
1

Materialized View Selection in a Multidimensional
Database

Elena Baralis Stefano Paraboschi
Politecnico di Torino Politecnico di Milan0
baralis(Dpolito.it paraboscQelet.polimi.it

Ernest Teniente
Universitat Politecnica de Catalunya

tenienteQlsi.upc.es

Abstract

A multidimensional database is a data repos-
itory that supports the efficient execution of
complex business decision queries. Query re-
sponse can be significantly improved by stor-
ing an appropriate set of materialized views.
These views are selected from the multidimen-
sional lattice whose elements represent the so-
lution space of the problem.

Several techniques have been proposed in the
past to perform the selection of materialized
views for databases with a reduced number
of dimensions. When the number and com-
plexity of dimensions increase, the proposed
techniques do not scale well.

The technique we are proposing reduces the
soluticn space by considering only the relevant
elements of the multidimensional lattice. An
additional statistical analysis allows a further
reduction of the solution space.

Introduction

A multidimensional database (MDDB) is a data repos-
itory that provides an integrated environment for deci-
sion support queries that require complex aggregations
on huge amounts of historical data. An MDDB is a
relational data warehouse, in which the information is
organized following the so-called star-model [Kim96].

Its basic structure may be represented with the sim-
ple entity-relationship diagram depicted in Figure 1,
in which all the Di entities represent the dimensions
of the MDDB, while the connecting relationship F is
the fact table.

Each dimension table Di contains all the informa-
tion that is specific only to the dimension itself, while
the fact table F correlates all dimensions and contains
information on the attributes of interest for the inter-
section of all the dimensions. A new operator, the
data-cube operator [GBLP96], has been proposed to
perform the computation, on a single relation (the fact
table), of one or more aggregate functions for all pos-
sible combinations of grouping attributes (which are
the elements of the data-cube).

Since the computation of any of the elements of
the cube is rather time-consuming, it may be pre-
computed to guarantee a satisfactory query response
time to the user. On the other side, the material-
ization of the complete cube may be unfeasible, both
because of its size and of the time required to update
it when the fact table is updated. Hence, several tech-
niques [Gup97, GHRU97, HRU96] have been proposed
to select an appropriate subset of elements (which are
indeed views on the fact table) to materialize.

The proposed algorithms work very well for medium
size databases, but do not seem to scale well for the in-
creased complexity of actual operational MDDB’s. In-
deed, as shown in the practical example of Section 1.1,
in addition to the fact table, operational MDDB’s may
have several dimensions, each of which is character-
ized bv a considerable number of attributes. most of
which may be relevant for grouping computation as
well. Thus, the presence of dimensions exponentially
increases the number of elements in the cube.

If a set of user-specified relevant queries is available,
exploiting this information may yield a significant re-
duction of the solution space. We observe that the
number of representative queries is extremely small
with respect to the total number of elements of the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or- distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

156

a Promotion, which describes the characteristics of
product promotions. Overall the promotion di-
mension is characterized by at least 10 attributes.

Figure 1: Entity-Relationship representation of an
MDDB

complete data-cube. Then, the indication of the rele-
vant queries is exploited to drive the selection of the
candidate views, i.e., the views that, if materialized,
may yield a reduction of the total cost. The number
of candidate views may be further reduced by means
of a heuristic based on the estimation of the size of the
candidate views. Candidate views are discarded when
their aggregation granularity is too big, because their
materialization would not yield a substantial improve-
ment in query response time with respect to using a
higher level view.

The following section presents a practical exam-
ple of an MDDB, while Section 1.2 discusses related
work. In Section 2 a formal model of a multidimen-
sional database is given, and its relation with the data
cube model is discussed. Section 3 formally introduces
the problem. Section 4 describes the technique to se-
lect views and an algorithm to perform the selection.
Furthermore, the statistical technique to improve the
selection’s efficiency is presented, together with exper-
imental results. Section 5 draws conclusions.

1.1 A Practical Example

Consider as a practical example, taken from [Kim96],
the MDDB for a large grocery store chain, character-
ized by a large number of stores, each of which is a
supermarket selling a wide variety of different prod-
ucts (e.g., grocery, frozen foods, bakery, etc.). The
MDDB stores information on each sale in each store
by day, also considering the promotions under which
each product is sold. We can identify the following
dimensions:

l Product, which can be characterized by more than
50 different attributes.

l Store, which characterizes each point of sale. The
store dimension may contain more than 20 at-
tributes.

l Time, which provides the appropriate detail to
allow accurate analysis of the MDDB data. The
time dimension may have more than 15 attributes.

The fact table provides the sales information on
which the actual financial analysis is performed. It
includes the identifiers of all the dimensions and sev-
eral attributes describing sales revenues (e.g., in terms
of number of units sold). In this paper we consider
a subset of the attributes of each dimension as rele-
vant attributes for grouping computations: we assume
15 attributes for dimensions Product and Store, 9 at-
tributes for Time, and 11 attributes for Promotion.

1.2 Related Work

Multidimensional data processing for relational data
warehouses has raised considerable interest both in
the scientific community [GBLP96, Gup97, GHRU97,
HRU96, Wid95, ZGHW95] and in the industrial com-
munity, where several products have appeared.

The algorithms presented in this paper are closest to
the work in [Gup97, GHRU97, HRU96]. In particular,
[HRU96] considers an MDDB including only the fact
table and proposes a greedy algorithm for the selection
of an appropriate subset of the views of the complete
data-cube to materialize. Work in [GHRU97] extends
the previous results to the selection of both material-
ized views and indexes. Both works do not consider
the cost of maintaining the materialized views in the
model. A more general query and update model is
proposed in [Gup97], where a theoretical framework
for the view-selection problem is presented. In this
context, a general algorithm and several heuristics are
proposed. A detailed comparison of our work with
[Gup97, GHRU97, HRU96] is performed in the rele-
vant sections of the paper.

[RSS96] first gave a formal description of the multi-
ple view maintenance problem. They present a frame-
work for improving query performances by storing an
additional set of materialized views and consider sev-
eral heuristics for optimization. The cost model they
propose, which includes both query and maintenance
costs, uses an estimate of the number of disk accesses,
by making hypotheses on the physical design of the
database, while we selected a more abstract metric.

2 Multidimensional Database Model

Definition 2.1 A Multidimensional Database is
a collection of relations DI, . . . , D,, F, where

l Each Di is a dimension table, i.e., a rela-
tion characterized by an identifier di that uniquely
identifies each tuple (di is the primary key of Di).

157

l F is a fact table, i.e., a relation connecting all
tables D1, . . . , D,; the identifier of F is given by
the foreign keys dl, . . . , d, of all the dimension
tables it connects; the schema of F contains a set
of additional attributes V (representing the values
on which the aggregate functions are applied).

The dimension tables may contain hierarchies.

Definition 2.2 Let D be a dimension table with iden-
tifier d. An attribute hierarchy on D is a set of
functional dependencies FDD = {f do, f dl, . . . , f dn},
where each f di is characterized by two sets of attributes
Ai c Attr(D) and AL E Attr(D) (respectively called
left side and right side of the dependency); the depen-
dency is represented as f di : Ai + AL.

Each functional dependency fdi is a constraint on
the content of the dimension table D: for each tuple
pair tl,t2 E D,tl[Af] = tz[Af] + tl[Ar] = tz[AS]. A
dependency fdo with Ai = {d} and AT; = {A&(D) -
d} will always be present in FDD. Functional depen-
dencies must be acyclic, i.e., the graph obtained by
drawing an arc from a, to a,, if Elf di E FDD 1 a, E
Af A aY E AT, must be acyclic.

Definition 2.3 An attribute hierarchy is tree-like if
disregarding all transitive dependencies (i.e., depen-
dencies that can be deduced from other dependencies),
all the attributes appear at most once in the right side
of a functional dependency and the left side always
contains a single attribute. The transitive closure of a
tree-like hierarchy is a tree-like complete (FDTC)
attribute hierarchy.

In this paper we consider only tree-like attribute hi-
erarchies. In the algorithms we will often use complete
hierarchies, in order to simplify the algorithm descrip-
tion.

Example 2.4 Consider the Store dimension of the
MDDB described in Section 1.1, with key s and re-
stricted to a set of attributes {z, c, st, n} representing
respectively rip code, county, state, and number of sale
clerks. The dimension has the following tree-like at-
tribute hierarchy: {fo$: s + {z, c, st,n}, fdl : z +
c, fd2 : c + St}.

Definition 2.5 An MDDB attribute hierarchy
FDDB is the union of the attribute hierarchies FDD,
of all the dimensions Dj appearing in the MDDB.

Business analysis queries usually require the com-
putation of aggregate functions on data grouped on an
appropriate set of attributes.

Example 2.6 Consider again the multidimensional
database of our example, MDDB = {Product, Store,
Time, Promotion, F), where each dimension table has
its corresponding attributes and with fact table F =
{p, s, d,r, f}, having p, s, d (time dimension is rep-
resented with the granularity of day) and r as for-

eign keys of the dimension tables and f representing
the amount of sales. The following queries can be re-
quested on the MDDB:

l q1 = total sales per product

l q2 = total sales per product and store

l q3 = total sales per product and day

l q4 = total sales per product, store and day

The queries we consider are select-join-groupby
queries, with some restrictions on the allowed selec-
tion and join predicates. In particular, selection pred-
icates are simple comparison predicates between a di-
mension attribute and a constant value (i.e., are of
the type attr <operator> cons&value). These predi-
cates select a “slice” of data on which aggregates are
computed. We envision a framework where the user
provides a set of queries representative of the queries
that the system must answer. For select queries we
assume that only the attribute used is important and
not the constants used in the comparison (which will
generally change from query to query). To simplify the
framework, we derive from a selection condition on an
attribute a request for aggregating on that attribute.
Consider a query q that returns the total sales of a par-
ticular store grouped by products. Query q can be an-
swered by accessing the result of a query that returns
the sales grouped by product and store, and select-
ing from them only the tuples relative to the specified
store. In this way we can focus on queries computing
aggregates. These considerations lead to the restric-
tion that all the attributes appearing in a selection
predicate must also appear as grouping attributes.

Join operations may be performed only between the
fact table and any of its dimensions. Allowed pred-
icates are equality predicates between a dimension’s
identifier and the corresponding fact table foreign key,
while join predicates involving non-key attributes are
disallowed.

We consider the standard SQL notion of group-
by and aggregate function (considered functions are
count, sum, avg, min, max). Grouping attributes
may be drawn both from dimension and fact table at-
tributes.

Definition 2.7 Given a query q we define the query
as characterized by the set of its group-by attributes
A. We may represent the query as q*.

2.1 Data Cube

A fundamental characteristic of MDDB queries is that
it is often possible to reuse the results of queries to
answer other queries. In Example 2.6, we can use the
result of query qa to answer query q1 , adding the sales
across all stores to get the result.

The reuse of queries is strictly related to a new oper-
ator, the data-cube [GBLP96]. This operator, receiv-
ing as input a table T, a set of aggregating attributes A
and a function f, computes the union of the results of
the queries evaluating f, having as grouping attributes
all possible combinations of attributes in A.

Definition 2.8 Given an MDDB = (01,. . . , D,, F},
the data-cube lattice Cube-lattice of MDDB is the
lattice of the set of all possible grouping queries that
can be defined on the foreign keys of F. This lattice is
characterized by the following elements:

an ordering relation defined as the comparison be-
tween the sets of grouping attributes (i.e., qA1 5
qA2 * AI C A2);

meet operator as union of the grouping attributes;

join operator as intersection of the grouping at-
tributes;

The query grouping on all the foreign keys as top
element;

The query computing the aggregate function on all
the tuples of F as bottom element (empty set of
grouping attributes).

Previous work on the selection of views to material-
ize has concentrated on the computation of all the ele-
ments of the data cube. We instead consider a sample
of representative queries which identify the elements
that are really needed by the users, because only some
of the queries that can be defined on the fact table
will be generally requested on an MDDB. Requested
queries are associated to a subset of the views of the
data-cube lattice of MDDB.

Example 2.9 Consider again the MDDB of Example
2.6. Figure 2 represents the data-cube lattice derived
from the fact table F and shows the elements to which
a query is associated.

2.2 The Multidimensional Lattice

The presence of dimensions makes the problem more
complex. The first aspect is the increase in the num-
ber of potential grouping attributes, which exponen-
tially increases the number of elements of the lattice.
The second aspect is the presence of hierarchies, which

none

Figure 2: Data-cube lattice with associated queries

permit to remove some elements from the lattice. In
fact, consider a query grouping on a dimension key
di and also on an attribute aj of the same dimension
Di. Since there exists a functional dependency from di
to oj, a query grouping on {di, oj} must produce the
same result of the query grouping on {di}. This ob-
servation is the basis for the following generalization.

Definition 2.10 Let qt* and q$ be two queries and
FDDB the MDDB attribute hierarchy. The operator
ancestor (represented by the symbol ~3) is defined by
the following algorithm:

Algorithm 2.11 Ancestor of two queries.

operator $: q,A= $ q$ * q,Az;

A, := A, u A,;
for each fdi E FDzg

for each aj E Af
if ({at> u aj) E 4

A, := A, - aj;
return qA=;

Algorithm 2.11 operates by building the union of
the attributes characterizing the queries and eliminat-
ing all the elements for which there exists a functional
dependency in FDDB.

The result of applying the operator $ to queries
qs and qv is the “smallest” query that contains all the
information necessary for answering qz as well as qY. If
applied in a reflexive way (i.e., q.$ @q$), it eliminates
all redundant attributes.

Example 2.12 Consider the hierarchy on the Store
dimension of Example 2.4. The queries qtn), q{c),
and q{“) can for example be computed from q{cln) =
,+I @ qt4 @ qt-4.

Definition 2.13 The operator descendent (repre-
sented by symbol e) is defined by the following algo-
rithm:

Algorithm 2.14 Descendent of two queries.

159

operator 8: q,A= 8 q$ * q,“z ;

for each fdi E FDEC,
if {ai> C AZ

A, := A, u A;;
if {ali) C A,

A, := A, u A;;
A z := A, n A,;
return q$ @ q,Az ;

Algorithm 2.14 first extends the arguments A, and
A, with all the attributes that can possibly be derived
from them. It then considers their intersection A, and
finally removes from it the right sides of dependencies
whose left side is contained in A,.

The descendent operator computes the “greatest”
among the set of attributes characterizing the queries
that can be computed by both qz and qY. This opera-
tor is relevant only for the MD-lattice definition.

Definition 2.15 Let (01,. . . , D,, F} be a multidi-
mensional database and FDDB the MDDB attribute
hierarchy. Consider the set of queries character-
ized by all the combinations among the attributes of
{Dl,... , D,, F}, except the combinations that contain
attributes on both sides of a functional dependency
f di E FDDB. This set of queries identifies a lattice
where:

a The ordem’ng relation is given by the following
definition: qAl 5 qA2 H (Al 8 AZ) = Al H
(AI @ A21 = A,;

l $ is the meet operation;

l 8 is the join operation;

l The query grouping on all the foreign keys of F,
14,...,&I, is the top element;

l The query computing the aggregate function on all
the tuples of F is the bottom element (empty set
of grouping attributes).

We call this lattice the MD-lattice (Multidimensional
lattice).

Comparing Definitions 2.8 and 2.15, it is easy to ob-
serve that without hierarchies the MD-lattice is equiv-
alent to the Cube-lattice built on all the schema at-
tributes (instead of the foreign keys only).

Example 2.16 Consider the Store dimension of Ex-
ample 2.12. The MD-lattice for an MDDB where Store
is the only dimension is represented in Figure 3.

An MD-lattice defines all possible ways of comput-
ing queries that can be defined on an MDDB in terms

\ /
0

none

Figure 3: MD-lattice of the Store dimension

of other queries defined also on MDDB. In fact, if a
query qi 5 qj then qi can be answered using qj. This
property can be generalized.

Definition 2.17 Let qi and qj be two queries on an
MDDB. Then, the least upper bound (l.u.b.) of qi
and qj in the MD-lattice is the query qi @ qj, a query
(the most specialized) which can be used to answer both
qi and qj.

Hierarchies on cube lattices have already been intro-
duced in [HRU96] and also in [SDNR96]. With respect
to their description, we provide a more formal and
more general treatment. Particularly, we explicitly
permit the evaluation of queries combining attributes
not directly related by functional dependencies (like
the pair of attributes (z,n) in Figure 3).

We now distinguish between queries and views. In
the following we will use the term query to refer to
the representative queries provided by the user, while
we will use the term view to refer to the elements of
the lattices. When a query q computes the content of a
view v of a lattice, we say that the query q is associated
to view v. We also say that a view is characterized by a
set of attributes A if A is the set of grouping attributes
of v, represented as vA.

Definition 2.18 A view vi, or equivalently its asso-
ciated query qi, is said to depend on view vj, if qi
can be answered using as only inputs the content of vj
together with any appropriate dimension Di.

There is a strict relationship between dependence
of a query on a view and the ordering relation on an
MD-lattice. In fact, if we consider a view vi depending
on view Vj, it must happen that vi 5 vj.

An important relationship exists between the or-
dering of the elements in the lattice given by relation
3 and the cardinalities (i.e., number of tuples) of the

160

views. In fact, for each pair of views vi,vj E MD-
lattice, if vj 3 vi, vj GUI be computed by vi with a
further grouping. Since grouping can only reduce the
number of tuples, it follows that 1 vj 111 vi 1, where 1 v I
represents the cardinality of v.

2.3 Determining the number of views of an
MD-lattice

The number of views of an MD-lattice depends on the
number of attributes of the dimensions of the MDDB
and on the number and structure of the attribute hi-
erarchies.

In the absence of hierarchies on the dimensional ta-
bles, the number of views of the MD-lattice is given
by the following formula:

ntotot = nwi + 1)
i

where i is the number of dimensions of MDDB and ni
is the number of non-key attributes of each dimension
Di. In the presence of hierarchies, the number of views
in the local lattices is reduced and the above formula
for ntotol constitutes an upper bound. We only pro-
vide as an example the determination of the number
of elements for the MD-lattice of the MDDB described
in Section 1.1.

Example 2.19 Consider the MDDB of Section 1.1.
The number of views of the lattices that can be
built on every dimension, considering hierarchies, are:
nproduct = 12,289; nStore = 8,193; nTime = 129;
nprorn,,tion = 1025. The total number of views of the
resulting MD-lattice is then the product of all these
values, obtaining IMD-latticeI= 1.3313 * 1013.

3 The MDmat problem

The fundamental problem we want, to solve is to find
the set of view to materialize that maximizes the per-
formances of an MDDB in answering a given set of rep-
resentative queries. The trade-off consists in choosing
a set of materializations able to speed up query re-
sponse time without requiring too much work to keep
the materializations current with respect to the mod-
ifications on the tables of the MDDB.

Definition 3.1 Given an MDDB YDB, a set of queries
Q, and a set of frequency values .F of queries in Q and
updates on the tables of DB, the MDmat-problem
(Multidimensional Database Materialization problem)
is represented by @(2X?, Q, F). A solution to the prob-
lem @(2X?, Q,F) . as a set of views of the MD-lattice
M (which can contain views that are not associated to
queries in Q). A trivial solution, M = 0, is always

possible, which represents the situation where no addi-
tional materialization is available and all the queries
must be answered directly by the fact table (the root of
the hierarchy).

To identify the optimal M, we must define a cost
function. The cost function is composed of two parts:
the query cost and the update cost.

Definition 3.2 Let F be a set of frequencies f,;, each
associated to a query qi E Q, representing the fre-
quency with which query qi is asked. Let cqi (M) be
the cost to compute qi from the set of materializations
M (discussed in Section 3.1 below). Then, the total
query cost CQ(Q, M, 7) is given by:

Co(Q,M,F) = c f,i -cqi(M)
qiEQ

Definition 3.3 Consider the same set of materialized
views M. Let fmi be the frequency with which the
materialized view mi E M is modified and cU(mi) its
update cost (update frequency and cost are further dis-
cussed in Section 3.2). Then, the total update cost
Cw(M,F) is given by:

Cw(M,F) = c fmi . c,(mi)
7%EM

Definition 3.4 Given an MDmat-problem described
by @(2X?, Q,F), the cost of a solution M is the
sum of query and update costs:

C(Q,M,F) = CdQ,M,F) +C,w(M,F)

3.1 Query Corst

We do not specify completely a cost model. The tech-
niques we describe are applicable to a wide choice of
cost, models, from simple to complex ones. Very few
restrictions have to be imposed on the cost formulas
to permit the adoption of our results.

The function cgi (M) returns the cost of computing
query qi given a set of materializations M. We make
two hypotheses about the query cost function: that
each query cost depends on a unique element in M,
and that the cost is monotonic with the size of the
materialization on which the query depends.

Definition 3.5 A que y cost function cqi (M) is re-
strictible if it is always equal to the least among
the values obtained by considering cqi (mj), for all the
mj E M on which query qi depends.

Every query of the type introduced in Section 2 is
restrictible (having always the fact table in the set, of
materializations).

.61

Definition 3.6 Given a query qi, a restrictible query
cost function cqi, and a set of materializations M,
the materialization mj such that cPi(M) = cqi(rnj)
is the least expensive materialization (for query
qi among the elements of M).

Definition 3.7 A query cost function cg; (MD-lattice)
is monotonic if for all Vj, vk E MD-lattice on which
qi depends,] Vj I< 1 Vk 1-b Cgi (Vj) 5 cpi (Vk), where I v 1
represents the cardinality of v and the arrow denotes
logical implication. From the observation on the cardi-
nalities of the views in the lattice, a monotonic func-
tion also gUaranteeS that ‘Vj 3 Vk + Cqi (Vj) 5 Cpi (Vk).

The simple cost model introduced in [HRU96] is for
example both restrictible and monotonic: the cost of
answering a query q is set equal to the number of tu-
ples read to return the answer. An extension of this
model permits to consider the availability of indexes
to accelerate the execution of queries, as described
in [GHRU97]. Sophisticated cost functions can be de-
signed which adequately model the system and still
offer restrictibility and monotonicity.

3.2 Update Cost

We consider the insertion of tuples into either the
fact table or the dimension tables as the prevailing
type of modification in an MDDB. We assume that
all performed insertions do not violate the referential
integrity constraint between the dimension tables and
the fact table.

We simplify our cost model assuming a unique up-
date frequency fu valid for all the materializations,
where fu represents the frequency of insertions into the
fact table. The update cost function of Definition 3.3
becomes:

CM = fu’ c cu(mj)
mjEM

Definition 3.8 An update cost function c, is mono-
tonic if for all mj,mk E M, Imjl<lmk I+ Cu(mj) 5
cU(rnk), where Irnj 1 represents the cardinality of mj.

We require a monotonic update cost function.

4 Identification of Candidate Views

Compared to the number of nodes that form the MD-
lattice, the number of representative queries is ex-
tremely small. This considerable sparsity of queries
among the views of an MD-lattice suggests that only
some of these views are relevant when deciding how
to minimize the total cost. The idea of our reduc-
tion technique is to consider only those views of an
MD-lattice that, when materialized, can provide some

contribution to reduce the total cost. We call them
candidate views.

Definition 4.1 A view vi belonging to an MD-lattice
is a candidate view if one of the following two con-
ditions holds:

l View Vi is associated to some query qi.

l There exist two candidate views Vj and vk, and Vi
is the least upper bound (1.u.b.) of uj and uk.

Let vi be a candidate view of an MD-lattice. Then,
choosing vi for materialization may provide some ben-
efit when looking for the solution that reduces the total
cost. There are in fact two cases:

1. vi has an associated query qa.

It is trivial to show that the materialization of a
view associated to a query can help the compu-
tation of the query. Starting from the definition
of the cost of a solution, we obtain the following
formula, which identifies the query frequency fqi
that makes convenient the materialization of view
vi when a set of views M is already materialized:

f,i > fu . G(Q)

%i Cut) - cq; (Vi)

where vt E M represents the least expensive ma-
terialization that can be used to answer qi.

2. There exist at least two candidate views, uj and
vk, such that Vi is the 1.u.b. of Vj and ok.

It is enough to show that there exists at least one
case in which materializing vi provides some bene-
fit. Assume that there exist two queries qj and qk
associated to views uj and Vk, respectively. The
contribution of queries qj and qk and views Vj
and vk to the cost C(Q,M,T), when Vj and uk
are materialized and vi is not, is:

cl = f~‘C~(Vj)+fqj’Cqj(‘j)+fU”U(‘k)+fq,”q~(’k)

The contribution to the cost C(&, M, 3) if vi is
materialized and uj and vk are not, with vi being
the least expensive materialization for both qj and
qk, is:

c2 = fu * CuCVi) + fqj . Cqj (Vi) + fq, ’ Cqk (Vi)

Choosing vi for materialization will decrease the
total cost if Ci > C’s, i.e., when:

162

f u , f*j ’ Cc% (‘i> - 'qj Cvj>) + fqk ’ (Cqk (vi) - cqh (vk))
C&j) + Cu(z)k) - C,(‘vj)

with the hypothesis that c~(v~)+c,(v~) -c,(vi) >
0. The intuition is that if the cost of updating
views Vj and vk is greater than the cost of updat-
ing vi, for a high enough update frequency fU it
may be convenient to materialize view vi instead
of Vj and Vk.

Moreover, if we want to ensure that candidate views
are the only relevant views for the process of deciding
which views to materialize, we must prove also that
materializing a non-candidate view may never decrease
the total cost. This is done in Theorem 4.3; before the
theorem we need a new definition.

Definition 4.2 Given a non-candidate view vi with at
least one candidate view depending on it, we call most
directly dependent candidate view the unique
candidate view vj such that all the remaining candi-
date views that depend on vi also depend on vj.

We can determine the most directly dependent can-
didate view of uj by taking the set V’ of all the candi-
date views that depend on uj and computing the 1.u.b.
of all the views in V’. This view is unique (because a
1.u.b. is always determined), is a candidate view (be-
cause is a 1.u.b. of candidate views) and belongs to V’
(because ‘U. 5 ‘Ui A Vb 5 Vi --) (V, @ ‘Ub) 5 Vi).

Theorem 4.3 Let vi be a non-candidate view of an
MD-lattice. Then, the choice of vi for materialization
is always dominated by the choice of a candidate view.

Proof: We will assume that there exists a non-
candidate view vi that belongs to the set of materi-
alizations M of the optimal solution, and we will get
a contradiction. We distinguish two cases.

1. There is no candidate view depending on vi.

The contribution of view Vi to the cost Ci =
C(&,M,F) of the solution M for @(2X3, &,F)
(vi E M) is represented only by the contribu-
tion to the update cost f,, . cu(ui), since no query
can use vi (otherwise there would be candidate
views depending on vi). The cost of the solu-
tion M - vi is equal to C’s = C(Q,M - vi,F),
where Cr = Cz + f,, . c,(TJ~). Since materializ-
ing vi must provide some benefit, it must happen
that Ci < Cz, i.e., f,, . c,(Vi) < 0. Then, we get
a contradiction because both fu and C,(Q) must
be positive.

Figure 4: A configuration of materializations

::I 0 p::
J J

Figure 5: A configuration of materializations

2. There exists at least one candidate view depend-
ing on Vi.

We first identify view vj, the most directly de-
pendent candidate view of vi. We then consider
separately two sub-cases, represented in Figures 4
and 5.

Case 1 Both vj and vi are materialized (represented
in Figure 4). Let M’ =M-vi-vj. Thecostof
this solution is:

C3=Cfqi’Cqi(M’UwjUVi)+fu. CCu(Vk)
qiEQ VL EM’Uvj UV;

We observe that view vi is not used by any query
qi E &, because all the queries that depend on vi
also depend on uj, and since vi 5 Vj it follows that
cqi (vi) > cqi (Vj). We can then remove it from the
first term of the formula for C’s obtaining:

C’s = C fqi . cqi (M’ U Vj) + fu 1 c ‘%(d
q;EQ V* EM’Uvj Uvi

The cost of the solution with materialization M’U
Vj is:

The difference between C’s and C4 is represented
by the single term f,, . C,,(Q). In order for 173 to
be the optimum (i.e., C’s < Cd), it must happen
that f,, . c,,(vi) < 0. We get a contradiction since
both fu and cu(ui) must be positive.

Case 2 Vi is materialized and uj is not (represented
in Figure 5). Let M’ = M - vi. The cost of this
solution is:

c5 = c fq; .Cqi(M’Uui) + fu. C &(‘uk)
qieQ Vk EM’Uv;

163

In particular, this solution must be better than
the solution where vj is materialized but vi is not,
which has the cost Cd defined in the above for-
mula. But each term cqi (M’ U uj) in C4 must
be less than cgi (M’ U vi) in C’s, because all the
queries that depend on vi must also depend on vj,
uj is smaller than vi and the query cost function
is monotonic. Term cu(uj) must also be smaller
than cU(vi), for the monotonicity of update cost
with view size. It is then impossible for C’s to be
smaller than 15’4. •I

Once we have proved that candidate views are the
only views that are relevant to decide which material-
izations minimize the total cost, we can define the sub-
lattice obtained by considering only candidate views.

Definition 4.4 Given an MD-lattice and a set of
queries Q, the set of its candidate views identifies also
a lattice, where the join and meet operations are iden-
tical to the ones defined for the MD-lattice. We call
this sub-lattice the MDred-lattice.

Given a set Q of queries and the MDDB attribute
hierarchy, we can identify all the elements of the
MDred-lattice. This is performed by means of the fol-
lowing algorithm.

Algorithm 4.5 The MDred-lattice Construction Al-
gorithm

Function MDred-lattice(Q): <set of elements>;
/* input: a finite set Q of queries */
/* output: the MDred-lattice obtained by Q */

L := Q; lastviews := L; new Views := 0;
while last Views # 0

for each vi E last Views do
for each vj E L,vj # vi do

if Vi @ Vj # L
new Views := new Views U (Vi Cl3 Vj);

L := L U new Views;
last Views := new Views; new Views := 0;

return L;

Algorithm 4.5 iteratively extends the set L. L is
initially equal to the set of views in Q. The 1.u.b.
of all the pairs of elements in L are added to L, and
the process iterates by considering the 1.u.b. of all the
pairs of views obtained by combining the new elements
of L with all the elements of L, until a fixpoint is
reached. In Section 4.2 we present the experimental
results obtained with the above technique.

4.1 A Heuristic Reduction

When building the MDred-lattice, a simple heuristic
technique can be used to further reduce the size of

the lattice, removing views which are not expected to
contribute to the optimal solution. This heuristics is
based on the estimate of the size of the materializa-
tion. These estimates can be done following tradi-
tional query estimation techniques for aggregates. If
the skewness of data is of concern, it is also possible
to use a recently described technique [SDNR96], which
obtains an estimate which is quite precise for a wide
range of skewness in the distribution.

According to the estimates on the size of views, it
is possible to determine when the level of aggregation
used is too detailed and the materialization offers a
very limited help in answering the query with respect
to a materialization of a higher level view.

Example 4.6 Consider a dimension A with 1,000 tu-
ples. Let a view contain an aggregation for the pair of
attributes {Al, As}, where each attribute has 100 dis-
tinct values. There are 10,000 possible pairs of values
of the attributes, but since there are only 1,000 tuples,
at most 1,000 tuples can be present in the view. If the
data is uniformly distributed, the estimate of the size
of the view is quite close to 1,000. Instead of materi-
alizing this view, it could be convenient to use the view
which has the key of dimension A as aggregating at-
tribute. The advantage is that it will be easier to reuse
this view in the computation of other aggregates and
the number of elements of the lattice will be reduced.

We can easily modify the MDred-lattice construc-
tion algorithm to estimate at each step the dimension
of a view, and substituting to it a higher level view if
the reduction criteria are not met.

Definition 4.7
A size estimating function size(vA) is a function
that, applied to a view characterized by a set of at-
tributes A of an MDDB, returns an estimate of the
number of tuples of the view.

Algorithm 4.8 Heuristic Reduction Algorithm

function heuristicRed(<set of attributes>;

repeat
Stop := True;
for each fdi E FDDB

if (A n AI # 0) A (p. size(vAf) < size(vAnAr))
A := A-A;; A := AuA!,;
Stop := False;

until Stop;
return A;

Algorithm 4.8 considers all the functional depen-
dencies to identify when the attributes in A that ap-
pear on the right side (or a subset of them) of a func-
tional dependency produce a size estimate which does

164

N. of queries Views in the Views after the
MDred-lattice heuristic reduction

20 795 85
25 1,417 93
30 2,735 114
35 3,648 129
40 12,378 145
45 21.559 157

Table 1: The application of the techniques of Section 4

not differ more than a ratio jj from the estimate of the
size of the attributes on the left side. When this hap-
pens, the attributes on the right side are replaced by
the attributes on the left side, effectively moving from
a view vi to a view vj, where vi 5 rrj.

The parameter p represents the threshold on the
amount of increase in size below which the left side of
a dependency should be used in place of the right side.
The user should provide this value, evaluating a trade-
off between accuracy of the solution and reduction in
the size of the solution space.

4.2 Experiments

We have applied the techniques proposed in Sections
4 and 4.1 to the MDDB of Section 1.1. The results
are synthetically presented in Table 1. According to
[Kim96], we have considered the following sizes: Fact
table, 657 million tuples; Product, 30,000 tuples; Store,
300 tuples; Time, 730 tuples; Promotion, 2,000 tuples.

In the second column of Table 1, we show the num-
ber of views of the MDred-lattice. The table describes
several runs of the algorithms with different tests, iden-
tified by the number of queries considered in each
case. In the third column, we show the results ob-
tained when applying our heuristic reduction to the
same tests as before (with p = 0.95). From these ex-
periments, it can be seen that the number of views is
drastically reduced. We recall that in Section 2.3 the
original MD-lattice was shown to contain 1.3313. 1013
views.

5 Conclusions

We have dealt with the problem of selecting which
views to materialize in a multidimensional database.
We have proposed two techniques which can signifi-
cantly reduce the number of views to consider, starting
from a lattice representation of the solution problem.

A further contribution of this paper is a formal
framework for the definition of attribute hierarchies,
which allowed us to explicitly consider their effect dur-
ing the lattice construction. This framework further

formalizes and generalizes attribute hierarchy handling
techniques previously proposed.

We have developed a small prototype that allowed
us to obtain the experimental results described in Sec-
tion 4.2. An extended version of this paper can be
retrieved at http:// www.elet.polimi.it/idea/viewsel.ps.
There we present an incremental technique which com-
plements the techniques presented in this paper.

Acknowledgements

The authors thank Stefano Ceri for his inspiration,
direction and support.

References
[AAD+96]

[GBLP96]

[GHRU97]

PW’71

[HRU96]

[Kim961

[RSS96]

[SDNR96]

[Wid95]

[ZGHW95]

S. Agarwal, R. Agrawal, P. M. Deshpande, A.
Gupta, J. F. Naughton, R. Ramakrishnan, and
S. Sarawagi. On the computation of multidi-
mensional aggregates. In Proc. 22nd VLDB,
pages 506-521, Mumbai, Sept. 1996.

J. Gray, A. Bosworth, A. Layman, and H. Pi-
rahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. In Proc. 12th ICDE, pages 152-159,
New Orleans, March 1996.

H. Gupta, V. Harinarayan, A. Rajaraman, and
J. D. Ullman. Index selection for OLAP. In
Proc. 13th ICDE, pages 208-219, Manchester,
UK, April 1997.

H. Gupta. Selection of views to materialize in
a data warehouse. In Proc. Sixth ICDT, pages
98-112, Delphi, Jan. 1997.

V. Harinarayan, A. Rajaraman, and J. D.
Ullman. Implementing data cubes efficiently.
In Proc. ACM SIGMOD ‘96, pages 205-216,
Montreal, June 1996.

R. Kimball. The Data Warehouse Toolkit.
John Wiley & Sons, 1996.

K. A. Ross, D. Srivastava, and S. Sudarshan.
Materialized view maintenance and integrity
constraint checking: Trading space for time.
In Proc. ACM SIGMOD ‘96, pages 447-458,
Montreal, June 1996.

A. Shukla, P. M. Deshpande, J. F. Naughton,
and K. Ramasamy. Storage estimation for mul-
tidimensional aggregates in the presence of hi-
erarchies. In Proc. 22nd VLDB, pages 522-531,
Mumbai, Sept. 1996.

J. Widom, editor. Special Issue on Material-
ized Views and Data Warehousing, IEEE Data
Engineering Bullettin, volume 18, June 1995.

Y. Zhuge, H. Garcia Molina, J. Hammer, and
J. Widom. View maintenance in a warehous-
ing environment. In Proc. ACM SIGMOD ‘95,
pages 316-327, San Jose, May 1995.

165

