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Abstract 1 Introduction 

Spatial data mining, i.e., discovery of interesting 
characteristics and patterns that may implicitly 
exist in spatial databases, is a challenging task 
due to the huge amounts of spatial data and to the 
new conceptual nature of the problems which 
must account for spatial distance. Clustering and 
region oriented queries are common problems in 
this domain. Several approaches have been 
presented in recent years, all of which require at 
least one scan of all individual objects (points). 
Consequently, the computational complexity is at 
least linearly proportional to the number of 
objects to answer each query. In this paper, we 
propose a hierarchical statistical information grid 
based approach for spatial data mining to reduce 
the cost further. The idea is to capture statistical 
information associated with spatial cells in such a 
manner that whole classes of queries and 
clustering problems can be answered without 
recourse to the individual objects. In theory, and 
confirmed by empirical studies, this approach 
outperforms the best previous method by at least 
an order of magnitude, especially when the data 
set is very large. 
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In general, spatial data mining, or knowledge discovery in 
spatial databases, is the extraction of implicit knowledge, 
spatial relations and discovery of interesting 
characteristics and patterns that are not explicitly 
represented in the databases. These techniques can play an 
important role in understanding spatial data and in 
capturing intrinsic relationships between spatial and 
nonspatial data. Moreover, such discovered relationships 
can be used to present data in a concise manner and to 
reorganize spatial databases to accommodate data 
semantics and achieve high performance. Spatial data 
mining has wide applications in many fields, including 
GIS systems, image database exploration, medical 
imaging, etc.[Che97, Fay96a, Fay96b, Kop96a, Kop96b] 

The amount of spatial data obtained from satellite, 
medical imagery and other sources has been growing 
tremendously in recent years. A crucial challenge in 
spatial data mining is the efficiency of spatial data mining 
algorithms due to the often huge amount of spatial data 
and the complexity of spatial data types and spatial 
accessing methods. In this paper, we introduce a new 
STatistical INformation Grid-based method (STING) to 
efficiently process many common “region oriented” 
queries on a set of points. Region oriented queries are 
defined later more precisely but informally, they ask for 
the selection of regions satisfying certain conditions on 
density, total area, etc. This paper is organized as follows. 
We first discuss related work in Section 2. We propose 
our statistical information grid hierarchical structure and 
discuss the query types it can support in Sections 3 and 4, 
respectively. The general algorithm as well as a detailed 
example of processing a query are given in Section 5. We 
analyze the complexity of our algorithm in Section 6. In 
Section 7, we analyze the quality of STING’s result and 
propose a sufficient condition under which STING is 
guaranteed to return the correct result. Limiting Behavior 
of STING is in Section 8 and, in Section 9, we analyze the 



performance of our method. Finally, we offer our 
conclusions in Section 10. 

2 Related Work 
Many studies have been conducted in spatial data mining, 
such as generalization-based knowledge discovery 
[Kno96, Lu93], clustering-based methods [Est96, Ng94, 
Zha96], and so on. Those most relevant to our work are 
discussed briefly in this section and we emphasize what 
we believe are limitations which are addressed by our 
approach. 

2.1 Generalization-based Approach 

[Lu93] proposed two generalization based algorithms: 
spatial-data-dominant and non-spatial-data-dominant 
algorithms. Both of these require that a generalization 
hierarchy is given explicitly by experts or is somehow 
generated automatically. (However, such a hierarchy may 
not exist or the hierarchy given by the experts may not be 
entirely appropriate in some cases.) The quality of mined 
characteristics is highly dependent on the structure of the 
hierarchy. Moreover, the computational complexity is 
O(MogN), where N is the number of spatial objects. 

Given the above disadvantages, there have been 
efforts to find algorithms that do not require a 
generalization hierarchy, that is, to find algorithms that 
can discover characteristics directly from data. This is the 
motivation for applying clustering analysis in spatial data 
mining, which is used to identify regions occupied by 
points satisfying specified conditions. 

2.2 Clustering-based Approach 

2.2.1 CLARANS 

[Ng94] presents a spatial data mining algorithm based on 
a clustering algorithm called CLARANS (Clustering 
Large Applications based upon RANdomized Search) on 
spatial data. This is the first paper that introduces 
clustering techniques into spatial data mining problems 
and it represents a significant improvement on large data 
sets over traditional clustering methods. However the 
computational complexity of CLARANS is still high. In 
[Ng94] it is claimed that CLARANS is linearly 
proportional to the number of points, but actually the 
algorithm is inherently at least quadratic. The reason is 
that CLARANS applies a random search-based method to 
find an “optimal” clustering. The time taken to calculate 
the cost differential between the current clustering and one 
of its neighbors (in which only one cluster medoid is 
different) is linear and the number of neighbors that need 
to be examined for the current clustering is controlled by a 
parameter called maxneighbor, which is defined as 
max(250, 1.25%K(N - K)) where K is the number of 

clusters. This means that the time consumed at each step 
of searching is O(KN’). It is very difficult to estimate how 
many steps need to be taken to reach the local optimum, 
but we can certainly say that the computational 
complexity of CLARANS is sZ(KN’). This observation is 
consistent with the results of our experiments and those 
mentioned in [Est96] which show that the performance of 
CLARANS is close to quadratic in the number of points. 

Moreover, the quality of the results can not be 
guaranteed when N is large since randomized search is 
used in the algorithm. In addition, CLARANS assumes 
that all objects are stored in main memory. This clearly 
limits the size of the database to which CLARANS can be 
applied. 

2.2.2 BIRCH 

Another clustering algorithm for large data sets, called 
BIRCH (Balanced Iterative Reducing and Clustering 
using Hierarchies), is introduced in [Zha96]. The authors 
employ the concepts of Clustering Feature and CF tree. 
Clustering feature is summarizing information about a 
cluster. CF tree is a balanced tree used to store the 
clustering features. This algorithm makes full use of the 
available memory and requires a single scan of the data 
set. This is done by combining closed clusters together 
and rebuilding CF tree. This guarantees that the 
computation complexity of BIRCH is linearly 
proportional to the number of objects. We believe BIRCH 
still has one other drawback: this algorithm may not work 
well when clusters are not “spherical” because it uses the 
concept of radius or diameter to control the boundary of a 
cluster’. 

2.2.3 DBSCAN 

Recently, [Est96] proposed a density based clustering 
algorithm (DBSCAN) for large spatial databases. Two 
parameters Eps and MinPts are used in the algorithm to 
control the density of normal clusters. DBSCAN is able to 
separate “noise” from clusters of points where “noise” 
consists of points in low density regions. DBSCAN makes 
use of an R* tree to achieve good performance. The 
authors illustrate that DBSCAN can be used to detect 
clusters of any shape and can outperform CLARANS by a 
large margin (up to several orders of magnitude). 
However, the complexity of DBSCAN is O(MogN). 
Moreover, DBSCAN requires a human participant to 
determine the global parameter Eps. (The parameter 
MinPts is fixed to 4 in their algorithm to reduce the 
computational complexity.) Before determining Eps, 
DBSCAN has to calculate the distance between a point 
and its kth (k = 4) nearest neighbors for all points. Then it 

’ We could not verify this since we do not have BIRCH 
source code. 
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sorts all points according to the previous calculated 
distances and plots the sorted k-dist graph. This is a time 
consuming process. Furthermore, a user has to examine 
the graph and find the first “valley” of the graph. The 
corresponding distance is chosen as the value of Eps and 
the resulting clustering quality is highly dependent on the 
Eps parameter. When the point set to be clustered is the 
response set of objects satisfying some qualification, then 
the determination of Eps must be done each time and the 
cost of DBSCAN will be higher. (In [Est96], the cost 
quoted did not include this overhead.) 

Moreover, all algorithms described above have the 
common drawback that they are all query-dependent 
approaches. That is, the structures used in these 
approaches are dependent on specific query. They are 
built once for each query and are generally of no use to 
answer further queries. Therefore, these approaches need 
to scan the data sets at least once for each query, which 
causes the computational complexities of all above 
approaches to be at least O(N), where N is the number of 
objects. 

In this paper, we propose a statistical information grid- 
based approach called STING (STatistical INformation 
Grid) to spatial data mining. The spatial area is divided 
into rectangular cells. We have several different levels of 
such rectangular cells corresponding to different 
resolution and these cells form a hierarchical structure. 
Each cell at a high level is partitioned to form a number of 
cells of the next lower level. Statistical information of 
each cell is calculated and stored beforehand and is used 
to answer queries. The advantages of this approach are: 
l It is a query-independent approach since the 

statistical information exists independently of queries. 
It is a summary representation of the data in each grid 
cell, which can be used to facilitate answering a large 
class of queries. 

l The computational complexity is O(K), where K is 
the number of grid cells at the lowest level. Usually, 
K << N, where N is the number of objects2. 

l Query processing algorithms using this structure are 
trivial to parallelize. 

l When data is updated, we do not need to recompute 
all information in the cell hierarchy. Instead, we can 
do an incremental update. 

3 Grid Cell Hierarchy 

3.1 Hierarchical Structure 
We divide the spatial area into rectangle cells (e.g., using 
latitude and longitude) and employ a hierarchical 

‘Some strategies can be applied when constructing the 
hierarchical structure to ensure K I N, which are beyond 
the scope of this paper. 

structure. Let the root of the hierarchy be at level 1; its 
children at level 2, etc. A cell in level i corresponds to the 
union of the areas of its children at level i + 1. In this 
paper each cell (except the leaves) has 4 children and each 
child corresponds to one quadrant of the parent cell. The 
root cell at level 1 corresponds to the whole spatial area 
(which we assume is rectangular for simplicity). The size 
of the leaf level cells is dependent on the density of 
objects. As a rule of thumb, we choose a size such that the 
average number of objects in each cell is in the range from 
several dozens to several thousands. In addition, a 
desirable number of layers could be obtained by changing 
the number of cells that form a higher level cell. In this 
paper, we will use 4 as the default value unless otherwise 
specified. In this paper, we assume our space is of two 
dimensions although it is very easy to generalize this 
hierarchy structure to higher dimensional models. In two 
dimensions, the hierarchical structure is illustrated in 
Figure 1. 

1st level (top level) could 
hWtXXll~CXli%ll. 

AceJlof(i-l)thlevel 
mrespcndsto4cellsof 
ithlevel. ith hyg 

Figure 1: Hierarchical Structure 

For each cell, we have attribute-dependent and 
attribute-independent parameters. The attribute- 
independent parameter is: 
. n-number of objects (points) in this cell 

As for the attribute-dependent parameters, we assume 
that for each object, its attributes have numerical values. 
(We will address the categorical case in future research.) 
For each numerical attribute, we have the following five 
parameters for each cell: 
. m-mean of all values in this cell 
. s - standard deviation of all values of the attribute in 

this cell 
. min -the minimum value of the attribute in this cell 
. max- the maximum value of the attribute in this cell 
l distribution - the type of distribution that the 

attribute value in this cell follows 
The parameter distribution is of enumeration type. 

Potential distribution types are: normal, uniform, 
exponential, and so on. The value NONE is assigned if the 
distribution type is unknown. The distribution type will 
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determine a “kernel” calculation in the generic algorithm 
as will be discussed in detail shortly. 

3.2 Parameter Generation 

We generate the hierarchy of cells with their associated 
parameters when the data is loaded into the database. 
Parameters n, m, s, min, and nru.x of bottom level cells are 
calculated directly from data. The value of distribution 
could be either assigned by the user if the distribution type 
is known before hand or obtained by hypothesis tests such 
as X2-test. Parameters of higher level cells can be easily 
calculated from parameters of lower level cell. Let n, m, s, 
min, ~UZX, dist be parameters of current cell and ni, mi, si, 
mini, mi, and disti be parameters of corresponding lower 
level cells, respectively. The n, m, s, min, and lluu~ can be 
calculated as follows. 

n=Cn, 

Cmini 

m=L 
n 

Ji”-- 
min = *(mini ) 

mar = my( mi ) 

The determination of dist for a parent cell is a bit more 
complicated. First, we set dist as the distribution type 
followed by most points in this cell. This can be done by 
examining disti and ni. Then, we estimate the number of 
points, say co@, that conflict with the distribution 
determined by dist, m, and s according to the following 
rule: 
1. If disti # dist, mi c- m and si = s, then confl is increased 

by an amount of ni; 
2. If disti # dist, but either mi = m or si = s is not 

satisfied, then set confl to n (This enforces dist will be 
set to NONE later); 

3. If disti = dist, mi = m and si = S, then conjl is not 
changed; 

4. If disti = dist, but either mi = m or si = s is not 
satisfied, then conjl is set to n. 

conj7 
Finally, if - is greater than a threshold r (This 

n 
threshold is a small constant, say 0.05, which is set before 
the hierarchical structure is built), then we set dist as 
NONE; otherwise, we keep the original type. For 
example, the parameters of lower level cells are as 
follows. 

Table 1: Parameters of Children Cells 

i 1 2 3 4 
ni 100 50 60 10 

mi 20.1 19.7 21.0 20.5 
Si 2.3 2.2 2.4 2.1 

mini 4.5 5.5 3.8 7 
maxi 36 34 37 40 
disti NORMAL NORMAL NORMAL NONE 

Then the parameters of current cell will be 

n = 220 
m = 20.27 
s = 2.37 
min = 3.8 
mar=40 
dist = NORMAL 

The distribution type is still NORMAL based on the 
following: Since there are 210 points whose distribution 
type is NORMAL, dist is first set to NORMAL. After 
examining disti, mi, and si of each lower level cell, we find 

confl 
out co@7 = 10. So, dist is kept as NORMAL (-= 

n 
0.045 c 0.05). 

We only need to go through the data set once in order 
to calculate the parameters associated with the grid cells at 
the bottom level, the overall compilation time is linearly 
proportional to the number of objects with a small 
constant factor. (And only has to be done once - not for 
each query.) With this structure in place, the response 
time for a query is much faster since it is O(K) instead of 
O(N). We will analyze performance in more detail in later 
sections. 

4 Query Types 
If the statistical information stored in the STING 
hierarchical structure is not sufficient to answer a query, 
then we have recourse to the underlying database. 
Therefore, we can support any query that can be 
expressed by the SQL-like language described later in this 
section. However, the statistical information in the STING 
structure can answer many commonly asked queries very 
efficiently and we often do not need to access the full 
database. Even when the statistical information is not 
enough to answer a query, we can still narrow the set of 
possible choices. 

STING can be used to facilitate several kinds of spatial 
queries. The most commonly asked query is region query 
which is to select regions that satisfy certain conditions 
(Exl). Another type of query selects regions and returns 
some function of the region, e.g., the range of some 
attributes within the region (Ex2). We extend SQL so that 
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it can be used to describe such queries. The formal 
definition is in [Wan97]. The following are several query 
examples. 

Exl. Select the maximal regions that have at least 100 
houses per unit area and at least 70% of the house prices 
are above $4OOK and with total area at least 100 units 
with 90% confidence. 

SELECT REGION 
FROM house-map 
WHERE DENSITY IN (100, -) 
AND price RANGE (400000, -> 

WITH PERCENT (0.7, 1) 
AND AREA ( 100, -) 
AND WITH CONFIDENCE 0.9 

Ex2. Select the range of age of houses in those maximal 
regions where there are at least 100 houses per unit area 
and at least 70% of the houses have price between $150K 
and $300K with area at least 100 units in California. 

SELECT RANGE(age) 
FROM house-map 
WHERE DENSITY IN (100, -) 
AND price RANGE (150000,300000) 

WITH PERCENT (0.7, 1) 
AND AREA (100, -) 
AND LOCATION California 

5 Algorithm 
With the hierarchical structure of grid cells on hand, we 
can use a top-down approach to answer spatial data 
mining queries. For each query, we begin by examining 
cells on a high level layer. Note that it is not necessary to 
start with the root; we may begin from an intermediate 
layer (but we do not pursue this minor variation further 
due to lack of space). 

Starting with the root, we calculate the likelihood that 
this cell is relevant to the query at some confidence level 
using the parameters of this cell (exactly how this is 
computed is described later). This likelihood can be 
defined as the proportion of objects in this cell that satisfy 
the query conditions. (If the distribution type is NONE, 
we estimate the likelihood using some distribution-free 
techniques instead.) After we obtain the confidence 
interval, we label this cell to be relevant or not relevant at 
the specified confidence level. When we finish examining 
the current layer, we proceed to the next lower level of 
cells and repeat the same process. The only difference is 
that instead of going through all cells, we only look at 
those cells that are children of the relevant cells of the 
previous layer. This procedure continues until we finish 
examining the lowest level layer (bottom layer). In most 

cases, these relevant cells and their associated statistical 
information are enough to give a satisfactory result to the 
query. Then, we find all the regions formed by relevant 
cells and return them. However, in rare cases (People may 
want very accurate result for special purposes, e.g. 
military), this information are not enough to answer the 
query. Then, we need to retrieve those data that fall into 
the relevant cells from database and do some further 
processing. 

After we have labeled all cells as relevant or not 
relevant, we can easily find all regions that satisfy the 
density specified by a breadth-first search. For each 
relevant cell, we examine cells within a certain distance 
(how to choose this distance is discussed below) from the 
center of current cell to see if the average density within 
this small area is greater than the density specified. If so, 
this area is marked and all relevant cells we just examined 
are put into a queue. Each time we take one cell from the 
queue and repeat the same procedure except that only 
those relevant cells that are not examined before are 
enqueued. When the queue is empty, we have identified 
one region. The distance we use above is calculated from 
the specified density and the granularity of the bottom 

level cell. The distance d = max(l, 

are the side length of bottom layer cell, the specified 
density, and a small constant number set by STING (It 
does not vary from a query to another), respectively. 

Usually, 1 is the dominant term in max(l, 
J 

5). As a 

result, this distance can only reach the neighbor cells. In 
this case, we just need to examine neighboring cells and 
find regions that are formed by connected cells. Only 
when the granularity is very small, this distance could 
cover a number of cells. In this case, we need to examine 
every cell within this distance instead of only neighboring 
cells. 

For example, if the objects in our database are houses 
and price is one of the attributes, then one kind of query 
could be “Find those regions with area at least A where 
the number of houses per unit area is at least c and at least 
p% of the houses have price between a and b with (1 - a) 
confidence” where a < b. Here, a could be -0~ and b could 
be +m. This query can be written as 

SELECT REGION 
FROM house-map 
WHERE DENSITY IN [c, -) 
AND price RANGE [a, b] WITH PERCENT [ p%, l] 
AND AREA [A, -) 
AND WITH CONFIDENCE 1 - a 
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We begin from the top layer that has only one cell and 
stop at the bottom level. Assume that the price in each 
bottom layer cell is approximately normally distributed. 
(For other distribution types the idea is essentially the 
same except that we use different distribution function and 
lookup table.) Note that price in a higher level cell could 
have distribution type as NONE. 

For each cell, if the distribution type is normal, we first 
calculate the proportion of houses whose price is within 
the range [a, b]. The probability that a price is between a 
and b is 

j=P(aIpriceIb) 

a-m price-m <b-m 
=P(-< 

s - s -s 1 

a-m 
= P(- 

b-m 
IZI- 

S s ) 

=aq !y)-,y) 

where m and s are the mean and standard deviation of all 
prices in this cell respectively. Since we assume all prices 
are independent given the mean and variance, the number 
of houses with price between a and b has a binomial 
distribution with parameters n and $, where n is the 
number of houses. Now we consider the following cases 
according to n, n i , and n( 1 - i ). 
1. 

2. 

3. 

4. 

When n I 30, we can use binomial distribution 
directly to calculate the confidence interval of the 
number of houses whose price falls into [a, b], and 
divide it by n to get the confidence interval for the 
proportion. 
Whenn>30,nb 25,andn(l- $)>5,the 

proportion that the price falls in [a, b] has a normal 
distribution N( 5 , ,/m ) approximately. 

Then lOO(1 - a)% confidence interval of the 
proportion is $ + z&J= = [pi, pz]. 

When n > 30 but n 3 < 5, the Poisson distribution 
with parameter h = n i is approximately equal to the 
binomial distribution with parameters n and fi. 
Therefore, we can use the Poisson distribution 
instead. 
When n > 30 but n( 1 - j ) c 5, we can calculate the 
proportion of houses (x) whose price is not in [a, b] 
using Poisson distribution with parameter h = n(1 - 
j ), and 1 - X is the proportion of houses whose price 

is in [a, b]. 
For a cell, if the distribution type is NONE!, we can 

estimate the proportion range [pi, pz] that the price falls in 

[a, b] by some distribution-free techniques, such as 
Chebyshev’s inequality [Dev91]. 
1. If m er [a, b], then 

sz sz 
(a-m)’ ‘(b-m)’ 

; 

2. Ifm=aorm=b,then[p,,pz]=[O, I]; 
3. If m E (a, b), then 

S2 
2 

1-(a-m)2 91-(bsm)2’o ‘I ’ )3 
Once we have the confidence interval or the estimated 

range [pi, pz], we can label this cell as relevant or not 
relevant. Let S be the area of cells at bottom layer. If p2 x 
n < S x c x p%, we label this cell as not relevant; 
otherwise, we label it as relevant. 

Each time when we finish examining a layer, we go 
down one level and only examine those cells that form the 
relevant cells at higher layer. After we labeled the cells at 
bottom layer, we scan those relevant cells and return those 
regions formed by at least rA/Si adjacent relevant cells. 
This can be done in O(K) time. 

The above algorithm is summarized in Figure 2. 

Statistical Information Grid-based Algorithm: 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Determine a layer to begin with. 
For each cell of this layer, we calculate the confidence 
interval (or estimated range) of probability that this cell 
is relevant to the query. 
From the interval calculated above, we label the cell as 
relevant or not relevant. 
If this layer is the bottom layer, go to Step 6; otherwise, 
go to Step 5. 
We go down the hierarchy structure by one level. Go to 
Step 2 for those cells that form the relevant cells of the 
higher level layer. 
If the specification of the query is met, go to Step 8; 
otherwise, go to Step 7. 
Retrieve those data fall into the relevant cells and do 
further processing. Return the result that meet the 
requirement of the query. Go to Step 9. 
Find the regions of relevant cells. Return those regions 
that meet the requirement of the query. Go to Step 9. 
stop. 

Figure 2: STING Algorithm 

6 Analysis of the STING Algorithm 
In above algorithm, Step 1 takes constant time. Steps 2 
and 3 require a constant time for each cell to calculate the 
confidence interval or estimate proportion range and also 
a constant time to label the cell as relevant or not 
relevant. This means that we need constant time to 
process each cell in Steps 2 and 3. The total time is less 
than or equal to the total number of cells in our 
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hierarchical structure. Notice that the total number of cells 
is 1.33K, where K is the number of cells at bottom layer. 
We obtain the factor 1.33 because the number of cells of a 
layer is always one-forth of the number of cells of the 
layer one level lower. So the overall computation 
complexity on the grid hierarchy structure is O(K). 
Usually, the number of cells needed to be examined is 
much less, especially when many cells at high layers are 
not relevant. In Step 8, the time it takes to form the 
regions is linearly proportional to the number of cells. The 
reason is that for a given cell, the number of cells need to 
be examined is constant because both the specified density 
and the granularity can be regarded as constants during 
the execution of a query and in turn the distance is also a 
constant since it is determined by the specified density. 
Since we assume each cell at bottom layer usually has 
several dozens to several thousands objects, K CC N. So, 
the total complexity is still O(K).Usually, we do not need 
to do Step 7 and the overall computational complexity is 
O(K). In the extreme case that we need to go to Step 7, we 
still do not need to retrieve all data from database. 
Therefore, the time required in this step is still less than 
linear. So, this algorithm outperforms other approaches 
greatly. 

7 Quality of STING 
STING makes use of statistical information to 
approximate the expected results of query. Therefore, it 
could be imprecise since data points can be arbitrarily 
located. However, under the the following sufficient 
condition, STING can guarantee that if a region satisfies 
the specificaton of the query, then it is returned. 

Definition 1. Let F be a region. The width of F is defined 
as the side length of the maximum square that can fit in F. 

Sufficient Condition: 

Let A and c be the minimum area and density 
specified by query, respectively. Let R and W be a 
region satisfying the ,conditions specified by the 
query and its width, respectively. If W2 - 4(fW/11 
+1)1’ 2 A where 1 is the side length of the bottom 
level cell, then R must be returned by STING. 

Let S be a maximum square in R with side length W. 
Let I be the set of bottom level cells that intersect with S. I 
can be divided into two disjoint subsets II and ZZ. II is the 
set of cells that cross the boundary of S while I* is the set 
of cells that are within S. It is obvious that all cells in I2 
are connected. A line segment of length W can cross at 
most rW/ll + 1 bottom level cells. In turn, the cardinality 
of II is at most 4[W/11+ 1). The total area of cells in II is 
at most 4(fW/1!1 + 1)12 and the total area of S is W2. As a 

result, the total area of cells in I2 is at least W2 - 4(rW/Zl+ 
1)1’. STING can detect all the cells in I2 as relevant. Since 
W2 - 4(-W/Z] +1)1’ 2 A, the total area of cells in Z2 is at 
least A. Therefore, STING can guarantee to return R. 
However, the boundary of the returned region could be 
slightly different from the expected one. 

8 Limiting Behavior of STING is Equivalent 
to DBSCAN 
The regions returned by STING are an approximation of 
the result by DBSCAN. As the granularity approaches 
zero, the regions returned by STING approach the result 
of DBSCAN. In order to compare to DBSCAN, we only 
use the number of points here since DBSCAN can only 
cluster points according to their spatial location. (i.e., we 
do not consider conditions on other attributes.) DBSCAN 
has two parameters: Eps and MinPts. (Usually, MinPts is 
fixed to k.) In our case, STING has only one parameter: 

the density c. We set c = 
MinPts + 1 k+l 

Eps’ . a 
=- in order 

Eps’ . K 
to approximate the result of DBSCAN. The reason is that 
the density of any area inside the clusters detected by 

DBSCAN is at least 
MinPts + 1 
Eps’ . k 

since for each core point 

there are at least MinPts points (excluding itself) within 
distance Eps. In STING, for each cell, if it < S x c, then 
we label it as not relevant; otherwise, we label it as 
relevant where n and S are the number of points in this 
cell and the area of bottom layer cell, respectively. When 
we form the regions from relevant cells, the examining 

distance is set to be d = max(l, 5). When the 

granularity is very small, d k+l 
; becomes the dominant 

term. As the granularity approaches zero, the area of each 
cell at bottom layer goes to zero. So, if there is at least one 
point in a cell, this cell will be labeled as relevant. Now 
what we need to do is to form the region to be returned 
according to distance d and density c. We can see that d = 

k+l 
k+l 

= Eps. For each relevant cell, we 
-.?r 
Eps’ . z 

examine the area around it (within distance d) to see if the 
density is greater than c. This is equivalent to check if the 
number of points (including itself) within this area is 
greater than c x nd2 = k + 1. As a result, the result of 
STING approaches that of DBSCAN when the granularity 
approaches zero. 
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9 Performance 
We run several tests to evaluate the performance of 
STING. The following tests are run on a SPARC 10 
machine with Solaris 5.5 operating system (192 MB 
memory). 

9.1 Performance Comparison of Two Distributions 

To obtain performance metric of STING, we implemented 
the house-price example discussed in Section 5. Exl is the 
query that we posed. We generated two data sets, both of 
which have 100,000 data points (houses). The hierarchical 
structure has seven layers in this test. First, we generate a 
data set (DSI) such that the price is normally distributed 
in each cell (with similar mean). The hierarchical structure 
generation time is 9.8 seconds. (Generation needs to be 
done once for each data set. All the queries for the same 
data set can use the same structure. Therefore, we do not 
need to generate it for each query.) It takes STING 0.20 
second to answer the query given the STING structure 
exists. The expected result and the result returned by 
STING are in Figure 3a and 3b, respectively. 

From Figure 3a and 3b, we can see that STING’s 
result is very close to the expected one. In the second data 
set (DS2), the prices in each bottom layer cell follow a 
normal distribution (with different mean) but they do not 
follow any known distribution at higher levels. The 
hierarchical structure generation time is 9.7 seconds. It 
takes STING 0.22 second to answer the query. The 
expected result and the result returned by STING are in 
Figure 4a and 4b, respectively. 

Figure 3a: Expected Result with DS 1 

Figure 3b: STING’s Result on DS 1 

Figure 4a: Expected Result with DS2 

Figure 4b: STING’s Result on DS2 
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Once again, we can see that the STING’s result is very 
close to the expected one. 

9.2 Benchmark Result 

Currently, clustering based approaches are an important 
category of spatial data mining problems. Three extant 
systems are CLARANS [Ng94], BIRCH [Zha96], and 
DBSCAN [Est96]. We compare the performance of these 
three with STING. 

In the following tests, we only compare the time for 
clustering. However, if the clustering data is the result of 
some query, then all other algorithms (other than STING) 
have at least three phases: 
1. Find query response. 
2. Build auxiliary structure. 
3. Do clustering. 
The reported numbers for the other methods do not 
include computation of Phase 1, but STING only takes 
one step to answer the whole query. Therefore, STING 
actually compares better than that the measurements 
presented here indicate. 

We use the benchmark chosen by Ester M. et al. in 
[Est96], namely SEQUOIA 20 [Sto93], to compare the 
performance of STING and other approaches. We 
successfully ran CLARANS and STING with data size 
between 1252 and 12512. STING has generation time and 
query time. The generation time is the time consumed to 
generate the hierarchical structure and the query time is 
the time used to answer a specific query. In the test, the 
STING hierarchy structure has six layers. 

Due to unavailability of DBSCAN source code, we are 
unable to run this algorithm. We discovered that 
CLARANS is approximately 15 times faster in our 
configuration than in the configuration specified in 
[Est96] for all data sizes. We estimate that DBSCAN also 
runs roughly 15 times faster and show the estimated 
running time of DBSCAN in the following table as a 
function of point set cardinality. All times are in units of 
seconds. 

Table 2: Performance tests for CLARANS, DBSCAN, 
and STING 

Number of Points 1256 2503 3910 
CLARANS 49 200 457 

DBSCAN (projected) 1 1.0 1 1.2 1 2.86 
STING (auerv) I 0.12 I 0.12 I 0.14 

\. d, 

STING (generation) 1 1.48 1 1.55 1 1.62 I 

Furthermore, BIRCH outperforms CLARANS about 
20 to 30 times [Zha96]. So STING will also outperform 
BIRCH by a very large margin. We plot the query 
response time for DBSCAN and STING in Figure 5 
because DBSCAN is the fastest among all existing 
algorithms. 

2.5 

5000 10000 

Number of points 

Figure 5: Performance Comparison Between STING and 
DBSCAN 

10 Conclusion 
In this paper, we present a statistical information grid- 
based approach to spatial data mining. It has much less 
computational cost than other approaches. The I/O cost is 
low since we can usually keep the STING data structure in 
memory. Both of these will speed up the processing of 
spatial data query tremendously. In addition, it offers us 
an opportunity for parallelism (STING is trivially 
parallelizable). All these advantages benefit from the 
hierarchical structure of grid cells and the statistical 
information associated with them. 
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