr97a]). 

Let ti be a single on-line tape and assume that the 
*th 3 object of that tape is requested. The distance 

d seareh(lf --+ 1;) that will be traveled by the head dur- 
ing searching for the jth object is equal to the total 
space occupied by the j- 1 objects that are placed in 
front of the requested object: 

j-l 

d sea,-& --f 1;) = c 2 = (j - l)z 
I=1 

assuming that the initial head position is at the PBOT 
(i.e., location li). The expected distance for randomly 
accessing any of the K objects located on the tape ti 

is 
/ K K \ 

&xlrch = z cj.pf; -cpj 
L j=l j=l 1 

The cost function dseareh is the sum of the expected 
distances traveled in all T tapes in order for each tape 
to serve a request for a random object on the tape: 

T ‘K 

= (c 

K 

d search = 27. j.pi-Cpi 

i=l j=l j=l 

which can be simplified to: 

i=l j=l 

If we set pj = CTzIpi then pj expresses the prob- 
ability that one of the jth objects of the T tapes is 

requested and equation (6) can be rewritten as follows: 

d search = 
j=l 

The expected distance of equation (7) and hence 
our cost function is minimized when the summation 
CT=, j ‘pj is minimized. Consider the column vector 

ii, = (PI,... ,pK) in which the component pj is the 
aggregate access probability of the objects stored at 
locations $ for all 1 < i 5 T. From Lemma 2 the 

summation cj j ‘pj is minimized when the vector p, 
majorizes all others (i.e., is as skewed as possible). The 
optimal placement scheme must therefore arrange the 
objects within the tapes so that the resulting Fc vector 
is as skewed as possible. One such scheme for exam- 
ple, is the one which stores each of the T most popular 
objects first in each of the T tapes, each of the next T 
most popular objects second in each of the tapes and 
so on. 

Algorithm 2: ODP for PBOT Rewinding 
Tapes 

Sort the UnallocatedObjects in decreasing probability 
order. 

while the set UnallocatedObjects is not empty do 
begin 

Scatter randomly the first T objects of the set 
Unallocatedobjects onto the first free location 
of each of the T tapes. 

Remove the first T objects from the set 
UnallocatedObjects. 

end 

The optimal placement is depicted in figure (2) for 
a simple case of 15 objects with different access prob- 
abilities that are allocated onto the 3 tapes (each tape 
holding 5 objects) of a tape library. 

5 Summary 

In this paper, we have studied the problem of data 
placement in robotic disk and tape libraries. This 
problem is important since tertiary storage is much 
slower to access than secondary storage. 

In the case of disk libraries, the major cost to be 
optimized is the expected number of disk exchanges, 
since each disk exchange costs somewhere between 5 
and 15 seconds (to find the data on the on-line disk is 
much less expensive due to the random access mech- 
anism of disks). We showed using the theory of Ma- 
jorization and Schur functions that the optimal data 
placement is obtained by placing as many of the most 
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popular objects as can fit on one disk and by repeating 
this process for the remaining objects and disks. 

In the case of tape libraries, the tape exchange cost 
is still significant, but another important cost (which 
can be the dominant cost when the library stores tapes 
with very large capacities) is the cost of sequentially 
searching throughout the tape to find the data that is 
needed. We separately considered tapes of two rewind 
technologies: zone and PBOT rewind, since the ex- 
pected distance searched (and the analysis for its min- 
imization) is different depending on the rewind tech- 
nology. For each tape technology, the analysis was 
further specialized depending on whether the imple- 
mented scheduling policy of requests is Scan or FCFS. 
However, the analysis under Scan scheduling has been 
left out since it produces the same results with FCFS 
scheduling (it can be found in ([Chr97a])). 

We showed that when tapes rewind to the nearest 
zone, the optimal placement must randomly distribute 
the T highest probabilities in the middle locations of 
the T tapes, the second and third T highest probabili- 
ties to the left and right of the middle locations of the 
tapes and continue likewise. For tapes that rewind to 
the PBOT it is optimal to place each of the T highest 
probabilities on the first location of a tape, each of the 
second T highest probabilities on the second location 
of a tape and so on. The above analysis considered 
only head positioning cost. The exchange cost was 
omitted for space reasons and because its effect to the 
optimal data placement strategy is equivalent to that 
shown for disk libraries. 
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