
On-Demand Data Elevation
in a Hierarchical Multimedia Storage Server

Peter ?‘riantafillou* Thomas Papadakist
Multimedia Systems Institute of Crete and Department of Computer Science

Department of Computer Engineering
Technical University of Crete

Chania, Crete, Greece
peter@mhl.tuc.gr

Abstract

Given the present cost of memories and the
very large storage and bandwidth require-
ments of large-scale multimedia databases, hi-
erarchical storage servers (which consist of
RAM, disk storage, and robot-based tertiary
libraries) are becoming increasingly popular.
However, related research is scarce and em-
ploys tertiary storage for storage augmenta-
tion purposes only. This work, exploiting the
ever-increasing performance offered by (par-

. titularly) modern tape library products, aims
to utilize tertiary storage in order to augment
the system’s performance. We consider the
issue of elevating continuous data from its
permanent place in tertiary for display pur-
poses. Our primary goals are to save on the
secondary storage bandwidth that traditional
techniques require for the display of contin-
uous objects, while requiring no additional

. RAM buffer space. To this end we develop
algorithms for sharing the responsibility for

* Research supported by the European Community under
the ESPRIT Long Term Research Project HERMES no. 9141.

t Research supported by the Canadian government under
NSERC grant number 0155218, and by the 1996-97 Going
Global - STEP program.

Permission to copy without fee all or part of this material is
granted provided that the wpies am not made or distributed for
direct wmmerciol advantage, the VLDB copyright notice and
the title of the publication and its date appenr, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

York University
North York, Ontario M3J lP3

Canada
tom@cs.yorku.ca

the playback between the secondary and ter-
tiary devices and for placing the blocks of con-
tinuous objects on tapes, and show how they
achieve the above goals. We study these issues
for different commercial tape library products
with different bandwidth and tape capacity
and in environments with and without the
multiplexing of tape libraries.

1 Introduction

Future multimedia information systems are likely to
contain large collections of delay sensitive data objects
(e.g. audio and video) with various lengths and dis-
play/play(back) requirements. Some of the main data
characteristics which present serious challenges when
building multimedia servers are: their large size, their
delay-sensitivity, and their high display bandwidth re-
quirements.

Multimedia objects can be very large in size: As
one example, 100 minutes of MPEG-2 video may re-
quire up to 6 GB of storage. As another example,
the annual storage requirements for typical hospital
information systems (for data such as echographic im-
ages, computerized tomography, digital radiography,
and digital angiography) approximate 300 GB. Thus,
the storage requirements of future multimedia servers
for many different applications will easily exceed sev-
eral terabytes.

The present cost of memory strongly depends on
the type of memory being employed and ranges from
$8.0 per MB of RAM, to $0.2 per MB of magnetic
disk storage, and $0.004 per MB of magnetic tape stor-
age. On the other hand, the access speeds of memory
units point to a different direction. Tertiary storage
is characterized by very slow access times, in the or-
der of tens of seconds (or minutes) for optical disk

226

or magnetic tape libraries. Magnetic disks have ac-
cess times in the order of tens of milliseconds, whereas
RAM memories’ access times are in the order of tens
of nanoseconds. The above are strong arguments for
employing a hierarchy of memory technologies includ-
ing RAM-based Primary Storage (PS), magnetic disk-
based Secondary Storage (SS), and tape- or CDROM-
based Tertia y Storage (TS). A key idea is to store
all objects in the inexpensive tertiary storage, from
where they will be elevated to the SS and PS levels
before being accessed. This solves the problems owing
to the large storage space requirements of multimedia
servers and the costs of memory units. A complemen-
tary idea is to use the higher levels as a cache for the
levels below; all objects will reside permanently on TS,
while popular objects, for example, will reside for long
periods of time in SS and portions of them will reside
for long periods of time in PS. This idea addresses the
problems owing to the memories’ access times, and to
the delay-sensitivity and high display bandwidth re-
quirements of many multimedia objects.

1.1 The Problem

This paper assumes the above framework of a mul-
timedia server based on a hierarchical storage man-
ager. The research reported here addresses the impor-
tant problem of delay-sensitive (continuous) data ele-
vation, from its permanent place in TS to the higher
levels (CT95]. In particular, we concentrate on on-
demand elevation (i.e., elevation occurs when a dis-
play request for the object arrives). On-demand ele-
vation is a non-trivial problem since it must deal with
the bandwidth mismatch problem: firstly, the display
bandwidth requirements of objects are different from
the bandwidths of TS and SS devices; and secondly,
the sustained (available, effective) TS and SS band-
widths vary with time, depending on the requirements
of the current workload (e.g., whenever multiplexing
is employed).

. One may assume that, at a steady state, the popular
objects will be residing in SS, with perhaps portions
of them residing in PS. In this framework, the key re-
sources which may limit the throughput of the system
are the SS bandwidth and the PS buffer space. The
key high-level goal of this work is to harness the (ever-
)increasing bandwidth offered by modern tape library
products in order to improve the overall system per-
formance. This is not an easy task because, despite
the very high transfer rates of modern tape drives, the
average access cost in tape libraries remains very high
due to the high costs for robotic movements and head
positioning delays.

We focus on requests for delay-sensitive data eleva-
tion from TS and SS to higher levels, with the goals of

achieving SS bandwidth savings, hiccup-free displays
of streams (i.e., continuous objects), and low start-up
latencies. The saved SS bandwidth can be used to ac-
cept and serve additional continuous or discrete (i.e.,
non-delay sensitive) data requests, improving thus the
system throughput for continuous requests and/or the
response time of discrete requests. At the same time,
we handle the bandwidth mismatch problem during
data elevation, in a manner that allows the above sav-
ings in SS bandwidth while not requiring any extra
PS buffer space. The same issues are also addressed
for the cases with and without the multiplexing of the
tape library.

The remainder of the paper is structured as follows.
In Section 2 we will look closely at Hierarchical Storage
Management Systems (HSMS), identifying their key
properties and technologies and refer to related work.
In Section 3 we will present “Alternate Play”, a novel
algorithm for on-demand data elevation through the
levels of the hierarchy and we will discuss its benefits
with respect to SS bandwidth savings and its compro-
mises with respect to PS buffer space. Subsequently,
we will contribute a novel technique which places the
blocks of a delay-sensitive multimedia object on the
tertiary storage media in a manner which alleviates
the need for extra PS buffer space, while still achiev-
ing the same SS bandwidth savings as in the Alternate
Play algorithm. Then we will contribute the notion
of strips of streams, the use of which makes our tech-
niques applicable even when the display bandwidth re-
quirements are larger than the available TS bandwidth
(e.g., for low-end tape drives). In Section 4 we revisit
these issues, only now assuming that the tape library
is multiplexed across streams (to avoid experiencing
unacceptably-long start-up latencies). In Section 5 we
revisit the same issues, only now the assumption of a
fixed and known, a priori, multiprogramming degree
is removed. Finally, in Section 6 we will present the
conclusions of this work.

2 Hierarchical Storage Management
Systems

In this section we discuss HSMSs, paying attention to
their specifications and their functionality in order to
gain the relevant insights and put the contributions
of this work in context. A summary of the HSMS’s
relevant parameters and some typical values is given
in Table 1. Recall that HSMSs consist of a storage
hierarchy of three different levels: PS, SS, and TS.

An appropriate candidate for SS appears to be ar-
rays of magnetic disks [PGK88]. Given the high band-
width requirements of many multimedia objects and
the typical, relatively low, effective bandwidth of mag-
netic disks (nominal bandwidths are in the range of

227

Table 1: Storage and display parameters

symbol explanation typical values

bD display bandwidth (consumption rate) 0.2 - 1 MB/set (eg, MPEGZ)
B # of blocks in an object varies; user-defined

i
block size varies; user-defined
“time unit” = display time for 1 block varies; depends on s

- SS bandwidth 3 - 40 MB/set
- disk capacity 1-20GB
- SS capacity 4 - 400 GB
b tape drive bandwidth 0.5 - 20 MB/set
- # of tape drives 1 - 64
e exchange time 6 - 30 set
C switch time = exchange (if needed) + search 1 - 60 set
- # of tape cartridges 30-48,000
- tape capacity 5 -150 GB
- TS capacity 0.5 - 190 TB
r b/b 0.5 - 100
j # of jobs multiplexed varies
t # of blocks in a “time slice” (in multiplexing) varies

4-7 MB/set), striping techniques [SGM86, BMGJ94,
TF97] are likely to prove beneficial, since, when strip-
ing objects across D disks, the effective SS bandwidth
for these objects is D times the effective bandwidth of
a single disk. Currently, average seek and rotational
delays are approximately lo-15 and 48 milliseconds,
respectively.

With respect to TS, technological developments
have led to the emergence of robot-based magnetic-
tape and optical-disk libraries, making them the best
ctididate for the TS devices. Tape libraries consist
of a series of shelves (storing a number of tape car-

disk-based
Secondary Storage (SS)
\

elevate

tape- / CDROM- based
tridges), a number of tape drives onto which the tapes (Tertiary Storage (TS) J

must be loaded before their objects can be accessed, -. _ - _ _ - --_ _ _
and a number of robot arms (usually 1) which are
responsible for loading and unloading the tapes to
and from the drives. Despite TS’s high data transfer
rates (see Table 1) these devices remain comparatively
slower than magnetic disks due to the high exchange
cdsts (unload a tape, put it on the shelf, get another
tape, load it) and to the cost of searching within a tape
(proceeding at a pace of less than 1 GB/sec).’

Figure 1: Conceptual model of a Hierarchical Storage
Management System (HSMS)

The conceptual model of a HSMS is illustrated in
Figure 1. The conceptual model shows the three levels
of the HSMS. Data is elevated one level at a time. In
the rest of this paper, the term “elevate” has been
reserved for “elevate from TS to SS” .

. Figure 2 illustrates the physical architectural view
of the HSMS. The key feature that must be noted here
is that PS serves as an intermediate staging area be-

‘Optical disk libraries (also called jukeboxes) have a similar
architecture.

tween the TS and the SS device. This fact implies
that an object is not required to be SS-resident in or-
der to be displayed; it can also be displayed from TS
[KDST95].

However, note that the bandwidth of TS tape drives
is typically significantly greater than the display band-
width of objects. Thus, playing objects directly from
TS can create serious PS buffer space problems. As a
result, a much more preferable choice is to first elevate
the object from TS to SS and then start the play-
back procedure issuing retried requests to SS for the
blocks to be displayed [GS94, KDST95]. Furthermore,
given that very few users (if any) would tolerate high
response times, the playback process must be started

220

, pI Display

mary Storage (PS)

up10

1 r Disk Controller 1 1

robotic rape library disk array
Tertiary Storage (TS) Secondary Storage (SS)

Figure 2: Physical model of a Hierarchical Storage
Management System (HSMS)

immediately after enough data has been elevated to
SS; hence, typically, the retrieval operations executing
on behalf of the playback process are executed in par-
allel with the elevate operations which move the future
blocks of the object to SS [GDS95].

3 On-demand Data Elevation Without
Multiplexing

In this section we first discuss the conventional method
for data elevation and play, and then we present three
novel elevation methods.

3.1 Play-from-TS and Conventional Play

As discussed in the last section, an object can be
played either from TS or from SS. One may Play-jkom-
TS an object by issuing upload requests to TS. The up-
loaded blocks of the object are placed into PS buffers,
from where they are subsequently consumed:2 either
they are transmitted over a network to a remote client,
or they are displayed to a local client.

Recall that, (i) playing an object from TS can create
serious PS buffer space problems; (ii) a much more
preferable choice, thus, is to first elevate the object
from TS to SS (that is, physically uproad it from TS to
PS, and then flush it from PS to SS), and subsequently
Play-from-SS the object, by issuing retrieval requests
to SS; and (iii) in order to decrease start-up latencies,
the retrieval requests issued by the display process are

2The terms “consume”, “display”, “playback” and “play”
will be used interchangeably in this paper.

executed in parallel with the elevation of future blocks
of the object from TS to SS.

Let us refer to the above procedure (i.e., elevate
from TS to SS, and simultaneously play from SS)
which represents the state of the art, as the Conuen-
tional Play method. The obvious advantage of the
Conventional Play method is that it requires no PS
buffer space.3 On the other hand, its obvious defi-
ciency, is that SS is additionally taxed as a result of
the parallel execution of flush and retrieval operations,
reducing thus the available SS bandwidth significantly.
Since in our target environment we expect SS band-
width to be one of the (two) scarcest resources, the
above observation must be noted seriously. In the fol-
lowing, we will present some approaches aiming to al-
leviate this problem.4

3.2 Alternate Play

An initial attempt to overcome the shortcomings of the
conventional method centers on the following idea: up-
loaded blocks from TS can be maintained in PS buffers
and made available to the playback process from them.
This can save significant SS bandwidth since neither a
flush to, nor a retrieval from, SS is required.

Of course, blocks belonging to popular objects may
still be flushed to SS, in addition to maintaining them
in PS buffers from where they will be consumed. This
alteration of the Play-from-TS method (i.e., Play-
from-T& and then flush to SS), when compared with
the Conventional Play, saves SS bandwidth for the cur-
rent request (since no retrievals from SS are needed),
and both SS and TS bandwidth for future requests for
the same object (since no uploads or flushes for the
SS-resident blocks are needed).

Despite these unquestionable benefits, there is an
obvious concern regarding the amount of PS buffer
space which is needed to realize the aforementioned
bandwidth savings. For example, if r = 2, the PS
space requirements are 50% of the size of the entire
object to be displayed (since when the last block is
uploaded, only half of the blocks will have been con-
sumed). In general, the PS space requirements are
(r - 1)/r of the object’s size. Given that PS buffer
space is another scarce system resource, care must be
taken to use it wisely. In an effort to reconcile this
trade-off between the PS space requirements and the
SS bandwidth savings, we can use hybrid techniques,

SThroughout the paper, “PS buffer space requirements” will
refer to the maximum number of PS buffers (each holding 1
block) required at any instance during the display of an object.
I/O buffers are excluded.

‘Throughout the paper, “Algorithm X achieves 2 SS band-
width savings” will mean “the total SS bandwidth (traffic) re-
quired for the display of an object initiated by Algorithm X,
is z of the SS bandwidth required by the Conventional Play
algorithm”.

229

so that for some blocks the Conventional Play method
- essentially: Play-from-SS - is employed, while for
other blocks a Play-from-TS method is followed. We
refer to the newly-proposed method as the Alternate
Play method.

To illustrate the Alternate Play method, we give
pseudo-code for it (Algorithm l), for the T = 2 spe-
cial case. If a block does not exist (e.g., if r = 2

Algorithm 1 Alternate Play example (r = 2)

INPUT: Object’s blocks in TS

next-upld-blk := Bl
next-displ-blk := Bl
upload(next-upld-blk++)
for time unit i:= 1 to [?I do

parbegin
1. ifi = odd

then consume(next-displ-blk++)
else Play-from-SS(nextdispl-blk++)

2. elevate(next-upld-blk++)
upload(next-upld-blk++)

parend

and B = 12), an “empty block” is read off the tape.
time unit refers to the time required to display one
block. The given algorithm uses routines to upload
an indicated block to a PS buffer, or to elevate
(i.e., upload and then flush) an indicated block to SS.
The parbeginlparend construct is intended to indi-
cate that the display (consume/Play-from-SS) of a
block occurs in parallel with the readings (elevate
and upload) of the next two blocks from TS. The al-
gorithm terminates when all blocks have been read off
the TS. The display of the requested object continues
by consuming all remaining blocks in strict alterna-
tion from PS and SS. At the end, half of the blocks
will have been played from TS and half from SS.

An example of the algorithm’s action on a lbblock
object is given in Table 2. Newly arriving blocks have
been underlined.

Two features of the Alternate Play algorithm must
be noted. First, during its execution (i.e., during the
first IF1 N B/2 time units of the object’s display)
the SS bandwidth requirements of even time units
are twice the SS bandwidth requirements of odd time
units; for the remaining [y] II B/2 time units, the
SS bandwidth requirements are equal to those of the
odd time units. Second, during the algorithm’s exe-
cution, every two time units the number of PS buffers
(needed to hold the Play-from-TS blocks) increases by
1; at the end of the algorithm’s execution, half of the

Table 2: Example of Alternate Play (r=2; B= 13)

time
unit

0
1
2
3
4
5
6

(elevated)
to ss

-

B2
B4
B4 @
B6 B8
B6 B8 BUJ
B8 BlO B12

(uploaded)
to PS

B1
B3
B3B5
B5 B7
B5B7m
B7B9m
B7 B9 Bll B13

block
displayed
-
Bl
B2
B3
B4
B5
B6

21 B/2 Play-from-TS blocks will still be in PS. It thus
follows that the PS space requirements are 25% of the
object’s size.

3.3 Generalizing Alternate Play

Algorithm 1 can be generalized to an Alternate Play
algorithm, handling arbitrary r ratios and offering
space-performance trade-offs as follows: In every time
unit, r blocks are read from TS. From these, Ic blocks
are uploaded to PS and the rest r--k blocks are ele-
vated to SS, for some (arbitrarily/appropriately cho-
sen) k = 1,2,. . . r - 1. This gives us a family of Alter-
nate Play algorithms, one for each different value of Ic.
The impact of the choice of k on the PS space require-
ments and on the SS bandwidth savings is examined
in [TP97].

The issue of a non-integer r is also examined in
[TP97].

In addition to the above described spectrum of Al-
ternate Play algorithms (one algorithm for each value
of k), we will contribute other techniques which can be
used to further reconcile the conflicting goals of high
SS bandwidth savings and low additional PS buffer
requirements.

3.4 Alternate Play With A Twist

First, note that the high PS buffer requirements of the
Alternate Play method are due to the long time that
a PS buffer is dedicated to holding a particular Play-
from-TS block. Next, observe that this long time is
dependent on r: if r is large, then the Play-from-TS
blocks will occupy a PS buffer for a long time (since
they will come into a PS buffer too far ahead of their
consumption times). In trying to attain further re-
ductions in the PS space requirements, our key idea is
that, by altering the order with which the blocks of an
object are recorded on the TS media, large values of T
(i.e., bandwidth mismatches between the TS and the
display) can be accounted for in a way that reduces the
occupancy time of PS buffers by Play-from-TS blocks.

230

Bl B8 B2 B9 B3 BlO B4 Bll B5 B12 B6 B13 B7

Bl B5 B6 B7 B2 B8 B9 BlO B3 Bll B12 B13 B4

(b)

Figure 3: Twisted Placements of a 13-block object when (a) T =2 and (b) r=4

Algorithm 2 is a placement algorithm, which,
when given as inputs B and r, determines a twisted

Algorithm 2 Twisted Placement

INPUT: B, r
OUTPUT: Twisted sequence of object’s blocks

(to be placed in TS)

i := 1
n := 1
A$++] := n++
f := [B/r1 + 1
while (i 5 B) do

for j:=l to T-1 do
N[i + +] := f + +

N[i + +] := n + +

placement/ordering of an object’s blocks {Block[l],
Block[2], . . . , Block[B]} as {Block[N[l]], Block[N[2]],
“‘> Block[N[B]]} on a tape. (If a block does not exist,
an “empty block” is placed in the twisted sequence.)
Examples of the twisted placements when B = 13 and
T = 2 or T = 4 are given in Figure 3.

One may immediately see that the produced twisted
placement is such that when the object’s blocks are
read off the tape sequentially, every r-th block will be
uploaded into PS precisely before the time it has to
be consumed.5 These B/T blocks can thus be played-
from-TS without any additional PS buffer space re-
quirements; the remaining blocks will be elevated to
SS, and will be played-from-SS when needed. Algo-
rithm 3 materializes the above idea. The notational
conventions of Algorithm 1 have been used here, too.
APWAT algorithm terminates when all blocks have
been read off the TS. The display of the requested ob-
ject continues by consuming one more block from PS,
and all remaining blocks exclusively from SS. At the

5Actually, any placement sequence having the lst, 2nd, 3rd,
4th ,. . . blocks of an object in locations 1, r+l, 2r+l, 3r+l,. . . of
a new sequence, will be as good ss the twisted sequence pro-
duced by Algorithm 2. For example, in the two given twisted
placement examples, it would be sufficient to keep the bold-
faced blocks in the given locations; the rest of the blocks could
be arbitrarily intermixed.

Algorithm 3 Alternate Play With A Twist (APWAT)
for T = 2

INPUT: Twisted placement of object’s blocks in TS

next-upld-blk := Bl
next-displ-blk := Bl
upload(next-upld-blk++)
for time unit i:= 1 to [?I do

parbegin
1. consume(next-displ-blk++)
2. elevate(next-upld-blk++)

upload(next-upld-blk++)
pax-end

Table 3: Example of Alternate Play With a Twist (T =
2; B=13)

time (elevated) (uploaded
unit to ss to PS

0 - B1
1 B8 B2
2 B8B9 B3
3 B8BlOm B4
4 B8B9BlOm B5
5 B8 B9 BlO B11 B12 B6
6 B8B9 BlOBll B12B13 m

block
displayed
-
Bl
B2
B3
B4
B5
B6

end, l/r of the blocks will have been played from TS,
and the remaining (T-l)/~ from SS.

An example of APWAT’s action on the T = 2 twisted
placement of Figure 3(a), is shown in Table 3. Again,
newly arriving blocks have been underlined.

One can immediately see that the SS bandwidth re-
quirements remain constant (~-1 blocks per time unit)
throughout the algorithm’s execution; the display of
the remaining blocks requires a constant bandwidth of
1 block per time unit. The total SS bandwidth savings
of the APWAT method, for each stream, is l/~ (since
l/~ of the blocks for each stream are played from TS).
Clearly also, the additional PS buffer requirements are
zero.

231

Table 4: Primary (PS) and Secondary (SS) Storage Table 5: Example of Strips of Stream Play
requirements r=O.5; 2-strip = [B3, B5, B7, B9, Bll])

I PS I SS bandwidth 1
requirements savings

Conventional
Bk(r ! l)/r2

-
Alternate Play k/T
APWAT 0 l/T

The improvement achieved by of our newest Play
algorithm is apparent from Table 4 (see [TP97] for de-
tails), summarizing the examined algorithms’ charac-
teristics. The case of non-integer T is again examined
in [TP97].

3.5 Data Already on Disk & Strips of Streams

Although not mentioned explicitly so far, all previ-
ously described algorithms work only if T 2 1. One
may notice that a r < 1 situation may indeed arise
(e.g., low-end products - see Table 1). One may also
immediately see that the T > 1 restriction is obviously
not a deficiency of our algorithms: if T < 1, and an
object resides exclusively on TS, no algorithm can dis-
play it without hiccups, or without a long response
time.

If r < 1, and the object resides in SS as well, one
may use the ideas presented in the previous sections
to display the object in a manner requiring less SS
bandwidth than the obvious Play-from-SS algorithm,
while still requiring zero PS buffer space. A strip
of a stream is a subset of the blocks of a (stream)
object. We define a b-strip (of a stream) to be the
strip consisting of every f-th block of an object, ex-
cept for the 1st block of the object. For exam-
ple, the P-strip is [B3, B5, B7, B9, . . .], the 3-strip is
[B4, B7, BlO, B13, . . . 1, etc. We store such a +rip
(as a partial replica of the object) permanently in TS.

One may now see that a continuous uploading of TS
blocks results in each such block being brought into PS
precisely before it has to be consumed. A trace of this
Strips of Stream Play algorithm is given in Table 5.
Note that the algorithm achieves the same bandwidth
savings and has the same extra PS buffer space re-
quirements as the APWAT algorithm. See [TP97] for
more details.

4 Data Elevation With Known Multi-
plexing Degree

In many environments, consisting of high-end tape li-
brary products with very large bandwidth, the tertiary
storage level of a multimedia server will be satisfying

more than one requests simultaneously. In order to

(B = 12;

avoid unacceptably high start-up latencies, it is desir-
able for the TS to be multiplexed. When the TS band-
width is multiplexed across several concurrent streams,
the effective TS bandwidth b~,~ff and the effective ra-
tio reff are reduced. We will assume a Round Robin
scheduling discipline for the multiplexed requests.

A moment’s thought reveals that using, say, the AP-
WAT algorithm on the twisted sequence for t, does
not work. Consider, for example, the twisted sequence
for r = 4, given in Figure 3(b). If the number of multi-
plexed jobs (multiplexing degree) is j = 2, i.e., if r,ff = 2
for each of the two multiplexed jobs,s the APWAT al-
gorithm, with Round Robin scheduling of a time slice
equal to d, will suffer from hiccups. For instance, while
the Bl’s of the two objects are displayed, APWAT will
elevate/upload the next 4 blocks of the first object
(which will take 1 time unit) and it will then switch to
elevate/upload the next 4 blocks of the second object
(which will also take 1 time unit). Thus, it is apparent
that the displays will starve.

Another approach, is to use the APWAT algorithm
on the twisted sequence of Figure 3(a), instead of Fig-
ure 3(b). For our T = 4, j = 2, r,ff = 2 example, the
APWAT algorithm, with Round Robin scheduling of a
time slice equal to d/2, will display both objects with-
out hiccups. It will elevate/upload a pair of blocks of
the first object (which will take l/2 time unit), and
it will then switch to elevate/upload a pair of blocks
of the second object (which will take another l/2 time
unit). This method (playing boldfaced blocks from TS,
and the rest from SS) requires no extra PS buffers, and
it achieves 50% SS bandwidth savings (since half of the
blocks are played from TS).

A crucial factor to the last approach’s success (be-
sides the use of the twisted sequence for r,ff = 5 = 2)
was the fact that its time slice was the time needed
to upload 2 blocks. To see why this is indeed crucial,
consider, for example, the extreme case of a time slice

‘For now, for readability purposes, we assume no exchange
overhead.

232

equal to the time needed to upload 12 blocks: the last
approach could not achieve 50% SS bandwidth sav-
ings with no extra PS buffers (for the same sequence
of res = 2). This suggests that small time slices are
better than big ones, and one should thus use time
slices as small as possible.

Unfortunately, as we discussed earlier, the above
approach is over-simplified, since there is a switch cost
c (which includes, possibly, a tape exchange cost, plus
a search within a tape) associated with each Round
Robin’s switch from one object to another. Therefore,
the just derived minimum time slice will not be suf-
ficient to display the objects without hiccups. Never-
theless, we are now in a position to describe a general
approach and to derive the minimum time slice.

4.1 APWAT with Round Robin

The basic idea is to split each object’s blocks into
groups of t blocks each (called t&pies), for some ap-
propriate value of t, as follows: the first t-tuple will
contain the blocks {Bl, . . . , Bt}; the second t-tuple
will contain the blocks {B(li-t), . . . , B(2t)}, etc. In
order to process (upload, elevate, display) each t-tuple
in the most efficient way, we will use a twisted place-
ment of the blocks within each t-tuple for r. The de-
sired twisting here is slightly different than the one
suggested by Algorithm 2. The Twisted Placement,
produced by Algorithm 2, places the first blocks of an
object in locations 1, r+l, 2r+ 1, 3r+ 1, etc. The
Twisted Placement that is useful in our case places
the first blocks of a tuple in locations r, 2r, 3r,. . . .
within the tuple. Such an arrangement of an object’s
blocks will be called a (t,r)-organizution, or simply a
t-organization.

An example is shown in Figure 4. The objects will
be displayed by multiplexing them in a Round Robin
fashion: each time slice will process one t-tuple by
employing the APWAT algorithm. As an example,
consider the (8,4)-organization of Figure 4 (implying
that r = 4). While displaying Bl of the first object,
the Round Robin algorithm will elevate [B4, B5, B6]
and it will upload B2. While displaying B2, it will el-
evate [B7, BS, B9] and it will upload B3. It will then
start displaying B3, and it will switch to a second ob-
ject (processing its first 9 blocks), possibly then to a
third object (also processing its first 9 blocks), etc.
During the uploads/elevations of the blocks of the sec-
ond, third, etc., objects, the display process of the first
object will finish off consuming B3, and it will subse-
quently start playing B4, B5, B6, B7, B8, B9 from
SS. TO guarantee a play of all objects with no hiccups,
Round Robin should return to the first object before
B9 has been displayed.

The last remark can be used to derive the smallest

allowable value of t, given r and j. As explained, the
time required to read j t-tuples (one tuple from each
object) should be less than or equal to the time needed
to display the t blocks of the tuple read j time slices
earlier. Since the time needed to upload a t-tuple is
ts/bT, or td/r, and the switch cost is c, it follows that
the time required to read j t-tuples is (td/r + c)j, or
(ts/bT + c)j. Clearly also, the time needed to display
t blocks (of one object) is td. Thus

td2 (;+c)j= (x+c)j (1)

should hold. This allows us to derive the minimum
allowable value of t, given the bandwidth ratio r (a
hardware characteristic), the time unit d - or equiva
lently (since s = dbT/r): given the block size s - and
the number j of multiplexed jobs:

Example 1: Consider an object consisting of
12,000 blocks, each 0.5 MB, residing on a TS having
bandwidth 20 MB/set and exchange cost 10 sec. Fur-
thermore, assume that the time needed to display one
block is 1 sec. These figures imply that r = 40. Then,
eqn. (2) says that the display of j = 20 such objects
can be multiplexed using APWAT with Round Robin
if each object is split into at most 30 t-tuples of at least
400 blocks each. n

Inequality (1) may be seen under a different angle.
If we assume that the size t of each tupie has been
(somehow) fixed, it gives us the maximum number of
jobs that can be multiplexed as

Example 2: Given the configuration described in
Example 1, eqn. (3) says that if each object is split
into 30 groups of 400 blocks each, then up to 20 such
objects can be multiplexed. n

In the APWAT with Round Robin algorithm, given
a certain multiplexing degree j, if one chooses t = tmin
as given by (2), then, clearly, the PS buffer require-
ments are zero (recall our earlier example of the (8,4)-
organization). Clearly also, the SS bandwidth sav-
ings are l/r for each of the j jobs. Thus, if each of
the j objects consists of B blocks, then APWAT with
Round Robin will result in SS bandwidth savings of
jB/r blocks, when compared with the Conventional
algorithm (elevating all blocks to SS, and playing them
from there).

233

B4 B5 B6 B2 B7 B8 B9 B3 B12 B13 B14 BlO B15 B16 B17 Bll

Figure 4: (8,4)-organization of a 17-block object

4.2 Start-Up Latency Considerations

In the algorithms of the previous section, the issue of
the start-up latency was not addressed in detail since
it was not important (we were assuming only one dis-
play request at a time: start-up latency was equal to
the time needed to upload the 1st block of the object).
However, in a multiplexed environment, this issue de-
serves more attention. Assuming that all requests for
the j objects arrive simultaneously, the display of the
1st object will start with a delay of s/b~ (i.e., after Bl
of the 1st object is uploaded), the display of the 2nd
object will start with a delay of s/b~+ts/b~+c (i.e.,
after the 1st t-tuple of the first object is uploaded, TS
has switched to the beginning of the 2nd object, and
Bi of the 2nd object is uploaded), etc. Therefore, the
display of the j-th object will start with a delay of

delay-time = c(l+(j-1)t) + c(j-1) (4)

The precise effect of the choice of t now becomes
more clear. Given a certain multiplexing degree j,
if one chooses t > i&in, the start-up latency will be
higher (as implied by (4)), but the demand of TS us-
age will be lower (since when the time slice of the 1st
object arrives again, not all of its blocks, uploaded dur-
ing its previous time slice, will have been consumed),
allowing it to be used for other purposes. Nonethe-
less, the display of the object will be done correctly
(i.e., without hiccups), the PS space requirement will
still be zero, and the total SS bandwidth savings will
still be jB/r for j jobs.

5 Data Elevation With Unknown Mul-
tiplexing Degree

The algorithms of the previous section work if the
number j of multiplexed jobs in known in advance.
In this section, we will briefly discuss methods of over-
coming this limitation.

For objects residing exclusively on TS, and assum-
ing of course that r > 1, (2) and (3) imply that if j > r,
then no multiplexing of all j display requests is pos-
sible. We may thus assume that a known realizable
upper bound on the maximum value of j,,, for the
system. Obviously also, j 2 2 is also true.

In order to display j objects, for arbitrary
2 5 j 5 Lax, it suffices to use the tmin(jmax)-
organization. This is so, because, according to (2),
ty(jm& I h,(j). The discussion now of the

last paragraph of Section 4.2 implies that using the
t,i,(jm,)-organization will work correctly, without
changing the attained SS bandwidth savings of jB/r
SS blocks or the required zero PS buffer space.

The only drawback of the last proposal is its in-
creased start-up latency. If startup latency is of great
importance, it can be traded-off with additional TS
media storage space, as follows: Create and store a
t,i,(jr)-orgamzation, a t,i,(js)-Organization, etc., for
various values of j = ji, js, At run time, given
the current multiplexing degree j,,,,, use the small-
est such tmin j, Each used t (,> ydue whjch fs layer than hn(jcurr).

min(Ji)-orgamzatlon 1s a fill replica of an
object in TS. Frequently, the workload can be guessed,
using past experience, and this can be used as a guide
to decide which replicas to create.

If r < 1 and the objects to be displayed are (par-
tially) residing in SS, then strips of streams can prove
useful, as discussed in Section 3.5. The idea is to
make every t-tuple a f-strip. Given r, c and d (or
equivalently: s), the &in and j,,, for arbitrary j,
and t respectively, are given in [TP97].7 Unlike the
case of no&S residency .(discussed earlier in this sec-
tion), if one uses Strips of Streams, the required space
overhead is significantly smaller. For example, cre-
ating a 3-strip, a O-strip, a la-strip, a 24+trip, . . . ,
has a total space requirement (for all strips) at most
$(l + 3 + i + i + em.) 5 y, i.e., at most two-thirds
of the space of the entire object. Each of these strips
achieves l/3, l/6, l/12,. . . SS bandwidth savings, cor-
respondingly.

Depending on the tapes’ capacities and on the num-
ber of drives, it may be possible to do the following:
Place all 3-strips of the (say, 20) most popular movies
on one 7GB tape (recall that 20 MPEG-2 2OOKB/sec,
go-minute, movies require about 21GB). Additionally,
use slightly larger tape(s) to store additional k-strips.
The “b&rips tape” may be “permanently” mounted
on one of the drives; this way, the switch cost will
only be attributed to the head positioning delays (e.g.,
about 3.5 set on average for a 7GB tape searching at a
1 GB/sec speed), and thus the very expensive robotic
movements can be avoided when using these strips to
multiplex (some of) the most popular movies.

7Even when the objects reside in SS and r > 1, using the
%trips of streams” partial replicas in TS and the above ideas
we can still attain significant SS bandwidth savings, with zero
additional PS buffer space [TP97].

234

6. Conclusions

In this paper we have addressed the problem of con-
tinuous data elevation in multimedia servers which are
based on HSMSs; a problem which, in our view, has
not received adequate attention.

We first contributed the notion of alternating the
playback of delay-sensitive data between the TS and
the SS and discussed how this idea can save significant
SS bandwidth (but also pointed out that it requires
non-zero buffer space). Subsequently, we contributed
the Twisted Placement algorithm with a companion
play algorithm, called Alternate Play With A Twist;
the Placement algorithm determines the proper place-
ment/recording order for the blocks of objects on the
tapes so that the Play algorithm achieves the same SS
bandwidth savings as before but with zero additional
PS buffer space requirements this time.

Subsequently, we contributed the notion of strips
of streams, which are special partial replicas of stream
objects, residing permanently in TS, and which consist
of the blocks which are to be played from TS. Strips of
streams allow the previous contributions to be enjoyed
even when (1) the bandwidth of TS is smaller than
the display bandwidth of objects; and (2) the objects
also reside in SS (which will be the case for the most
popular objects).

Later we considered the subject of multiplexing and
we derived algorithms which employ the previously-
developed techniques to continue offering SS band-
width savings, at no additional PS buffer space. We
presented an algorithm showing how to store the
stream on tapes so that a high multiplexing degree
j is maintained. For each of the j jobs the algorithm
continues to achieve the aforementioned savings; thus,
the total savings are significantly greater.

For many multimedia servers we expect that the
data objects will exhibit skewed access distributions
(e.g., popular movies in a movie-on-demand applica-
tion). We further expect that for a large majority of
cases these objects will have been uploaded and will
reside in SS by the time the next request arrives. In
such scenarios, the bandwidth of SS is the most critical
resource and the resource most likely to cause bottle-
necks. In a sense, the aforementioned contributions
suggest the collaboration of TS and SS in order to im-
prove the system’s throughput. The significance here
is that the essence of our proposal aims at using the
TS of a HSMS, not simply for storage augmentation
reasons (as its traditional role would indicate) but for
bandwidth augmentation reasons as well. This is the
high level contribution of this research.

References

[BMGJ94] Steven Berson, Richard Muntz, Shahram

[CT951

[GDS95]

[GS94]

[KDST95]

[PGK88]

[SGM86]

[TF97]

[TP97]

Ghandeharizadeh, and Xiangyu Ju, Stag-
gered striping in multimedia information
systems, Proc. ACM SIGMOD Conference,
Minneapolis, MN (ACM SIGMOD Record,
23(2), June 1994), May 1994, pp. 79-90.

Stavros Christodoulakis and Peter Tri-
antafillou, Research and development is-
sues for large-scale multimedia informa-
tion systems, ACM Computing Surveys 27
(1995), no. 4, 576-579.

Shahram Ghandeharizadeh, Ali Dashti,
and Cyrus Shahabi, A pipelining mech-
anism to minimize the latency time in
hierarchical multimedia storage managers,
Computer communications 18 (1995),
no. 3, 170-184.

Shahram Ghandeharizadeh and Cyrus
Shahabi, On multimedia repositories, per-
sonal computers, and hierarchical storage
systems, Proc. ACM Multimedia Confer-
ece, 1994.

Martin G. Kienzle, Asit Dan, Dinkar
Sitaram, and William Tetzall, Using ter-
tiary storage in video-on-demand servers,
COMPCON’95, San Francisco, CA, IEEE
Computer Society Press, March 1995,
pp. 225-233.

David Patterson, Garth Gibson, and
Randy H. Katz, A case for redundant
arrays of inexpensive disks (RAID), Proc.
ACM SIGMOD Conference, Chicago,
IL (ACM SIGMOD Record 17(3),
Sept. 1988), June 1988, pp. 109-116.

Kenneth Salem and Hector Garcia-Molina,
Disk striping, Proc. International Confer-
ence on Data Engineering, Los Angeles,
CA, February 1986, pp. 336-342.

Peter Triantafillou and Christos Falout-
SOS, Overlay striping and optimal par-
allel I/O in modern applications, Par-
allel Computing Journal, Special Issue
on Parallel Data Servers and Applica-
tions, to appear. (Available from the
http://www.ced.tuc.grr/hermes tech re-
port series.), 1997.

Peter Triantafillou and Thomas Papadakis,
On-demand data elevation in a hierarchical
multimedia storage server, Journal version,
in preparation, 1997.

235

