
STING : A Statistical Information Grid Approach to Spatial Data
Mining

Wei Wang
Department of Computer Science

University of California, Los
Angeles

CA 90095, U.S.A.
weiwang@cs.ucla.edu

Jiong Yang
Department of Computer Science

University of California, Los
Angeles

CA 90095, U.S.A.
jyang@cs.ucla.edu

Richard Muntz
Department of Computer Science

University of California, Los
Angeles

CA 90095, U.S.A.
muntz@cs.ucla.edu

Abstract 1 Introduction

Spatial data mining, i.e., discovery of interesting
characteristics and patterns that may implicitly
exist in spatial databases, is a challenging task
due to the huge amounts of spatial data and to the
new conceptual nature of the problems which
must account for spatial distance. Clustering and
region oriented queries are common problems in
this domain. Several approaches have been
presented in recent years, all of which require at
least one scan of all individual objects (points).
Consequently, the computational complexity is at
least linearly proportional to the number of
objects to answer each query. In this paper, we
propose a hierarchical statistical information grid
based approach for spatial data mining to reduce
the cost further. The idea is to capture statistical
information associated with spatial cells in such a
manner that whole classes of queries and
clustering problems can be answered without
recourse to the individual objects. In theory, and
confirmed by empirical studies, this approach
outperforms the best previous method by at least
an order of magnitude, especially when the data
set is very large.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

In general, spatial data mining, or knowledge discovery in
spatial databases, is the extraction of implicit knowledge,
spatial relations and discovery of interesting
characteristics and patterns that are not explicitly
represented in the databases. These techniques can play an
important role in understanding spatial data and in
capturing intrinsic relationships between spatial and
nonspatial data. Moreover, such discovered relationships
can be used to present data in a concise manner and to
reorganize spatial databases to accommodate data
semantics and achieve high performance. Spatial data
mining has wide applications in many fields, including
GIS systems, image database exploration, medical
imaging, etc.[Che97, Fay96a, Fay96b, Kop96a, Kop96b]

The amount of spatial data obtained from satellite,
medical imagery and other sources has been growing
tremendously in recent years. A crucial challenge in
spatial data mining is the efficiency of spatial data mining
algorithms due to the often huge amount of spatial data
and the complexity of spatial data types and spatial
accessing methods. In this paper, we introduce a new
STatistical INformation Grid-based method (STING) to
efficiently process many common “region oriented”
queries on a set of points. Region oriented queries are
defined later more precisely but informally, they ask for
the selection of regions satisfying certain conditions on
density, total area, etc. This paper is organized as follows.
We first discuss related work in Section 2. We propose
our statistical information grid hierarchical structure and
discuss the query types it can support in Sections 3 and 4,
respectively. The general algorithm as well as a detailed
example of processing a query are given in Section 5. We
analyze the complexity of our algorithm in Section 6. In
Section 7, we analyze the quality of STING’s result and
propose a sufficient condition under which STING is
guaranteed to return the correct result. Limiting Behavior
of STING is in Section 8 and, in Section 9, we analyze the

performance of our method. Finally, we offer our
conclusions in Section 10.

2 Related Work
Many studies have been conducted in spatial data mining,
such as generalization-based knowledge discovery
[Kno96, Lu93], clustering-based methods [Est96, Ng94,
Zha96], and so on. Those most relevant to our work are
discussed briefly in this section and we emphasize what
we believe are limitations which are addressed by our
approach.

2.1 Generalization-based Approach

[Lu93] proposed two generalization based algorithms:
spatial-data-dominant and non-spatial-data-dominant
algorithms. Both of these require that a generalization
hierarchy is given explicitly by experts or is somehow
generated automatically. (However, such a hierarchy may
not exist or the hierarchy given by the experts may not be
entirely appropriate in some cases.) The quality of mined
characteristics is highly dependent on the structure of the
hierarchy. Moreover, the computational complexity is
O(MogN), where N is the number of spatial objects.

Given the above disadvantages, there have been
efforts to find algorithms that do not require a
generalization hierarchy, that is, to find algorithms that
can discover characteristics directly from data. This is the
motivation for applying clustering analysis in spatial data
mining, which is used to identify regions occupied by
points satisfying specified conditions.

2.2 Clustering-based Approach

2.2.1 CLARANS

[Ng94] presents a spatial data mining algorithm based on
a clustering algorithm called CLARANS (Clustering
Large Applications based upon RANdomized Search) on
spatial data. This is the first paper that introduces
clustering techniques into spatial data mining problems
and it represents a significant improvement on large data
sets over traditional clustering methods. However the
computational complexity of CLARANS is still high. In
[Ng94] it is claimed that CLARANS is linearly
proportional to the number of points, but actually the
algorithm is inherently at least quadratic. The reason is
that CLARANS applies a random search-based method to
find an “optimal” clustering. The time taken to calculate
the cost differential between the current clustering and one
of its neighbors (in which only one cluster medoid is
different) is linear and the number of neighbors that need
to be examined for the current clustering is controlled by a
parameter called maxneighbor, which is defined as
max(250, 1.25%K(N - K)) where K is the number of

clusters. This means that the time consumed at each step
of searching is O(KN’). It is very difficult to estimate how
many steps need to be taken to reach the local optimum,
but we can certainly say that the computational
complexity of CLARANS is sZ(KN’). This observation is
consistent with the results of our experiments and those
mentioned in [Est96] which show that the performance of
CLARANS is close to quadratic in the number of points.

Moreover, the quality of the results can not be
guaranteed when N is large since randomized search is
used in the algorithm. In addition, CLARANS assumes
that all objects are stored in main memory. This clearly
limits the size of the database to which CLARANS can be
applied.

2.2.2 BIRCH

Another clustering algorithm for large data sets, called
BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies), is introduced in [Zha96]. The authors
employ the concepts of Clustering Feature and CF tree.
Clustering feature is summarizing information about a
cluster. CF tree is a balanced tree used to store the
clustering features. This algorithm makes full use of the
available memory and requires a single scan of the data
set. This is done by combining closed clusters together
and rebuilding CF tree. This guarantees that the
computation complexity of BIRCH is linearly
proportional to the number of objects. We believe BIRCH
still has one other drawback: this algorithm may not work
well when clusters are not “spherical” because it uses the
concept of radius or diameter to control the boundary of a
cluster’.

2.2.3 DBSCAN

Recently, [Est96] proposed a density based clustering
algorithm (DBSCAN) for large spatial databases. Two
parameters Eps and MinPts are used in the algorithm to
control the density of normal clusters. DBSCAN is able to
separate “noise” from clusters of points where “noise”
consists of points in low density regions. DBSCAN makes
use of an R* tree to achieve good performance. The
authors illustrate that DBSCAN can be used to detect
clusters of any shape and can outperform CLARANS by a
large margin (up to several orders of magnitude).
However, the complexity of DBSCAN is O(MogN).
Moreover, DBSCAN requires a human participant to
determine the global parameter Eps. (The parameter
MinPts is fixed to 4 in their algorithm to reduce the
computational complexity.) Before determining Eps,
DBSCAN has to calculate the distance between a point
and its kth (k = 4) nearest neighbors for all points. Then it

’ We could not verify this since we do not have BIRCH
source code.

187

sorts all points according to the previous calculated
distances and plots the sorted k-dist graph. This is a time
consuming process. Furthermore, a user has to examine
the graph and find the first “valley” of the graph. The
corresponding distance is chosen as the value of Eps and
the resulting clustering quality is highly dependent on the
Eps parameter. When the point set to be clustered is the
response set of objects satisfying some qualification, then
the determination of Eps must be done each time and the
cost of DBSCAN will be higher. (In [Est96], the cost
quoted did not include this overhead.)

Moreover, all algorithms described above have the
common drawback that they are all query-dependent
approaches. That is, the structures used in these
approaches are dependent on specific query. They are
built once for each query and are generally of no use to
answer further queries. Therefore, these approaches need
to scan the data sets at least once for each query, which
causes the computational complexities of all above
approaches to be at least O(N), where N is the number of
objects.

In this paper, we propose a statistical information grid-
based approach called STING (STatistical INformation
Grid) to spatial data mining. The spatial area is divided
into rectangular cells. We have several different levels of
such rectangular cells corresponding to different
resolution and these cells form a hierarchical structure.
Each cell at a high level is partitioned to form a number of
cells of the next lower level. Statistical information of
each cell is calculated and stored beforehand and is used
to answer queries. The advantages of this approach are:
l It is a query-independent approach since the

statistical information exists independently of queries.
It is a summary representation of the data in each grid
cell, which can be used to facilitate answering a large
class of queries.

l The computational complexity is O(K), where K is
the number of grid cells at the lowest level. Usually,
K << N, where N is the number of objects2.

l Query processing algorithms using this structure are
trivial to parallelize.

l When data is updated, we do not need to recompute
all information in the cell hierarchy. Instead, we can
do an incremental update.

3 Grid Cell Hierarchy

3.1 Hierarchical Structure
We divide the spatial area into rectangle cells (e.g., using
latitude and longitude) and employ a hierarchical

‘Some strategies can be applied when constructing the
hierarchical structure to ensure K I N, which are beyond
the scope of this paper.

structure. Let the root of the hierarchy be at level 1; its
children at level 2, etc. A cell in level i corresponds to the
union of the areas of its children at level i + 1. In this
paper each cell (except the leaves) has 4 children and each
child corresponds to one quadrant of the parent cell. The
root cell at level 1 corresponds to the whole spatial area
(which we assume is rectangular for simplicity). The size
of the leaf level cells is dependent on the density of
objects. As a rule of thumb, we choose a size such that the
average number of objects in each cell is in the range from
several dozens to several thousands. In addition, a
desirable number of layers could be obtained by changing
the number of cells that form a higher level cell. In this
paper, we will use 4 as the default value unless otherwise
specified. In this paper, we assume our space is of two
dimensions although it is very easy to generalize this
hierarchy structure to higher dimensional models. In two
dimensions, the hierarchical structure is illustrated in
Figure 1.

1st level (top level) could
hWtXXll~CXli%ll.

AceJlof(i-l)thlevel
mrespcndsto4cellsof
ithlevel. ith hyg

Figure 1: Hierarchical Structure

For each cell, we have attribute-dependent and
attribute-independent parameters. The attribute-
independent parameter is:
. n-number of objects (points) in this cell

As for the attribute-dependent parameters, we assume
that for each object, its attributes have numerical values.
(We will address the categorical case in future research.)
For each numerical attribute, we have the following five
parameters for each cell:
. m-mean of all values in this cell
. s - standard deviation of all values of the attribute in

this cell
. min -the minimum value of the attribute in this cell
. max- the maximum value of the attribute in this cell
l distribution - the type of distribution that the

attribute value in this cell follows
The parameter distribution is of enumeration type.

Potential distribution types are: normal, uniform,
exponential, and so on. The value NONE is assigned if the
distribution type is unknown. The distribution type will

188

determine a “kernel” calculation in the generic algorithm
as will be discussed in detail shortly.

3.2 Parameter Generation

We generate the hierarchy of cells with their associated
parameters when the data is loaded into the database.
Parameters n, m, s, min, and nru.x of bottom level cells are
calculated directly from data. The value of distribution
could be either assigned by the user if the distribution type
is known before hand or obtained by hypothesis tests such
as X2-test. Parameters of higher level cells can be easily
calculated from parameters of lower level cell. Let n, m, s,
min, ~UZX, dist be parameters of current cell and ni, mi, si,
mini, mi, and disti be parameters of corresponding lower
level cells, respectively. The n, m, s, min, and lluu~ can be
calculated as follows.

n=Cn,

Cmini

m=L
n

Ji”--
min = *(mini)

mar = my(mi)

The determination of dist for a parent cell is a bit more
complicated. First, we set dist as the distribution type
followed by most points in this cell. This can be done by
examining disti and ni. Then, we estimate the number of
points, say co@, that conflict with the distribution
determined by dist, m, and s according to the following
rule:
1. If disti # dist, mi c- m and si = s, then confl is increased

by an amount of ni;
2. If disti # dist, but either mi = m or si = s is not

satisfied, then set confl to n (This enforces dist will be
set to NONE later);

3. If disti = dist, mi = m and si = S, then conjl is not
changed;

4. If disti = dist, but either mi = m or si = s is not
satisfied, then conjl is set to n.

conj7
Finally, if - is greater than a threshold r (This

n
threshold is a small constant, say 0.05, which is set before
the hierarchical structure is built), then we set dist as
NONE; otherwise, we keep the original type. For
example, the parameters of lower level cells are as
follows.

Table 1: Parameters of Children Cells

i 1 2 3 4
ni 100 50 60 10

mi 20.1 19.7 21.0 20.5
Si 2.3 2.2 2.4 2.1

mini 4.5 5.5 3.8 7
maxi 36 34 37 40
disti NORMAL NORMAL NORMAL NONE

Then the parameters of current cell will be

n = 220
m = 20.27
s = 2.37
min = 3.8
mar=40
dist = NORMAL

The distribution type is still NORMAL based on the
following: Since there are 210 points whose distribution
type is NORMAL, dist is first set to NORMAL. After
examining disti, mi, and si of each lower level cell, we find

confl
out co@7 = 10. So, dist is kept as NORMAL (-=

n
0.045 c 0.05).

We only need to go through the data set once in order
to calculate the parameters associated with the grid cells at
the bottom level, the overall compilation time is linearly
proportional to the number of objects with a small
constant factor. (And only has to be done once - not for
each query.) With this structure in place, the response
time for a query is much faster since it is O(K) instead of
O(N). We will analyze performance in more detail in later
sections.

4 Query Types
If the statistical information stored in the STING
hierarchical structure is not sufficient to answer a query,
then we have recourse to the underlying database.
Therefore, we can support any query that can be
expressed by the SQL-like language described later in this
section. However, the statistical information in the STING
structure can answer many commonly asked queries very
efficiently and we often do not need to access the full
database. Even when the statistical information is not
enough to answer a query, we can still narrow the set of
possible choices.

STING can be used to facilitate several kinds of spatial
queries. The most commonly asked query is region query
which is to select regions that satisfy certain conditions
(Exl). Another type of query selects regions and returns
some function of the region, e.g., the range of some
attributes within the region (Ex2). We extend SQL so that

189

it can be used to describe such queries. The formal
definition is in [Wan97]. The following are several query
examples.

Exl. Select the maximal regions that have at least 100
houses per unit area and at least 70% of the house prices
are above $4OOK and with total area at least 100 units
with 90% confidence.

SELECT REGION
FROM house-map
WHERE DENSITY IN (100, -)
AND price RANGE (400000, ->

WITH PERCENT (0.7, 1)
AND AREA (100, -)
AND WITH CONFIDENCE 0.9

Ex2. Select the range of age of houses in those maximal
regions where there are at least 100 houses per unit area
and at least 70% of the houses have price between $150K
and $300K with area at least 100 units in California.

SELECT RANGE(age)
FROM house-map
WHERE DENSITY IN (100, -)
AND price RANGE (150000,300000)

WITH PERCENT (0.7, 1)
AND AREA (100, -)
AND LOCATION California

5 Algorithm
With the hierarchical structure of grid cells on hand, we
can use a top-down approach to answer spatial data
mining queries. For each query, we begin by examining
cells on a high level layer. Note that it is not necessary to
start with the root; we may begin from an intermediate
layer (but we do not pursue this minor variation further
due to lack of space).

Starting with the root, we calculate the likelihood that
this cell is relevant to the query at some confidence level
using the parameters of this cell (exactly how this is
computed is described later). This likelihood can be
defined as the proportion of objects in this cell that satisfy
the query conditions. (If the distribution type is NONE,
we estimate the likelihood using some distribution-free
techniques instead.) After we obtain the confidence
interval, we label this cell to be relevant or not relevant at
the specified confidence level. When we finish examining
the current layer, we proceed to the next lower level of
cells and repeat the same process. The only difference is
that instead of going through all cells, we only look at
those cells that are children of the relevant cells of the
previous layer. This procedure continues until we finish
examining the lowest level layer (bottom layer). In most

cases, these relevant cells and their associated statistical
information are enough to give a satisfactory result to the
query. Then, we find all the regions formed by relevant
cells and return them. However, in rare cases (People may
want very accurate result for special purposes, e.g.
military), this information are not enough to answer the
query. Then, we need to retrieve those data that fall into
the relevant cells from database and do some further
processing.

After we have labeled all cells as relevant or not
relevant, we can easily find all regions that satisfy the
density specified by a breadth-first search. For each
relevant cell, we examine cells within a certain distance
(how to choose this distance is discussed below) from the
center of current cell to see if the average density within
this small area is greater than the density specified. If so,
this area is marked and all relevant cells we just examined
are put into a queue. Each time we take one cell from the
queue and repeat the same procedure except that only
those relevant cells that are not examined before are
enqueued. When the queue is empty, we have identified
one region. The distance we use above is calculated from
the specified density and the granularity of the bottom

level cell. The distance d = max(l,

are the side length of bottom layer cell, the specified
density, and a small constant number set by STING (It
does not vary from a query to another), respectively.

Usually, 1 is the dominant term in max(l,
J

5). As a

result, this distance can only reach the neighbor cells. In
this case, we just need to examine neighboring cells and
find regions that are formed by connected cells. Only
when the granularity is very small, this distance could
cover a number of cells. In this case, we need to examine
every cell within this distance instead of only neighboring
cells.

For example, if the objects in our database are houses
and price is one of the attributes, then one kind of query
could be “Find those regions with area at least A where
the number of houses per unit area is at least c and at least
p% of the houses have price between a and b with (1 - a)
confidence” where a < b. Here, a could be -0~ and b could
be +m. This query can be written as

SELECT REGION
FROM house-map
WHERE DENSITY IN [c, -)
AND price RANGE [a, b] WITH PERCENT [p%, l]
AND AREA [A, -)
AND WITH CONFIDENCE 1 - a

190

We begin from the top layer that has only one cell and
stop at the bottom level. Assume that the price in each
bottom layer cell is approximately normally distributed.
(For other distribution types the idea is essentially the
same except that we use different distribution function and
lookup table.) Note that price in a higher level cell could
have distribution type as NONE.

For each cell, if the distribution type is normal, we first
calculate the proportion of houses whose price is within
the range [a, b]. The probability that a price is between a
and b is

j=P(aIpriceIb)

a-m price-m <b-m
=P(-<

s - s -s 1

a-m
= P(-

b-m
IZI-

S s)

=aq !y)-,y)

where m and s are the mean and standard deviation of all
prices in this cell respectively. Since we assume all prices
are independent given the mean and variance, the number
of houses with price between a and b has a binomial
distribution with parameters n and $, where n is the
number of houses. Now we consider the following cases
according to n, n i , and n(1 - i).
1.

2.

3.

4.

When n I 30, we can use binomial distribution
directly to calculate the confidence interval of the
number of houses whose price falls into [a, b], and
divide it by n to get the confidence interval for the
proportion.
Whenn>30,nb 25,andn(l- $)>5,the

proportion that the price falls in [a, b] has a normal
distribution N(5 , ,/m) approximately.

Then lOO(1 - a)% confidence interval of the
proportion is $ + z&J= = [pi, pz].

When n > 30 but n 3 < 5, the Poisson distribution
with parameter h = n i is approximately equal to the
binomial distribution with parameters n and fi.
Therefore, we can use the Poisson distribution
instead.
When n > 30 but n(1 - j) c 5, we can calculate the
proportion of houses (x) whose price is not in [a, b]
using Poisson distribution with parameter h = n(1 -
j), and 1 - X is the proportion of houses whose price

is in [a, b].
For a cell, if the distribution type is NONE!, we can

estimate the proportion range [pi, pz] that the price falls in

[a, b] by some distribution-free techniques, such as
Chebyshev’s inequality [Dev91].
1. If m er [a, b], then

sz sz
(a-m)’ ‘(b-m)’

;

2. Ifm=aorm=b,then[p,,pz]=[O, I];
3. If m E (a, b), then

S2
2

1-(a-m)2 91-(bsm)2’o ‘I ’)3
Once we have the confidence interval or the estimated

range [pi, pz], we can label this cell as relevant or not
relevant. Let S be the area of cells at bottom layer. If p2 x
n < S x c x p%, we label this cell as not relevant;
otherwise, we label it as relevant.

Each time when we finish examining a layer, we go
down one level and only examine those cells that form the
relevant cells at higher layer. After we labeled the cells at
bottom layer, we scan those relevant cells and return those
regions formed by at least rA/Si adjacent relevant cells.
This can be done in O(K) time.

The above algorithm is summarized in Figure 2.

Statistical Information Grid-based Algorithm:

1.
2.

3.

4.

5.

6.

7.

8.

9.

Determine a layer to begin with.
For each cell of this layer, we calculate the confidence
interval (or estimated range) of probability that this cell
is relevant to the query.
From the interval calculated above, we label the cell as
relevant or not relevant.
If this layer is the bottom layer, go to Step 6; otherwise,
go to Step 5.
We go down the hierarchy structure by one level. Go to
Step 2 for those cells that form the relevant cells of the
higher level layer.
If the specification of the query is met, go to Step 8;
otherwise, go to Step 7.
Retrieve those data fall into the relevant cells and do
further processing. Return the result that meet the
requirement of the query. Go to Step 9.
Find the regions of relevant cells. Return those regions
that meet the requirement of the query. Go to Step 9.
stop.

Figure 2: STING Algorithm

6 Analysis of the STING Algorithm
In above algorithm, Step 1 takes constant time. Steps 2
and 3 require a constant time for each cell to calculate the
confidence interval or estimate proportion range and also
a constant time to label the cell as relevant or not
relevant. This means that we need constant time to
process each cell in Steps 2 and 3. The total time is less
than or equal to the total number of cells in our

191

hierarchical structure. Notice that the total number of cells
is 1.33K, where K is the number of cells at bottom layer.
We obtain the factor 1.33 because the number of cells of a
layer is always one-forth of the number of cells of the
layer one level lower. So the overall computation
complexity on the grid hierarchy structure is O(K).
Usually, the number of cells needed to be examined is
much less, especially when many cells at high layers are
not relevant. In Step 8, the time it takes to form the
regions is linearly proportional to the number of cells. The
reason is that for a given cell, the number of cells need to
be examined is constant because both the specified density
and the granularity can be regarded as constants during
the execution of a query and in turn the distance is also a
constant since it is determined by the specified density.
Since we assume each cell at bottom layer usually has
several dozens to several thousands objects, K CC N. So,
the total complexity is still O(K).Usually, we do not need
to do Step 7 and the overall computational complexity is
O(K). In the extreme case that we need to go to Step 7, we
still do not need to retrieve all data from database.
Therefore, the time required in this step is still less than
linear. So, this algorithm outperforms other approaches
greatly.

7 Quality of STING
STING makes use of statistical information to
approximate the expected results of query. Therefore, it
could be imprecise since data points can be arbitrarily
located. However, under the the following sufficient
condition, STING can guarantee that if a region satisfies
the specificaton of the query, then it is returned.

Definition 1. Let F be a region. The width of F is defined
as the side length of the maximum square that can fit in F.

Sufficient Condition:

Let A and c be the minimum area and density
specified by query, respectively. Let R and W be a
region satisfying the ,conditions specified by the
query and its width, respectively. If W2 - 4(fW/11
+1)1’ 2 A where 1 is the side length of the bottom
level cell, then R must be returned by STING.

Let S be a maximum square in R with side length W.
Let I be the set of bottom level cells that intersect with S. I
can be divided into two disjoint subsets II and ZZ. II is the
set of cells that cross the boundary of S while I* is the set
of cells that are within S. It is obvious that all cells in I2
are connected. A line segment of length W can cross at
most rW/ll + 1 bottom level cells. In turn, the cardinality
of II is at most 4[W/11+ 1). The total area of cells in II is
at most 4(fW/1!1 + 1)12 and the total area of S is W2. As a

result, the total area of cells in I2 is at least W2 - 4(rW/Zl+
1)1’. STING can detect all the cells in I2 as relevant. Since
W2 - 4(-W/Z] +1)1’ 2 A, the total area of cells in Z2 is at
least A. Therefore, STING can guarantee to return R.
However, the boundary of the returned region could be
slightly different from the expected one.

8 Limiting Behavior of STING is Equivalent
to DBSCAN
The regions returned by STING are an approximation of
the result by DBSCAN. As the granularity approaches
zero, the regions returned by STING approach the result
of DBSCAN. In order to compare to DBSCAN, we only
use the number of points here since DBSCAN can only
cluster points according to their spatial location. (i.e., we
do not consider conditions on other attributes.) DBSCAN
has two parameters: Eps and MinPts. (Usually, MinPts is
fixed to k.) In our case, STING has only one parameter:

the density c. We set c =
MinPts + 1 k+l

Eps’ . a
=- in order

Eps’ . K
to approximate the result of DBSCAN. The reason is that
the density of any area inside the clusters detected by

DBSCAN is at least
MinPts + 1
Eps’ . k

since for each core point

there are at least MinPts points (excluding itself) within
distance Eps. In STING, for each cell, if it < S x c, then
we label it as not relevant; otherwise, we label it as
relevant where n and S are the number of points in this
cell and the area of bottom layer cell, respectively. When
we form the regions from relevant cells, the examining

distance is set to be d = max(l, 5). When the

granularity is very small, d k+l
; becomes the dominant

term. As the granularity approaches zero, the area of each
cell at bottom layer goes to zero. So, if there is at least one
point in a cell, this cell will be labeled as relevant. Now
what we need to do is to form the region to be returned
according to distance d and density c. We can see that d =

k+l
k+l

= Eps. For each relevant cell, we
-.?r
Eps’ . z

examine the area around it (within distance d) to see if the
density is greater than c. This is equivalent to check if the
number of points (including itself) within this area is
greater than c x nd2 = k + 1. As a result, the result of
STING approaches that of DBSCAN when the granularity
approaches zero.

192

9 Performance
We run several tests to evaluate the performance of
STING. The following tests are run on a SPARC 10
machine with Solaris 5.5 operating system (192 MB
memory).

9.1 Performance Comparison of Two Distributions

To obtain performance metric of STING, we implemented
the house-price example discussed in Section 5. Exl is the
query that we posed. We generated two data sets, both of
which have 100,000 data points (houses). The hierarchical
structure has seven layers in this test. First, we generate a
data set (DSI) such that the price is normally distributed
in each cell (with similar mean). The hierarchical structure
generation time is 9.8 seconds. (Generation needs to be
done once for each data set. All the queries for the same
data set can use the same structure. Therefore, we do not
need to generate it for each query.) It takes STING 0.20
second to answer the query given the STING structure
exists. The expected result and the result returned by
STING are in Figure 3a and 3b, respectively.

From Figure 3a and 3b, we can see that STING’s
result is very close to the expected one. In the second data
set (DS2), the prices in each bottom layer cell follow a
normal distribution (with different mean) but they do not
follow any known distribution at higher levels. The
hierarchical structure generation time is 9.7 seconds. It
takes STING 0.22 second to answer the query. The
expected result and the result returned by STING are in
Figure 4a and 4b, respectively.

Figure 3a: Expected Result with DS 1

Figure 3b: STING’s Result on DS 1

Figure 4a: Expected Result with DS2

Figure 4b: STING’s Result on DS2

393

Once again, we can see that the STING’s result is very
close to the expected one.

9.2 Benchmark Result

Currently, clustering based approaches are an important
category of spatial data mining problems. Three extant
systems are CLARANS [Ng94], BIRCH [Zha96], and
DBSCAN [Est96]. We compare the performance of these
three with STING.

In the following tests, we only compare the time for
clustering. However, if the clustering data is the result of
some query, then all other algorithms (other than STING)
have at least three phases:
1. Find query response.
2. Build auxiliary structure.
3. Do clustering.
The reported numbers for the other methods do not
include computation of Phase 1, but STING only takes
one step to answer the whole query. Therefore, STING
actually compares better than that the measurements
presented here indicate.

We use the benchmark chosen by Ester M. et al. in
[Est96], namely SEQUOIA 20 [Sto93], to compare the
performance of STING and other approaches. We
successfully ran CLARANS and STING with data size
between 1252 and 12512. STING has generation time and
query time. The generation time is the time consumed to
generate the hierarchical structure and the query time is
the time used to answer a specific query. In the test, the
STING hierarchy structure has six layers.

Due to unavailability of DBSCAN source code, we are
unable to run this algorithm. We discovered that
CLARANS is approximately 15 times faster in our
configuration than in the configuration specified in
[Est96] for all data sizes. We estimate that DBSCAN also
runs roughly 15 times faster and show the estimated
running time of DBSCAN in the following table as a
function of point set cardinality. All times are in units of
seconds.

Table 2: Performance tests for CLARANS, DBSCAN,
and STING

Number of Points 1256 2503 3910
CLARANS 49 200 457

DBSCAN (projected) 1 1.0 1 1.2 1 2.86
STING (auerv) I 0.12 I 0.12 I 0.14

\. d,

STING (generation) 1 1.48 1 1.55 1 1.62 I

Furthermore, BIRCH outperforms CLARANS about
20 to 30 times [Zha96]. So STING will also outperform
BIRCH by a very large margin. We plot the query
response time for DBSCAN and STING in Figure 5
because DBSCAN is the fastest among all existing
algorithms.

2.5

5000 10000

Number of points

Figure 5: Performance Comparison Between STING and
DBSCAN

10 Conclusion
In this paper, we present a statistical information grid-
based approach to spatial data mining. It has much less
computational cost than other approaches. The I/O cost is
low since we can usually keep the STING data structure in
memory. Both of these will speed up the processing of
spatial data query tremendously. In addition, it offers us
an opportunity for parallelism (STING is trivially
parallelizable). All these advantages benefit from the
hierarchical structure of grid cells and the statistical
information associated with them.

Acknowledgments
This work was supported by NASA Contract No. NAGW-
4242. The authors are thankful to Prof. Raymond Ng for
making the implementation of the CLARANS available to
us. We also acknowledge the help from Gregerio Ham,
Silvia Nittel, Renato Santana, and Jeonghee Yi.

References
[Che97] M. S. Chen, J. Han, P. S. Yu. Data mining: an

overview from database perspective. to appear
in IEEE Transactions on Knowledge and data
Engineering, 1997.

[Dev91] J. L. Devore. Probability and Statistics for
Engineering and the Sciences, 3rd edition.

194

Brooks/Cole Publishing Company, Pacific
Grove, California, 1991.

[Est95] M. Ester, H. P. Kriegel, and X. Xu. Knowledge
discovery in large spatial databases: Focusing
techniques for efficient class identification.
Proc. 4th Int, Symp. on Large Spatial
Databases (SSD’95), pp. 67-82, Poland, Maine,
August 1995.

[Est96] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters
in large spatial databases with noise. Proc. 2nd
Int. Conf Knowledge Discovery and Data
Mining (KDD-96), pp. 226-231, Portland, OR,
USA, August 1996.

[Fay96a] U. Fayyad, G. P.-Shapiro, and P. Smyth. From
data mining to knowledge discovery in
databases. AI Magazine, 17(3):37-54, Fall
1996.

[Fay96b] U. Fayyad, G. P.-Shapiro, P. Smyth, and R.
Uthurusamy, editors. Advances in Knowledge
Discovery and Data Mining. AAAVMIT Press,
Menlo Park, CA, 1996.

[Fot94] S. Fotheringham and P. Rogerson. Spatial
Analysis and GIS. Taylor and Francies, 1994

[Kno96] E. M. Knorr and R. Ng. Extraction of spatial
proximity patterns by concept generalization.
Proc. 2nd Int. Conf Knowledge Discovery and
Data Mining (KDD-96), pp. 347-350, Portland,
OR, USA, August 1996.

[Kop96a] K. Koperski, J. Adhikary, and J. Han. Spatial
data mining: progress and challenges.
SIGMOD’96 Workshop on Research Issues on
Data Mining and Knowledge Discovery
(DMKD’96), Montreal, Canada, June 1996.

[Kop96b] K. Koperski and J. Han. Data mining methods
for the analysis of large geographic databases.
Proc. 10th Annual Conf on GIS. Vancouver,
Canada, March 1996.

[Lu93] W. Lu, J. Han, and B. C. Ooi. Discovery of
general knowledge in large spatial databases.
Proc. Far East Workshop on Geographic
Information Systems, pp. 275-289, Singapore,
June 1993.

[Ng94] R. Ng and J. Han. Efficient and effective
clustering method for spatial data mining. Proc.

I994 Int. Conf Very Large Databases, pp. 144-
155, Santiago, Chile, September 1994.

[Sam901 H. Samet. The Design and Analysis of Spatial
Data Structures. Addison-Wesley, 1990.

[Sto93] M. Stonebraker, J. Frew, K. Gardels, and J.
Meredith. The SEQUOIA 2000 storage
benchmark. Proc. I993 ACM-SIGMOD Int.
Conf Management of Data, pp. 2-11,
Washington DC, 1993.

[Wan971 W. Wang, J. Yang, and R. R. Muntz. STING: A
satistical information grid approach to spatial
data mining. Technical Report No. 970006,
Computer Science Department, UCLA,
February 1997.

[Zha96] T. Zhang, R. Ramakrishnan, and M. Livny.
BIRCH: an efficient data clustering method for
very large databases. Proc. I996 ACM-
SIGMOD Int. Conf Management of Data, pp.
103-l 14, Montreal, Canada, June 1996.

195

